
000 SELF-PREDICTIVE REPRESENTATIONS FOR COMBINA- 001 TORIAL GENERALIZATION IN BEHAVIORAL CLONING 002 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 009 ABSTRACT 010

011 While goal-conditioned behavior cloning (GCBC) methods can perform well on
012 in-distribution training tasks, they do not necessarily generalize zero-shot to tasks
013 that require conditioning on novel state-goal pairs, i.e. *combinatorial generaliza-*
014 *tion*. In part, this limitation can be attributed to a lack of temporal consistency in
015 the state representation learned by BC; if temporally correlated states are properly
016 encoded to similar latent representations, then the out-of-distribution gap for novel
017 state-goal pairs would be reduced. We formalize this notion by demonstrating how
018 encouraging long-range temporal consistency via successor representations (SR)
019 can facilitate generalization. We then propose a simple yet effective representation
020 learning objective, BYOL- γ for GCBC, which theoretically approximates the suc-
021 cessor representation in the finite MDP case through self-predictive representations,
022 and achieves competitive empirical performance across a suite of challenging tasks
023 requiring combinatorial generalization.

024 1 INTRODUCTION

025 Generalization has been a long-standing goal in machine learning and robotics. Recently, large-scale
026 supervised models for language and vision have demonstrated impressive generalization when trained
027 over vast amounts of data. In robotics, this has motivated large-scale behavior cloning (BC) models
028 trained on offline datasets of diverse demonstrations (Ghosh et al., 2024; Kim et al., 2024). However,
029 these models still suffer from a lack of generalization. In particular, while BC methods can perform
030 well on tasks directly observed in the dataset, they often fail to perform zero-shot transfer to tasks
031 requiring novel combinations of in-distribution behavior, known as *combinatorial generalization*.
032 In the robotics domain, where demonstration data is time-intensive and costly to produce, simply
033 scaling the dataset is often not possible. Hence, achieving this type of generalization algorithmically
034 will be critical to unlocking the potential for large-scale supervised policy training.

035 The property of combinatorial generalization has been previously formalized as the ability to “stitch”
036 (Ghugare et al., 2024). Here, stitching refers to the ability of a policy to reach a goal state from
037 a start state when trained on a dataset, which provides sufficient coverage of the path to the goal,
038 but which does not contain a single complete trajectory of the path. The lack of stitching observed
039 in goal-conditioned behavioral cloning (GCBC) and, more generally, supervised learning, can be
040 understood through the inductive biases of the model. By construction, BC methods do not encode the
041 inductive bias that the observed data are generated from a Markov decision process (MDP). In contrast,
042 reinforcement learning (RL) policies that are trained via temporal difference (TD) learning directly
043 utilize the structure of the MDP to pass information through time using dynamic programming.
044 Offline RL (Levine et al., 2020) has been proposed as a method for achieving stitching in policies
045 trained on offline datasets. However, these methods are challenging to scale due to the instability
046 of bootstrapping in TD learning when combined with fully offline training. Scaling has been more
047 successful with supervised methods, such as in robotics, where training robot foundation models with
048 BC (Ghosh et al., 2024; Kim et al., 2024) on large-scale datasets (O’Neill et al., 2024; Khazatsky
049 et al., 2024) can lead to more general-purpose policies.

050 A goal-conditioned policy being general-purpose implies it has learned an implicit world model of
051 the environment (Richens et al., 2025). From this intuition, a key desiderata is to make a policy’s
052 representations align with the (latent) dynamics of the underlying environment, in order to obtain
053 a more robust goal-conditioned policy. However, an open question here is which representation

054
055
056
057
058
059
060
061
062
063
064
065
066
067

(a)

(b)

Figure 1: (a) **Self-predictive Representations.** We consider training on trajectories like, $s_0 \rightarrow s_h$ and $s_b \rightarrow s_f$, which intersect at w , and then evaluate on a task like $s_0 \rightarrow s_f$, requiring combinatorial generalization. (b) **Representation learning with BYOL- γ .** We predict future state representations $\phi(s_{t+k})$ via $\psi_f(\phi(s_t), a)$, and also predict backwards with $\psi_b(\phi(s_{t+k}))$. The target offset is sampled geometrically: $k \sim \text{geom}(1 - \gamma)$. Stop-gradients are denoted by $//$. We provide more details on the training procedure \mathcal{L} in Section 4.2.

learning objective best achieves this property. We begin to investigate this question with *Bootstrap Your Own Latent* (BYOL) framework (Grill et al., 2020), which in RL, learns a representation space through predicting future latent states (Schwarzer et al., 2020), without requiring negative samples nor TD-learning. While the standard BYOL objective has been shown to learn representations capturing spectral information about the one-step transition dynamics (Khetarpal et al., 2025), we find that a key property is to capture temporally extended information, leading us to (1) propose a novel objective, **BYOL- γ** which predicts future states geometrically (Figure 1b), and (2) present a unifying framework (Table 1) for understanding objectives related to the successor representation (Blier et al., 2021), including contrastive learning, BYOL, BYOL- γ , and novel applications for TD-based approximation of the SR as an auxiliary loss for BC. Namely, we quantify how these methods uniquely behave when applied to data collected by a mixture of policies which is encountered in practical BC settings.

In the finite, single-policy, MDP case, we show that, in fact, BYOL- γ approximates the successor representation. While in the mixture-policy case, BYOL- γ corresponds to approximating a mixture of SRs, but less with pessimism than existing contrastive objectives. Qualitatively, BYOL- γ objective learns representations that encodes long-range temporal distance between states on mixture datasets more faithfully when compared to TD than contrastive learning (Figure 2). Empirically, we demonstrate on the challenging OGBench suite (Park et al., 2025) that BYOL- γ augmented GCBC outperforms all other methods (Table 2) on average, and is robust to combinatorial generalization with increasing horizons (Figure 3). [Our representation can also be extended to hierarchical setups \(Appendix C\), which leads to further improvements in combinatorial generalization.](#)

2 RELATED WORK

Stitching in Supervised Methods. Outcome (goals or return)-conditioned behavioral cloning (OCBC) methods (Schmidhuber, 2020; Chen et al., 2021; Emmons et al., 2022) provide a simple and scalable alternative to traditional offline RL (Levine et al., 2020) methods. However, these methods do not properly “stitch” and generalize to unseen outcomes (Brandfonbrener et al., 2022; Ghugare et al., 2024). To reduce this problem, various works have proposed augmenting training data used by BC methods. Some work incorporates methodology from offline RL to label returns or goals for downstream SL (Char et al., 2022; Yamagata et al., 2023). Other work has considered relabeling goals through clustering states (Ghugare et al., 2024), which relies on a good distance metric, or utilized planning Zhou et al. (2024) for goal relabeling, or generative models to synthesize new trajectories (Lu et al., 2023; Lee et al., 2024). Rather than using models to generate data, combinatorial generalization can be achieved by planning with generative models (Luo et al., 2025). In this work, we neither require explicit Q-learning, generative models, or perform explicit planning.

Representation learning in RL. Our objective is most closely related to approaches using auxiliary BYOL objectives in online RL (Gelada et al., 2019; Schwarzer et al., 2020; Ni et al., 2024; Voelcker

108 et al., 2024). These objectives can help with sample-efficiency, such as in challenging, partially
 109 observed environments with sparse rewards, or with noisy states. Additionally, self-predictive
 110 dynamics models are used in planning and model-based RL (François-Lavet et al., 2019; Ye et al.,
 111 2021; Hansen et al., 2022). Various works have also characterized the dynamics of BYOL objectives
 112 in the RL setting, showing that BYOL objectives capture spectral information about the policy’s
 113 transitions (Tang et al., 2023; Khetarpal et al., 2025). In the offline setting, how well Joint Embedding
 114 Predictive Architecture (JEPA) world models generalize when used for explicit planning has been
 115 studied Sobal et al. (2025), however not for combinatorial generalization. Additionally, certain
 116 representation structures for value functions, namely quasimetrics (Liu et al., 2023; Wang et al., 2023;
 117 Wang and Isola, 2022; Myers et al., 2024) can also lead to policies that better generalize to longer
 118 horizons (Myers et al., 2025a).

119 **Successor Representation (SR)** (Dayan, 1993) objectives, such as successor features (SF) (Barreto
 120 et al., 2017), and the successor measure (SM) (Blier et al., 2021) have been widely used for gener-
 121 alization and transfer in reinforcement learning (Carvalho et al., 2024). Similarly to BYOL, these
 122 objectives have been used for representation learning in RL (Lan et al., 2022; Farebrother et al., 2023).
 123 While prior BYOL methods either perform 1-step, or relatively short fixed n-step prediction, neither
 124 of these choices directly approximate the successor measure. Our setup is most related to temporal
 125 representation alignment (TRA) (Myers et al., 2025b), which recently proposed using contrastive
 126 learning as an auxiliary objective for BC to improve combinatorial generalization. In this work, we
 127 further build on the relationship between the SM and combinatorial generalization, and propose new
 128 objectives which can lead to better performance.

3 BACKGROUND

132 **Controlled Markov Process.** We consider goal-conditioned decision-making, with states \mathcal{S} , actions
 133 \mathcal{A} , goals $g \in \mathcal{S}$, initial state distribution $p_0(s)$, dynamics $p(s_{t+1} | s_t, a)$, and with policies $\pi(a|s, g)$.

134 **Successor Representation (SR) and Successor Measure (SM).** In a finite MDP, the *successor*
 135 *representation* (SR) (Dayan, 1993) of a policy is: $M^\pi(s, s') := \mathbb{E} \left[\sum_{t \geq 0} \gamma^t \mathbb{1}_{(s_{t+1}=s')} \mid s_0 = s, \pi \right]$
 136 We use the convention of counting from s_{t+1} , writing in matrix form $M^\pi = \sum_{t \geq 0} \gamma^t (P^\pi)^{t+1}$.
 137 The transition matrix transition for policy π is P^π , with $P_{i,j}^\pi = \sum_a \pi(a|s=i) P_{i,a,j}$, where
 138 $P_{i,a,j} = p(s_{t+1} = j \mid s_t = i, a)$. The successor representation also satisfies the bellman equa-
 139 tion, $M^\pi = P^\pi + \gamma P^\pi M^\pi = P^\pi (I - \gamma P^\pi)^{-1}$. For a fixed policy, the successor representation
 140 describes a type of temporal distance between states. The *successor measure* (SM) (Blier et al.,
 141 2021) extends SR to continuous spaces \mathcal{S} : $M^\pi(s, X) := \sum_{t \geq 0} \gamma^t P(s_{t+1} \in X \mid s) \forall X \subset \mathcal{S}$. We
 142 also define the *normalized* successor representation, or measure $\tilde{M}^\pi = (1 - \gamma) M^\pi$. In the fi-
 143 nite case, the normalized successor representation \tilde{M}^π has rows that sum to one like transitions
 144 P^π . We also define the state occupancy via $M^\pi(s') = \mathbb{E}_{s \sim p_0(s)} [M^\pi(s_0, s')]$. Another quan-
 145 tity, *successor features* (SF) (Barreto et al., 2017) are the expected discounted sum of future fea-
 146 tures $\phi(s) \in \mathbb{R}^d$: $\psi^\pi(s) = \mathbb{E} \left[\sum_{t \geq 0} \gamma^t \phi(s_{t+1}) \mid s_0 = s, \pi \right]$. We can relate SFs to the SM with
 147 $\psi^\pi(s) = \int_{s'} M^\pi(s, s') \phi(s')$. These quantities can also condition an action, e.g. $M^\pi(s, a, s')$.
 148

3.1 REPRESENTATION LEARNING

152 We begin with two representation learning methods that approximate the density of the SM.

153 **Contrastive Learning.** Temporal contrastive learning used in MDPs (Eysenbach et al., 2022) is
 154 related to a Monte Carlo (MC) approximation of the (discounted) successor measure. This can be
 155 implemented with a InfoNCE (van den Oord et al., 2019) loss that maximizes the similarity of a
 156 positive pair between a state s_t and a future state from the same trajectory s_+ , and minimizing the
 157 similarity of s_t and random states s_- :

$$\min_{\phi, \psi} \mathbb{E}_{\substack{s_t \sim p(s) \\ k \sim \text{geom}(1-\gamma) \\ s_+ = s_{t+k}, s_-^{2:N} \sim p(s)}} \left[-\log \frac{e^{f(\psi(s_t), \phi(s_+))}}{\sum_{i=2}^N e^{f(\psi(s_t), \phi(s_i^-))}} \right] \quad (1)$$

162 A common choice for the energy function f is the inner product $f(\psi(s)\phi(s_+)) = \psi(s)^T\phi(s_+)$. A
 163 key aspect to note is that the positive sample s_+ comes from an MC sample from $s_+ \sim M^\pi(s_t, s_+)$.
 164 The optimal solution to (1) gives $\tilde{M}^\pi(s, s_+) \approx C \exp(\psi(s_t)^T\phi(s_+)) \cdot p(s_+)$.
 165

166 **Temporal-Difference Approximation of SR (TD-SR)** We consider a Forward-Backward (Touati
 167 and Ollivier, 2021)-like loss that approximates the successor measure for a fixed policy π using TD
 168 learning, discussed by Touati et al. (2023), which we call TD-SR.

$$169 \min_{\phi, \psi} \mathbb{E}_{\substack{s_t \sim p(s), s' \sim p(s) \\ s_{t+1} \sim p^\pi(s_{t+1} | s_t)}} [(\psi(s_t)^T\phi(s') - \gamma\bar{\psi}(s_{t+1})^T\bar{\phi}(s'))^2] - 2\mathbb{E}_{\substack{s_t \sim p(s) \\ s_{t+1} \sim p^\pi(s_{t+1} | s_t)}} [\psi(s_t)^T\phi(s_{t+1})] \quad (2)$$

173 TD-SR learns an approximation of the successor measure with factorization $M^\pi(s, s_+) \approx$
 174 $\psi(s_t)^T\phi(s_+) \cdot p(s_+)$ using TD learning. Given transitions (s_t, s_{t+1}) sampled by a policy π , the
 175 second term relates to fitting $M^\pi(s_t, s_{t+1})$. Given an independently sampled state s' , the first term
 176 bootstraps an estimate of $M^\pi(s_t, s')$ from $M^\pi(s_{t+1}, s')$, where ϕ, ψ denote stop-gradient operations.
 177 In Appendix D, we further elaborate on the relationship between the TD-SR loss, and CL. Particularly,
 178 in the limit, an n-step version of TD-SR is related to CL.

179 **BYOL.** We now look at an objective that captures information about single-step transition instead of
 180 the successor measure. In the context of RL, self-predictive models jointly learn a latent space and
 181 a dynamics model through predicting future latent representations. Self-predictive models rely on
 182 latent bootstrapped targets (BYOL) (Grill et al., 2020), avoiding reconstruction (generative models),
 183 or negative samples (contrastive learning). Self-predictive models are also a type of joint-embedding
 184 predictive architectures (JEPAs) (LeCun, 2022; Garrido et al., 2024).

185 Given an encoder which produces a representation $z_t = \phi(s_t)$, and dynamics $\psi(z_{t+1} | z_t)$ for a fixed
 186 policy π , we minimize the difference between our prediction and target representation in latent-space:

$$187 \min_{\phi, \psi} \mathbb{E}_{s_t \sim p(s), s_{t+1} \sim p^\pi(s_{t+1} | s_t)} [f(\psi(\phi(s_t)), \bar{\phi}(s_{t+1}))] \quad (3)$$

190 Where f measures the discrepancy between representations, such as the squared l_2 norm, and $\bar{\phi}$
 191 refers to an EMA target, or stop-gradient. Variants of this BYOL objective have been widely used to
 192 learn state abstractions, and work as an auxiliary loss to value-function learning (Gelada et al., 2019;
 193 Schwarzer et al., 2020; Ni et al., 2024). In the finite MDP, this objective captures spectral information
 194 about the policy's transitions P^π (Tang et al., 2023; Khetarpal et al., 2025), as in Appendix E.1.

195 3.2 COMBINATORIAL GENERALIZATION FROM OFFLINE DATA

198 We now shift focus on how we can learn policies from offline data using behavioral cloning, and then
 199 introduce a combinatorial generalization gap that arises in this setting.

200 We consider a **dataset** $\mathcal{D} = \{(s_0^i, a_0^i, \dots, s_T^i, a_T^i)\}_{i=1}^N$, composed of trajectories generated by a set
 201 of unknown policies $\{\beta_j(a | s)\}$. **Goal Conditioned Behavioral Cloning (GCBC)** trains a policy π_Θ
 202 with maximum likelihood to reproduce the behaviors from the dataset. After sampling a current state,
 203 a goal is sampled as a future state from the same trajectory:

$$204 \max_{\pi_\Theta} \mathcal{L}_{BC}(\pi_\Theta) = \max_{\pi} \mathbb{E}_{\substack{\beta_j \sim p(\beta_j), s \sim M^{\beta_j}(s) \\ a \sim \beta_j(a | s), s_+ \sim M^{\beta_j}(s, s_+)}} [\log \pi_\Theta(a | s, g = s_+)] \quad (4)$$

207 **Generalization gap.** While this policy can perform well in-distribution, the behavior cloning policy
 208 struggles to generalize to reach goals from states that are not in matching training trajectories. We
 209 now review a more formal definition of this type of generalization gap.

210 We consider Lemma 3.1 from Ghugare et al. (2024), which says there exists a single Markovian policy
 211 $\beta(a | s)$ that has the same occupancy as the mixture of j policies: $M^\beta(s) = \mathbb{E}_{p(\beta_j)} [M^{\beta_j}(s)]$. This
 212 policy also has construction: $\beta(a | s) := \sum_j \beta_j(a | s)p(\beta_j | s)$, where $p(\beta_j | s)$ is the distribution
 213 over policies in s as reflected by the dataset.

215 Using the successor measure of the individual policies, and the mixture policy, we can quantify a gap
 216 between accomplishing out-of-distribution tasks versus in-distribution training tasks (Ghugare et al.,

216 2024):

$$\underbrace{\mathbb{E}_{\substack{s_0 \sim M^\beta(s_0) \\ s_g \sim M^\beta(s_0, s_g)}} [u^{\pi_\Theta}(s_0, s_g)]}_{\text{tasks requiring combinatorial generalization}} - \underbrace{\mathbb{E}_{\substack{\beta_j \sim p(\beta_j), s_0 \sim M^{\beta_j}(s_0) \\ s_g \sim M^{\beta_j}(s_0, s_g)}} [u^{\pi_\Theta}(s_0, s_g)]}_{\text{in-distribution training tasks}} \quad (5)$$

217
218
219
220
221 Here, u is a performance metric of the policy π_Θ such as the success rate to reach s_g from s_0 . As
222 we perform well on in-distribution tasks due to a correspondence to Equation (4), the BC policy has
223 no guarantees for the first term. This is because after sampling a state, the goal is sampled from the
224 successor measure of the mixture policy.

226 4 USING REPRESENTATIONS FOR COMBINATORIAL GENERALIZATION

227
228 In this section, we aim to reduce the aforementioned generalization gap. We consider a policy trained
229 with the BC objective π_Θ to be made more robust to the tasks requiring combinatorial generalization
230 through representation learning. We begin with a setup similar to Equation (5), but with a shared
231 initial state s_0 for both the in-distribution and out-of-distribution task. For the in-distribution task, we
232 sample a goal as before, labeled as s_w . However, for the out-of-distribution task, we sample a goal
233 s_f to be a state that can be reached by the mixture policy β after s_w . (6):

$$\mathbb{E}_{\substack{\beta_j \sim p(\beta_j), s_0 \sim M^{\beta_j}(s) \\ s_w \sim M^{\beta_j}(s_0, s_w)}} \left[\underbrace{\mathbb{E}_{s_f \sim M^\beta(s_w, s_f)} [u^{\pi_\Theta}(s_0, s_f)]}_{\text{extended task requiring generalization}} - \underbrace{u^{\pi_\Theta}(s_0, s_w)}_{\text{in-distribution task}} \right] \quad (6)$$

$$= \mathbb{E}_{\substack{\beta_j \sim p(\beta_j), s_0 \sim M^{\beta_j}(s) \\ s_w \sim M^{\beta_j}(s_0, s_w)}} \left[\underbrace{\mathbb{E}_{s_f \sim M^\beta(s_w, s_f)} [u^{\pi_\Theta}(s_0, \phi(s_f))]}_{\text{want invariance with respect to future goals through } \phi} - u^{\pi_\Theta}(s_0, \phi(s_w)) \right] \quad (7)$$

228 Then, in Equation (7) we add a goal representation ϕ that processes the goal before going to policy
229 π_Θ . Intuitively, a policy could achieve the out-of-distribution task by first going from s_0 to s_w
230 (in-distribution), and then completing the remaining task s_w to s_f . In essence, we want that when
231 conditioning on $\phi(s_f)$, the policy should first go to s_w , which can be achieved by learning ϕ , where
232 $\phi(s_w)$ is similar to $\phi(s_f)$ (Myers et al., 2025b). More formally, for $s_f \sim M^\beta(s_w, s_f)$ we want an
233 invariance $\phi(s_f) \approx \phi(s_w)$. From this observation, we can understand obtaining a representation ϕ
234 related to the successor measure of the mixture policy β can be beneficial.

228 The BYOL would be a simple framework to learn these representations to capture temporal dependencies.
229 However, in Section 5 we demonstrate that a simple BYOL objective empirically leads
230 to limited generalization when used as an auxiliary loss. Intuitively, a standard BYOL objectives
231 directly approximate one-step transition dynamics, not the successor measure so struggles to capture
232 relationships between distant states, separated by several trajectories.

255 4.1 BYOL- γ : CONNECTING SELF-PREDICTIVE OBJECTIVES TO THE SUCCESSOR 256 REPRESENTATION

257 To build better self-predictive representations, we propose BYOL- γ which allows us to use the BYOL
258 framework to capture temporally extended information, i.e. *successor representations*. Given a state
259 s_t , a BYOL objective samples prediction targets from one-step transition as in Equation (3). However,
260 we make a modification to predict empirical samples from the normalized successor measure:

$$\mathcal{L}_{\text{BYOL-}\gamma}(\phi, \psi) = \mathbb{E}_{s_t \sim p(s), k \sim \text{geom}(1-\gamma), s_{t+k} \sim p^\pi(s_{t+k}|s_t)} [f(\psi(\phi(s_t)), \bar{\phi}(s_{t+k}))] \quad (8)$$

261 Where f refers to an energy function, ϕ refers to the encoder, and ψ the predictor. With $\gamma = 0$, we
262 have $s_{t+k} = s_{t+1}$ corresponding to an approximation of the one-step transitions, recovering the base
263 BYOL objective. Figure 1b depicts our overall representation learning objective. We can view this
264 objective as iteratively minimizing an upper-bound on the error between $\psi(\phi((s))$ and a target of the
265 true successor features of the policy ψ^π with changing basis features $\bar{\phi}$. With convex f , by Jensen's
266 inequality we have:

$$\mathcal{L}_{\text{BYOL-}\gamma} \geq \mathbb{E}_{s_t} \left[f(\psi(\phi(s_t)), \mathbb{E}_{s_{t+1} \sim \tilde{M}^\pi(s_t, s_{t+1})} \bar{\phi}(s_{t+1})) \right] = \mathbb{E}_{s_t} \left[f(\psi(\phi(s_t)), (1-\gamma)\psi_\phi^\pi(s_t)) \right] \quad (9)$$

Method	Approx. $\tau \sim \beta$	Approx. $\tau \sim \{\beta_j\}$	Batch
TRA (CL)	$\tilde{M}^\beta(s, s_+)/p^\beta(s_+)$	$\sum_j p(\beta_j s) \tilde{M}^{\beta_j}(s, s_+)/p^\beta(s_+)$	$(s_t, s_+)^B, (s_i, s_j)^{B^2}$
TD-SR	$\tilde{M}^\beta(s, s_+)/p^\beta(s_+)$	$\tilde{M}^\beta(s, s_+)/p^\beta(s_+)$	$(s_t, s_{t+1})^B, (s_i, s_j)^{B^2}$
BYOL	$p^\beta(s_{t+1} s_t)$	$p^\beta(s_{t+1} s_t)$	$(s_t, s_{t+1})^B$
BYOL-γ (ours)	$\tilde{M}^\beta(s, s_+)$	$\sum_j p(\beta_j s) \tilde{M}^{\beta_j}(s_t, s_+)$	$(s_t, s_+)^B$

Table 1: **Auxiliary Representation Objectives.** We provide an overview of the representation objectives we consider. In the first two columns, we label the quantities which representations are approximating in finite MDPs, either from datasets with trajectories collected from a single policy $\tau \sim \beta$, or a mixture of policies $\tau \sim \{\beta_j\}$. We provide additional derivations for mixture datasets in Appendix F. In the last column, we list samples used for each objective, where the superscript denotes the number of loss terms for a pair of samples.

Specifically, we precisely show the relationship of BYOL- γ to the SR with the following result:

Theorem 4.1. *Given a finite MDP with linear representations $\Phi \in \mathbb{R}^{|\mathcal{S}| \times d}$, and predictor $\Psi \in \mathbb{R}^{d \times d}$, under assumptions of orthogonal initialization for Φ (Ass. E.1), a uniform initial state distribution $p_0(s)$ (Ass. E.2), and symmetric transition dynamics (Ass. E.3), minimizing the self-predictive learning objective $\mathcal{L}_{\text{BYOL-}\gamma}(\phi, \psi)$ approximates a spectral decomposition of the successor representation $\tilde{M}^\pi \approx \Phi \Psi \Phi^T$, corresponding to successor features $(1 - \gamma) \Psi^\pi \approx \Psi \Phi$.*

Proof is in Appendix E.2, where we show that existing theory (Khetarpal et al., 2025) also translates to the proposed BYOL- γ objective. Finally, we can see the relation between this objective and CL (1), with the most striking difference being the removal of the denominator involving negative samples. Surprisingly, we reveal that this simplified system still captures similar information and also can lead to empirical generalization in Section 5.1 while neither relying on TD learning nor negative samples.

BYOL- γ Variants. We discuss a few variants on our base objective, namely, we evaluate **bidirectional prediction** (Guo et al., 2020; Tang et al., 2023) where we add an additional backwards predictor ψ_b which predicts a past representation from the future. We also utilize an **action-conditioned** variant of the forward predictor $\psi_f(\phi(s_t), a_t)$, which can be interpreted as a temporally extended latent dynamics model, or capturing information about $\tilde{M}^\pi(s, a, s_+)$, giving:

$$\mathcal{L}_{\text{BYOL-}\gamma}(\phi, \psi) = \mathbb{E}_{s_t \sim p(s), s_+ \sim \tilde{M}^\pi(s_t, s_+)} [f(\psi_f(\phi(s_t), a_t), \bar{\phi}(s_+)) + f(\bar{\phi}(s_t), \psi_b(\phi(s_+)))] \quad (10)$$

For f , we choose a cross-entropy loss between (softmax) normalized representations, similar to DINO (Caron et al., 2021): $f_{\text{CE}}(a, b) = \text{softmax}(b) \cdot \log \text{softmax}(a)$. We also find a normalized l_2 loss, $f_{l_2} = \|\frac{a}{\|a\|} - \frac{b}{\|b\|}\|_2^2$, commonly used in BYOL setups (Grill et al., 2020; Schwarzer et al., 2020) also works, which we ablate in Section 5.4.

4.2 TRAINING A POLICY WITH AUXILIARY REPRESENTATION

We consider BYOL- γ and other objectives as auxiliary losses for BC policies $\pi_\Theta(a|s, g)$ to improve the generalization of policies. We label all parameters $\Theta = (\theta, \phi, \psi)$, with the parameters of the encoder and predictor correspond to ϕ, ψ . The policy-head (θ) transforms representations to actions via an MLP: $\pi_\Theta(a|s, g) = \text{MLP}_\theta(\text{concat}(\phi(s), \phi(g)))$. With this policy, we train with the objective:

$$\mathbb{E}_{\beta_j \sim p(\beta_j), \tau \sim \beta_j} [\mathcal{L}_{\text{BC}}(\Theta) + \alpha \mathcal{L}_{\text{aux}}(\phi, \psi)] \quad (11)$$

The term \mathcal{L}_{BC} updates the parameters of both the policy head θ and its inputs, i.e., the encoder ϕ , while \mathcal{L}_{aux} updates ψ, ϕ but not θ . With ϕ affected by both terms, the BC loss ensures that the representation is sufficient for action prediction, and prevents collapse which can occur in certain representation learning, such as in BYOL objectives. Additionally, the auxiliary loss prevents overfitting and help generalization for the policy. We provide additional details about the architecture in Appendix A.

We wish to learn representations related to the successor measure of the mixture policy as motivated Equation (7). However, there are trade-offs with the representation learning objectives in terms of the quantities they approximate and the data they use, as shown in Table 1. When we directly have full MC samples from a single policy ($\tau \sim \beta$), TRA, TD-SR, and BYOL- γ each capture information

related to its SM. However, in practice, we only have MC samples from individual policies $\tau \sim \{\beta_j\}$, rather than the mixture.

First, we consider using TD-SR as an auxiliary loss for BC, as we can see it still approximates the correct quantity. To our knowledge, we are the first to study this objective as an auxiliary loss for BC. TD-SR explicitly can “stitch” across policies, i.e. $\psi(s_t)\psi(s')$ via $\gamma\bar{\psi}(s_{t+1})\bar{\phi}(s')$ for $s_t, s_{t+1} \sim p^{\beta_i}(s_t) p^{\beta}(s_{t+1}|s_t)$ and $s' \sim p^{\beta_j}(s)$. However, we wish to understand if we can obtain representations that help with generalization without TD, as this may be more scalable when applied with policy learning. This leads us to quantify how MC methods behave when trained on mixture datasets.

While 1-step MC methods like BYOL are consistent across dataset composition, we can see that TRA and BYOL- γ approximate different quantities than TD-SR. Namely, *rather than approximating the SM of the mixture policy, MC methods capture a mixture of SRs* as shown in Table 1 and Appendix F. In practice, MC methods still learn relationships between states encountered in different policies by effectively approximating many SRs in a single representation space, which is qualitatively shown in Figure 2. **Surprisingly, we show that BYOL- γ can lead to representations that are similar, or even better than TD-SR without utilizing TD.** However, we find that CL as used in TRA leads to pessimism in the relationship between states sampled by different policies. Namely, for states that are not in the same trajectory, they will only be paired as negative examples, whose representations are pushed apart. This also shows up in the denominator of its approximation, with normalization from $p^\beta(s_+)$ in $\frac{\sum_j p(\beta_j|s) \tilde{M}^{\beta_j}(s, s_+)}{p^\beta(s_+)}$. On the other hand, this pessimism is not encountered with BYOL- γ , which does not utilize negative examples, giving an approximation of $\sum_j p(\beta_j|s) \tilde{M}^{\beta_j}(s, s_+)$ by simply predicting latents. Finally, we highlight that BYOL- γ only computes $O(B)$ loss terms, while CL compute $O(B^2)$ negatives (s_i, s_j) , and we utilize $O(B^2)$ bootstrap terms with TD-SR.

5 EXPERIMENTS

Now that we have shown a theoretical basis for studying choices of representations, including CL, TD-SR, BYOL, and our new objective (BYOL- γ), we study how these methods behave empirically. We compare representation learning algorithms across three axes: (1) First, we compare qualitatively whether the representations appear to capture temporal relationships (2) Second, we assess representations quantitatively by measuring zero-shot generalization performance on unseen tasks that require combinatorial generalization (3) Third, we assess generalization performance over an increasing generalization horizon. Finally, we perform ablations on the various components of our proposed method to demonstrate the relative importance of each algorithmic choice.

Environments. We empirically evaluate how well our approach can help with combinatorial generalization on offline goal-reaching tasks on OGBench (Park et al., 2025), which contains both navigation and manipulation tasks, across low-dimensional and visual observations. We focus on navigation environments, where OGBench provides `stitch` datasets, that assess combinatorial generalization by training on trajectories that span at most 4 maze cells, while evaluating on tasks that are longer, requiring combining information from multiple smaller trajectories.

Baselines. We benchmark against non-hierarchical methods that perform control from state to low-level actions (e.g. joint-control). In addition to BYOL- γ used as an auxiliary loss for BC, we evaluate several baselines: **GCBC** is the standard BC baseline, which we aim to improve upon with representation learning. **Offline RL** from OGBench, including implicit {V,Q}-learning (**IVL**, **IQL**) (Kostrikov et al., 2022), Quasimetric RL (**QRL**) (Wang et al., 2023), and Contrastive RL (**CRL**) (Eysenbach et al., 2022). **BYOL** is a minimal version of our setup with 1-step prediction ($\gamma = 0$), only forwards prediction (ψ_f) without action-conditioning ($\psi_f(\phi(s_t))$), and loss f_{l_2} . **TRA** (Myers et al., 2025b) is an auxiliary representation objective using contrastive learning related to an MC approximation of the SM. **TD-SR** is a TD-based approximation of the SM as in Equation (2) used as an auxiliary objective for BC. We also compare to an n -step version of BYOL in Appendix B.2 and the Forward-Backward (FB) (Touati and Ollivier, 2021; Touati et al., 2023) in Appendix B.3.

Experimental Setup. We match the training details of OGBench, and consider a similar representation learning setup to TRA. We found it was beneficial to add action conditioning to TD-SR, but did not see an overall improvement for TRA, so we use the original setup without action-conditioning.

Figure 2: **Visualization of the Learned Representation:** depicts the similarity between the prediction of the current state representation to the goal representation. For BYOL- γ and TD-SR, we visualize the cosine similarity between $\psi(\phi(s), \cdot)$ or $\psi(s, \cdot)$, to $\phi(g)$ $\forall s \in D$ for a fixed goal g which is indicated by the star marked in red.

While we use policy $\pi(\phi(s), \phi(g))$ and train with action-conditioning for BYOL- γ and TD-SR, TRA originally uses a parameterization $\pi(\psi(s), \phi(g))$ and does not condition on actions. We provide a full comparison for changing $\psi(s)$ to $\phi(s)$ and action-conditioning in Appendix B.1 for TRA. However we obtain similar performance on average with the original setup. For clarity, in Table 2, we utilize superscript a to denote methods with action-conditioning. Notably, we find that the weight of the auxiliary representation learning objectives (α) can be sensitive to both the embodiment, and size of environment (medium vs large). For each method, we perform a hyperparameter sweep over 4 α values, and report the best result for each environment in Table 2. We hold other hyperparameters constant, except with variation between non-visual and visual noted in Appendix A.

5.1 QUALITATIVE ANALYSIS OF REPRESENTATIONS

In Figure 2, we display a qualitative analysis of the representations. We visualize the similarity between the future prediction ψ for each state to $\phi(g)$ for a fixed goal g . We can see that **BYOL- γ** seems to learn a representation that encodes reachability between states, and has a similar structure to **TD-SR**, which is known to approximate the successor measure. **TRA** and base **BYOL** seem to both capture similar structure and learn a less well-defined latent space. However, BYOL- γ and TD-SR have more distinct similarity, and have visible “paths” of similar states. **BYOL- γ** also appears to capture the most similarity among more distant pairs of states. Compared to **TRA**, our hypothesis here is that BYOL- γ has more optimistic similarity between distant states due to the lack of a negative term in the loss, pushing representations apart. We show additional environments in Appendix H.1. We also check the correlation of distance in representation space with shortest paths in the maze in Appendix H.2, showing that BYOL- γ best captures the structure of the environment.

5.2 ZERO-SHOT PERFORMANCE ON COMBINATORIAL GENERALIZATION TASKS

In Table 2, we provide the performance results across all methods. Overall, our proposed method **BYOL- γ** , shows improved performance vs. **GCBC** across most environments, and is either competi-

Dataset	BYOL- γ^a	BYOL	TRA	TD-SR a	GCBC	GCIVL	GCIQL	QRL	CRL
antmaze-medium-stitch	58 \pm 5	59 \pm 4	54 \pm 6	64 \pm 6	45 \pm 11	44 \pm 6	29 \pm 6	59 \pm 7	53 \pm 6
antmaze-large-stitch	19 \pm 7	17 \pm 6	11 \pm 8	23 \pm 4	3 \pm 3	18 \pm 2	7 \pm 2	18 \pm 2	11 \pm 2
humanoidmaze-medium-stitch	51 \pm 6	23 \pm 3	45 \pm 8	42 \pm 4	29 \pm 5	12 \pm 2	12 \pm 3	18 \pm 2	36 \pm 2
humanoidmaze-large-stitch	13 \pm 3	3 \pm 1	5 \pm 4	11 \pm 3	6 \pm 3	1 \pm 1	0 \pm 0	3 \pm 1	4 \pm 1
antsoccer-arena-stitch	25 \pm 5	12 \pm 7	14 \pm 4	22 \pm 10	24 \pm 8	21 \pm 3	2 \pm 0	1 \pm 1	1 \pm 0
visual-antmaze-medium-stitch	68 \pm 4	57 \pm 8	52 \pm 3	49 \pm 2	67 \pm 4	6 \pm 2	2 \pm 0	0 \pm 0	69 \pm 2
visual-antmaze-large-stitch	26 \pm 5	26 \pm 5	17 \pm 1	29 \pm 2	24 \pm 3	1 \pm 1	0 \pm 0	1 \pm 1	11 \pm 3
visual-scene-play	17 \pm 1	13 \pm 3	16 \pm 3	14 \pm 1	12 \pm 2	25 \pm 3	12 \pm 2	10 \pm 1	11 \pm 2
average-state	33	23	26	32	21	19	10	20	21
average-visual	37	32	28	31	34	11	5	4	30
average-all	35	26	27	32	26	16	8	14	25

Table 2: **OGBench:** We find that BYOL- γ performs better overall compared to prior methods. We report mean and standard deviation over 10 training seeds in non-visual environments, and 4 seeds in visual environments. We match the OGBench evaluation setup of 5 evaluation (state,goal) tasks, and 50 episodes per task. The success rate is then averaged over the last 3 checkpoints. We color the best non-RL method, and bold values within 95% of its value in the same row. We use superscript a to denote methods utilizing action-conditioning.

432 tive with or outperforms **TD-SR** and **TRA**. Importantly, we find that a minimal **BYOL** setup does
 433 not confer significant benefit over the base **GCBC** except in non-visual `antmaze` environments.
 434 Generally, auxiliary representation learning with **GCBC** outperforms existing offline RL methods.
 435

436 Within the auxillary loss methods, we find that **TD-SR** and **BYOL- γ** tend to outperform **TRA**
 437 on most environments. While we find that **TD-SR** outperforms **BYOL- γ** on environments with
 438 smaller state spaces (`antmaze-{medium, large}`), we find that **BYOL- γ** 's simpler training pro-
 439 cedure is beneficial in environments with larger state spaces (`humanoidmaze-{medium, large}`,
 440 `visual-antmaze-medium` and `visual-scene-play`).

441 Interestingly, in `visual-antmaze` **TRA** and **TD-SR** actually seem to hurt performance in com-
 442 parison to base **GCBC**. On the other hand, with **BYOL- γ** we see no performance degradation over
 443 **GCBC** on the visual environments, a considerable improvement over other methods. In Appendix C,
 444 we extend **BYOL- γ** to the hierarchical setting (**HBYOL- γ**), where we obtain significant improvement
 445 over BC baselines, including on visual maze environments.

446 We also find a relationship between success and representation quality (Section 5.1). Namely, in
 447 Table 12 we calculate the correlation of representations to shortest path distances and success rate
 448 over these same checkpoints. We see that the ranking of methods in terms of average correlation to
 449 shortest path (average maze correlation) in representation space matches the ordering of
 450 methods in terms of average empirical policy success (average maze success).

451 5.3 EVALUATING GENERALIZATION WITH INCREASING HORIZON

452 We conduct experiments to understand how success rate changes as an agent has to reach more
 453 challenging goals further away from its starting position. For each `maze` environment, we consider
 454 the same base 5 evaluation tasks used in Table 2, but construct intermediate waypoints along the
 455 shortest path to the final goal determined by breadth-first search. We also include an additional `maze`
 456 environment, `giant` on which all methods have zero success rates to reach distant goals. This gives
 457 a more holistic view on an agent's performance.

458 We display results in Figure 3 and Appendix G, where we can see how performance drops off for
 459 all methods after a generalization threshold denoted by the red bar. While all methods cannot fully
 460 reach distant goals on `giant`, we see that **BYOL- γ** has the slowest drop-off in performance. We
 461 note that this is a challenging task, that requires stitching up to approximately 8 different trajectories.
 462

463 5.4 COMPONENTS 464 AFFECTING GENERALIZATION

465 We ablate key components of the **BYOL- γ** ob-
 466 jective in Table 3. This includes removing ac-
 467 tion conditioning for forward predictor ψ_f ($-a$),
 468 swapping the loss from cross-entropy to nor-
 469 malized squared l_2 norm (f_{l_2}), removing back-
 470 wards predictor ψ_b , and predicting the rep-
 471 resentation of the adjacent state ($\gamma = 0$). Both
 472 removing action-conditioning, and backwards
 473 prediction overall lead to similar results, but
 474 variability per-environment. For f_{l_2} , we ob-
 475 tain slightly worse average performance, and for
 476 $\gamma = 0$, we see the largest drop-off, especially on
 477 `humanoidmaze`.
 478

479 6 DISCUSSION

480 **Limitations.** While we demonstrate that **BYOL- γ** and other representation learning objectives
 481 offer a promising recipe for obtaining combinatorial generalization, we find that there still exists a
 482 generalization gap, especially on challenging navigation environments e.g. `giant`. We also find
 483 a less significant improvement over BC on visual environments, which may motivate additional

484 **Figure 3: Evaluating Generalization with In-
 485 creasing Horizons:** shows that **BYOL- γ** not only
 486 performs well on goals in the near horizon, but
 487 also, helps to generalize well to goals requiring
 488 stitching, after the red bar (> 4).

Dataset	BYOL- γ^a	$-\alpha$	f_{ℓ_2}	$-\psi_b$	$\gamma = 0$
antmaze-medium-stitch	61 \pm 6	63 \pm 9	56 \pm 4	67 \pm 2	59 \pm 5
antmaze-large-stitch	21 \pm 5	27 \pm 7	24 \pm 6	19 \pm 7	8 \pm 4
humanoidmaze-medium-stitch	54 \pm 5	48 \pm 5	49 \pm 6	52 \pm 5	18 \pm 2
humanoidmaze-large-stitch	14 \pm 2	12 \pm 6	15 \pm 7	13 \pm 2	3 \pm 1
antsoccer-arena-stitch	21 \pm 4	20 \pm 5	11 \pm 5	27 \pm 7	25 \pm 7
visual-antmaze-medium	68 \pm 4	65 \pm 3	63 \pm 5	61 \pm 4	54 \pm 9
visual-antmaze-large	26 \pm 5	25 \pm 8	27 \pm 7	28 \pm 2	28 \pm 1
average	33	33	31	33	24

investigation. Additionally, we may anticipate more benefit from representation learning when applied to larger visual datasets, which has been fruitful in other domains.

Conclusion. In this work, we provide a stronger understanding of the relationship between quantities related to successor representations and the generalization of policies trained with behavioral cloning through a unified understanding of objectives. We propose a new self-predictive representation learning objective, BYOL- γ , and show that it captures information related to the successor measure, resulting in a competitive choice of an auxiliary loss for better generalization. We demonstrate that augmenting behavior cloning with meaningful representations results in new capabilities such as improved combinatorial generalization, especially in larger and more complex environments.

REFERENCES

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt, and David Silver. Successor features for transfer in reinforcement learning. *Advances in neural information processing systems*, 30, 2017. URL <https://arxiv.org/abs/1606.05312>.

Léonard Blier, Corentin Tallec, and Yann Ollivier. Learning successor states and goal-dependent values: A mathematical viewpoint, 2021. URL <https://arxiv.org/abs/2101.07123>.

David Brandfonbrener, Alberto Bietti, Jacob Buckman, Romain Laroche, and Joan Bruna. When does return-conditioned supervised learning work for offline reinforcement learning? In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, *Advances in Neural Information Processing Systems*, 2022. URL <https://openreview.net/forum?id=XByg4kotW5>.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jegou, Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerging properties in self-supervised vision transformers. In *2021 IEEE/CVF International Conference on Computer Vision (ICCV)*, pages 9630–9640, 2021. doi: 10.1109/ICCV48922.2021.00951.

Wilka Carvalho, Momchil S. Tomov, William de Cothi, Caswell Barry, and Samuel J. Gershman. Predictive representations: Building blocks of intelligence. *Neural Computation*, 36(11):2225–2298, 10 2024. ISSN 0899-7667. doi: 10.1162/neco_a_01705. URL https://doi.org/10.1162/neco_a_01705.

Yash Chandak, Shantanu Thakoor, Zhaohan Daniel Guo, Yunhao Tang, Remi Munos, Will Dabney, and Diana L Borsa. Representations and exploration for deep reinforcement learning using singular value decomposition. In *International Conference on Machine Learning*, pages 4009–4034. PMLR, 2023. URL <https://arxiv.org/abs/2305.00654>.

Ian Char, Viraj Mehta, Adam Villaflor, John M. Dolan, and Jeff Schneider. Bats: Best action trajectory stitching, 2022. URL <https://arxiv.org/abs/2204.12026>.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence modeling. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, *Advances in Neural Information Processing Systems*, 2021. URL <https://openreview.net/forum?id=a7APmM4B9d>.

Peter Dayan. Improving generalization for temporal difference learning: The successor representation. *Neural Computation*, 5(4):613–624, 1993. doi: 10.1162/neco.1993.5.4.613.

Table 3: **BYOL- γ ablations.**

For each ablation, we perform sweep over α , and report the best result per-environment. For all environments, we report results over 4 seeds (for **BYOL- γ** , we use the first 4 of 10 in Table 2).

540 Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. Rvs: What is essential for
541 offline RL via supervised learning? In *International Conference on Learning Representations*,
542 2022. URL <https://openreview.net/forum?id=S874XAIpkR->.

543 Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Russ R Salakhutdinov. Contrastive learning
544 as goal-conditioned reinforcement learning. *Advances in Neural Information Processing Systems*,
545 35:35603–35620, 2022.

546 Jesse Farnbrother, Joshua Greaves, Rishabh Agarwal, Charline Le Lan, Ross Goroshin, Pablo Samuel
547 Castro, and Marc G Bellemare. Proto-value networks: Scaling representation learning with
548 auxiliary tasks. In *The Eleventh International Conference on Learning Representations*, 2023.
549 URL <https://openreview.net/forum?id=OGDKSt9JrZi>.

550 Vincent François-Lavet, Yoshua Bengio, Doina Precup, and Joelle Pineau. Combined reinforcement
551 learning via abstract representations. In *Proceedings of the AAAI Conference on Artificial Intelli-
552 gence*, volume 33, pages 3582–3589, 2019. URL <https://arxiv.org/abs/1809.04506>.

553 Kevin Frans, Seohong Park, Pieter Abbeel, and Sergey Levine. Diffusion guidance is a controllable
554 policy improvement operator. *arXiv preprint arXiv:2505.23458*, 2025.

555 Quentin Garrido, Mahmoud Assran, Nicolas Ballas, Adrien Bardes, Laurent Najman, and Yann
556 LeCun. Learning and leveraging world models in visual representation learning, 2024. URL
557 <https://arxiv.org/abs/2403.00504>.

558 Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G Bellemare. Deepmdp:
559 Learning continuous latent space models for representation learning. In *International conference
560 on machine learning*, pages 2170–2179. PMLR, 2019. URL <https://arxiv.org/abs/1906.02736>.

561 Dibya Ghosh, Homer Rich Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep Dasari, Joey
562 Hejna, Tobias Kreiman, Charles Xu, Jianlan Luo, You Liang Tan, Lawrence Yunliang Chen,
563 Quan Vuong, Ted Xiao, Pannag R. Sanketi, Dorsa Sadigh, Chelsea Finn, and Sergey Levine.
564 Octo: An open-source generalist robot policy. In *Robotics: Science and Systems*, 2024. URL
565 <https://doi.org/10.15607/RSS.2024.XX.090>.

566 Raj Ghugare, Matthieu Geist, Glen Berseth, and Benjamin Eysenbach. Closing the gap between TD
567 learning and supervised learning - a generalisation point of view. In *The Twelfth International
568 Conference on Learning Representations*, 2024. URL <https://arxiv.org/abs/2401.11237>.

569 Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
570 Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
571 et al. Bootstrap your own latent-a new approach to self-supervised learning. *Advances in neural
572 information processing systems*, 33:21271–21284, 2020. URL <https://arxiv.org/abs/2006.07733>.

573 Zhaohan Daniel Guo, Bernardo Avila Pires, Bilal Piot, Jean-Bastien Grill, Florent Altché, Remi
574 Munos, and Mohammad Gheshlaghi Azar. Bootstrap latent-predictive representations for multitask
575 reinforcement learning. In Hal Daumé III and Aarti Singh, editors, *Proceedings of the 37th
576 International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning
577 Research*, pages 3875–3886. PMLR, 13–18 Jul 2020. URL <https://proceedings.mlr.press/v119/guo20g.html>.

578 Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive
579 control. In *International Conference on Machine Learning (ICML)*, 2022. URL <https://arxiv.org/abs/2203.04955>.

580 Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth
581 Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty Ellis,
582 Peter David Fagan, Joey Hejna, Masha Itkina, Marion Lepert, Yecheng Jason Ma, Patrick Tree
583 Miller, Jimmy Wu, Suneel Belkhale, Shivin Dass, Huy Ha, Arhan Jain, Abraham Lee, Youngwoon
584 Lee, Marius Memmel, Sungjae Park, Ilija Radosavovic, Kaiyuan Wang, Albert Zhan, Kevin Black,
585

594 Cheng Chi, Kyle Beltran Hatch, Shan Lin, Jingpei Lu, Jean Mercat, Abdul Rehman, Pannag R
595 Sanketi, Archit Sharma, Cody Simpson, Quan Vuong, Homer Rich Walke, Blake Wulfe, Ted
596 Xiao, Jonathan Heewon Yang, Arefeh Yavary, Tony Z. Zhao, Christopher Agia, Rohan Baijal,
597 Mateo Guaman Castro, Daphne Chen, Qiuyu Chen, Trinity Chung, Jaimyn Drake, Ethan Paul
598 Foster, Jensen Gao, David Antonio Herrera, Minho Heo, Kyle Hsu, Jiaheng Hu, Donovon Jackson,
599 Charlotte Le, Yunshuang Li, Xinyu Lin, Zehan Ma, Abhiram Maddukuri, Suvir Mirchandani,
600 Daniel Morton, Tony Khuong Nguyen, Abigail O'Neill, Rosario Scalise, Derick Seale, Victor
601 Son, Stephen Tian, Emi Tran, Andrew E. Wang, Yilin Wu, Annie Xie, Jingyun Yang, Patrick
602 Yin, Yunchu Zhang, Osbert Bastani, Glen Berseth, Jeannette Bohg, Ken Goldberg, Abhinav
603 Gupta, Abhishek Gupta, Dinesh Jayaraman, Joseph J Lim, Jitendra Malik, Roberto Martín-
604 Martín, Subramanian Ramamoorthy, Dorsa Sadigh, Shuran Song, Jiajun Wu, Michael C. Yip,
605 Yuke Zhu, Thomas Kollar, Sergey Levine, and Chelsea Finn. DROID: A large-scale in-the-wild
606 robot manipulation dataset. In *RSS 2024 Workshop: Data Generation for Robotics*, 2024. URL
607 <https://openreview.net/forum?id=M12pTYLNLi>.
608

608 Khimya Khetarpal, Zhaohan Daniel Guo, Bernardo Avila Pires, Yunhao Tang, Clare Lyle, Mark
609 Rowland, Nicolas Heess, Diana L Borsa, Arthur Guez, and Will Dabney. A unifying framework for
610 action-conditional self-predictive reinforcement learning. In *The 28th International Conference on
611 Artificial Intelligence and Statistics*, 2025. URL <https://arxiv.org/abs/2406.02035>.
612

612 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair, Rafael
613 Rafailov, Ethan P Foster, Pannag R Sanketi, Quan Vuong, Thomas Kollar, Benjamin Burchfiel,
614 Russ Tedrake, Dorsa Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn. OpenVLA: An
615 open-source vision-language-action model. In *8th Annual Conference on Robot Learning*, 2024.
616 URL <https://arxiv.org/abs/2406.09246>.
617

617 Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
618 q-learning. In *International Conference on Learning Representations*, 2022. URL <https://arxiv.org/abs/2110.06169>.
619

619 Charline Le Lan, Stephen Tu, Adam Oberman, Rishabh Agarwal, and Marc G. Bellemare. On the
620 generalization of representations in reinforcement learning, 2022. URL <https://arxiv.org/abs/2203.00543>.
621

621 Yann LeCun. A path towards autonomous machine intelligence version, 2022. URL <https://openreview.net/forum?id=BZ5a1r-kVsf>.
622

622 Jaewoo Lee, Sujin Yun, Taeyoung Yun, and Jinkyoo Park. GTA: Generative trajectory augmentation
623 with guidance for offline reinforcement learning. In *The Thirty-eighth Annual Conference on
624 Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=kZpNDbZrzy>.
625

625 Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
626 review, and perspectives on open problems, 2020. URL <https://arxiv.org/abs/2005.01643>.
627

627 Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
628 David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. *arXiv
629 preprint arXiv:1509.02971*, 2015.
630

630 Bo Liu, Yihao Feng, Qiang Liu, and Peter Stone. Metric residual network for sample efficient
631 goal-conditioned reinforcement learning. In *Proceedings of the AAAI Conference on Artificial
632 Intelligence*, volume 37, pages 8799–8806, 2023. URL <https://arxiv.org/abs/2208.08133>.
633

633 Cong Lu, Philip J. Ball, Yee Whye Teh, and Jack Parker-Holder. Synthetic experience replay.
634 In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=6jNQ1AY1Uf>.
635

635 Yunhao Luo, Utkarsh A. Mishra, Yilun Du, and Danfei Xu. Generative trajectory stitching through
636 diffusion composition, 2025. URL <https://arxiv.org/abs/2503.05153>.
637

648 Vivek Myers, Chongyi Zheng, Anca Dragan, Sergey Levine, and Benjamin Eysenbach. Learning
649 temporal distances: Contrastive successor features can provide a metric structure for decision-
650 making. In *Forty-first International Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=xQiYCmDrjp>.
651

652 Vivek Myers, Catherine Ji, and Benjamin Eysenbach. Horizon Generalization in Reinforcement
653 Learning. In *International Conference on Learning Representations*, January 2025a. URL
654 <https://arxiv.org/pdf/2501.02709.pdf>.
655

656 Vivek Myers, Bill Chunyuan Zheng, Anca Dragan, Kuan Fang, and Sergey Levine. Temporal
657 representation alignment: Successor features enable emergent compositionality in robot instruction
658 following, 2025b. URL <https://arxiv.org/abs/2502.05454>.
659

660 Tianwei Ni, Benjamin Eysenbach, Erfan SeyedSalehi, Michel Ma, Clement Gehring, Aditya Mahajan,
661 and Pierre-Luc Bacon. Bridging state and history representations: Understanding self-predictive
662 rl. In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://arxiv.org/abs/2401.08898>.
663

664 Abby O'Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham
665 Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, Albert Tung, Alex Bewley, Alex
666 Herzog, Alex Irpan, Alexander Khazatsky, Anant Rai, Anchit Gupta, Andrew Wang, Anikait Singh,
667 Animesh Garg, Aniruddha Kembhavi, Annie Xie, Anthony Brohan, Antonin Raffin, Archit Sharma,
668 Arefeh Yavary, Arhan Jain, Ashwin Balakrishna, Ayzaan Wahid, Ben Burgess-Limerick, Beomjoon
669 Kim, Bernhard Schölkopf, Blake Wulfe, Brian Ichter, Cewu Lu, Charles Xu, Charlotte Le, Chelsea
670 Finn, Chen Wang, Chenfeng Xu, Cheng Chi, Chenguang Huang, Christine Chan, Christopher
671 Agia, Chuer Pan, Chuyuan Fu, Coline Devin, Danfei Xu, Daniel Morton, Danny Driess, Daphne
672 Chen, Deepak Pathak, Dhruv Shah, Dieter Büchler, Dinesh Jayaraman, Dmitry Kalashnikov, Dorsa
673 Sadigh, Edward Johns, Ethan Foster, Fangchen Liu, Federico Ceola, Fei Xia, Feiyu Zhao, Freek
674 Stulp, Gaoyue Zhou, Gaurav S. Sukhatme, Gautam Salhotra, Ge Yan, Gilbert Feng, Giulio Schiavi,
675 Glen Berseth, Gregory Kahn, Guanzhi Wang, Hao Su, Hao-Shu Fang, Haochen Shi, Henghui
676 Bao, Heni Ben Amor, Henrik I Christensen, Hiroki Furuta, Homer Walke, Hongjie Fang, Huy
677 Ha, Igor Mordatch, Ilija Radosavovic, Isabel Leal, Jacky Liang, Jad Abou-Chakra, Jaehyung
678 Kim, Jaimyn Drake, Jan Peters, Jan Schneider, Jasmine Hsu, Jeannette Bohg, Jeffrey Bingham,
679 Jeffrey Wu, Jensen Gao, Jiaheng Hu, Jiajun Wu, Jialin Wu, Jiankai Sun, Jianlan Luo, Jiayuan
680 Gu, Jie Tan, Jihoon Oh, Jimmy Wu, Jingpei Lu, Jingyun Yang, Jitendra Malik, João Silvério,
681 Joey Hejna, Jonathan Booher, Jonathan Tompson, Jonathan Yang, Jordi Salvador, Joseph J. Lim,
682 Junhyek Han, Kaiyuan Wang, Kanishka Rao, Karl Pertsch, Karol Hausman, Keegan Go, Keerthana
683 Gopalakrishnan, Ken Goldberg, Kendra Byrne, Kenneth Oslund, Kento Kawaharazuka, Kevin
684 Black, Kevin Lin, Kevin Zhang, Kiana Ehsani, Kiran Lekkala, Kirsty Ellis, Krishan Rana, Krishnan
685 Srinivasan, Kuan Fang, Kunal Pratap Singh, Kuo-Hao Zeng, Kyle Hatch, Kyle Hsu, Laurent Itti,
686 Lawrence Yunliang Chen, Lerrel Pinto, Li Fei-Fei, Liam Tan, Linxi Jim Fan, Lionel Ott, Lisa Lee,
687 Luca Weihs, Magnum Chen, Marion Lepert, Marius Memmel, Masayoshi Tomizuka, Masha Itkina,
688 Mateo Guaman Castro, Max Spero, Maximilian Du, Michael Ahn, Michael C. Yip, Mingtong
689 Zhang, Mingyu Ding, Minho Heo, Mohan Kumar Srirama, Mohit Sharma, Moo Jin Kim, Naoaki
690 Kanazawa, Nicklas Hansen, Nicolas Heess, Nikhil J Joshi, Niko Suenderhauf, Ning Liu, Norman
691 Di Palo, Nur Muhammad Mahi Shafiullah, Oier Mees, Oliver Kroemer, Osbert Bastani, Pannag R
692 Sanketi, Patrick Tree Miller, Patrick Yin, Paul Wohlhart, Peng Xu, Peter David Fagan, Peter
693 Mitrano, Pierre Sermanet, Pieter Abbeel, Priya Sundaresan, Qiuyu Chen, Quan Vuong, Rafael
694 Rafailov, Ran Tian, Ria Doshi, Roberto Martín-Martín, Rohan Baijal, Rosario Scalise, Rose
695 Hendrix, Roy Lin, Runjia Qian, Ruohan Zhang, Russell Mendonca, Rutav Shah, Ryan Hoque,
696 Ryan Julian, Samuel Bustamante, Sean Kirmani, Sergey Levine, Shan Lin, Sherry Moore, Shikhar
697 Bahl, Shivin Dass, Shubham Sonawani, Shuran Song, Sichun Xu, Siddhant Haldar, Siddharth
698 Karamcheti, Simeon Adebola, Simon Guist, Soroush Nasiriany, Stefan Schaal, Stefan Welker,
699 Stephen Tian, Subramanian Ramamoorthy, Sudeep Dasari, Suneel Belkhale, Sungjae Park, Suraj
700 Nair, Suvir Mirchandani, Takayuki Osa, Tanmay Gupta, Tatsuya Harada, Tatsuya Matsushima, Ted
701 Xiao, Thomas Kollar, Tianhe Yu, Tianli Ding, Todor Davchev, Tony Z. Zhao, Travis Armstrong,
Trevor Darrell, Trinity Chung, Vidhi Jain, Vincent Vanhoucke, Wei Zhan, Wenxuan Zhou, Wolfram
Burgard, Xi Chen, Xiaolong Wang, Xinghao Zhu, Xinyang Geng, Xiyuan Liu, Xu Liangwei,
Xuanlin Li, Yao Lu, Yecheng Jason Ma, Yejin Kim, Yevgen Chebotar, Yifan Zhou, Yifeng Zhu,
Yilin Wu, Ying Xu, Yixuan Wang, Yonatan Bisk, Yoonyoung Cho, Youngwoon Lee, Yuchen

702 Cui, Yue Cao, Yueh-Hua Wu, Yujin Tang, Yuke Zhu, Yunchu Zhang, Yunfan Jiang, Yunshuang
703 Li, Yunzhu Li, Yusuke Iwasawa, Yutaka Matsuo, Zehan Ma, Zhuo Xu, Zichen Jeff Cui, Zichen
704 Zhang, and Zipeng Lin. Open x-embodiment: Robotic learning datasets and rt-x models : Open
705 x-embodiment collaboration0. In *2024 IEEE International Conference on Robotics and Automation*
706 (*ICRA*), pages 6892–6903, 2024. doi: 10.1109/ICRA57147.2024.10611477.

707 Seohong Park, Dibya Ghosh, Benjamin Eysenbach, and Sergey Levine. Hiql: Offline goal-conditioned
708 rl with latent states as actions. *Advances in Neural Information Processing Systems*, 36:34866–
709 34891, 2023.

710 Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. Ogbench: Benchmarking
711 offline goal-conditioned rl. In *International Conference on Learning Representations (ICLR)*, 2025.
712 URL <https://arxiv.org/abs/2007.05929>.

713 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
714 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
715 Learning transferable visual models from natural language supervision. In *International Conference*
716 *on Machine Learning*, 2021. URL <https://arxiv.org/abs/2103.00020>.

717 Jonathan Richens, David Abel, Alexis Bellot, and Tom Everitt. General agents contain world models,
718 2025. URL <https://arxiv.org/abs/2506.01622>.

719 Juergen Schmidhuber. Reinforcement learning upside down: Don't predict rewards – just map them
720 to actions, 2020. URL <https://arxiv.org/abs/1912.02875>.

721 Max Schwarzer, Ankesh Anand, Rishab Goel, R. Devon Hjelm, Aaron C. Courville, and Philip
722 Bachman. Data-efficient reinforcement learning with self-predictive representations. In *International*
723 *Conference on Learning Representations*, 2020. URL <https://arxiv.org/abs/2007.05929>.

724 Vlad Sobal, Wancong Zhang, Kynghyun Cho, Randall Balestrieri, Tim G. J. Rudner, and Yann
725 LeCun. Learning from reward-free offline data: A case for planning with latent dynamics models,
726 2025. URL <https://arxiv.org/abs/2502.14819>.

727 Yunhao Tang, Zhaohan Daniel Guo, Pierre Harvey Richemond, Bernardo Avila Pires, Yash Chandak,
728 Rémi Munos, Mark Rowland, Mohammad Gheshlaghi Azar, Charline Le Lan, Clare Lyle, et al.
729 Understanding self-predictive learning for reinforcement learning. In *International Conference*
730 *on Machine Learning*, pages 33632–33656. PMLR, 2023. URL <https://arxiv.org/abs/2212.03319>.

731 Andrea Tirinzoni, Ahmed Touati, Jesse Farenbrother, Mateusz Guzek, Anssi Kanervisto, Yingchen Xu,
732 Alessandro Lazaric, and Matteo Pirotta. Zero-shot whole-body humanoid control via behavioral
733 foundation models. *arXiv preprint arXiv:2504.11054*, 2025.

734 Ahmed Touati and Yann Ollivier. Learning one representation to optimize all rewards. *Advances in*
735 *Neural Information Processing Systems*, 34:13–23, 2021.

736 Ahmed Touati, Jérémie Rapin, and Yann Ollivier. Does zero-shot reinforcement learning exist?
737 In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=MYEap_OcQI.

738 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
739 coding, 2019. URL <https://arxiv.org/abs/1807.03748>.

740 Claas A. Voelcker, Tyler Kastner, Igor Gilitschenski, and Amir-massoud Farahmand. When does
741 self-prediction help? understanding auxiliary tasks in reinforcement learning. *Reinforcement*
742 *Learning Conference*, August 2024. URL <https://arxiv.org/abs/2406.17718>.

743 Tongzhou Wang and Phillip Isola. Improved representation of asymmetrical distances with interval
744 quasimetric embeddings. In *NeurIPS 2022 Workshop on Symmetry and Geometry in Neural*
745 *Representations*, 2022. URL <https://arxiv.org/abs/2211.15120>.

756 Tongzhou Wang, Antonio Torralba, Phillip Isola, and Amy Zhang. Optimal goal-reaching reinforce-
757 ment learning via quasimetric learning. In *International Conference on Machine Learning*. PMLR,
758 2023. URL <https://arxiv.org/abs/2304.01203>.

759
760 Taku Yamagata, Ahmed Khalil, and Raúl Santos-Rodríguez. Q-learning decision transformer:
761 leveraging dynamic programming for conditional sequence modelling in offline rl. In *Proceedings*
762 *of the 40th International Conference on Machine Learning*, ICML’23. JMLR.org, 2023.

763 Weirui Ye, Shaochuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games
764 with limited data. *Advances in neural information processing systems*, 34:25476–25488, 2021.
765 URL <https://arxiv.org/abs/2111.00210>.

766 Zhaoyi Zhou, Chunling Zhu, Runlong Zhou, Qiwen Cui, Abhishek Gupta, and Simon Shaolei Du. Free
767 from bellman completeness: Trajectory stitching via model-based return-conditioned supervised
768 learning. In *The Twelfth International Conference on Learning Representations*, 2024. URL
769 <https://arxiv.org/abs/2310.19308>.

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 **A EXPERIMENTAL SETUP**
811

812
813 **Table 4: Hyperparameters for BYOL- γ**
814

815

Hyperparameter	Shared
actor head	MLP (512,512,512)
representation encoder (ϕ)	MLP (64,64,64)
predictor (ψ)	MLP (64,64,64)
encoder ensemble	2
learning rate	3×10^{-4}
optimizer	Adam

	Non-visual	Visual
Gradient steps	1000k	500k
Batch size	1024	256
τ (EMA)	1.0	0.99
γ	0.99	{0.66, 0.99}
α (alignment)	{1,6,40,100}	{1,6,10,20}
additional encoder	n/a	impala_small
encoder output dimension	$ s $	64

833 **A.1 IMPLEMENTATION DETAILS**
834

835 In this section we provide more training details for BYOL- γ , and representation learning baselines.
836 We match the training details of OGBench, including gradient steps, batch size, learning rate.
837

Network Architecture. We follow the same general setup as TRA, where we utilize MLP-based encoders, and action head. For the output dimension of the encoder, we use the state dimension for non-visual experiments, and 64 for visual experiments. For the predictor ψ , we utilize an MLP of the same architecture as the encoder. For image-based tasks, there is an additional CNN, which then passes output to the MLP encoder.

850 **Figure 4: Encoder Variation.** When training with BYOL, BYOL- γ and TD-SR, we utilize policies
851 with architecture (a) which uses ϕ to process states and goals. We utilize architecture (b) for TRA
852 to match prior implementation, however in Appendix B.1 we train TRA with architecture (a) and
853 action-conditioning.

854 **Representation Ensemble.** We follow the setup of TRA which utilizes representation ensembling,
855 such that two copies of the encoder ϕ_1, ϕ_2 are in parallel. We also have two distinct predictors ψ_1, ψ_2
856 for each ensemble. As input to the policy head, we average the representations, $\bar{z} = \frac{\phi_1(s_t) + \phi_2(s_t)}{2}$.
857 Each representation is trained independently for the BYOL loss, but the BC loss differentiates through
858 both ϕ s.

859 **Alignment.** We find that the choice of weight of the auxiliary loss for the representation learning
860 objective is sensitive to both the robot embodiment and the environment size. For comparison, we
861 perform a hyperparameter search over four alignment values for BYOL- γ , TRA, and TD-SR, and
862 then report the best value for each environment in Table 2.

864 **Discount.** For sampling the next-state, we utilize a discount factor of $\gamma = 0.99$ for all non-visual
 865 environments. For visual environments, we perform a hyperparameter search over $\{0.66, 0.99\}$,
 866 however all representation learning methods performed better at $\gamma = 0.66$.
 867

868 **A.2 BYOL- γ**
 869

870 **Target network.** For BYOL, we find that exponential moving average (EMA) target networks for
 871 the encoder ϕ are not necessary for non-visual environments ($\tau = 1$), but for visual environments,
 872 we find that a fast target stabilizes training ($\tau = 0.99$):
 873

$$\phi_{\text{target}} = \tau \phi_{\text{online}} + (1 - \tau) \phi_{\text{target}}$$

874 **A.3 TRA**
 875

876 In practice, TRA uses a symmetric version (Radford et al., 2021) of the InfoNCE objective discussed
 877 in Equation 1. We write this in batch form, $\mathcal{B} = \{(s_i, s_{+,i})\}_{i=1}^{|\mathcal{B}|}$ rather than in expectation:
 878

$$\mathcal{L}_{\text{TRA}} = \mathbb{E}_{\mathcal{B}} \left[-\frac{1}{B} \sum_{i=1}^{|\mathcal{B}|} \log \frac{e^{f(\psi(s_i), \phi(s_{+,i}))}}{\sum_{j=1}^{|\mathcal{B}|} e^{f(\psi(s_i), \phi(s_{+,j}))}} - \frac{1}{B} \sum_{i=1}^{|\mathcal{B}|} \log \frac{e^{f(\psi(s_i), \phi(s_{+,i}))}}{\sum_{j=1}^{|\mathcal{B}|} e^{f(\psi(s_j), \phi(s_{+,i}))}} \right] \quad (12)$$

879 Additionally, TRA minimizes the squared norm of representations $\min_{\phi, \psi} \lambda \mathbb{E}_s [\frac{\|\phi(s)\|^2}{d} + \frac{\|\psi(s)\|^2}{d}]$
 880 with $\lambda = 10^{-6}$. For TRA, we search over $\alpha = \{10, 40, 60, 100\}$.
 881

882 **A.4 TD-SR**
 883

884 Prior work similar to TD-SR, which trains FB for zero-shot policy optimization (Touati et al., 2023)
 885 typically normalizes ϕ with an additional loss term so that $\mathbb{E} [\phi \phi^T] \approx I_d$. However, we found that
 886 adding this loss term was not beneficial to performance in our setting and hence do not include it.
 887

888 TD-SR uses an EMA target network as described in A.2 with $\tau = 0.005$. For TD-SR, we search over
 889 $\alpha = \{0.01, 0.05, 0.001, 0.005\}$.
 890

891 **A.5 CODE.**
 892

893 We utilize the OGBench (Park et al., 2025) codebase and benchmark, and its extensions in the TRA
 894 codebase (Myers et al., 2025b) for equal comparison.
 895

901 **A.6 COMPUTE REQUIREMENTS**
 902

903 We perform all experiments utilizing single GPUs, predominately NVIDIA RTXA8000 and L40S.
 904 We utilize 6 CPU cores, 24G of RAM for non-visual environments, and 64G for visual experiments.
 905 Experiments take 2 to 4 hours for non-visual and 6 to 12 hours for visual environments.
 906

907 **B ABLATIONS.**
 908

909 **B.1 ACTION-CONDITIONING**
 910

911 In this section, we ablate the component of performing action-conditioning for the predictor $\psi(s_t)$
 912 vs $\psi(s_t, a_t)$ for TRA and TD-SR. We consider a similar comparison for BYOL- γ in Table 3. For
 913 this comparison, when we perform action-conditioning, we utilize a policy representation $\pi(s =$
 914 $\phi(s), g = \phi(g))$ as we have predictor $\psi(s, a)$, and otherwise $\pi(s = \psi(s), g = \phi(g))$ as in the
 915 original TRA implementation. We find that results can be environment specific. On average, results
 916 are not improved for TRA, but we find an improvement for TD-SR, hence in our main Table 2 we
 917 include the action-conditioned results for TD-SR and the action-free results for TRA to match the
 918 original implementation.

Dataset	TRA	TRA ^a	TD-SR	TD-SR ^a
antmaze-medium-stitch	54 ± 6	57 ± 12	64 ± 10	64 ± 6
antmaze-large-stitch	11 ± 8	7 ± 7	17 ± 6	23 ± 4
humanoidmaze-medium-stitch	45 ± 8	45 ± 5	36 ± 3	42 ± 4
humanoidmaze-large-stitch	5 ± 4	9 ± 4	6 ± 2	11 ± 3
antsoccer-arena-stitch	14 ± 4	25 ± 8	17 ± 5	22 ± 10
visual-antmaze-medium-stitch	52 ± 3	33 ± 4	47 ± 5	49 ± 2
visual-antmaze-large-stitch	17 ± 1	22 ± 5	28 ± 3	29 ± 2
visual-scene-play	16 ± 3	18 ± 2	12 ± 2	14 ± 1
average	27	27	28	32

Table 5: **Action-conditioning ablations.** We ablate the choice to condition on the first action for predictor ψ for TRA and FB over 10 seeds for non-visual and 4 seeds for visual environments.

Dataset	BYOL- γ^a	$-\psi_b$	$\gamma = 0$	$-\psi_b, \gamma = 0$	BYOL ^a _{n=1}	BYOL ^a _{n=3}	BYOL ^a _{n=5}
antmaze-medium-stitch	61 ± 6	67 ± 2	59 ± 5	60 ± 5	60 ± 8	60 ± 7	58 ± 7
antmaze-large-stitch	21 ± 5	19 ± 7	8 ± 4	13 ± 5	19 ± 4	8 ± 4	3 ± 3
humanoidmaze-medium-stitch	54 ± 5	52 ± 5	18 ± 2	27 ± 7	33 ± 4	32 ± 2	20 ± 1
humanoidmaze-large-stitch	14 ± 2	13 ± 2	3 ± 1	5 ± 2	3 ± 2	3 ± 1	5 ± 2
antsoccer-arena-stitch	21 ± 4	27 ± 7	25 ± 7	23 ± 6	25 ± 12	11 ± 7	13 ± 9
average	34	36	23	26	28	23	20

Table 6: **N-step BYOL ablations.** We ablate the BYOL- γ to an n-step BYOL baseline, where we report results over 4 seeds.

B.2 N-STEP BYOL

We provide an additional BYOL-based baseline that utilizes n -step next-representation recurrent prediction, while BYOL- γ uses non-recurrent prediction. We utilize the same BYOL- γ architecture with forward prediction, but with the following objective, computing loss with n terms, where ψ_f^n is shorthand for n recurrent calls:

$$\mathcal{L} = f(\psi_f(\phi(s_t, a_t), \bar{\phi}(s_{t+1})) + f(\psi_f(\psi_f(\phi(s_t, a_t), a_{t+1}), \bar{\phi}(s_{t+2})) + \dots + f(\psi_f^n(\cdot), \bar{\phi}(s_{t+n}))$$

Theoretically, in a finite MDP, we can interpret this objective of capturing information up to n -step transitions (Tang et al., 2023), i.e. information related to $\{P_a, P_a^2, \dots, P_a^n\}$ is captured by loss terms $\{\psi_f, \psi_f^2, \dots, \psi_f^n\}$ respectively. As BYOL- γ captures information related to $\tilde{M}^\pi = (1 - \gamma) \sum_{t \geq 0} \gamma^t P_\pi^t$, these two objectives match in theory at $\gamma = 0$. In practice, as n -step operates recurrently, we are constrained to a shorter n which limits the ability for learning long-horizon information.

Empirically, we report comparison of n -step with $n = \{1, 3, 5\}$ to BYOL- γ in Table 6. We validate our n-step implementation in the base case ($n = 1$) with the ablation $\{-\psi_b, \gamma = 0\}$ to BYOL- γ making them equivalent. With increased multi-step prediction (as we increase n), we find worse performance on average.

B.3 FORWARD-BACKWARD ALGORITHM

As an alternative to GCBC, we could instead consider the full Forward-Backward (FB) algorithm for zero-shot goal-reaching, as proposed in Touati et al. (2023). Here, instead of conditioning the policy on a goal representation $\phi(g)$, we instead condition ψ on a vector z such that jointing learning ϕ and ψ produces a *policy-dependent* successor representation where

$$M^{\pi_z}(s, a, s_+) = \psi(s, a, z)^\top \phi(s_+) \cdot p(s_+), \quad \text{and} \quad \pi_z(a | s) := \underset{a}{\operatorname{argmax}} F(s, a, z)^\top z, \quad (13)$$

ψ and ϕ can be learned through a TD relationship analogous to Equation 2, additionally sampling vectors z according to some distribution. In the discrete setting, the policy can be derived directly from Equation 13. In the continuous setting, Touati and Ollivier (2021) additionally learn a policy network $\pi(s, z)$, trained to maximize $F(s, a, z)^\top z$, in a DDPG-style (Lillicrap et al., 2015) algorithm.

At inference time, a policy for a goal state g can be obtained by first encoding the goal state to the z -representation space using the relationship $z = \mathbb{E}_{s \sim \beta} [r(s)\phi(s)]$, which implies $z = \phi(g)$ for goal-reaching tasks.

For these experiments, we follow the z sampling method from Touati and Ollivier (2021) by using a 50-50 mixture of states s sampled from β and encoded to $z = \phi(s)$ and vectors sampled uniformly on a sphere of radius \sqrt{d} where d is the latent dimension. We use network architectures for ϕ and ψ matching those used in the implementation of FB provided in Tirinzoni et al. (2025), however we keep the number and size of the hidden layers as well as the latent dimension consistent with our implementations of other methods. Additionally, we add a BC-loss to the policy loss as a regularization, with coefficient 1. We sweep the learning rate over three values 10^{-4} , 10^{-5} and 10^{-6} and selected the best performing, averaged over four seeds, for each environment.

In Table 7 we compare our proposed BC with auxiliary loss methods (**TD-SR** ^{α} and **BYOL**- γ^{α}), which use successor measure learning as an auxiliary loss for BC, to value-based methods which instead use a goal-conditioned value function (**GCIQL**) or successor measure (**FB**) to learn a policy through RL. We find that auxiliary loss methods significantly outperform across almost all environments.

Dataset	BYOL- γ^{α}	TD-SR ^{α}	FB	GCIQL
antmaze-medium-stitch	61 ± 6	64 ± 6	36 ± 5	29 ± 6
antmaze-large-stitch	21 ± 5	22 ± 3	5 ± 4	7 ± 2
humanoidmaze-medium-stitch	54 ± 5	41 ± 5	26 ± 5	12 ± 3
humanoidmaze-large-stitch	14 ± 2	12 ± 3	2 ± 1	0 ± 0
antsoccer-arena-stitch	21 ± 4	18 ± 12	19 ± 4	2 ± 0
average	34	31	17	10

Table 7: **Forward-Backward Algorithm.** We compare our proposed GCBC with auxiliary loss methods (**TD-SR** ^{α} and **BYOL**- γ^{α}) to an implementation of the Forward-Backward algorithm (**FB**) and an offline RL method **GCIQL**, both of which learn an actor which maximizes a goal-conditioned value function. We report best results from a hyperparameter sweep, averaged over four seeds

B.4 CONSTANT ENCODER OUTPUT DIMENSION

Our main experimental setup utilized in Table 2 and other experiments utilize an encoder output dimension of size equal to the state dimension, corresponding to ant $|s| = 29$, and humanoid $|s| = 69$ for non-visual environments. We perform an additional comparison in Table 8 using a fixed size latent dimension = 64, matching the latent dimension used for visual environments. We can see that the larger latent dimension helps performance for each method on `antmaze`. Generally, we see similar trends to our prior experiments, such as BYOL- γ performing stronger in `humanoidmaze` experiments, while FB performs stronger on `antmaze`.

Dataset	BYOL- γ^{α}	TD-SR ^{α}	TRA	TRA (Myers et al., 2025b)
antmaze-medium-stitch	64 ± 7	73 ± 8	67 ± 6	61 ± 3
antmaze-large-stitch	18 ± 7	24 ± 9	15 ± 10	13 ± 2
humanoidmaze-medium-stitch	48 ± 7	41 ± 3	41 ± 5	46 ± 2
humanoidmaze-large-stitch	12 ± 5	10 ± 2	4 ± 2	9 ± 1
antsoccer-arena-stitch	21 ± 10	12 ± 4	18 ± 5	17 ± 1
average	33	32	29	29

Table 8: **Constant Encoder Output Dimension.** We conduct an ablation repeating our experimental setup for representation learning methods with a constant encoder output dimension at 64. For reference, we also report results from Myers et al. (2025b).

B.5 GCBC ENCODER ABLATION

We perform an ablation where we use the same architecture as representation learning methods for GCBC. Standard GCBC learns a shared state-goal encoder, $\phi(s, g)$, while representation learning

1026 methods pass inputs through an encoder separately, $\phi(s)$, $\phi(g)$ and representations are concatenated
1027 and fed to an action head. In our main results, we report OGBench GCBC results with shared state-
1028 goal encoder, as this is a stronger baseline. However, to better illustrate the impact that auxiliary loss
1029 learning has on GCBC performance, in Table 9, we report GCBC results for an architecture matching
1030 representation learning methods (GCBC- ϕ). We especially see a difference in visual environments,
1031 where state, goal are stacked ($64 \times 64 \times 6$) before going through the CNN.

Dataset	GCBC	GCBC- ϕ
antmaze-medium-stitch	45 ± 11	33 ± 5
antmaze-large-stitch	3 ± 3	5 ± 4
humanoidmaze-medium-stitch	29 ± 5	32 ± 6
humanoidmaze-large-stitch	6 ± 3	4 ± 3
visual-antmaze-medium-stitch	67 ± 4	37 ± 6
visual-antmaze-large-stitch	24 ± 3	4 ± 3
visual-scene-play	12 ± 2	10 ± 1
average non-visual	21	19
average visaul	34	17
average	27	18

1042 Table 9: **GCBC Encoder Ablation.**

1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Figure 5: **Architecture for HBYOL- γ .** During training (a), we first train a low-level policy with BYOL- γ . Then, we train a high-level policy with a similar procedure to π_h in HGCBC, but using the representation space ϕ . To train π_h , we freeze ϕ , labeled $\bar{\phi}$, and use it for encoding inputs, and the output space, where the π_h predicts the representation of the sub-goal: $z_l = \bar{\phi}(s_l)$. During evaluation (b), π_h first predicts a sub-goal representation, which is then passed to the π_h , where both policies utilize a common state representation.

Dataset	GCBC	HGCBC	HGCBC- ϕ	BYOL- γ^a	HBYOL- γ^a	HIQL
antmaze-medium-stitch	45 ± 11	60 ± 4	.	61 ± 6	76 ± 12	94 ± 1
antmaze-large-stitch	3 ± 3	11 ± 8	.	21 ± 5	29 ± 9	67 ± 5
humanoidmaze-medium-stitch	29 ± 5	35 ± 4	.	54 ± 5	61 ± 2	88 ± 2
humanoidmaze-large-stitch	6 ± 3	4 ± 0	.	14 ± 2	21 ± 3	28 ± 3
visual-antmaze-medium-stitch	67 ± 4	.	74 ± 6	68 ± 4	84 ± 8	87 ± 2
visual-antmaze-large-stitch	24 ± 3	.	19 ± 1	26 ± 5	31 ± 3	28 ± 2
visual-scene	12 ± 2	.	8 ± 3	17 ± 1	14 ± 2	49 ± 4
average-nonvisual	21	28	.	38	47	69
average-visual	34	.	34	37	43	55
average	27	.	.	37	45	63

Table 10: **Hierarchical BC with BYOL- γ .** We report performance averaged over 4 seeds, for HGCBC, HGCBC- ϕ , and (H)BYOL- γ . We report GCBC and HIQL results from OGBench. We highlight the the best performing BC methods, **bold** for methods within 95% of the BC, and **darker highlight** for BC methods which are within 95% or better than HIQL.

C HIERARCHICAL POLICIES

Although we focus on the impact of representation learning in "flat" learning methods, hierarchical policies are also an effective orthogonal direction for improving generalization to longer horizon tasks. We demonstrate that BYOL- γ also improves on a hierarchical GCBC setup (HGCBC) used in Frans et al. (2025). With HGCBC, we train a high-level policy $\pi^h(l | s, g)$ that predicts sub-goals l , and a low-level policy conditioned on sub-goals $\pi^h(a | s, l)$, which are both trained with BC. Using BYOL- γ , we implement its hierarchical version, **HBYOL- γ** , as follows: (1) perform our standard BYOL- γ setup, which produces $\pi^l(a | \phi(s), \phi(l))$ and (2) train a hierarchical policy in the existing latent space of the low-level policy $\pi^h(\phi(l) | \phi(s), \phi(g))$, where ϕ denotes that the representation is fixed for the high-level policy. **HBYOL- γ^a** allows for both policies to operate in a shared representation space, and avoids state reconstruction performed by standard HGCBC. Prior work does not implement HGCBC in visual settings which would require predicting in pixel space. As a baseline, we implement HGCBC- ϕ , which avoids pixel prediction by using GCBC- ϕ (Appendix B.5). This matches our HBYOL- γ architecture, and two-stage setup but without representation learning on ϕ . For HGCBC- ϕ , we also found it was better to only use representations ϕ for the output space of π_h , and to train a shared input encoder from scratch.

In Table 10, we compare between these BC setups and also report results of hierarchical implicit Q-learning (HIQL) (Park et al., 2023). For HGCBC methods, we use a sub-goal (l) step of 25, listing other hyperparamters in Table 11. We see that HBYOL- γ is the strongest BC setup, outperforming

1134 non-hierarchical BYOL- γ and HGCBC. HBYOL- γ is also competitive with HIQL, especially on
 1135 visual-antmaze environments.
 1136

1137 Table 11: Additional hyperparameters for HGCBC, HGCBC- ϕ , HBYOL- γ . For other hyperparameters
 1138 we match those in Table 4. For high-level policies π_h that predict in representation space
 1139 (HGCBC- ϕ , HBYOL- γ), we find it is better to use a smaller learning rate.

Hyperparameter	Value
Hierarchical head	MLP (512, 512, 512, 512)
Low-level head	MLP (512, 512, 512)
Sub-goal steps	25
Learning rate	3×10^{-4} (HGCBC), 10^{-4} (HGCBC- ϕ , HBYOL- γ)

D CL TO TD-SR

1150 Here, illustrate that connection between CL and TD-SR, showing that in the limit an n-step version
 1151 of TD-SR becomes similar to CL.

1152 We can rewrite Equation (1) to see the connection between TD-SR and CL (MC). Under assumptions
 1153 that f is the dot product between ϕ and ψ , and ϕ, ψ are centered, if we apply a second-order Taylor
 1154 expansion to the denominator of the CL loss (Touati et al., 2023) we have:

$$\text{CL}_{\text{InfoNCE}} \approx \mathbb{E}_{s \sim p, s' \sim p} [(\psi(s)^T \phi(s'))^2] - 2 \mathbb{E}_{\substack{k \sim \text{geom}(1-\gamma) \\ s_t \sim p, s_{t+k} \sim p^\pi(s_{t+k} | s_t)}} [\psi(s_t)^T \phi(s_{t+k})] \quad (14)$$

1158 Next, we can consider an n-step variant of the TD-SR loss (Blier et al., 2021) which we refer to as
 1159 TD-SR(n):

$$\min_{\phi, \psi} \mathbb{E}_{\substack{s_t \sim p \\ s' \sim p}} [(\psi(s_t)^T \phi(s') - \gamma^n \bar{\psi}(s_{t+n})^T \bar{\phi}(s'))^2] - 2 \sum_{i=1}^n \mathbb{E}_{s_t \sim p, s_{t+i} \sim p^\pi} [\gamma^i \psi(s_t)^T \phi(s_{t+i})] \quad (15)$$

1164 We can make the full connection to CL with infinite horizon n :

$$\text{TD-SR}(n) = \mathbb{E}_{\substack{s_t \sim p \\ s' \sim p}} [(\psi(s_t)^T \phi(s'))^2] - 2 \sum_{i=1}^n \mathbb{E}_{\substack{s_t \sim p \\ s_{t+i} \sim p^\pi(s_{t+i} | s_0)}} [\gamma^i \psi(s_t)^T \phi(s_{t+i})] \quad (16)$$

$$\begin{aligned} &= \mathbb{E}_{\substack{s_t \sim p \\ s' \sim p_0}} [(\psi(s_t)^T \phi(s'))^2] - \frac{2\gamma}{(1-\gamma)} \sum_{i=1}^n \mathbb{E}_{\substack{s_t \sim p \\ s_{t+i} \sim p^\pi(s_{t+i} | s_0)}} [(1-\gamma)\gamma^{i-1} \psi(s_t)^T \phi(s_{t+i})] \\ &\quad (17) \end{aligned}$$

$$= \mathbb{E}_{\substack{s_t \sim p \\ s' \sim p}} [(\psi(s_t)^T \phi(s'))^2] - \frac{2\gamma}{(1-\gamma)} \mathbb{E}_{\substack{k \sim \text{geom}(1-\gamma) \\ s_t \sim p, s_{t+k} \sim p^\pi(s_{t+k} | s_t)}} [\psi(s_t)^T \phi(s_{t+k})] \quad (18)$$

1175 Thus, we can see that in the infinite horizon form of TD-SR(n), it is related to the form of $\text{CL}_{\text{InfoNCE}}$
 1176 in (1), but with the positive contrastive term weighted by factor $\frac{\gamma}{1-\gamma}$.

E FINITE MDP

E.1 BYOL

1182 **BYOL as an Ordinary Differential Equation (ODE)** In finite MDPs, we can characterize the
 1183 BYOL objective which gives intuition about what information is captured in ϕ, ψ , and conditions
 1184 that may be useful for stability (Tang et al., 2023; Khetarpal et al., 2025). Consider a finite MDP
 1185 with transition P^π , linear d -dimensional encoder $\Phi \in \mathbb{R}^{|S| \times d}$, and linear action-free latent-dynamics
 1186 $\Psi \in \mathbb{R}^{d \times d}$. In a finite MDP, Equation (3) becomes:

$$\min_{\Phi, \Psi} \text{BYOL}(\Phi, \Psi) := \min_{\Phi, \Psi} \mathbb{E}_{s_t \sim p_0(s), s_{t+1} \sim P^\pi} [\|\psi^T \Phi^T s_t - \bar{\Phi}^T s_{t+1}\|_2^2] \quad (19)$$

1188 A property to prevent this objective from collapsing is that Ψ is updated more quickly than Φ . In
 1189 practice, this is commonly realized as the dynamics are generally a smaller network than the encoder.
 1190 This system can be analyzed in an ideal setup, where we first find the optimal Ψ , each time before
 1191 taking a gradient step for Φ , which leads to the ODE for representations Φ (Tang et al., 2023):
 1192

$$1193 \Psi^* \in \arg \min_{\Psi} \text{BYOL}(\Phi, \Psi), \quad \dot{\Phi} = -\nabla_{\Phi} \text{BYOL}(\Phi, \Psi) |_{\Psi=\Psi^*} \quad (20)$$

1194 We are able to analyze this ODE with the following assumptions (Tang et al., 2023):
 1195

1196 **Assumption E.1** (Orthogonal initialization). $\Phi^T \Phi = I$

1197 **Assumption E.2** (Uniform state distribution). $p_0(s) = \frac{1}{|S|}$

1198 **Assumption E.3** (Symmetric dynamics). $P^\pi = (P^\pi)^\top$

1199 Under these three assumptions, Khetarpal et al. (2025) prove that the BYOL ODE is equivalent to
 1200 monotonically minimizing the surrogate objective:
 1201

$$1202 \min_{\Psi} \|P^\pi - \Phi \Psi \Phi^T\|_F + C \quad (21)$$

1203 Where $\|\cdot\|_F$ is the Frobenius matrix norm. Thus, we can understand that the BYOL objective as
 1204 learning a d-rank decomposition of the underlying dynamics P^π . Additionally, the top d eigenvectors
 1205 of P^π match those of $(I - \gamma P^\pi)^{-1} = M^\pi$ (Chandak et al., 2023). However, we will highlight that
 1206 there are key differences when learning a low-rank decomposition between P^π and M^π . This is
 1207 described by Touati et al. (2023), where we can consider that in a real-world problem with underlying
 1208 continuous-time dynamics, actions may have little effect, and P^π is close to the identity, i.e. close to
 1209 full-rank. However, M^π , which takes powers of $(P^\pi)^t$, has a “sharpening effect” on the difference
 1210 between eigenvalues, which gives a clearer learning signal. This is intuitive on a real-world problem
 1211 like robotics, even with discrete-time dynamics, where $s_{t+1} \approx s_t$, but we have larger differences
 1212 between s_t and s_{t+k} .
 1213

1214 E.2 BYOL- γ

1215 **In the finite MDP**, we now verify theorem 4.1, where BYOL- γ approximates the successor repre-
 1216 sentation with matrix decomposition $\tilde{M}^\pi \approx \Phi \Psi \Phi^T$.
 1217

1218 We consider the same objective (19), where we need to update the expectation of the sampling
 1219 distribution:
 1220

$$1221 \min_{\Phi, \Psi} \text{BYOL-}\gamma(\Phi, \Psi) := \min_{\Phi, \Psi} \mathbb{E}_{s_t \sim p_0(s), s_+ \sim \tilde{M}^\pi} [\|\psi^T \Phi^T s_t - \bar{\Phi}^T s_+\|_2^2] \quad (22)$$

1224 Assuming that this objective is optimized under the ODE (20). We have that our objective monotonically
 1225 minimizes:
 1226

$$\min_{\Psi} \|\tilde{M}^\pi - \Phi \Psi \Phi^T\|_F + C \quad (23)$$

1228 This directly translates as we can consider $\tilde{M}^\pi = P^\pi$ as simply a valid transition matrix for a new,
 1229 temporally abstract, version of the original MDP. We maintain the original assumptions E.1, E.2, and
 1230 E.3. We do not need an additional assumption for \tilde{M}^π , as assumption E.3 for symmetric P^π implies
 1231 a symmetric $\tilde{M}^\pi = (1 - \gamma) \sum_{t \geq 0} \gamma^t P_\pi^t$,
 1232

Under this setup, we also have that $\Psi \Phi \in \mathbb{R}^{n \times d}$ relates to the successor feature matrix, where each
 row $(\Psi \Phi)_i$ contains the vector $(1 - \gamma) \psi^\pi(s_i)$:
 1233

$$1235 (1 - \gamma) \psi^\pi(s_i) = \sum_j \tilde{M}^\pi(s_i, s_j) \phi(s_j) \quad (24)$$

$$1237 = (\tilde{M}^\pi \Phi)_i \quad (25)$$

$$1238 \approx (\Phi \Psi \Phi^T \Phi)_i \quad (26)$$

$$1240 = (\Phi \Psi)_i \quad (27)$$

1241 In other words, in the restricted finite MDP, where we minimize (23), we are simultaneously learning
 1242 successor features $\psi^\pi \approx \Psi \Phi$ and basis features Φ .
 1243

1242 **F MIXTURE DATASETS**
1243

1244 In Section 3.2, we describe a practical setting where we have an offline dataset generated by a set
1245 of policies $\{\beta_j\}$. While we previously describe that BYOL- γ approximates \tilde{M}^π when we have MC
1246 samples directly an arbitrary π , we now describe the behavior of BYOL- γ when trained jointly on
1247 MC samples from multiple $\{\beta_j\}$, first in the finite MDP, and how this relates to approximating the
1248 SR of the unknown mixture policy \tilde{M}^β .
1249

1250 **SR of Mixture Policy.** We begin by obtaining the SR for the mixture policy $\beta(a|s) :=$
1251 $\sum_j \beta_j(a|s)p(\beta_j|s)$, first defining 1-step transitions:

1252
$$P_{i,l}^{\beta_j} = p^{\beta_j}(s_{t+1} = l | s_t = i) = \sum_a \beta_j(a|s = i)p(s_{t+1} = l | s_t = i, a) \quad (28)$$

1253

1254
$$P_{i,l}^\beta = \sum_a \sum_j \beta_j(a|s)p(\beta_j|s)p(s_{t+1} = l | s_t = i, a) = \sum_j p(\beta_j|s = i)P_{i,l}^{\beta_j} \quad (29)$$

1255

1256 Using $w_j(i) = p(\beta_j|s = i)$, $W_j = \text{diag}(w_j(1), \dots, w_j(|S|))$, we can see the transitions of the
1257 mixture policy β as simply a (state-dependent) weighted average of the transitions of $\{\beta_j\}$.
1258

1259
$$P^\beta = \sum_j W_j P^{\beta_j} \quad (30)$$

1260

1261
$$\tilde{M}^\beta = (1 - \gamma) \sum_{t \geq 0} \gamma^{t+1} (\sum_j W_j P^{\beta_j})^{t+1} \quad (31)$$

1262

1263 **Approximated SR of BYOL- γ .** Using samples from a set of unknown policies $\{\beta_j\}$ the BYOL- γ
1264 objective corresponds to:
1265

1266
$$\min_{\Phi, \Psi} \mathbb{E}_{s_t \sim p(s), \beta_j \sim p(\beta_j|s_t), s_+ \sim \tilde{M}^{\beta_j}} [\|\psi^T \Phi^T s_t - \bar{\Phi}^T s_+\|_2^2] \quad (32)$$

1267

1268
$$= \min_{\Phi, \Psi} \mathbb{E}_{s_t \sim p(s), s_+ \sim \widehat{M}} [\|\psi^T \Phi^T s_t - \bar{\Phi}^T s_+\|_2^2] \quad (33)$$

1269

1270 i.e. by theorem 4.1 we are approximating $\widehat{M} = \sum_j p(\beta_j|s_t) \tilde{M}^{\beta_j}$, which we can compare to Equation
1271 (31) via:
1272

1273
$$\widehat{M} = (1 - \gamma) \sum_{t \geq 0} \gamma^{t+1} \sum_j W_j (P^{\beta_j})^{t+1} \quad (34)$$

1274

1275 Intuitively, while \tilde{M}^β corresponds to the *SR of the average policy*, BYOL- γ approximates \widehat{M} , an
1276 *average of policy SRs*.
1277

1278 **General Case.** We rewrite the inequality from Equation (9) but with mixture data:
1279

1280
$$\begin{aligned} \mathcal{L}_{\text{BYOL-}\gamma}(\phi, \psi) &= \mathbb{E}_{\beta_j \sim p(\beta_j), s_t \sim p^{\beta_j}(s), s_+ \sim \tilde{M}^{\beta_j}(s_t, s_+)} [f(\psi(\phi(s_t)), \bar{\phi}(s_+))] \\ 1281 &\geq \mathbb{E}_{\beta_j \sim p(\beta_j), s_t \sim p^{\beta_j}(s)} \left[f(\psi(\phi(s_t)), \mathbb{E}_{s_+ \sim \tilde{M}^{\beta_j}(s_t, s_+)} \bar{\phi}(s_+)) \right] \\ 1282 &= \mathbb{E}_{\beta_j \sim p(\beta_j), s_t \sim p^{\beta_j}(s)} \left[f(\psi(\phi(s_t)), (1 - \gamma) \psi_{\bar{\phi}}^{\beta_j}(s_t)) \right] \end{aligned} \quad (35)$$

1283

1284 **F.1 CL ON MIXTURE DATA**
1285

1286 We discuss the behavior of CL on mixture datasets. First, we write Equation (36), we rewrite Equation
1287 (1) when practically applied to mixture data as implemented in TRA:
1288

1289
$$\mathcal{L}_{\text{TRA}} \approx \mathbb{E}_{\beta_j \sim p(\beta_j), s_t \sim p_j^\beta(s)} [f(\psi(s_t), \phi(s_+))] - \mathbb{E}_{s_1:N \sim p_j^\beta(s)} \left[\log \sum_{i=2}^N e^{f(\psi(s^1), \phi(s^i))} \right] \quad (36)$$

1290

1291 We note that a mismatch occurs between the numerator (attractive), and the denominator (repulsive)
1292 terms. Namely, we attract two representations only when they are sampled from the same policy β_j ,
1293 but minimize similarly for states sampled under the occupancy of the mixture policy β .
1294

1296 We could consider other forms where both terms sample from the same distributions. Namely, in the
 1297 ideal case if we could get MC samples from $s_+ \sim M^\beta(s, s_+)$, the loss has the form:
 1298

$$1299 \mathcal{L}_{\text{CL}^\beta} \approx \mathbb{E}_{\substack{s_t \sim p^\beta(s) \\ s_+ \sim \tilde{M}^\beta(s_t, s_+)}} [f(\psi(s_t), \phi(s_+))] - \mathbb{E}_{s^{1:N} \sim p^\beta(s)} \left[\log \sum_{i=2}^N e^{f(\psi(s^1), \phi(s^i))} \right] \quad (37)$$

1302 In practice, we only can take MC samples from, β_j 's, so we could view the loss as an expectation
 1303 over these policies:
 1304

$$\begin{aligned} 1305 \mathcal{L}_{\text{CL}^\beta_j} &\approx \mathbb{E}_{\substack{\beta_j \sim p(\beta_j), s_t \sim p^{\beta_j}(s) \\ s_+ \sim \tilde{M}^{\beta_j}(s_t, s_+)}} [f(\psi(s_t), \phi(s_+))] - \mathbb{E}_{\beta_j \sim p(\beta_j), s^{1:N} \sim p^{\beta_j}(s)} \left[\log \sum_{i=2}^N e^{f(\psi(s^1), \phi(s^i))} \right] \\ 1306 &= \mathbb{E}_{\beta_j} \left[\mathbb{E}_{\substack{s_t \sim p^{\beta_j}(s) \\ s_+ \sim \tilde{M}^{\beta_j}(s_t, s_+)}} [f(\psi(s_t), \phi(s_+))] - \mathbb{E}_{s^{1:N} \sim p^{\beta_j}(s)} \left[\log \sum_{i=2}^N e^{f(\psi(s^1), \phi(s^i))} \right] \right] \end{aligned} \quad (38)$$

1312 This objective similarly corresponds to capturing information related to a mixture of different policies,
 1313 similarly to the BYOL- γ objective. We can see the positive term of \mathcal{L}_{TRA} matches $\mathcal{L}_{\text{CL}^\beta_j}$ while the
 1314 negative term matches $\mathcal{L}_{\text{CL}^\beta}$. In other words, \mathcal{L}_{TRA} is an under-optimistic compared to $\mathcal{L}_{\text{CL}^\beta}$ and
 1315 over-pessimistic compared to $\mathcal{L}_{\text{CL}^\beta_j}$. We can see how this may discourage stitching. For example, if
 1316 we have a trajectory $a \rightarrow b, b \rightarrow c$. Although we want relation from a, c , $\psi(a)\phi(c)$ is only sampled
 1317 as a negative term.
 1318

1319 **SVD approximation of TRA.** In the single policy case, Touati et al. (2023) demonstrates that CL
 1320 with a single policy ($\mathcal{L}_{\text{CL}^\beta}$) relates to an SVD of $\frac{\tilde{M}^\beta(s, s')}{p^\beta(s')}$:

$$1322 \mathcal{L}_{\text{CL}^\beta} \approx \mathbb{E}_{s \sim p^\beta, s' \sim p^\beta} \left[\left(\frac{\tilde{M}^\beta(s, s')}{p^\beta(s')} - \psi(s)^T \phi(s') \right)^2 \right] + C$$

1325 We now show that the mixture policy case corresponds to an SVD of $\frac{\sum_j p(\beta_j | s) \tilde{M}^{\beta_j}(s, s_+)}{p^\beta(s_+)}$:

$$\begin{aligned} 1329 \mathcal{L}_{\text{TRA}} &\approx \mathbb{E}_{\substack{\beta_j \sim p(\beta_j), s_t \sim p^{\beta_j} \\ s' \sim \tilde{M}^{\beta_j}(s_t, s')}} [f(\psi(s_t), \phi(s'))] - \mathbb{E}_{s \sim p^\beta} \left[\log \mathbb{E}_{s' \sim p^\beta} [e^{f(\psi(s), \phi(s'))}] \right] \\ 1330 &= \mathbb{E}_{s \sim p^\beta, s' \sim p^\beta} \left[\frac{\sum_j p(\beta_j | s) \tilde{M}^{\beta_j}(s, s')}{p^\beta(s')} f(\psi(s), \phi(s)) \right] - \mathbb{E}_{s \sim p^\beta} \left[\log \mathbb{E}_{s' \sim p^\beta} [e^{f(\psi(s), \phi(s'))}] \right] \end{aligned} \quad (39)$$

1335 Under assumptions that f is the dot product between ϕ and ψ , and ϕ, ψ are centered, if we apply a
 1336 second-order Taylor expansion to second term:
 1337

$$1338 = \mathbb{E}_{s \sim p^\beta, s' \sim p^\beta} \left[\frac{\sum_j p(\beta_j | s) \tilde{M}^{\beta_j}(s, s')}{p^\beta(s')} \psi(s)^T \phi(s') \right] - \frac{1}{2} \mathbb{E}_{s \sim p^\beta, s' \sim p^\beta} [\psi(s)^T \phi(s')] \quad (40)$$

$$1341 = \mathbb{E}_{s \sim p^\beta, s' \sim p^\beta} \left[\left(\frac{\sum_j p(\beta_j | s) \tilde{M}^{\beta_j}(s, s')}{p^\beta(s')} - \psi(s)^T \phi(s') \right)^2 \right] \quad (41)$$

1350 **G ADDITIONAL RESULTS FOR HORIZON GENERALIZATION**

1396 **Figure 6: Evaluating Generalization with Increasing Horizons:** The distances to the right of
1397 the red dotted line require combinatorial generalization. The maze maps show examples of how
1398 intermediate goals are selected along the optimal path.

1399 We include additional results matching the setup in Section 5.3, for antmaze-medium, and
1400 {humanoidmaze}-{medium, large, giant} in Figure 6. We can observe that BYOL- γ leads
1401 in performance as the distance between the start and goal grows when compared to other methods.

1404 H REPRESENTATIONS
1405

1406 H.1 ADDITIONAL VISUALIZATIONS
1407

Figure 7: **Additional Visualization of the Learned Representation:** depicts the similarity between the prediction of the current state representation to the goal representation. Brighter color indicates higher similarity.

1440 H.2 CORRELATION TO SHORTEST PATH
1441

1442 We conduct a quantitative comparison between representations through alignment with shortest-
1443 path distance in the environment. Namely, we compute the correlation between similarity in the
1444 representation space, $\frac{\psi(s, \cdot)^T \phi(g)}{\|\psi(s, \cdot)\| \|\phi(g)\|}$, to the shortest path distance in the maze between sampled start
1445 and goal cells (xy space). While the shortest path distance does not measure ground truth temporal
1446 distance, as it does not account for robot dynamics, it still provides a simple reference for the general
1447 structure we expect to see in representations. We can see that in Table 12, on average BYOL- γ 's
1448 representations seem to most strongly correlate with shortest path distance. We also compute the
1449 success rate of the same checkpoints used for correlation, and notice relationships between these
1450 correlations and empirical success rate. We see that the ranking of methods in terms of average
1451 correlation in representation space matches the ordering of methods in terms of average empirical
1452 policy success.

1453
1454
1455
1456
1457

Figure 8: Scatter plot of negative cosine similarity between randomly sampled (state,goal) pairs in representation spaces and true shortest path, aggregated over 4 model seeds, each sampled at 100 (state,goal) pairs.

Dataset	BYOL- γ^a	BYOL	TRA	TDSR a
antmaze-medium-stitch	0.71 ± 0.01	0.59 ± 0.05	0.49 ± 0.05	0.72 ± 0.03
antmaze-large-stitch	0.66 ± 0.02	0.10 ± 0.02	0.62 ± 0.03	0.67 ± 0.02
humanoidmaze-medium-stitch	0.64 ± 0.02	0.18 ± 0.04	0.02 ± 0.02	0.36 ± 0.03
humanoidmaze-large-stitch	0.62 ± 0.03	0.20 ± 0.03	0.15 ± 0.04	0.38 ± 0.03
average maze correlation	0.66	0.27	0.32	0.53
average maze success	39	26	31	36

Table 12: Correlation of representation space with shortest path distance. For each method, we use 10,000 (state,goal) pairs to compute correlation, and then compute the average and standard deviation of the correlation over 4 model seeds, and the success rate over these same checkpoints.