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ABSTRACT

While goal-conditioned behavior cloning (GCBC) methods can perform well on
in-distribution training tasks, they do not necessarily generalize zero-shot to tasks
that require conditioning on novel state-goal pairs, i.e. combinatorial generaliza-
tion. In part, this limitation can be attributed to a lack of temporal consistency in
the state representation learned by BC; if temporally correlated states are properly
encoded to similar latent representations, then the out-of-distribution gap for novel
state-goal pairs would be reduced. We formalize this notion by demonstrating how
encouraging long-range temporal consistency via successor representations (SR)
can facilitate generalization. We then propose a simple yet effective representation
learning objective, BYOL-γ for GCBC, which theoretically approximates the suc-
cessor representation in the finite MDP case through self-predictive representations,
and achieves competitive empirical performance across a suite of challenging tasks
requiring combinatorial generalization.

1 INTRODUCTION

Generalization has been a long-standing goal in machine learning and robotics. Recently, large-scale
supervised models for language and vision have demonstrated impressive generalization when trained
over vast amounts of data. In robotics, this has motivated large-scale behavior cloning (BC) models
trained on offline datasets of diverse demonstrations (Ghosh et al., 2024; Kim et al., 2024). However,
these models still suffer from a lack of generalization. In particular, while BC methods can perform
well on tasks directly observed in the dataset, they often fail to perform zero-shot transfer to tasks
requiring novel combinations of in-distribution behavior, known as combinatorial generalization.
In the robotics domain, where demonstration data is time-intensive and costly to produce, simply
scaling the dataset is often not possible. Hence, achieving this type of generalization algorithmically
will be critical to unlocking the potential for large-scale supervised policy training.

The property of combinatorial generalization has been previously formalized as the ability to “stitch”
(Ghugare et al., 2024). Here, stitching refers to the ability of a policy to reach a goal state from
a start state when trained on a dataset, which provides sufficient coverage of the path to the goal,
but which does not contain a single complete trajectory of the path. The lack of stitching observed
in goal-conditioned behavioral cloning (GCBC) and, more generally, supervised learning, can be
understood through the inductive biases of the model. By construction, BC methods do not encode the
inductive bias that the observed data are generated from a Markov decision process (MDP). In contrast,
reinforcement learning (RL) policies that are trained via temporal difference (TD) learning directly
utilize the structure of the MDP to pass information through time using dynamic programming.
Offline RL (Levine et al., 2020) has been proposed as a method for achieving stitching in policies
trained on offline datasets. However, these methods are challenging to scale due to the instability
of bootstrapping in TD learning when combined with fully offline training. Scaling has been more
successful with supervised methods, such as in robotics, where training robot foundation models with
BC (Ghosh et al., 2024; Kim et al., 2024) on large-scale datasets (O’Neill et al., 2024; Khazatsky
et al., 2024) can lead to more general-purpose policies.

A goal-conditioned policy being general-purpose implies it has learned an implicit world model of
the environment (Richens et al., 2025). From this intuition, a key desiderata is to make a policy’s
representations align with the (latent) dynamics of the underlying environment, in order to obtain
a more robust goal-conditioned policy. However, an open question here is which representation
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Figure 1: (a) Self-predictive Representations. We consider training on trajectories like, s0 → sh
and sb → sf , which intersect at w, and then evaluate evaluate on a task like s0 → sf , requiring
combinatorial generalization. (b) Representation learning with BYOL-γ. We predict future state
representations ϕ(st+k) via ψf (ϕ(st), a), and also predict backwards with ψb(ϕ(st+k)). The target
offset is sampled geometrically: k ∼ geom(1 − γ). Stop-gradients are denoted by //. We provide
more details on the training procedure L in Section 4.2.

learning objective best achieves this property. We begin to investigate this question with Bootstrap
Your Own Latent (BYOL) framework (Grill et al., 2020), which in RL, learns a representation space
through predicting future latent states (Schwarzer et al., 2020), without requiring negative samples nor
TD-learning. While the standard BYOL objective has been shown to learn representations capturing
spectral information about the one-step transition dynamics (Khetarpal et al., 2025), we find that a key
property is to capture temporally extended information, leading us to (1) propose a novel objective,
BYOL-γ which predicts future states geometrically (Figure 1b), and (2) present a unifying framework
(Table 1) for understanding objectives related to the successor representation (Blier et al., 2021),
including contrastive learning, BYOL, BYOL-γ, and novel applications for TD-based approximation
of the SR as an auxiliary loss for BC. Namely, we quantity how these methods uniquely behave when
applied to data collected by a mixture of policies which is encountered in practical BC settings.

In the finite, single-policy, MDP case, we show that, in fact, BYOL-γ approximates the successor
representation. While in the mixture-policy case, BYOL-γ corresponds to approximating a mix-
ture of SRs, but less with pessimism than existing contrastive objectives. Qualitatively, BYOL-γ
objective learns representations that encodes long-range temporal distance between states on mixture
datasets more faithfully when compared to TD than contrastive learning (Figure 2). Empirically, we
demonstrate on the challenging OGBench suite (Park et al., 2025) that BYOL-γ augmented GCBC
outperforms all other methods (Table 2) on average, and is robust to combinatorial generalization
with increasing horizons (Figure 3). Our representation can also be extended to hierarchical setups
(Appendix C), which leads to further improvements in combinatorial generalization.

2 RELATED WORK
Stitching in Supervised Methods. Outcome (goals or return)-conditioned behavioral cloning
(OCBC) methods (Schmidhuber, 2020; Chen et al., 2021; Emmons et al., 2022) provide a simple and
scalable alternative to traditional offline RL (Levine et al., 2020) methods. However, these methods
do not properly “stitch” and generalize to unseen outcomes (Brandfonbrener et al., 2022; Ghugare
et al., 2024). To reduce this problem, various works have proposed augmenting training data used
by BC methods. Some work incorporates methodlogy from offline RL to label returns or goals for
downstream SL (Char et al., 2022; Yamagata et al., 2023). Other work has considered relabeling goals
through clustering states (Ghugare et al., 2024), which relies on a good distance metric, or utilized
planing Zhou et al. (2024) for goal relabeling, or generative models to synthesize new trajectories (Lu
et al., 2023; Lee et al., 2024). Rather than using models to generate data, combinatorial generalization
can be achieved by planning with generative models (Luo et al., 2025). In this work, we neither
require explicit Q-learning, generative models, or perform explicit planning.

Representation learning in RL. Our objective is most closely related to approaches using auxiliary
BYOL objectives in online RL (Gelada et al., 2019; Schwarzer et al., 2020; Ni et al., 2024; Voelcker
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et al., 2024). These objectives can help with sample-efficiency, such as in challenging, partially
observed environments with sparse rewards, or with noisy states. Additionally, self-predictive
dynamics models are used in planning and model-based RL (François-Lavet et al., 2019; Ye et al.,
2021; Hansen et al., 2022). Various works have also characterized the dynamics of BYOL objectives
in the RL setting, showing that BYOL objectives capture spectral information about the policy’s
transitions (Tang et al., 2023; Khetarpal et al., 2025). In the offline setting, how well Joint Embedding
Predictive Architecture (JEPA) world models generalize when used for explicit planning has been
studied Sobal et al. (2025), however not for combinatorial generalization. Additionally, certain
representation structures for value functions, namely quasimetrics (Liu et al., 2023; Wang et al., 2023;
Wang and Isola, 2022; Myers et al., 2024) can also lead to policies that better generalize to longer
horizons (Myers et al., 2025a).

Successor Representation (SR) (Dayan, 1993) objectives, such as successor features (SF) (Barreto
et al., 2017), and the successor measure (SM) (Blier et al., 2021) have been widely used for gener-
alization and transfer in reinforcement learning (Carvalho et al., 2024). Similarly to BYOL, these
objectives have been used for representation learning in RL (Lan et al., 2022; Farebrother et al., 2023).
While prior BYOL methods either perform 1-step, or relatively short fixed n-step prediction, neither
of these choices directly approximate the successor measure. Our setup is most related to temporal
representation alignment (TRA) (Myers et al., 2025b), which recently proposed using contrastive
learning as an auxiliary objective for BC to improve combinatorial generalization. In this work, we
further build on the relationship between the SM and combinatorial generalization, and propose new
objectives which can lead to better performance.

3 BACKGROUND

Controlled Markov Process. We consider goal-conditioned decision-making, with states S , actions
A, goals g ∈ S, initial state distribution p0(s), dynamics p(st+1 |st, a), and with policies π(a|s, g).
Successor Representation (SR) and Successor Measure (SM). In a finite MDP, the successor
representation (SR) (Dayan, 1993) of a policy is: Mπ(s, s′) := E

[∑
t≥0 γ

t
1(st+1=s′) | s0 = s, π

]
We use the convention of counting from st+1, writing in matrix form Mπ =

∑
t≥0 γ

t(Pπ)t+1.
The transition matrix transition for policy π is Pπ, with Pπi,j =

∑
a π(a|s = i)Pi,a,j , where

Pi,a,j = p(st+1 = j | st = i, a) . The successor representation also satisfies the bellman equa-
tion, Mπ = Pπ + γPπMπ = Pπ(I − γPπ)−1. For a fixed policy, the successor representation
describes a type of temporal distance between states. The successor measure (SM) (Blier et al.,
2021) extends SR to continuous spaces S: Mπ(s,X) :=

∑
t≥0 γ

tP (st+1 ∈ X | s) ∀X ⊂ S. We
also define the normalized successor representation, or measure M̃π = (1 − γ)Mπ. In the fi-
nite case, the normalized successor representation M̃π has rows that sum to one like transitions
Pπ. We also define the state occupancy via Mπ(s′) = Es∼p0(s) [Mπ(s0, s

′)]. Another quan-
tity, successor features (SF) (Barreto et al., 2017) are the expected discounted sum of future fea-
tures ϕ(s) ∈ Rd: ψπ(s) = E

[∑
t≥0 γ

tϕ(st+1) | s0 = s, π
]

. We can relate SFs to the SM with

ψπ(s) =
∫
s′
Mπ(s, s′)ϕ(s′). These quantities can also condition an action, e.g. Mπ(s, a, s′).

3.1 REPRESENTATION LEARNING

We begin with two representation learning methods that approximate the density of the SM.

Contrastive Learning. Temporal contrastive learning used in MDPs (Eysenbach et al., 2022) is
related to a Monte Carlo (MC) approximation of the (discounted) successor measure. This can be
implemented with a InfoNCE (van den Oord et al., 2019) loss that maximizes the similarity of a
positive pair between a state st and a future state from the same trajectory s+, and minimizing the
similarity of st and random states s−:

min
ϕ,ψ

E st∼p(s)
k∼geom(1−γ)

s+=st+k,s
2:N
− ∼p(s)

[
− log

ef(ψ(st),ϕ(s+))∑N
i=2 e

f(ψ(st),ϕ(si−))

]
(1)
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A common choice for the energy function f is the inner product f(ψ(s)ϕ(s+)) = ψ(s)Tϕ(s+). A
key aspect to note is that the positive sample s+ comes from an MC sample from s+ ∼Mπ(st, s+).
The optimal solution to (1) gives M̃π(s, s+) ≈ C exp(ψ(st)

Tϕ(s+)) · p(s+).
Temporal-Difference Approximation of SR (TD-SR) We consider a Forward-Backward (Touati
and Ollivier, 2021)-like loss that approximates the successor measure for a fixed policy π using TD
learning, discussed by Touati et al. (2023), which we call TD-SR.

min
ϕ,ψ

E st∼p(s),s′∼p(s)
st+1 ∼pπ(st+1|st)

[
(ψ(st)

Tϕ(s′) − γψ̄(st+1)
T ϕ̄(s′))2

]
− 2E st∼p(s)

st+1∼pπ(st+1|st)

[
ψ(st)

Tϕ(st+1)
]

(2)

TD-SR learns an approximation of the successor measure with factorization Mπ(s, s+) ≈
ψ(st)

Tϕ(s+) · p(s+) using TD learning. Given transitions (st, st+1) sampled by a policy π, the
second term relates to fitting Mπ(st, st+1). Given an independently sampled state s′, the first term
bootstraps an estimate of Mπ(st, s

′) from M̄π(st+1, s
′), where ϕ̄, ψ̄ denote stop-gradient operations.

In Appendix D, we further elaborate on the relationship between the TD-SR loss, and CL. Particularly,
in the limit, an n-step version of TD-SR is related to CL.

BYOL. We now look at an objective that captures information about single-step transition instead of
the successor measure. In the context of RL, self-predictive models jointly learn a latent space and
a dynamics model through predicting future latent representations. Self-predictive models rely on
latent bootstrapped targets (BYOL) (Grill et al., 2020), avoiding reconstruction (generative models),
or negative samples (contrastive learning). Self-predictive models are also a type of joint-embedding
predictive architectures (JEPAs) (LeCun, 2022; Garrido et al., 2024).

Given an encoder which produces a representation zt = ϕ(st), and dynamics ψ(zt+1|zt) for a fixed
policy π, we minimize the difference between our prediction and target representation in latent-space:

min
ϕ,ψ

Est∼ p(s),st+1∼pπ(st+1|st),
[
f(ψ(ϕ(st)), ϕ̄(st+1))

]
(3)

Where f measures the discrepancy between representations, such as the squared l2 norm, and ϕ̄
refers to an EMA target, or stop-gradient. Variants of this BYOL objective have been widely used to
learn state abstractions, and work as an auxiliary loss to value-function learning (Gelada et al., 2019;
Schwarzer et al., 2020; Ni et al., 2024). In the finite MDP, this objective captures spectral information
about the policy’s transitions Pπ (Tang et al., 2023; Khetarpal et al., 2025) , as in Appendix E.1.

3.2 COMBINATORIAL GENERALIZATION FROM OFFLINE DATA

We now shift focus on how we can learn policies from offline data using behavioral cloning, and then
introduce a combinatorial generalization gap that arises in this setting.

We consider a dataset D = {(si0, ai0, · · · , siT , aiT )}Ni=1, composed of trajectories generated by a set
of unknown policies {βj(a|s)}. Goal Conditioned Behavioral Cloning (GCBC) trains a policy πΘ
with maximum likelihood to reproduce the behaviors from the dataset. After sampling a current state,
a goal is sampled as a future state from the same trajectory:

max
πΘ

LBC(πΘ) = max
π

E βj∼p(βj), s∼Mβj (s)

a∼βj(a | s), s+∼Mβj (s,s+)

[log πΘ(a|s, g = s+)] (4)

Generalization gap. While this policy can perform well in-distribution, the behavior cloning policy
struggles to generalize to reach goals from states that are not in matching training trajectories. We
now review a more formal definition of this type of generalization gap.

We consider Lemma 3.1 from Ghugare et al. (2024), which says there exists a single Markovian policy
β(a|s) that has the same occupancy as the mixture of j policies: Mβ(s) = Ep(βj)

[
Mβj (s)

]
. This

policy also has construction: β(a | s) :=
∑
j βj(a | s)p(βj | s), where p(βj | s) is the distribution

over policies in s as reflected by the dataset.

Using the successor measure of the individual policies, and the mixture policy, we can quantify a gap
between accomplishing out-of-distribution tasks versus in-distribution training tasks (Ghugare et al.,
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2024):

E s0∼Mβ(s0)

sg∼Mβ(s0,sg)

[
uπΘ(s0, sg)

]
︸ ︷︷ ︸

tasks requiring combinatorial generalization

− Eβj∼p(βj), s0∼Mβj (s0)

sg∼Mβj (s0,sg)

[
uπΘ(s0, sg)

]
︸ ︷︷ ︸

in-distribution training tasks

(5)

Here, u is a performance metric of the policy πΘ such as the success rate to reach sg from s0. As
we perform well on in-distribution tasks due to a correspondence to Equation (4), the BC policy has
no guarantees for the first term. This is because after sampling a state, the goal is sampled from the
successor measure of the mixture policy.

4 USING REPRESENTATIONS FOR COMBINATORIAL GENERALIZATION

In this section, we aim to reduce the aforementioned generalization gap. We consider a policy trained
with the BC objective πΘ to be made more robust to the tasks requiring combinatorial generalization
through representation learning. We begin with a setup similar to Equation (5), but with a shared
initial state s0 for both the in-distribution and out-of-distribution task. For the in-distribution task, we
sample a goal as before, labeled as sw. However, for the out-of-distribution task, we sample a goal
sf to be a state that can be reached by the mixture policy β after sw. (6):

Eβj∼p(βj),s0∼Mβj (s)

sw∼Mβj (s0,sw)

Esf∼Mβ(sw,sf )

[
uπΘ(s0, sf ))

]︸ ︷︷ ︸
extended task requiring generalization

− uπΘ(s0, sw)︸ ︷︷ ︸
in-distribution task

 (6)

= Eβj∼p(βj),s0∼Mβj (s)

sw∼Mβj (s0,sw)

 Esf∼Mβ(sw,sf )

[
uπΘ(s0, ϕ(sf ))

]︸ ︷︷ ︸
want invariance with respect to future goals through ϕ

− uπΘ(s0, ϕ(sw))

 (7)

Then, in Equation (7) we add a goal representation ϕ that processes the goal before going to policy
πΘ. Intuitively, a policy could achieve the out-of-distribution task by first going from s0 to sw
(in-distribution), and then completing the remaining task sw to sf . In essence, we want that when
conditioning on ϕ(sf ), the policy should first go to sw, which can be achieved by learning ϕ, where
ϕ(sw) is similar to ϕ(sf ) (Myers et al., 2025b). More formally, for sf ∼ Mβ(sw, sf ) we want an
invariance ϕ(sf ) ≈ ϕ(sw). From this observation, we can understand obtaining a representation ϕ
related to the successor measure of the mixture policy β can be beneficial.

The BYOL would be a simple framework to learn these representations to capture temporal depen-
dencies. However, in Section 5 we demonstrate that a simple BYOL objective empirically leads
to limited generalization when used as an auxiliary loss. Intuitively, a standard BYOL objectives
directly approximate one-step transition dynamics, not the successor measure so struggles to capture
relationships between distant states, separated by several trajectories.

4.1 BYOL-γ : CONNECTING SELF-PREDICTIVE OBJECTIVES TO THE SUCCESSOR
REPRESENTATION

To build better self-predictive representations, we propose BYOL-γ which allows us to use the BYOL
framework to capture temporally extended information, i.e. successor representations. Given a state
st, a BYOL objective samples prediction targets from one-step transition as in Equation (3). However,
we make a modification to predict empirical samples from the normalized successor measure:

LBYOL-γ(ϕ, ψ) = Est∼ p(s),k∼geom(1−γ),st+k∼pπ(st+k|st)
[
f(ψ(ϕ(st)), ϕ̄(st+k))

]
(8)

Where f refers to an energy function, ϕ refers to the encoder, and ψ the predictor. With γ = 0, we
have st+k = st+1 corresponding to an approximation of the one-step transitions, recovering the base
BYOL objective. Figure 1b depicts our overall representation learning objective. We can view this
objective as iteratively minimizing an upper-bound on the error between ψ(ϕ((s)) and a target of the
true successor features of the policy ψπ with changing basis features ϕ̄. With convex f , by Jensen’s
inequality we have:

LBYOL-γ ≥ Est
[
f(ψ(ϕ(st)),Es+∼M̃π(st,s+)ϕ̄(s+))

]
= Est

[
f(ψ(ϕ(st)), (1− γ)ψπϕ̄(st)

]
(9)
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Method Approx. τ ∼ β Approx. τ ∼ {βj} Batch

TRA (CL) M̃β(s, s+)/p
β(s+)

∑
j p(βj |s)M̃βj (s, s+)/p

β(s+) (st, s+)
B , (si, sj)

B2

TD-SR M̃β(s, s+)/p
β(s+) M̃β(s, s+)/p

β(s+) (st, st+1)
B , (si, sj)

B2

BYOL pβ(st+1|st) pβ(st+1|st) (st, st+1)
B

BYOL-γ (ours) M̃β(s, s+)
∑

j p(βj |s)M̃βj (st, s+) (st, s+)
B

Table 1: Auxiliary Representation Objectives. We provide an overview of the representation
objectives we consider. In the first two columns, we label the quantities which representations are
approximating in finite MDPs, either from datasets with trajectories collected from a single policy
τ ∼ β, or a mixture of policies τ ∼ {βj}. We provide additional derivations for mixture datasets
in Appendix F. In the last column, we list samples used for each objective, where the superscript
denotes the number of loss terms for a pair of samples.

Specifically, we precisely show the relationship of BYOL-γ to the SR with the following result:

Theorem 4.1. Given a finite MDP with linear representations Φ ∈ R|S|×d, and predictor Ψ ∈ Rd×d,
under assumptions of orthogonal initialization for Φ (Ass. E.1), a uniform initial state distribution
p0(s) (Ass. E.2), and symmetric transition dynamics (Ass. E.3), minimizing the self-predictive learning
objective LBYOL-γ(ϕ, ψ) approximates a spectral decomposition of the successor representation
M̃π ≈ ΦΨΦT , corresponding to successor features (1− γ)Ψπ ≈ ΨΦ.

Proof is in Appendix E.2, where we show that existing theory (Khetarpal et al., 2025) also translates
to the proposed BYOL-γ objective. Finally, we can see the relation between this objective and CL (1),
with the most striking difference being the removal of the denominator involving negative samples.
Surprisingly, we reveal that this simplified system still captures similar information and also can lead
to empirical generalization in Section 5.1 while neither relying on TD learning nor negative samples.

BYOL-γ Variants. We discuss a few variants on our base objective, namely, we evaluate bidirec-
tional prediction (Guo et al., 2020; Tang et al., 2023) where we add an additional backwards predictor
ψb which predicts a past representation from the future. We also utilize an action-conditioned variant
of the forward predictor ψf (ϕ(st), at), which can be interpreted as a temporally extended latent
dynamics model, or capturing information about M̃π(s, a, s+), giving:

LBYOL-γ(ϕ, ψ) = Est∼ p(s),s+∼M̃π(st,s+)

[
f(ψf (ϕ(st), at), ϕ̄(s+)) + f(ϕ̄(st), ψb(ϕ(s+))

]
(10)

For f , we choose a cross-entropy loss between (softmax) normalized representations, similar to
DINO (Caron et al., 2021): fCE(a, b) = softmax(b) · log softmax(a). We also find a normalized l2
loss, fl2 = ∥ a

∥a∥ −
b

∥b∥∥
2
2, commonly used in BYOL setups (Grill et al., 2020; Schwarzer et al., 2020)

also works, which we ablate in Section 5.4.

4.2 TRAINING A POLICY WITH AUXILIARY REPRESENTATION

We consider BYOL-γ and other objectives as auxiliary losses for BC policies πΘ(a|s, g) to improve
the generalization of policies. We label all parameters Θ = (θ, ϕ, ψ), with the parameters of the
encoder and predictor correspond to ϕ, ψ. The policy-head (θ) transforms representations to actions
via an MLP: πΘ(a|s, g) = MLPθ(concat(ϕ(s), ϕ(g))). With this policy, we train with the objective:

Eβj∼p(βj),τ∼βj
[LBC(Θ) + αLaux(ϕ, ψ)] (11)

The term LBC updates the parameters of both the policy head θ and its inputs, i.e., the encoder ϕ, while
Laux updates ψ, ϕ but not θ. With ϕ affected by both terms, the BC loss ensures that the representation
is sufficient for action prediction, and prevents collapse which can occur in certain representation
learning, such as in BYOL objectives. Additionally, the auxiliary loss prevents overfitting and help
generalization for the policy. We provide additional details about the architecture in Appendix A.

We wish to learn representations related to the successor measure of the mixture policy as motivated
Equation (7). However, there are trade-offs with the representation learning objectives in terms of
the quantities they approximate and the data they use, as shown in Table 1. When we directly have
full MC samples from a single policy (τ ∼ β), TRA, TD-SR, and BYOL-γ each capture information
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related to its SM. However, in practice, we only have MC samples from individual policies τ ∼ {βj},
rather than the mixture.

First, we consider using TD-SR as an auxiliary loss for BC, as we can see it still approximates
the correct quantity. To our knowledge, we are the first to study this objective as an auxiliary
loss for BC. TD-SR explicitly can “stitch” across policies, i.e. ψ(st)ψ(s′) via γψ̄(st+1)ϕ̄(s

′) for
st, st+1 ∼ pβi(st)p

β(st+1|st) and s′ ∼ pβj (s). However, we wish to understand if we can obtain
representations that help with generalization without TD, as this may be more scalable when applied
with policy learning. This leads us to quantify how MC methods behave when trained on mixture
datasets.

While 1-step MC methods like BYOL are consistent across dataset composition, we can see that TRA
and BYOL-γ approximate different quantities than TD-SR. Namely, rather than approximating the
SM of the mixture policy, MC methods capture a mixture of SRs as shown in Table 1 and Appendix F.
In practice, MC methods still learn relationships between states encountered in different policies by
effectively approximating many SRs in a single representation space, which is qualitatively shown in
Figure 2. Surprisingly, we show that BYOL-γ can lead to representations that are similar, or even
better than TD-SR without utilizing TD. However, we find that CL as used in TRA leads to pessimism
in the relationship between states sampled by different policies. Namely, for states that are not in
the same trajectory, they will only be paired as negative examples, whose representations are pushed
apart. This also shows up in the denominator of its approximation, with normalization from pβ(s+)

in
∑

j p(βj |s)M̃βj (s,s+)

pβ(s+)
. On the other hand, this pessimism is not encountered with BYOL-γ, which

does not utilize negative examples, giving an approximation of
∑
j p(βj |s)M̃βj (s, s+) by simply

predicting latents. Finally, we highlight that BYOL-γ only computes O(B) loss terms, while CL
compute O(B2) negatives (si, sj), and we utilize O(B2) bootstrap terms with TD-SR.

5 EXPERIMENTS

Now that we have shown a theoretical basis for studying choices of representations, including CL,
TD-SR, BYOL, and our new objective (BYOL-γ), we study how these methods behave empirically.
We compare representation learning algorithms across three axes: (1) First, we compare qualitatively
whether the representations appear to capture temporal relationships (2) Second, we assess represen-
tations quantitatively by measuring zero-shot generalization performance on unseen tasks that require
combinatorial generalization (3) Third, we assess generalization performance over an increasing
generalization horizon. Finally, we perform ablations on the various components of our proposed
method to demonstrate the relative importance of each algorithmic choice.

Environments. We empirically evaluate how well our approach can help with combinatorial general-
ization on offline goal-reaching tasks on OGBench (Park et al., 2025), which contains both navigation
and manipulation tasks, across low-dimensional and visual observations. We focus on navigation
environments, where OGBench provides stitch datasets, that assess combinatorial generalization
by training on trajectories that span at most 4 maze cells, while evaluating on tasks that are longer,
requiring combining information from multiple smaller trajectories.

Baselines. We benchmark against non-hierarchical methods that perform control from state to
low-level actions (e.g. joint-control). In addition to BYOL-γ used as an auxiliary loss for BC, we
evaluate several baselines: GCBC is the standard BC baseline, which we aim to improve upon with
representation learning. Offline RL from OGBench, including implicit {V,Q}-learning (IVL, IQL)
(Kostrikov et al., 2022), Quasimetric RL (QRL)(Wang et al., 2023), and Contrastive RL (CRL)
(Eysenbach et al., 2022). BYOL is a minimal version of our setup with 1-step prediction (γ = 0),
only forwards prediction (ψf ) without action-conditioning (ψf (ϕ(st))), and loss fl2 . TRA (Myers
et al., 2025b) is an auxiliary representation objective using contrastive learning related to an MC
approximation of the SM. TD-SR is a TD-based approximation of the SM as in Equation (2) used as
an auxiliary objective for BC. We also compare to an n-step version of BYOL in Appendix B.2 and
the Forward-Backward (FB) (Touati and Ollivier, 2021; Touati et al., 2023) in Appendix B.3.

Experimental Setup. We match the training details of OGBench, and consider a similar representa-
tion learning setup to TRA. We found it was beneficial to add action conditioning to TD-SR, but did
not see an overall improvement for TRA, so we use the original setup without action-conditioning.
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Figure 2: Visualization of the Learned Representation: depicts the similarity between the
prediction of the current state representation to the goal representation. For BYOL-γ and
TD-SR, we visualize the cosine similarity between ψ(ϕ(s), ·) or ψ(s, ·), to ϕ(g) ∀s ∈ D for a fixed
goal g which is indicated by the star marked in red.
While we use policy π(ϕ(s), ϕ(g)) and train with action-conditioning for BYOL-γ and TD-SR, TRA
originally uses a parameterization π(ψ(s), ϕ(g)) and does not condition on actions. We provide a full
comparison for changing ψ(s) to ϕ(s) and action-conditioning in Appendix B.1 for TRA. However
we obtain similar performance on average with the original setup. For clarity, in Table 2, we utilize
superscript a to denote methods with action-conditioning. Notably, we find that the weight of the
auxiliary representation learning objectives (α) can be sensitive to both the embodiment, and size of
environment (medium vs large). For each method, we perform a hyperparameter sweep over 4 α
values, and report the best result for each environment in Table 2. We hold other hyperparameters
constant, except with variation between non-visual and visual noted in Appendix A.

5.1 QUALITATIVE ANALYSIS OF REPRESENTATIONS

In Figure 2, we display a qualitative analysis of the representations. We visualize the similarity
between the future prediction ψ for each state to ϕ(g) for a fixed goal g. We can see that BYOL-γ
seems to learn a representation that encodes reachability between states, and has a similar structure to
TD-SR, which is known to approximate the successor measure. TRA and base BYOL seem to both
capture similar structure and learn a less well-defined latent space. However, BYOL-γ and TD-SR
have more distinct similarity, and have visible “paths” of similar states. BYOL-γ also appears to
capture the most similarity among more distant pairs of states. Compared to TRA, our hypothesis
here is that BYOL-γ has more optimistic similarity between distant states due to the lack of a negative
term in the loss, pushing representations apart. We show additional environments in Appendix H.1.
We also check the correlation of distance in representation space with shortest paths in the maze in
Appendix H.2, showing that BYOL-γ best captures the structure of the environment.

5.2 ZERO-SHOT PERFORMANCE ON COMBINATORIAL GENERALIZATION TASKS

In Table 2, we provide the performance results across all methods. Overall, our proposed method
BYOL-γ, shows improved performance vs. GCBC across most environments, and is either competi-

Dataset BYOL-γa BYOL TRA TD-SRa GCBC GCIVL GCIQL QRL CRL

antmaze-medium-stitch 58± 5 59± 4 54± 6 64± 6 45± 11 44± 6 29± 6 59± 7 53± 6
antmaze-large-stitch 19± 7 17± 6 11± 8 23± 4 3± 3 18± 2 7± 2 18± 2 11± 2
humanoidmaze-medium-stitch 51± 6 23± 3 45± 8 42± 4 29± 5 12± 2 12± 3 18± 2 36± 2
humanoidmaze-large-stitch 13± 3 3± 1 5± 4 11± 3 6± 3 1± 1 0± 0 3± 1 4± 1
antsoccer-arena-stitch 25± 5 12± 7 14± 4 22± 10 24± 8 21± 3 2± 0 1± 1 1± 0

visual-antmaze-medium-stitch 68± 4 57± 8 52± 3 49± 2 67± 4 6± 2 2± 0 0± 0 69± 2
visual-antmaze-large-stitch 26± 5 26± 5 17± 1 29± 2 24± 3 1± 1 0± 0 1± 1 11± 3
visual-scene-play 17± 1 13± 3 16± 3 14± 1 12± 2 25± 3 12± 2 10± 1 11± 2

average-state 33 23 26 32 21 19 10 20 21
average-visual 37 32 28 31 34 11 5 4 30
average-all 35 26 27 32 26 16 8 14 25

Table 2: OGBench: We find that BYOL-γ performs better overall compared to prior methods.
We report mean and standard deviation over 10 training seeds in non-visual environments, and 4
seeds in visual environments. We match the OGBench evaluation setup of 5 evaluation (state,goal)
tasks, and 50 episodes per task. The success rate is then averaged over the last 3 checkpoints. We
color the best non-RL method, and bold values within 95% of its value in the same row. We use
superscript a to denote methods utilizing action-conditioning.
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tive with or outperforms TD-SR and TRA. Importantly, we find that a minimal BYOL setup does
not confer significant benefit over the base GCBC except in non-visual antmaze environments.
Generally, auxiliary representation learning with GCBC outperforms existing offline RL methods.

Within the auxillary loss methods, we find that TD-SR and BYOL-γ tend to outperform TRA
on most environments. While we find that TD-SR outperforms BYOL-γ on environments with
smaller state spaces (antmaze-{medium,large}), we find that BYOL-γ’s simpler training pro-
cedure is beneficial in environments with larger state spaces (humanoidmaze-{medium,large},
visual-antmaze-medium and visual-scene-play).

Interestingly, in visual-antmaze TRA and TD-SR actually seem to hurt performance in com-
parison to base GCBC. On the other hand, with BYOL-γ we see no performance degradation over
GCBC on the visual environments, a considerable improvement over other methods. In Appendix C,
we extend BYOL-γ to the hierarchical setting (HBYOL-γ), where we obtain significant improvement
over BC baselines, including on visual maze environments.

We also find a relationship between success and representation quality (Section 5.1). Namely, in
Table 12 we calculate the correlation of representations to shortest path distances and success rate
over these same checkpoints. We see that the ranking of methods in terms of average correlation to
shortest path (average maze correlation) in representation space matches the ordering of
methods in terms of average empirical policy success (average maze success).

5.3 EVALUATING GENERALIZATION WITH INCREASING HORIZON

We conduct experiments to understand how success rate changes as an agent has to reach more
challenging goals further away from its starting position. For each maze environment, we consider
the same base 5 evaluation tasks used in Table 2, but construct intermediate waypoints along the
shortest path to the final goal determined by breadth-first search. We also include an additional maze
environment, giant on which all methods have zero success rates to reach distant goals. This gives
a more holistic view on an agent’s performance.

We display results in Figure 3 and Appendix G, where we can see how performance drops off for
all methods after a generalization threshold denoted by the red bar. While all methods cannot fully
reach distant goals on giant, we see that BYOL-γ has the slowest drop-off in performance. We
note that this is a challenging task, that requires stitching up to approximately 8 different trajectories.

antmaze-giant

1-2 3-4 5-6 7-8 9-1
0
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-12
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-16
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-20
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0.4

0.6

0.8

1.0
BYOL-  (ours) TRA GCBC

29
-30

Figure 3: Evaluating Generalization with In-
creasing Horizons: shows that BYOL-γ not only
performs well on goals in the near horizon, but
also, helps to generalize well to goals requiring
stitching, after the red bar (> 4).

5.4 COMPONENTS
AFFECTING GENERALIZATION

We ablate key components of the BYOL-γ ob-
jective in Table 3. This includes removing ac-
tion conditioning for forward predictor ψf (−a),
swapping the loss from cross-entropy to nor-
malized squared l2 norm (fl2), removing back-
wards predictor ψb, and predicting the repre-
sentation of the adjacent state (γ = 0). Both
removing action-conditioning, and backwards
prediction overall lead to similar results, but
variability per-environment. For fl2, we ob-
tain slightly worse average performance, and for
γ = 0, we see the largest drop-off, especially on
humanoidmaze.

6 DISCUSSION

Limitations. While we demonstrate that BYOL-γ and other representation learning objectives
offer a promising recipe for obtaining combinatorial generalization, we find that there still exists a
generalization gap, especially on challenging navigation environments e.g. giant. We also find
a less significant improvement over BC on visual environments, which may motivate additional
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Dataset BYOL-γa −a fl2 −ψb γ = 0

antmaze-medium-stitch 61± 6 63± 9 56± 4 67± 2 59± 5
antmaze-large-stitch 21± 5 27± 7 24± 6 19± 7 8± 4
humanoidmaze-medium-stitch 54± 5 48± 5 49± 6 52± 5 18± 2
humanoidmaze-large-stitch 14± 2 12± 6 15± 7 13± 2 3± 1
antsoccer-arena-stitch 21± 4 20± 5 11± 5 27± 7 25± 7

visual-antmaze-medium 68± 4 65± 3 63± 5 61± 4 54± 9
visual-antmaze-large 26± 5 25± 8 27± 7 28± 2 28± 1

average 33 33 31 33 24

Table 3: BYOL-γ ablations.
For each ablation, we perform
sweep over α, and report the
best result per-environment.
For all environments, we re-
port results over 4 seeds (for
BYOL-γ, we use the first 4 of
10 in Table 2).

investigation. Additionally, we may anticipate more benefit from representation learning when
applied to larger visual datasets, which has been fruitful in other domains.

Conclusion. In this work, we provide a stronger understanding of the relationship between quantities
related to successor representations and the generalization of policies trained with behavioral cloning
through a unified understanding of objectives. We propose a new self-predictive representation
learning objective, BYOL-γ, and show that it captures information related to the successor measure,
resulting in a competitive choice of an auxiliary loss for better generalization. We demonstrate that
augmenting behavior cloning with meaningful representations results in new capabilities such as
improved combinatorial generalization, especially in larger and more complex environments.
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A EXPERIMENTAL SETUP

Table 4: Hyperparameters for BYOL-γ

Hyperparameter Shared
actor head MLP (512,512,512)
representation encoder (ϕ) MLP (64,64,64)
predictor (ψ) MLP (64,64,64)
encoder ensemble 2
learning rate 3× 10−4

optimizer Adam

Non-visual Visual
Gradient steps 1000k 500k
Batch size 1024 256
τ (EMA) 1.0 0.99
γ 0.99 {0.66, 0.99}
α (alignment) {1,6,40,100} {1,6,10,20}
additional encoder n/a impala_small
encoder output dimension |s| 64

A.1 IMPLEMENTATION DETAILS

In this section we provide more training details for BYOL-γ, and representation learning baselines.
We match the training details of OGBench, including gradient steps, batch size, learning rate.

(a) (b)

Network Architecture. We follow the same gen-
eral setup as TRA, where we utilize MLP-based
encoders, and action head. For the output dimen-
sion of the encoder, we use the state dimension for
non-visual experiments, and 64 for visual experi-
ments. For the predictor ψ, we utilize an MLP of
the same architecture as the encoder. For image-
based tasks, there is an additional CNN, which
then passes output to the MLP encoder.

Figure 4: Encoder Variation. When training with BYOL, BYOL-γ and TD-SR, we utilize policies
with architecture (a) which uses ϕ to process states and goals. We utilize architecture (b) for TRA
to match prior implementation, however in Appendix B.1 we train TRA with architecture (a) and
action-conditioning.

Representation Ensemble. We follow the setup of TRA which utilizes representation ensembling,
such that two copies of the encoder ϕ1, ϕ2 are in parallel. We also have two distinct predictors ψ1, ψ2

for each ensemble. As input to the policy head, we average the representations, z̄ = ϕ1(st)+ϕ2(s2)
2 .

Each representation is trained independently for the BYOL loss, but the BC loss differentiates through
both ϕs.

Alignment. We find that the choice of weight of the auxiliary loss for the representation learning
objective is sensitive to both the robot embodiment and the environment size. For comparison, we
perform a hyperparameter search over four alignment values for BYOL-γ, TRA, and TD-SR, and
then report the best value for each environment in Table 2.
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Discount. For sampling the next-state, we utilize a discount factor of γ = 0.99 for all non-visual
environments. For visual environments, we perform a hyperparameter search over {0.66, 0.99},
however all representation learning methods performed better at γ = 0.66.

A.2 BYOL-γ

Target network. For BYOL, we find that exponential moving average (EMA) target networks for
the encoder ϕ are not necessary for non-visual environments (τ = 1), but for visual environments,
we find that a fast target stabilizes training (τ = 0.99):

ϕtarget = τϕonline + (1− τ)ϕtarget

A.3 TRA

In practice, TRA uses a symmetric version (Radford et al., 2021) of the InfoNCE objective discussed
in Equation 1. We write this in batch form, B = {(si, s+,i)}|B|

i=1 rather than in expectation:

LTRA = EB

− 1

B

|B|∑
i=1

log
ef(ψ(si),ϕ(s+,i))∑|B|
j=1 e

f(ψ(si),ϕ(s+,j))
− 1

B

|B|∑
i=1

log
ef(ψ(si),ϕ(s+,i))∑|B|
j=1 e

f(ψ(sj),ϕ(s+,i))

 (12)

Additionally, TRA minimizes the squared norm of representations minϕ,ψ λEs[∥ϕ(s)∥
2

d + ∥ψ(s)∥2

d ]

with λ = 10−6. For TRA, we search over α = {10, 40, 60, 100}.

A.4 TD-SR

Prior work similar to TD-SR, which trains FB for zero-shot policy optimization (Touati et al., 2023)
typically normalizes ϕ with an additional loss term so that E

[
ϕϕT

]
≈ Id . However, we found that

adding this loss term was not beneficial to performance in our setting and hence do not include it.

TD-SR uses an EMA target network as described in A.2 with τ = 0.005. For TD-SR, we search over
α = {0.01, 0.05, 0.001, 0.005}.

A.5 CODE.

We utilize the OGBench (Park et al., 2025) codebase and benchmark, and its extensions in the TRA
codebase (Myers et al., 2025b) for equal comparison.

A.6 COMPUTE REQUIREMENTS

We perform all experiments utilizing single GPUs, predominately NVIDIA RTXA8000 and L40S.
We utilize 6 CPU cores, 24G of RAM for non-visual environments, and 64G for visual experiments.
Experiments take 2 to 4 hours for non-visual and 6 to 12 hours for visual environments.

B ABLATIONS.

B.1 ACTION-CONDITIONING

In this section, we ablate the component of performing action-conditioning for the predictor ψ(st)
vs ψ(st, at) for TRA and TD-SR. We consider a similar comparison for BYOL-γ in Table 3. For
this comparison, when we perform action-conditioning, we utilize a policy representation π(s =
ϕ(s), g = ϕ(g)) as we have predictor ψ(s, a), and otherwise π(s = ψ(s), g = ϕ(g)) as in the
original TRA implementation. We find that results can be environment specific. On average, results
are not improved for TRA, but we find an improvement for TD-SR, hence in our main Table 2 we
include the action-conditioned results for TD-SR and the action-free results for TRA to match the
original implementation.
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Dataset TRA TRAa TD-SR TD-SRa

antmaze-medium-stitch 54± 6 57± 12 64± 10 64± 6
antmaze-large-stitch 11± 8 7± 7 17± 6 23± 4
humanoidmaze-medium-stitch 45± 8 45± 5 36± 3 42± 4
humanoidmaze-large-stitch 5± 4 9± 4 6± 2 11± 3
antsoccer-arena-stitch 14± 4 25± 8 17± 5 22± 10

visual-antmaze-medium-stitch 52± 3 33± 4 47± 5 49± 2
visual-antmaze-large-stitch 17± 1 22± 5 28± 3 29± 2
visual-scene-play 16± 3 18± 2 12± 2 14± 1

average 27 27 28 32

Table 5: Action-conditioning ablations. We ablate the choice to condition on the first action for
predictor ψ for TRA and FB over 10 seeds for non-visual and 4 seeds for visual environments.

Dataset BYOL-γa −ψb γ = 0 −ψb, γ = 0 BYOLa
n=1 BYOLa

n=3 BYOLa
n=5

antmaze-medium-stitch 61± 6 67± 2 59± 5 60± 5 60± 8 60± 7 58± 7
antmaze-large-stitch 21± 5 19± 7 8± 4 13± 5 19± 4 8± 4 3± 3
humanoidmaze-medium-stitch 54± 5 52± 5 18± 2 27± 7 33± 4 32± 2 20± 1
humanoidmaze-large-stitch 14± 2 13± 2 3± 1 5± 2 3± 2 3± 1 5± 2
antsoccer-arena-stitch 21± 4 27± 7 25± 7 23± 6 25± 12 11± 7 13± 9

average 34 36 23 26 28 23 20

Table 6: N-step BYOL ablations. We ablate the BYOL-γ to an n-step BYOL baseline, where we
report results over 4 seeds.

B.2 N-STEP BYOL

We provide an additional BYOL-based baseline that utilizes n-step next-representation recurrent
prediction, while BYOL-γ uses non-recurrent prediction. We utilize the same BYOL-γ architecture
with forward prediction, but with the following objective, computing loss with n terms, where ψnf is
shorthand for n recurrent calls:

L = f(ψf (ϕ(st, at), ϕ̄(st+1)) + f(ψf (ψf (ϕ(st, at), at+1), ϕ̄(st+2)) + · · ·+ f(ψnf (·), ϕ̄(st+n))

Theoretically, in a finite MDP, we can interpret this objective of capturing information up to n-
step transitions (Tang et al., 2023), i.e. information related to {Pa, P 2

a , · · · , Pna } is captured by
loss terms {ψf , ψ2

f , · · · , ψnf } respectively. As BYOL-γ captures information related to M̃π =

(1− γ)
∑
t≥0 γ

tP tπ, these two objectives match in theory at γ = 0. In practice, as n-step operates
recurrently, we are constrained to a shorter n which limits the ability for learning long-horizon
information.

Empirically, we report comparison of n-step with n = {1, 3, 5} to BYOL-γ in Table 6. We validate
our n-step implementation in the base case (n = 1) with the ablation {−ψb, γ = 0} to BYOL-γ
making them equivalent. With increased multi-step prediction (as we increase n), we find worse
performance on average.

B.3 FORWARD-BACKWARD ALGORITHM

As an alternative to GCBC, we could instead consider the full Forward-Backward (FB) algorithm for
zero-shot goal-reaching, as proposed in Touati et al. (2023). Here, instead of conditioning the policy
on a goal representation ϕ(g), we instead condition ψ on a vector z such that jointing learning ϕ and
ψ produces a policy-dependent successor representation where

Mπz (s, a, s+) = ψ(s, a, z)⊤ϕ(s+) · p(s+), and πz(a | s) := argmax
a

F (s, a, z)⊤z, (13)

ψ and ϕ can be learned through a TD relationship analogous to Equation 2, additionally sampling
vectors z according to some distribution. In the discrete setting, the policy can be derived directly
from Equation 13. In the continuous setting, Touati and Ollivier (2021) additionally learn a policy
network π(s, z), trained to maximize F (s, a, z)⊤z, in a DDPG-style (Lillicrap et al., 2015) algorithm.
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At inference time, a policy for a goal state g can be obtained by first encoding the goal state to
the z-representation space using the relationship z = Es∼β [r(s)ϕ(s)], which implies z = ϕ(g) for
goal-reaching tasks.

For these experiments, we follow the z sampling method from Touati and Ollivier (2021) by using a
50-50 mixture of states s sampled from β and encoded to z = ϕ(s) and vectors sampled uniformly
on a sphere of radius

√
d where d is the latent dimension. We use network architectures for ϕ and

ψ matching those used in the implementation of FB provided in Tirinzoni et al. (2025), however
we keep the number and size of the hidden layers as well as the latent dimension consistent with
our implementations of other methods. Additionally, we add a BC-loss to the policy loss as a
regularization, with coefficient 1. We sweep the learning rate over three values 10−4, 10−5 and 10−6

and selected the best performing, averaged over four seeds, for each environment.

In Table 7 we compare our proposed BC with auxiliary loss methods (TD-SRa and BYOL-γa), which
use successor measure learning as an auxiliary loss for BC, to value-based methods which instead
use a goal-conditioned value function (GCIQL) or successor measure (FB) to learn a policy through
RL. We find that auxiliary loss methods significantly outperform across almost all environments.

Dataset BYOL-γa TD-SRa FB GCIQL
antmaze-medium-stitch 61± 6 64± 6 36± 5 29± 6
antmaze-large-stitch 21± 5 22± 3 5± 4 7± 2
humanoidmaze-medium-stitch 54± 5 41± 5 26± 5 12± 3
humanoidmaze-large-stitch 14± 2 12± 3 2± 1 0± 0
antsoccer-arena-stitch 21± 4 18± 12 19± 4 2± 0

average 34 31 17 10

Table 7: Forward-Backward Algorithm. We compare our proposed GCBC with auxiliary loss
methods (TD-SRa and BYOL-γa) to an implementation of the Forward-Backward algorithm (FB)
and an offline RL method GCIQL, both of which learn an actor which maximizes a goal-conditioned
value function. We report best results from a hyperparameter sweep, averaged over four seeds

B.4 CONSTANT ENCODER OUTPUT DIMENSION

Our main experimental setup utilized in Table 2 and other experiments utilize an encoder output
dimension of size equal to the state dimension, corresponding to ant |s| = 29, and humanoid
|s| = 69 for non-visual environments. We perform an additional comparison in Table 8 using a fixed
size latent dimension = 64, matching the latent dimension used for visual environments. We can see
that the larger latent dimension helps performance for each method on antmaze. Generally, we see
similar trends to our prior experiments, such as BYOL-γ performing stronger in humanoidmaze
experiments, while FB performs stronger on antmaze.

Dataset BYOL-γa TD-SRa TRA TRA (Myers et al., 2025b)

antmaze-medium-stitch 64± 7 73± 8 67± 6 61± 3
antmaze-large-stitch 18± 7 24± 9 15± 10 13± 2
humanoidmaze-medium-stitch 48± 7 41± 3 41± 5 46± 2
humanoidmaze-large-stitch 12± 5 10± 2 4± 2 9± 1
antsoccer-arena-stitch 21± 10 12± 4 18± 5 17± 1

average 33 32 29 29

Table 8: Constant Encoder Output Dimension. We conduct an ablation repeating our experimental
setup for representation learning methods with a constant encoder output dimension at 64. For
reference, we also report results from Myers et al. (2025b).

B.5 GCBC ENCODER ABLATION

We perform an ablation where we use the same architecture as representation learning methods for
GCBC. Standard GCBC learns a shared state-goal encoder, ϕ(s, g), while representation learning
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methods pass inputs through an encoder separately, ϕ(s), ϕ(g) and representations are concatenated
and fed to an action head. In our main results, we report OGBench GCBC results with shared state-
goal encoder, as this is a stronger baseline. However, to better illustrate the impact that auxiliary loss
learning has on GCBC performance, in Table 9, we report GCBC results for an architecture matching
representation learning methods (GCBC-ϕ). We especially see a difference in visual environments,
where state, goal are stacked (64× 64× 6) before going through the CNN.

Dataset GCBC GCBC-ϕ

antmaze-medium-stitch 45± 11 33± 5
antmaze-large-stitch 3± 3 5± 4
humanoidmaze-medium-stitch 29± 5 32± 6
humanoidmaze-large-stitch 6± 3 4± 3
visual-antmaze-medium-stitch 67± 4 37± 6
visual-antmaze-large-stitch 24± 3 4± 3
visual-scene-play 12± 2 10± 1

average non-visual 21 19
average visaul 34 17
average 27 18

Table 9: GCBC Encoder Ablation.
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(a) Training (b) Evaluation

Figure 5: Architecture for HBYOL-γ. During training (a), we first train a low-level policy with
BYOL-γ. Then, we train a high-level policy with a similar procedure to πh in HGCBC, but using the
representation space ϕ. To train πh, we freeze ϕ, labeled ϕ̄, and use it for encoding inputs, and the
output space, where the πh predicts the representation of the sub-goal: zl = ϕ̄(sl). During evaluation
(b), πh first predicts a sub-goal representation, which is then passed to the πh, where both policies
utilize a common state representation.

Dataset GCBC HGCBC HGCBC-ϕ BYOL-γa HBYOL-γa HIQL

antmaze-medium-stitch 45± 11 60± 4 · 61± 6 76 ± 12 94± 1
antmaze-large-stitch 3± 3 11± 8 · 21± 5 29 ± 9 67± 5
humanoidmaze-medium-stitch 29± 5 35± 4 · 54± 5 61 ± 2 88± 2
humanoidmaze-large-stitch 6± 3 4± 0 · 14± 2 21 ± 3 28± 3
visual-antmaze-medium-stitch 67± 4 · 74± 6 68± 4 84 ± 8 87± 2
visual-antmaze-large-stitch 24± 3 · 19± 1 26± 5 31 ± 3 28± 2
visual-scene 12± 2 · 8± 3 17 ± 1 14± 2 49± 4

average-nonvisual 21 28 · 38 47 69
average-visual 34 · 34 37 43 55
average 27 · · 37 45 63

Table 10: Hierarchical BC with BYOL-γ. We report performance averaged over 4 seeds, for
HGCBC, HGCBC−ϕ, and (H)BYOL-γ. We report GCBC and HIQL results from OGBench. We
highlight the the best performing BC methods, bold for methods within 95% of the BC, and darker
highlight for BC methods which are within 95% or better than HIQL.

C HIERARCHICAL POLICIES

Although we focus on the impact of representation learning in "flat" learning methods, hierarchical
policies are also an effective orthogonal direction for improving generalization to longer horizon
tasks. We demonstrate that BYOL-γ also improves on a hierarchical GCBC setup (HGCBC) used
in Frans et al. (2025). With HGCBC, we train a high-level policy πh(l |s, g) that predicts sub-goals
l, and a low-level policy conditioned on sub-goals πh(a | s, l), which are both trained with BC.
Using BYOL-γ, we implement its hierarchical version, HBYOL-γ, as follows: (1) perform our
standard BYOL-γ setup, which produces πl(a | ϕ(s), ϕ(l)) and (2) train a hierarchical policy in
the existing latent space of the low-level policy πh(ϕ̄(l) | ϕ̄(s), ϕ̄(g)), where ϕ̄ denotes that the
representation is fixed for the high-level policy. HBYOL-γa allows for both policies to operate in a
shared representation space, and avoids state reconstruction performed by standard HGCBC. Prior
work does not implement HGCBC in visual settings which would require predicting in pixel space.
As a baseline, we implement HGCBC-ϕ, which avoids pixel prediction by using GCBC-ϕ (Appendix
B.5). This matches our HBYOL-γ architecture, and two-stage setup but without representation
learning on ϕ. For HGCBC-ϕ, we also found it was better to only use representations ϕ for the output
space of πh, and to train a shared input encoder from scratch.

In Table 10, we compare between these BC setups and also report results of hierarchical implicit
Q-learning (HIQL) (Park et al., 2023). For HGCBC methods, we use a sub-goal (l) step of 25, listing
other hyperparamters in Table 11. We see that HBYOL-γ is the strongest BC setup, outperforming
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non-hierarchical BYOL-γ and HGCBC. HBYOL-γ is also competitive with HIQL, especially on
visual-antmaze environments.

Table 11: Additional hyperparameters for HGCBC, HGCBC-ϕ, HBYOL-γ. For other hyperparam-
eters we match those in Table 4. For high-level policies πh that predict in representation space
(HGCBC-ϕ, HBYOL-γ), we find it is better to use a smaller learning rate.

Hyperparameter Value
Hierarchical head MLP (512, 512, 512, 512)
Low-level head MLP (512, 512, 512)
Sub-goal steps 25
Learning rate 3× 10−4 (HGCBC), 10−4 (HGCBC-ϕ, HBYOL-γ)

D CL TO TD-SR

Here, illustrate that connection between CL and TD-SR, showing that in the limit an n-step version
of TD-SR becomes similar to CL.

We can rewrite Equation (1) to see the connection between TD-SR and CL (MC). Under assumptions
that f is the dot product between ϕ and ψ, and ϕ, ψ are centered, if we apply a second-order Taylor
expansion to the denominator of the CL loss (Touati et al., 2023) we have:

CLInfoNCE ≈ Es∼p,s′∼p
[
(ψ(s)Tϕ(s′))2

]
− 2E k∼geom(1−γ)

st∼p,st+k∼pπ(st+k|st)

[
ψ(st)

Tϕ(st+k)
]

(14)

Next, we can consider an n-step variant of the TD-SR loss (Blier et al., 2021) which we refer to as
TD-SR(n):

min
ϕ,ψ

Est∼p
s′∼p

[
(ψ(st)

Tϕ(s′) − γnψ̄(st+n)
T ϕ̄(s′))2

]
− 2

n∑
i=1

Est∼p,st+i∼pπ
[
γiψ(st)

Tϕ(st+i)
]
(15)

We can make the full connection to CL with infinite horizon n:

TD-SR(n)
n→∞

= Est∼p
s′∼p

[
(ψ(st)

Tϕ(s′))2
]
− 2

n∑
i=1

E st∼p
st+i∼pπ(st+is0)

[
γiψ(st)

Tϕ(st+i)
]

(16)

= E st∼p
s′∼p0

[
(ψ(st)

Tϕ(s′))2
]
− 2γ

(1− γ)

n∑
i=1

E st∼p
st+i∼pπ(st+is0)

[
(1− γ)γi−1ψ(st)

Tϕ(st+i)
]

(17)

= Est∼p
s′∼p

[
(ψ(st)

Tϕ(s′))2
]
− 2γ

(1− γ)
E k∼geom(1−γ)
st∼p,st+k∼pπ(st+k|st)

[
ψ(st)

Tϕ(st+k)
]

(18)

Thus, we can see that in the infinite horizon form of TD-SR(n), it is related to the form of CLInfoNCE
in (1), but with the positive contrastive term weighted by factor γ

1−γ .

E FINITE MDP

E.1 BYOL

BYOL as an Ordinary Differential Equation (ODE) In finite MDPs, we can characterize the
BYOL objective which gives intuition about what information is captured in ϕ, ψ, and conditions
that may be useful for stability (Tang et al., 2023; Khetarpal et al., 2025). Consider a finite MDP
with transition Pπ , linear d-dimensional encoder Φ ∈ R|S|×d, and linear action-free latent-dynamics
Ψ ∈ Rd×d. In a finite MDP, Equation (3) becomes:

min
Φ,Ψ

BYOL(Φ,Ψ) := min
Φ,Ψ

Est∼ p0(s),st+1∼Pπ ,
[
∥ψTΦT st − Φ̄T st+1∥22

]
(19)
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A property to prevent this objective from collapsing is that Ψ is updated more quickly than Φ. In
practice, this is commonly realized as the dynamics are generally a smaller network than the encoder.
This system can be analyzed in an ideal setup, where we first find the optimal Ψ, each time before
taking a gradient step for Φ, which leads to the ODE for representations Φ (Tang et al., 2023):

Ψ∗ ∈ argmin
Ψ

BYOL(Φ,Ψ), Φ̇ = −∇ΦBYOL(Φ,Ψ)|Ψ=Ψ∗ (20)

We are able to analyze this ODE with the following assumptions (Tang et al., 2023):
Assumption E.1 (Orthogonal initialization). Φ⊤Φ = I

Assumption E.2 (Uniform state distribution). p0(s) = 1
|S|

Assumption E.3 (Symmetric dynamics). Pπ = (Pπ)⊤

Under these three assumptions, Khetarpal et al. (2025) prove that the BYOL ODE is equivalent to
monotonically minimizing the surrogate objective:

min
Ψ

∥Pπ − ΦΨΦT ∥F + C (21)

Where ∥ · ∥F is the Frobenius matrix norm. Thus, we can understand that the BYOL objective as
learning a d-rank decomposition of the underlying dynamics Pπ . Additionally, the top d eigenvectors
of Pπ match those of (I − γPπ)−1 =Mπ (Chandak et al., 2023). However, we will highlight that
there are key differences when learning a low-rank decomposition between Pπ and Mπ. This is
described by Touati et al. (2023), where we can consider that in a real-world problem with underlying
continuous-time dynamics, actions may have little effect, and Pπ is close to the identity, i.e. close to
full-rank. However, Mπ, which takes powers of (Pπ)t, has a “sharpening effect” on the difference
between eigenvalues, which gives a clearer learning signal. This is intuitive on a real-world problem
like robotics, even with discrete-time dynamics, where st+1 ≈ st, but we have larger differences
between st and st+k.

E.2 BYOL-γ

In the finite MDP, we now verify theorem 4.1 , where BYOL-γ approximates the successor repre-
sentation with matrix decomposition M̃π ≈ ΦΨΦT .

We consider the same objective (19), where we need to update the expectation of the sampling
distribution:

min
Φ,Ψ

BYOL-γ(Φ,Ψ) := min
Φ,Ψ

Est∼ p0(s),s+∼M̃π ,
[
∥ψTΦT st − Φ̄T s+∥22

]
(22)

Assuming that this objective is optimized under the ODE (20). We have that our objective monotoni-
cally minimizes:

min
Ψ

∥M̃π − ΦΨΦT ∥F + C (23)

This directly translates as we can consider M̃π = Pπ as simply a valid transition matrix for a new,
temporally abstract, version of the original MDP. We maintain the original assumptions E.1, E.2, and
E.3. We do not need an additional assumption for M̃π , as assumption E.3 for symmetric Pπ implies
a symmetric M̃π = (1− γ)

∑
t≥0 γ

tP tπ ,

Under this setup, we also have that ΨΦ ∈ Rn×d relates to the successor feature matrix, where each
row (ΨΦ)i contains the vector (1− γ)ψπ(si):

(1− γ)ψπ(si) =
∑
j

M̃π(si, sj)ϕ(sj) (24)

= (M̃πΦ)i (25)

≈ (ΦΨΦTΦ)i (26)
= (ΦΨ)i (27)

In other words, in the restricted finite MDP, where we minimize (23), we are simultaneously learning
successor features ψπ ≈ ΨΦ and basis features Φ.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

F MIXTURE DATASETS

In Section 3.2, we describe a practical setting where we have an offline dataset generated by a set
of policies {βj}. While we previously describe that BYOL-γ approximates M̃π when we have MC
samples directly an arbitrary π, we now describe the behavior of BYOL-γ when trained jointly on
MC samples from multiple {βj}, first in the finite MDP, and how this relates to approximating the
SR of the unknown mixture policy M̃β .

SR of Mixture Policy. We begin by obtaining the SR for the mixture policy β(a|s) :=∑
j βj(a|s)p(βj |s), first defining 1-step transitions:

P
βj

i,l = pβj (st+1 = l|st = i) =
∑
a

βj(a|s = i)p(st+1 = l | st = i, a) (28)

P βi,l =
∑
a

∑
j

βj(a|s)p(βj |s)p(st+1 = l|st = i, a) =
∑
j

p(βj |s = i)P
βj

i,l (29)

Using wj(i) = p(βj |s = i), Wj = diag(wj(1), · · · , wj(|S|)), we can see the transitions of the
mixture policy β as simply a (state-dependent) weighted average of the transitions of {βj}.

P β =
∑
j

WjP
βj (30)

M̃β = (1− γ)
∑
t≥0

γt+1(
∑
j

WjP
βj )t+1 (31)

Approximated SR of BYOL-γ. Using samples from a set of unknown policies {βj} the BYOL-γ
objective corresponds to:

min
Φ,Ψ

Est∼ p(s),βj∼p(βj |st),s+∼M̃βj

[
∥ψTΦT st − Φ̄T s+∥22

]
(32)

= min
Φ,Ψ

E
st∼ p(s),s+∼M̂

[
∥ψTΦT st − Φ̄T s+∥22

]
(33)

i.e. by theorem 4.1 we are approximating M̂ =
∑
j p(βj |st)M̃βj , which we can compare to Equation

(31) via:

M̂ = (1− γ)
∑
t≥0

γt+1
∑
j

Wj(P
βj )t+1 (34)

Intuitively, while M̃β corresponds to the SR of the average policy, BYOL-γ approximates M̂ , an
average of policy SRs.

General Case. We rewrite the inequality from Equation (9) but with mixture data:

LBYOL-γ(ϕ, ψ) = Eβj∼p(βj),st∼pβj (s),s+∼M̃βj (st,s+)

[
f(ψ(ϕ(st)), ϕ̄(s+))

]
(35)

≥ Eβj∼p(βj),st∼pβj (s),
[
f(ψ(ϕ(st)),Es+∼M̃βj (st,s+)ϕ̄(s+))

]
= Eβj∼p(βj),st∼pβj (s)

[
f(ψ(ϕ(st)), (1− γ)ψ

βj

ϕ̄
(st)

]
F.1 CL ON MIXTURE DATA

We discuss the behavior of CL on mixture datasets. First, we write Equation (36), we rewrite Equation
(1) when practically applied to mixture data as implemented in TRA:

LTRA ≈ Eβj∼p(βj),st∼pβj (s)
s+∼M̃βj (st,s+)

[f(ψ(st), ϕ(s+))]− Es1:N∼pβj (s)

[
log

N∑
i=2

ef(ψ(s
1),ϕ(si))

]
(36)

We note that a mismatch occurs between the numerator (attractive), and the denominator (repulsive)
terms. Namely, we attract two representations only when they are sampled from the same policy βj ,
but minimize similarly for states sampled under the occupancy of the mixture policy β.
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We could consider other forms where both terms sample from the same distributions. Namely, in the
ideal case if we could get MC samples from s+ ∼Mβ(s, s+), the loss has the form:

LCLβ ≈ E st∼pβ(s)
s+∼M̃β(st,s+)

[f(ψ(st), ϕ(s+))]− Es1:N∼pβ(s)

[
log

N∑
i=2

ef(ψ(s
1),ϕ(si))

]
(37)

In practice, we only can take MC samples from, βj’s, so we could view the loss as an expectation
over these policies:

LCLβj ≈ Eβj∼p(βj),st∼pβj (s)

s+∼M̃βj (st,s+)

[f(ψ(st), ϕ(s+))]− Eβj∼p(βj),s1:N∼pβj (s)

[
log

N∑
i=2

ef(ψ(s
1),ϕ(si))

]

= Eβj

E st∼pβj (s)

s+∼M̃βj (st,s+)

[f(ψ(st), ϕ(s+))]− Es1:N∼pβj (s)[log

N∑
i=2

ef(ψ(s
1),ϕ(si))]


(38)

This objective similarly corresponds to capturing information related to a mixture of different policies,
similarly to the BYOL-γ objective. We can see the positive term of LTRA matches LCLβj while the
negative term matches LCLβ . In other words, LTRA is an under-optimistic compared to LCLβ and
over-pessimistic compared to LCLβj . We can see how this may discourage stitching. For example, if
we have a trajectory a→ b, b→ c. Although we want relation from a, c, ψ(a)ϕ(c) is only sampled
as a negative term.

SVD approximation of TRA. In the single policy case, Touati et al. (2023) demonstrates that CL
with a single policy (LCLβ) relates to an SVD of M̃

β(s,s′)
pβ(s′)

:

LCLβ ≈ Es∼pβ ,s′∼pβ

(M̃β(s, s′)

pβ(s′)
− ψ(s)Tϕ(s′)

)2
+ C

We now show that the mixture policy case corresponds to an SVD of
∑

j p(βj |s)M̃βj (s,s+)

pβ(s+)
:

LTRA ≈ Eβj∼p(βj),st∼pβj

s′∼M̃βj (st,s
′)

[f(ψ(st), ϕ(s
′))]− Es∼pβ

[
logEs′∼pβ [ef(ψ(s),ϕ(s

′))]
]

= Es∼pβ ,s′∼pβ

[∑
j p(βj |s)M̃βj (s, s′)

pβ(s′)
f(ψ(s), ϕ(s))

]
− Es∼pβ

[
logEs′∼pβ [ef(ψ(s),ϕ(s

′))]
]
(39)

Under assumptions that f is the dot product between ϕ and ψ, and ϕ, ψ are centered, if we apply a
second-order Taylor expansion to second term:

=Es∼pβ ,s′∼pβ

[∑
j p(βj |s)M̃βj (s, s′)

pβ(s′)
ψ(s)Tϕ(s′)

]
− 1

2
Es∼pβ ,s′∼pβ

[
ψ(s)Tϕ(s′))

]
(40)

=Es∼pβ ,s′∼pβ

(∑j p(βj |s)M̃βj (s, s′)

pβ(s′)
− ψ(s)Tϕ(s′)

)2
 (41)
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G ADDITIONAL RESULTS FOR HORIZON GENERALIZATION
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Figure 6: Evaluating Generalization with Increasing Horizons: The distances to the right of
the red dotted line require combinatorial generalization. The maze maps show examples of how
intermediate goals are selected along the optimal path.

We include additional results matching the setup in Section 5.3, for antmaze-medium, and
{humanoidmaze}-{medium,large,giant} in Figure 6. We can observe that BYOL-γ leads
in performance as the distance between the start and goal grows when compared to other methods.
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H REPRESENTATIONS

H.1 ADDITIONAL VISUALIZATIONS

BYOL-γ TD-SR BYOL TRA

antmaze-large

humanoidmaze-medium

humanoidmaze-large

Figure 7: Additional Visualization of the Learned Representation: depicts the similarity between
the prediction of the current state representation to the goal representation. Brighter color indicates
higher similarity.

H.2 CORRELATION TO SHORTEST PATH

We conduct a quantitative comparison between representations through alignment with shortest-
path distance in the environment. Namely, we compute the correlation between similarity in the
representation space, ψ(s,·)Tϕ(g)

∥ψ(s,·)∥∥ϕ(g)∥ , to the shortest path distance in the maze between sampled start
and goal cells (xy space). While the shortest path distance does not measure ground truth temporal
distance, as it does not account for robot dynamics, it still provides a simple reference for the general
structure we expect to see in representations. We can see that in Table 12, on average BYOL-γ’s
representations seem to most strongly correlate with shortest path distance. We also compute the
success rate of the same checkpoints used for correlation, and notice relationships between these
correlations and empirical success rate. We see that the ranking of methods in terms of average
correlation in representation space matches the ordering of methods in terms of average empirical
policy success.
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Figure 8: Scatter plot of negative cosine similarity between randomly sampled (state,goal)l pairs
in representation spaces and true shortest path, aggregated over 4 model seeds, each sampled
at 100 (state,goal) pairs.

Dataset BYOL-γa BYOL TRA TDSRa

antmaze-medium-stitch 0.71± 0.01 0.59± 0.05 0.49± 0.05 0.72± 0.03
antmaze-large-stitch 0.66± 0.02 0.10± 0.02 0.62± 0.03 0.67± 0.02
humanoidmaze-medium-stitch 0.64± 0.02 0.18± 0.04 0.02± 0.02 0.36± 0.03
humanoidmaze-large-stitch 0.62± 0.03 0.20± 0.03 0.15± 0.04 0.38± 0.03

average maze correlation 0.66 0.27 0.32 0.53
average maze success 39 26 31 36

Table 12: Correlation of representation space with shortest path distance. For each method, we
use 10, 000 (state,goal) pairs to compute correlation, and then compute the average and standard
deviation of the correlation over 4 model seeds, and the success rate over these same checkpoints.
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