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Abstract

Current language models are unable to quickly learn new concepts
on the fly, often requiring a more involved finetuning process to learn
robustly. Prompting in-context is not robust to context distractions, and
often fails to confer much information about the new concepts. Classic
methods for few-shot word learning in NLP, relying on global word
vectors, are less applicable to large language models. In this paper, we
introduce a novel approach named CoLLEGe (Concept Learning with
Language Embedding Generation) to modernize few-shot concept learning.
CoLLEGe is a meta-learning framework capable of generating flexible
embeddings for new concepts using a small number of example sentences
or definitions. Our primary meta-learning objective is simply to facilitate
a language model to make next word predictions in forthcoming sentences,
making it compatible with language model pretraining. We design a
series of tasks to test new concept learning in challenging real-world
scenarios, including new word acquisition, definition inference, and verbal
reasoning, and demonstrate that our method succeeds in each setting
without task-specific training. Code and data for our project can be found
at https://college-concept-learning.github.io/.

1 Introduction
Imagine a student first attending a philosophy lecture on epistemology, wherein their
professor discusses and critiques the positions of idealists, pragmatists, and foundationalists,
among others. Some concepts and terms, such as idealism or pragmatism, may be familiar
from past experience but in this new and unfamiliar context they seem to have taken on
new meaning. Other concepts may be entirely new, including the concept of “epistemology”
itself. During the lecture, the examples the professor provides for each concept, as well as
the sentences they use when discussing them, allow the student to form an initial sense of
their meaning and usage. With time, additional examples, and using the concepts directly in
writing, the student’s knowledge solidifies and what was once unfamiliar is now intuitive.

Building intuitions about the meaning of unfamiliar concepts in this way, with only a few
examples of their usage, is common in real-world human learning, but remains difficult for
language models, particularly when we want to consolidate this knowledge into discrete
tokens. Providing a few in-context examples of how to use these new tokens can be a
stopgap, but is often less powerful the additional examples can serve as distractors that
confuse the language model, to say nothing about how unnatural it is (imagine if, each time
the professor wanted the student to answer a question about epistemological idealism, they
began by repeating a few sentences containing “idealism”). Instead, with a few example
sentences, language models should know general semantic knowledge about this new
concept, similar to the knowledge encoded in their pretrained representations. We frame
this as a few-shot learning problem, where, given a few example sentences, the goal is
generate an embedding for a new concept token with expressive and task-general semantic
information.

Prior work on few-shot word learning in natural language focused on leveraging the seminal
works on global word vector representations (Mikolov et al., 2013; Pennington et al., 2014;
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The delicate diamond               sparkled 
beautifully on her chest, catching the light in a 
mesmerizing dance of colors.

The emerald              , delicately hanging from 
her neck, shimmered under the soft glow of 
the chandelier.

?

CoLLEGe

Concept 
Embedding

Pretrained LLM The definition of              isa piece of jewelry 
worn around the neck.

?

?

Figure 1: Our model generates an embedding for an unseen token given one or a few
example sentences. The ground truth word is pendant, and the model is able to generate an
accurate definition using the embedding produced by CoLLEGe.

Khodak et al., 2018; Lampinen & McClelland, 2017). However, these methods are less
well suited to augmenting the knowledge of contemporary large language models. First,
the embeddings generated from methods based on global word vector representations
may be difficult to adapt to the representation space of contemporary language models.
Additionally, learned contextual representations from pretrained language models provide
a more powerful and semantically rich source for few-shot concept learning, allowing for
complex usage of new concepts using embeddings generated from only a few examples.

Furthermore, prior evaluation methods for new concept learning were limited to noisy
proxy measures, such as the correlation between embedding cosine similarity and human
similarity judgements (Lazaridou et al., 2017), or the cosine similarity between the few-shot
concept embeddings and “ground truth” Word2Vec embeddings (e.g. the definitional nonce
in Herbelot & Baroni (2017)). Current language models are able to use language in highly
sophisticated and complex ways; true evaluation of few-shot concept learning in this setting
should assess whether new concepts can be used in similarly complex and sophisticated
ways. What older evaluations measure tell us little about how well language models can use
learned concepts. How well can they define a concept given only a few examples? Can they
correctly answer fill-in-the-blank questions for difficult words? We ask humans the same
questions to determine how well they have internalized a new concept. Our evaluations of
language models should follow suit.

In this paper, we present CoLLEGe, a novel and conceptually simple framework to enable
large language models to quickly learn new concept tokens. To evaluate our method, we
develop a suite of tasks to directly evaluate how well these concepts are learned, including
GRE-style fill-in-the-blank verbal reasoning, definition inference and generation, and Inter-
net slang usage. Our method leverages the vast amount of pre-training data and learning
can be seamlessly embedded in the model pre-training process. We discover that training
techniques such as an example buffer, negative example sampling, and knowledge distil-
lation contributed significantly to the model’s concept learning performance. Moreover,
thanks to our general pre-training procedure, our model is able to transfer to these concept
learning tasks in a zero-shot manner with no additional task-specific training needed, while
maintaining the LLM’s original performance on regular data.

In summary, our contributions are:

• A simple add-on learnable module for few-shot, LLM concept learning;

• An approach to training our algorithm which combines an example buffer, negative
sampling, and knowledge distillation. We show that each of these components plays an
important role in learning;

• Three challenging datasets – CoLLEGe-GRE, CoLLEGe-DefGen, and CoLLEGe-Slang –
used to measure the effectiveness of few-shot concept learning methods for LLMs. These
datasets test both general and complex concept knowledge, naturalistic acquisition of
new concepts, and relational abstraction;

• Experiments showing that, by training an embedding generation modules in a task-
general manner, we can generate embeddings that allow a pretrained LLM to: a) generate
plausible definitions for new concepts, b) correctly solve fill-in-the-blank tasks for difficult
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Pretrained LLM
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My   sister  said  my  beige_flag is

binge  watching  short  videos.

Output Token Embedding

Pretrained MLM
Sequence Encoder

My   beige_flag is  complaining  I  never   
have   any   time   to   relax.
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Figure 2: Our proposed CoLLEGe framework for concept embedding generation. Support
sequences are embedded by a pretrained MLM (e.g. RoBERTa) with an additional Trans-
former encoder to produce pooled sequence embeddings for each support sequence. These
are aggregated and projected into the input and output embedding space for the pretrained
LLM (e.g. LLaMA). According to UrbanDictionary, beige flag, an Internet slang appeared in
mid-2023, means “a benign but annoying trait or habit.”2

words, and c) correctly identify the meaning of new slang terms without additional
training.

2 Related Work
Few-Shot Word Learning: A classic and related task in NLP is rare word learning (Luong
et al., 2015). Lazaridou et al. (2017) create the synthetic “chimera” concepts and provide
early evidence that summation over (global) word vectors in the context surrounding a new
or rare word can produce a useful embedding. Khodak et al. (2018) build on this, presenting
a method which includes a learned linear transformation to account for shared features
across global word vectors. Lampinen & McClelland (2017) present an even simpler method,
involving freezing the majority of the weights of the network and using gradient descent to
tune only the weights related to the new word(s). For a more complex approach, Herbelot &
Baroni (2017) modify the Word2Vec algorithm for more effective few-shot learning. More
modern approaches include HiCE (Hu et al., 2019), which uses Transformer layers to induce
a new word embedding from Word2Vec embeddings, and Mem2Vec (Sun et al., 2018), which
uses a long-term memory system. Similarly, Weston et al. (2015) model new words by using
contextual examples from memory. They store a bag-of-words for the left and right context
surrounding the new word, and simulate new word learning with a fixed percent of words
encountered during training. Instead of using global word vectors to represent the context,
we use the contextual representations from a frozen MLM to learn a representation for the
new concept token. We also combine autoregressive losses, cosine distance, and distillation
loss to train our model, whereas older work either reused the Skip-gram objective or used
cosine distance. Other approaches incorporate morphological information (Luong et al.,
2013; Schick & Schütze, 2019). While these methods are useful, particlarly for learning
global word vector representations, they are less useful for augmenting the embeddings
of pretrained LLMs. In part, this is because global word vectors do not map easily to the
pretrained LLM embedding space. Additionally, global word vector representations are
often less informative than the pretrained representations from BERT-style models.

Meta-Learning: Matching Networks (Vinyals et al., 2016) and Prototypical Networks (Snell
et al., 2017) both approach few-shot learning as a meta-learning problem. Online prototypi-
cal networks (Ren et al., 2021) build on the latter for novel concept learning in an online and
continual fashion. Our approach is also related to fast-weight networks (Schmidhuber, 1992),
since we use the support sequences to generate a fast embedding weight for the new concept.
For language, meta-learning is often used for knowledge augmentation (Hu et al., 2023),
task adaptation (Chen et al., 2022; Zhong et al., 2021; Bansal et al., 2020), domain adaptation

2https://www.urbandictionary.com/define.php?term=Beige%20flag
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(Qian & Yu, 2019; Li et al., 2020; Geng et al., 2019), rare word recognition (Lux & Vu, 2021)
(in ASR), and word sense disambiguation Holla et al. (2020), among other applications (Lee
et al., 2022). Some recent methods frame meta-learning as a sequence modeling problem,
drawing inspiration from in-context learning (Chen et al., 2022; Fifty et al., 2024). Finally,
Lake & Baroni (2023) recently developed a method for learning compositional concepts. In
our work, context sentences are encoded to generate a new embedding, conceptually similar
to a prototype for the new concept, to optimize a general language modeling objective,
rather than a collection of task objectives.

Compression: A number of methods exist to compress sentences into new embeddings or
tokens. Prior work in NLP developed methods for generating task-general embeddings
from natural language sentences (Conneau et al., 2017; Kiros et al., 2015; Wang et al., 2020).
ReadOnce (Lin et al., 2021) is a more recent method for generating compressed document
representations which can be used across a variety of downstream tasks. Similarly, recent
methods compress prompts (Chevalier et al., 2023; Ge et al., 2024; Mu et al., 2024) or
documents Xu et al. (2024) into summary vectors either as a form of memory or a method
for re-using prompts (e.g. when specifying instructions). RMT (Bulatov et al., 2022) learns
memory tokens during pretraining in order to extend the effective context window. Nugget
(Qin & Van Durme, 2023) dynamically chooses which tokens are aggregated into the encoded
representation. Rather than compressing the entire meaning of each context sentence, our
method extracts and aggregates information relevant to the new concept.

3 CoLLEGe: Concept Learning with Language Embedding Generation
In this section, we describe our proposed approach for enabling LLMs to quickly learn new
concept tokens. Given a new word or concept and a set of example sentences containing
that word or concept, we want to produce an embedding that captures its semantically
meaningful features. We visualize this process for a simple language modeling example in
Figure 2.

Framing this as a few-shot learning problem, we use a set of K support sequences {s1, ..., sK},
containing a new token, <nonce> to produce a useful embedding for this new token. The
new embedding can then be used to augment the knowledge of a frozen autoregressive
language model. During training, we encourage the LM to use the new embedding to
correctly generate a query sequence q.

Concept Embedding Generation: To perform this generation, the new token in each sup-
port sequence is replaced with a <mask> token, and each is embedded with a frozen masked
language model (MLM) used for feature extraction. The contextual embeddings for each
sequence are then passed through an additional Transformer self-attention layer to process
the contextual embeddings for each sequence to obtain {hi,t}. These are then aggregated
using mean pooling, producing k sequence embeddings {e1, ..., ek}: ei =

1
ni

∑ni
t=1 hi,t, where

ni is the length of each sequence. The sequence embeddings are aggregated once more using
mean pooling, producing a single output embedding enew: enew = 1

K ∑K
i=1 ei. Mean pooling

can also facilitate incremental consolidation of new concepts without having to store past
examples. To integrate the embedding with a frozen autoregressive LM, we apply two
distinct linear layers to produce an input and output embedding for the new token ein and
eout: [ein, eout] = Linear(enew). The autoregressive LM’s input and output token embedding
matrices are then expanded with these generated embeddings, and used to model the query
sequence.

Wemb in, new = [Wemb in, ein], (1)
Wemb out, new = [Wemb out, eout]. (2)

Sampling Few-Shot Learning Episodes: One novel aspect of our framework is that, un-
like many meta-learning approaches, our training procedure follows the same style as
pretraining by directly leveraging text data from the pretraining datasets. We hypothesize
that a good way to rapidly learn new concept is to actually “use” the concept in another
sentence—we let an LLM consume the newly learned embedding to generate another
sentence. Moreover, the autoregressive cross entropy loss is the same as the pretraining
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objective, so, in theory, our meta-learning procedure can be perfectly blended into the
pretraining stage.

To efficiently sample support and query sequences, terms we borrow from the few-shot
learning literature, we save sentences containing a new token in an example buffer to serve
as support sequences, and when we encounter the same token being used again in the
training corpus, we will use the sequence as a query sequence. The query sequence can
then be saved in the example buffer and used as a support sequence again. We find that
reusing query sequences as support sequences is helpful for training and allows the model
to make use of examples it has already learning when learning new examples. Often, query
sequences are longer, comprising a few sentences or a paragraph of text. The sentence which
contains the new token is extracted from each and used as a support sequence for a different
query sequence concerning the same concept. Not every such sequence ends up in the final
set, however, since we filter and rank the examples, see Section 4 for details.

Negative Examples: Initial experiments training on only positive examples, i.e. examples
containing the new token, tended to yield generated embeddings with norms of much higher
magnitude than those of other LLM input or output token embeddings. One hypothesis
was that, since every example the model has to learn contains a new token, it prefers to
converge an embedding with high norm, to ensure that the new token appears in the query
sequence. During normal pretraining, few tokens are shared across all sequences, and
language models learn both when to generate and when not to generate each token. To
likewise teach our model when not to generate a new token, we sample a sequence without
a new token, which we call a negative example, and take the sum of the cross entropy loss
on the positive example, L+

ce, and the cross entropy loss on the negative example, L−
ce.

Knowledge Distillation: Since we pretrain by replacing existing words with new tokens,
we can compute the “true” language model embeddings and logits for the remainder of the
sequence. Ideally, we want the generated embeddings from our model to match the ground
truth embeddings and logits as faithfully as possible, to better approximate the underlying
language model distribution. To do this, we retain the original sequence, before masking a
word with a new token, and compute the output embeddings and logits for the rest of the
sequence with a non-augmented version of our pretrained autoregressive model. We then
compute the cosine distance between those output embeddings and the output embeddings
from CoLLEGe, Lcos, as well as the MSE between the CoLLEGe LLM logits and the “true”
LLM logits using the original embeddings, Lmse. Using a more standard objective with a
distillation temperature (Hinton et al., 2015) was less effective during training.

In order to compute these two distillation loss terms, we define the positive example
token sequence as t1,+, ...., tn,+ and original example token sequence as t1,orig, ...., tl,orig, and
additionally construct a deterministic mapping σ : N → N that maps a token at index i in
the positive example to its corresponding token at index k in the original sequence. The
tokens following the new token in the positive sequence are guaranteed to have a match in
the original example sequence, by definition, but the index may be different (if, for example,
the word replaced with <nonce> is subtokenized in the original example sequence). We
compute our distillation loss terms using:

Lcos=
1

n − |Inew| ∑
k ̸∈Inew

1 − cos(etk,+ , etσ(k),orig), (3)

Lmse=
1

n − |Inew| ∑
k ̸∈Inew

(ℓtk,+ − ℓtσ(k),orig)
2, (4)

where Inew is the set of new token indices in the positive example sequence, Ei,· denotes the
output embedding at token position i for the positive or negative example sequence, and ℓi,·
denotes the logit vector at token position i for the positive or negative example sequence.

Final Loss: Our final training loss is simply a sum of these individual loss terms. We
explored using a linear combination of the loss terms to weight each differently, but found
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Without Definition With Definition
Method 1-Shot 2-Shot 3-Shot 4-Shot D+1-Shot D+2-Shot D+3-Shot D+4-Shot

TT-1 6.8 ± 0.0 6.8 ± 0.0 6.8 ± 0.0 6.8 ± 0.0 10.9 ± 3.0 8.6 ± 3.1 8.1 ± 3.9 8.8 ± 4.3
TT-2 6.8 ± 0.0 6.8 ± 0.0 6.8 ± 0.0 6.8 ± 0.0 12.3 ± 3.5 9.3 ± 2.5 8.1 ± 5.3 7.6 ± 2.5
HiCE 11.5 ± 5.0 12.5 ± 2.7 13.1 ± 3.6 16.1 ± 4.2 19.3 ± 3.5 15.9 ± 8.2 11.4 ± 2.3 10.6 ± 1.3
Additive 13.6 ± 2.3 9.1 ± 3.9 13.6 ± 3.9 11.4 ± 0.0 12.9 ± 1.3 10.6 ± 6.6 12.9 ± 3.5 7.6 ± 1.3
Prompting 13.9 ± 4.3 17.7 ± 3.0 19.8 ± 4.2 21.8 ± 3.0 21.6 ± 5.7 20.5 ± 6.8 19.3 ± 4.8 24.0 ± 4.7
CoLLEGe w/o KD / Neg. Ex. 32.2 ± 5.2 37.7 ± 4.9 38.6 ± 2.9 42.2 ± 3.1 40.0 ± 6.6 49.3 ± 5.8 49.6 ± 3.5 48.0 ± 5.0
CoLLEGe w/o KD 25.9 ± 4.7 33.6 ± 5.0 35.0 ± 4.7 35.7 ± 3.2 40.5 ± 1.9 40.2 ± 3.8 43.2 ± 3.5 42.3 ± 3.2
CoLLEGe w/o Lcos 30.9 ± 6.0 35.2 ± 5.0 36.4 ± 4.2 37.1 ± 2.8 35.7 ± 2.5 39.6 ± 3.7 39.3 ± 5.2 38.4 ± 1.4
CoLLEGe w/o Lmse 31.4 ± 5.1 38.2 ± 4.6 39.8 ± 4.1 43.6 ± 4.6 38.6 ± 6.0 39.6 ± 4.5 44.8 ± 5.4 46.8 ± 3.4
CoLLEGe w/o Neg. Ex. 28.9 ± 6.0 31.6 ± 5.1 34.1 ± 4.8 33.6 ± 4.3 37.5 ± 6.2 38.4 ± 4.8 42.5 ± 4.6 44.1 ± 4.6
CoLLEGe 35.0 ± 5.6 40.5 ± 4.3 42.7 ± 3.9 44.5 ± 3.9 42.5 ± 3.9 46.8 ± 3.7 45.2 ± 3.2 49.3 ± 1.5

Table 1: Accuracy in percentage on the GRE Verbal Reasoning task. For Token Tuning, we
use LR = 1e-3, as that gave the best performance.
it was not significantly better. Our final loss, Ltotal, is:

Ltotal = L+
ce + L−

ce︸ ︷︷ ︸
Cross Entropy Losses

+ Lcos + Lmse︸ ︷︷ ︸
Distillation Losses

. (5)

4 Datasets for Training CoLLEGe
In contrast to many other meta-learning methods, which use a specific set of tasks during
training, we adopt a training approach that mirrors general-purpose pretraining. In a
sense, we treat each query sequence, and each new token in turn, as its own “task” to solve.
Pretrained language model representations are highly adaptable, and can be successfully ap-
plied to a variety of tasks with simple prompting strategies. By adopting a task-general train-
ing method, we train a module that can produce similarly adaptable embeddings on the fly.

Because CoLLEGe is designed to learn a single new token per sequence, and the LLM is
frozen, training is highly sensitive to data quality, both for the support and query sequences.
Additionally, three forms of mismatch between support and query sequences are important
to guard against: language, contextual meaning, and knowledge mismatch. The first case is
mostly self-explanatory, non-English support sequences for an English query sequence cause
difficulties in training. Contextual meaning mismatch was particularly important to avoid
when training with the Pile (Gao et al., 2020), whose examples are drawn from a variety of
sources. Creating support and query sequences from WikiText, as in HiCE, often implicitly
controls for contextual meaning (all examples are from one source (Wikipedia), and support
and query sequences for a word are often unintentionally drawn from the same article
and thus share contextual meaning). Likewise, knowledge mismatch is more prominent
when training with the Pile, since it contains more diverse sources. If one, or many, support
sequences are more confusing than the query sequence, this can destabilize training.

Using the Squeakily3 library, we filtered for English text at threshold 0.90 using the
FastText (Joulin et al., 2016) model for language identification, applied perplexity filtering
at threshold 1000 (filtering examples above 1000 perplexity) using KenLM, following
de la Rosa et al. (2022). We also filtered examples with too much character repetition as
well as examples with words flagged as obscene. Afterwards, we cleaned examples by
normalizing white space and punctuation. Each query sequence is constructed from 4
sentence, non-overlapping, chunks of the text examples from the Pile samples.

To build a set of support sequences for each query sequence, we first split all examples into
individual sentences, and matched each query sequence with sentences that use the same
new word. We removed sentences that appear in the query sequence, examples with a large
number of newline characters (these often were article titles, tables of contents, or lists), and
examples with fewer than 15 words. Earlier experiments training with the Pile showed that
some subsets had many low-quality or mixed-meaning examples. Excluding those subsets
made the filtering process more straightforward. Table 6 summarizes the top subsets from
the Pile represented in our dataset.

5 Experiments
In this section, we show experimental results on four different evaluation tasks that we
designed: GRE verbal reasoning, definition generation, and slang identification. Note that

3https://github.com/CarperAI/squeakily
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Model BERTScore F1 ROUGE–L ELO

TT-1 75.2 ± 8.1 7.67 ± 0.1 980.78 ± 18.5
TT-2 75.2 ± 8.1 7.64 ± 0.1 978.49 ± 18.4
HiCE 76.7 ± 2.2 7.98 ± 0.0 975.64 ± 7.9
Additive 80.1 ± 2.3 11.66 ± 0.1 967.22 ± 8.5
Prompting 82.5 ± 2.8 15.54 ± 0.1 1032.28 ± 28.3
CoLLEGe 84.8 ± 2.3 17.81 ± 0.1 1065.57 ± 24.0

Table 2: Results when evaluating definition generation using the CoLLEGe-DefGen dataset.
We compare the model generated definitions with a reference definition using BERTScore
and also compute an ELO score for head-to-head comparison. For Token Tuning, we use LR
= 3e-4, as that performed best. Definitions are generated 1-, 2-, and 3-shot and scores are
averaged.

CoLLEGe is a task-general concept embedding generation network, and all of the evalu-
ations are performed zero-shot, without further training or fine-tuning, just like pretrained
LLMs. In the following, we first discuss implementation and training details, then describe
the baseline methods. Afterwards, we present the core results in Subsections 5.1-5.3.

Implementation Details: As our pretrained MLM model for the Sequence Encoder, we
use RoBERTa-Large (Liu et al., 2019), and apply a trainable Transformer Encoder layer
to encode the RoBERTa sequence embeddings. These embeddings are aggregated using
mean-pooling to produce a single embedding per sequence, which is further mean-pooled
into our Concept Embedding. We use a pretrained LLaMA-2 7B model (Touvron et al.,
2023) as the pretrained autoregressive language model in all our experiments. Further
implementation details can be found in Appendix B.

Baselines: In order to evaluate the effectivness of our method, evaluate against baselines
from prior work on new concept learnign as well as prompting and gradient descent tuning.
More details on implementation for the baselines can be found in Appendix E.

• Token Tuning (TT) (Lampinen & McClelland, 2017) finetunes only the new token embed-
ding(s) using gradient descent. The support sequences are treated as the training batch
for each step. TT-N denotes N gradient descent steps. Unlike Lampinen & McClelland
(2017), N is kept small here since we found that a large N results in degraded performance.
A similar approach has been proposed in Textual Inversion (Gal et al., 2023) for image
few-shot learning and generation.

• HiCE (Hu et al., 2019) consists of a Transformer sequence encoder as well as a Transformer
layer to aggregate the sequence embeddings. It is trained to output an embedding with
minimal cosine distance to the true Word2Vec embedding.

• Additive (Lazaridou et al., 2017) is a simple baseline that consists of summing the
Word2Vec embeddings for all tokens in the context that are not the new token.

• Prompting uses randomly initialized new token embeddings and includes the support
sequences in the prompt. It is a strong baseline with direct context access. Since prompt-
ing allows the LM to reason over the tokens in context, it can be combined with our
embedding generation approach (see Appendix F for additional experiments). However,
prompting original sentences can also make the context window too long and distracting.

5.1 GRE Verbal Reasoning

The GRE verbal reasoning task is a challenging type of question appearing in Graduate
Record Examinations that not only tests the understanding of rare vocabulary but also their
logical placement in a sentence. We increase the difficulty here by making each multiple
choice answer an unknown vocabulary word with a few example sentences as hints. We test
whether the CoLLEGe generated concept embeddings can directly support downstream
verbal reasoning.

Dataset: Using actual GRE practice questions from a Kaplan GRE prep book (Kaplan, 2019),
we design a task where a language model has to either select the top or top-2 choices for
a sequence with blanks. Examples for each of these questions are provided in Table 7 in
Appendix C. Questions were hand-annotated from the Kaplan book and details about the
cleaning process can be found in Appendix D. We produce a high-quality selection of 44
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Example Sentence CoLLEGe Definition True Definition Word/
Phrase

The eerie creak of the attic door,
coupled with the flickering candle-
light, was enough to give anyone
the <nonce>.

a feeling of unease,
usually in the stom-
ach, caused by anxi-
ety or fear.

feelings of uneasi-
ness

willies

Intrigued by holistic therapies, she
found herself lying on a soft mat as
the therapist applied <nonce> to var-
ious points on her body to alleviate
her chronic migraines.

a substance that is
used to heal or soothe
a part of the body.

treatment of symp-
toms by applying
pressure with the
fingers to specific
pressure points on
the body

acupressure

Nestled in the far corner of the
bustling newsroom, the diligent
<nonce> worked tirelessly, transcrib-
ing reporter’s notes into clean, easy-
to-read articles.

a person who writes
or edits for a news-
paper, magazine, or
other publication.

someone employed
to make written
copies of documents
and manuscripts

copyist

The delicate <nonce> sprouted from
the forest floor, adding a touch of
alien beauty to the woodland scene.

a plant that resem-
bles a mushroom.

a fungus composed
of several apothecia
that look like elon-
gated rabbit ears;

Wynnea
americana

Table 3: Definitions generated with CoLLEGe, using the prompt “The word <nonce> is
defined as”. Each definition is generated using the single example sentence shown. None of
the example sentences are provided in-context to the model.

GRE Verbal Reasoning problems with a single blank (i.e. not multi-part). No partial credit
is given for selecting one of the two answers for a “top-2” question and chance accuracy
is 8.1%. On a version of this task with the real word forms, not new tokens, a pretrained
LLaMa-2 7B scores 75%, which serves as an upper bound on our potential performance.

To evaluate, we create a version of the sequence for each possible choice, and calculate the
log probability of each such sequence. The highest log probability sequence is selected as
the chosen answer. The final scores reflect the average accuracy over 10 trials of sampling
different example sentences from GPT-4.

Results: Results are reported in Table 1, with additional results for “Prompting+...” reported
in Table 8 in Appendix F.1. Token tuning does not seem to help much, and even sometimes
hurts performance. Model performance also increases with more examples, showing effec-
tive utilization of multiple example sentences. By contrast, more examples can sometimes
harm Prompting performance, likely due to the additional in-context examples distracting
the LLaMA model. We ablate the use of negative examples, knowledge distillation, and
both the Lcos and Lmse components the knowledge distillation loss. CoLLEGe outperforms
each ablation except losing to one in two columns (D+2/3-shot). Notably, neither negative
examples nor knowledge distillation is that effective on its own, but when combined boost
performance significantly.

5.2 Definition Generation

To probe how well our model understands a new word, we prompt the LLM to generate a
definition for the word given one or more example sentences, as shown in Figure 1.

Datasets: We evaluate on two different datasets to test definition generation: CoLLEGe-
DefGen, which we create, and the Oxford dataset used in Giulianelli et al., 2023. To construct
CoLLEGe-DefGen, we selected 954 words from WordNet (Miller, 1994). We then prompt
GPT-4 (OpenAI, 2023) to generate an example sentence for the word using the prompt:
Give me a unique, descriptive sentence using the word “[WORD]” without defining it or making it
obvious what the word means. Without the latter half of the prompt, many generated examples
rephrased the definition. Examples are generated at temperature = 0.8. Since both our
model and the baselines continue to generate text, we select the first sentence generated as
the definition for scoring.

Results: Generation examples are reported in Table 3. The generated embeddings often
capture high- and low-level semantic details of the example sentences. Sometimes this is
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CoLLEGe-DefGen Oxford
Model BERTScore F1 ROUGE-L BERTScore F1 ROUGE-L

FLAN–Base–DefInstr 84.0 12.1 83.4 15.4
FLAN-Large–DefInstr 85.0 13.2 83.6 16.6
FLAN–XL–DefInstr 83.7 11.6 83.6 14.0
CoLLEGe 83.5 16.5 83.1 15.4
Prompting + CoLLEGe 84.1 18.0 83.6 17.1

Table 4: Results for our comparison with Giulianelli et al. (2023)'s FLAN-T5 models on our
CoLLEGe-DefGen dataset and the Oxford dataset. All evaluations are done 1-shot, with a
single example sentence, and the target word is replaced with a new token.

fairly precise, for example the generated definition for willies is exactly correct and similarly
with copyist. CoLLEGe is also able to identify Wynnea americana as a mushroom. Even when
the definition is not quite right, it may capture general features of the concept correctly,
and may reflect the limited information contained in the example sentence. The definition
for acupressure, for example, is not exactly correct but a very good inference based on the
example provided. Additional generated definitions, including those generated using more
than one example sentence, are shown in Table 11 in Appendix G.1. We also show side-by-
side comparisons with the baselines in Table 12 in Appendix G.2. Some failure cases are
described in Appendix G.3.

In order to evaluate the quality of generated definitions, we compare a definition generated
from our model to one generated from a baseline model as well as to a ground truth
definition. Definitions are generated 1-, 2-, and 3-shot and results are averaged and reported
in Table 2. For comparison between models, we simulate a head-to-head competition and
compute the ELO score (Elo, 1978) of each model. Specifically, for each example in the task
dataset, we choose a k-shot setting and sample a baseline at random. We then compare
the definition generated by CoLLEGe with the one generated by the baseline. Based on
the result—win, lose, or tie—we update the ELO score, starting with an initial score of
1000 for all models. To choose a winner in each “round”, we use the Outlines package4,
we ask GPT-3.5 to select which definition is best for the word in question or if they are
tied. The order of the choices (both generated definitions and “tie”) are randomized. We
compute ELO separately for Table 9. We also compare the generated definitions with ground
truth definitions for each word by computing the BERTScore F1 (Zhang et al., 2020) and
ROUGE-L (Lin, 2004). In all three quantitative evaluations, CoLLEGe outperforms the
baselines. Qualitatively, only Prompting produces generated definitions that are somewhat
competitive. Definitions generated by the other baselines are often incoherent, generating
repetitive text or unrelated words and characters.

We next compare CoLLEGe with the series FLAN-T5 (Chung et al., 2024) models finetuned
by Giulianelli et al. (2023) to generate definitions, which we denote FLAN-Base–DefInstr,
FLAN-Large–DefInstr, and FLAN-XL–DefInstr. Each of these models is prompted with
an example sentence followed by the question, “What is the definition of [WORD]?”. For a
fair comparison, we replace the target word with a new token when evaluating the FLAN-
T5 models and restrict CoLLEGe to one example sentence, since the finetuned FLAN-T5
models are trained to only use one example as well. Finally, since the FLAN-T5 models are
prompted, we include results for Prompting + CoLLEGe as well. The results are presented in
Table 4. When evaluated on our dataset, both CoLLEGe and Prompting + CoLLEGe achieve
much higher ROUGE-L scores than all FLAN-T5 models. For BERTScore, Prompting +
CoLLEGe outperforms all but FLAN-Large, although all scores are fairly close together.
On the Oxford dataset, CoLLEGe and Prompting + CoLLEGe score comparably to the
FLAN-T5 models, and Prompting + CoLLEGe slightly outperforms in terms of ROUGE-L.
Notably, CoLLEGe achieves this zero-shot, without any additional training on the definition
generation task, while the FLAN-T5 models are specialized for this purpose.

5.3 Twitter Slang

To emulate new word learning in a more natural setting, we construct a task based on
identifying the correct definition for a slang term, using Tweets as example sentences.

4https://github.com/outlines-dev/outlines
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Model 1-Shot 2-Shot 3-Shot 4-Shot

TT-1 32.2 ± 1.4 32.1 ± 2.6 32.6 ± 1.3 34.5 ± 0.4
TT-2 32.3 ± 1.6 32.8 ± 3.9 33.1 ± 0.2 32.5 ± 3.0
Additive 27.0 ± 1.0 28.3 ± 1.9 28.0 ± 0.7 29.0 ± 1.0
HiCE 34.0 ± 1.1 32.7 ± 1.9 31.3 ± 2.3 32.8 ± 1.0
Prompting 41.0 ± 1.0 47.0 ± 2.1 51.7 ± 1.8 53.8 ± 1.4
CoLLEGe 49.3 ± 1.0 53.2 ± 1.6 54.8 ± 2.6 60.0 ± 0.7

Table 5: Accuracy in percentage on the CoLLEGe-Slang benchmark dataset. CoLLEGe
achieves higher accuracy on our Twitter Slang task than each of the baselines, including
Prompting.

Dataset: To build CoLLEGe-Slang, we first hand-curate a set of 80 recent slang terms as
well as their definitions. Alongside each term is a list of up to 8 high-quality example Tweets
which use the term in an informative way. For this hand-curated set, example tweets are
predominantly from 2022 and 2023. To supplement these, we then sample 120 additional
slang terms from UrbanDictionary and the Online Slang Dictionary. We select example
tweets from the Twitter archive, using the pipeline from Hu et al. (2022). Some examples
from the hand-crafted set are shown in Table 13. More information about the filtering
process, data sources, and curation details for this dataset can be found in Appendix D.

To evaluate the different models on this task, we select the true slang term, its example
tweets, and its true definition. We then select 3 different incorrect slang terms and their
examples. We score the log probability of the true definition conditioned on each set of
examples. The highest probability is selected as the “choice”. If it corresponds to the correct
combination of definition and slang term, that is counted as a correct choice, otherwise not.
We score the model based on its accuracy across the whole set of slang terms.

Results: Results are presented in Table 5. Without providing example tweets in-context,
CoLLEGe outperforms each baseline. In fact, CoLLEGe is able to outperform prompting
directly, showing that in novel contexts (such as Twitter slang), in-context examples may be
more confusing than a concise embedding representation. Notably, when including example
tweets in-context, the baselines hurt performance compared to a simple prompting baseline.
Only using the CoLLEGe generated embeddings in this setting improve performance over
prompting with randomly initialized new token embeddings. We also compare CoLLEGe
to our baselines in the prompting setting in Table 10.

6 Conclusion
In this paper we present CoLLEGe, a few-shot learning framework for new concept acquisi-
tion for pretrained LLMs. We model our meta-learning approach on the original pretraining
task by sampling few-shot learning episodes from language model pretraining datasets and
using next-word prediction, as our primary meta-learning objective. CoLLEGe generated
embeddings contain rich and task-general semantic information, generalize to multiple
challenging tasks at test time zero-shot, without additional finetuning or training, and are
particularly useful for more complex reasoning tasks.

7 Limitations and Future Work
While CoLLEGe achieves the best performance in all of the benchmarks, we summarize a
few limitations in our current framework. First, the generated embeddings sometimes miss
precise details in the examples, instead encoding higher level semantic information. This
can be seen in some incorrect generated definitions, where general features of the unknown
concept are correctly inferred even though specific details are missed. Second, we find the
averaging mechanism cannot fully achieve parity with pretrained embeddings, even with
more support sequences.

Our work points to a number of future research directions. In the short term, work needs
to be done to investigate different data mixes for training CoLLEGe. More broadly, this
research is a first step in an exciting direction for future research: online continual concept
acquisition performed jointly with pretraining—incrementally identifying and compressing
new concepts from an online stream of sequential experience.
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A Dataset Composition
Our dataset for training CoLLEGe consists of samples drawn from subsets of the Pile shown
below in Table 6.

Source Num. Examples

Pile-CC 79,606
Books3 51,850
BooksCorpus2 3,436

Table 6: The top Pile subsets represented in our dataset.

B Implementation Details
During training, we provide 1 support sequence for each query sequence and generalize
to K > 1 during testing. We train our model for 28000 steps at batch size 32, with a
learning rate of 1e-3, a linear learning rate schedule with warmup, and using the AdamW
optimizer (Loshchilov & Hutter, 2019) with weight decay = 0.1 and default beta values. We
experimented with different beta values during training, but found they had little effect.
During training we clip gradients to a norm of 1.0. The final model checkpoint is selected
based on its GRE score.

Using the default initialization for our Encoder produces input and output embeddings that
are significantly larger in norm than those of the pretrained LLaMA model. During training
with the default initialization, a lot of training time is spent reducing the norm. To address
this inefficiency, we apply a Layer Normalization (Ba et al., 2016) layer before the input and
output linear layers, and initialize those layers so that the expected norm is as close to the
average input or output token embedding norm as possible.

C GRE Verbal Reasoning Examples
The GRE task consists of two different types of fill-in-the-blank questions. The first type
asks you to select the best possible choice to complete the provided sentence, so it serves as
a test of the top-1 prediction. The second type asks for which two words best complete the
sentence. Often these words are similar, but distinct. It tests how the top-2 predictions of
the LLM. We show an example for both types below in Table 7.

D Data Processing
We provide further details on cleaning and processing for some of our task datasets.
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Question Answer Choices Correct
Answer(s)

Evaluation Type

Mary’s former classmates were
taken aback by her [BLANK] be-
havior at the reunion for, dur-
ing her school years, she was
frequently reprimanded for cre-
ating disturbances with her ex-
uberant outbursts and playful
antics.

a) gregarious
b) discourteous
c) obsequious
d) reticent
e) scurrilous

d) reticent Choose the word for each
blank that best fits the
meaning of the sentence
as a whole.

The firefighter, desperate to save
the children on the second floor
of the fiery house, rushed into
their bedroom; his colleagues,
more wary of the [BLANK]
structure, remained outside.

a) stalwart
b) precarious
c) stout
d) irrefragable
e) tottering
f) fecund

b) precarious
e) tottering

Select the two answer
choices that, when in-
serted into the sentence,
fit the meaning of the sen-
tence as a whole and yield
complete sentences that
are similar in meaning.

Table 7: The two types of questions used in CoLLEGe-GRE.

GRE: The cleaning process for the GRE dataset involved normalizing the different formats
for blanks (i.e. empty spaces, underlines, “(a)”, etc.), removing artifacts from the conversion
to text from PDF, and associating each question with its answer from the answer key.

Twitter Slang: We filter examples from this archive for flagged obscene words using Squeak-
ily, but it is important to note that online slang is often obscene. This is especially true for
the sources used to define the slang terms (UrbanDictionary in particular).

We used slang definitions from UrbanDictionary5 Dictionary.com’s Pop Culture6 and Slang7

sections, the recent American Dialect Society meeting8, Bark 9, Wiktionary10, and the Online
Slang Dictionary11 for our dataset.

E Baseline Implementations
Hice: To train HiCE, we follow the method outlined in the paper, and use the WikiText-103
dataset to train the model with a morphology network. We use hyperparameters from the
authors’ implementation.

Word2Vec Projection: For the Additive baseline as well as HiCE, the baseline outputs a
Word2Vec embedding. To make this compatable with LLaMa, we train a linear layer on
shared tokens between LLaMa and Word2Vec to map between the embedding spaces.

Token Tuning: For Token Tuning, we treat the example sentences as a ”batch” and perform
N=1,2 steps of gradient descent on only the input and output embeddings for the new
token.

F Results for Prompting+
Since our Prompting baseline provides all the support sentences in the context window,
allowing the LM to attend to the new token embeddings directly, we also show using
CoLLEGe-generated embeddings improves performance over random initialization and
our other baselines (denoted “Prompting+...”).

5https://www.urbandictionary.com/
6https://www.dictionary.com/e/pop-culture/
7https://www.dictionary.com/e/slang/
8https://americandialect.org/nominations-for-words-of-the-year-2023/
9bark.us

10https://www.wiktionary.org/
11http://onlineslangdictionary.com/
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F.1 GRE Results for Prompting+

Table 8 shows results for the GRE task when prompting with examples in-context, using
embeddings for the new token generated by the model or baseline following the “+”.

Without Definition With Definition
Method 1-Shot 2-Shot 3-Shot 4-Shot D+1-Shot D+2-Shot D+3-Shot D+4-Shot

Prompting 13.9 ± 4.3 17.7 ± 3.0 19.8 ± 4.2 21.8 ± 3.0 21.6 ± 5.7 20.5 ± 6.8 19.3 ± 4.8 24.0 ± 4.7
+ CoLLEGe w/o KD / Neg. Ex. 25.7 ± 3.9 31.1 ± 3.9 32.7 ± 5.7 32.1 ± 6.1 35.4 ± 4.3 31.8 ± 3.8 33.4 ± 4.8 33.4 ± 5.8
+ CoLLEGe w/o KD 26.1 ± 4.5 29.6 ± 3.4 31.8 ± 4.7 29.1 ± 4.0 33.9 ± 4.7 28.9 ± 4.1 33.9 ± 4.7 35.7 ± 2.3
+ CoLLEGe w/o Lcos 25.9 ± 5.0 29.3 ± 6.5 28.9 ± 3.7 30.7 ± 4.8 33.4 ± 6.6 32.3 ± 4.7 32.5 ± 2.9 34.1 ± 3.5
+ CoLLEGe w/o Lmse 31.6 ± 5.6 31.8 ± 5.8 29.6 ± 3.9 27.5 ± 5.4 31.5 ± 5.6 31.8 ± 5.8 29.6 ± 3.9 31.8 ± 3.8
+ CoLLEGe w/o Neg. Ex. 35.0 ± 3.7 33.2 ± 2.3 31.4 ± 3.6 25.9 ± 10.3 31.1 ± 7.1 31.1 ± 4.6 28.6 ± 3.7 28.4 ± 4.9
+ CoLLEGe 34.3 ± 4.3 33.0 ± 5.6 34.8 ± 3.4 33.6 ± 3.6 37.5 ± 5.6 34.1 ± 3.8 30.5 ± 4.6 33.4 ± 4.6

Table 8: Accuracy in percentage on the GRE Verbal Reasoning task when prompting with
examples in-context, using new token embeddings generated by each model or baseline.
Results for prompting with randomly initialized embeddings are reproduced here for clarity.

All CoLLEGe models outperform the Prompting baseline, where new token embeddings
are randomly initialized. Prompting by including the definition of each term alongside
the example sentences improves performance for the baselines the most, but CoLLEGe
significantly outperforms. Each “Prompting+CoLLEGe” model performs worse than the
unprompted version, which we hypothesize is due to a lack of instruction tuning data in
the training dataset.

F.2 Definition Generation Results for Prompting+

We present results in Table 9 for our definition generation task with examples presented in-
context, using our baselines or CoLLEGe to generate the new token embedding. ELO scores
are calculated separately from those in Table 2 by sampling a random baseline challenger to
the “Prompting+CoLLEGe” model.

Model BERTScore F1 ELO

Prompting 0.825 ± 0.028 1002.09 ± 22.87
+ TT-1 0.762 ± 0.035 959.88 ± 17.22
+ TT-2 0.763 ± 0.045 962.10 ± 12.65
+ HiCE 0.740 ± 0.098 949.32 ± 10.77
+ Additive 0.735 ± 0.098 950.61 ± 3.48
+ CoLLEGe 0.858 ± 0.029 1176.00 ± 12.69

Table 9: Results for the definition generation task, when prompting with examples in-context.
We compare the model generated definitions with a reference definition generated by GPT-4
using BERTScore and simulate random challenges between CoLLEGe and each baseline
and compute and ELO rating. Token Tuning results are for LR = 3e-4, as in the main paper.

Generated definitions improve with in-context examples, and we note that our model far
outperforms the baselines. The only competitive baseline is prompting with randomly
initialized embeddings.

F.3 Twitter Results for Prompting+

When examples Tweets are provided in-context, our CoLLEGe model’s accuracy on the
slang identification task increases. For other baselines, aside from prompting with randomly
initialized embeddings, however, performance either degrades or remains about the same.
With the Word2Vec-based baselines, this may be due to the difficulty of mapping between
Word2Vec embeddings and the LLaMA input and output embedding space. We present
these results in Table 10.

G Generated Definitions

G.1 Additional CoLLEGe Definitions

We show additional definitions generated from CoLLEGe, including definitions generated
with more than one example, in Table 11.
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Model 1-Shot 2-Shot 3-Shot 4-Shot

Prompting 41.0 ± 1.0 47.0 ± 2.1 51.7 ± 1.8 53.8 ± 1.4
+ TT-1 30.5 ± 3.5 28.2 ± 2.9 26.0 ± 1.4 24.1 ± 1.2
+ TT-2 29.3 ± 3.0 28.3 ± 2.7 25.8 ± 3.1 24.0 ± 1.6
+ Additive 30.7 ± 3.8 25.2 ± 0.4 24.5 ± 1.2 24.1 ± 1.7
+ HiCE 25.0 ± 4.9 26.0 ± 1.1 27.8 ± 3.0 25.5 ± 0.8
+ CoLLEGe 56.5 ± 2.0 60.5 ± 2.1 67.4 ± 1.0 69.8 ± 0.8

Table 10: Accuracy in percentage on the Twitter Slang task, where example Tweets are
provided in-context.

Example Sentence CoLLEGe Definition True Definition Word/
Phrase

During the complex abdominal
surgery, the surgeon carefully
moved the <nonce> aside to gain
better access to the patient’s
damaged organs.

a surgical procedure
in which a portion
of the intestine is
brought through
an opening in the
abdominal wall.

a fold of peritoneum
supporting the viscera

omentum

The yellow blooms of the
<nonce> added a vibrant con-
trast to the green canvas of the
wetlands.

”a plant of the genus
Ficus, having a milky
sap and large, often
edible, fruit.”

aromatic evergreen or
deciduous dioecious
shrubs or trees of east-
ern Asia and North
America

Lindera

The prestigious <nonce>, clad in
elaborate costumes, filled the au-
ditorium with their mesmerizing
harmonies and dramatic perfor-
mances.
After months of rigorous re-
hearsals, the <nonce> finally
brought their magnum opus to
life, filling the ornate theater
with powerful harmonies that
resonated with every member of
the riveted audience.

a person who is
skilled in the art of
dancing.

a company that pro-
duces operas

opera
company

Despite countless imitations
flooding the market, only her
grandmother’s secret recipe for
apple pie was the <nonce>.
After tasting many alternatives,
he finally found the <nonce>
of artisanal cheeses in a quaint
little shop in Paris.
Despite all the replica paintings
she had seen, it was breathtak-
ing to stand before the <nonce>
in the museum.

the most beautiful or
perfect specimen of its
kind.

informal usage at-
tributing authenticity

real Mc-
Coy

Table 11: Additional definitions generated with CoLLEGe, using the prompt “The word
<nonce> is defined as”. Each definition is generated using the examples. None of the
example sentences are provided in-context to the model.

G.2 Qualitative Comparison of Generated Definitions

We present the definitions generated by CoLLEGe side-by-side with those generated by our
baselines in Table 12.
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Word/Phrase horsecar popishly

True
Definition

an early form of streetcar that was
drawn by horses

like the Pope; in a popish manner

CoLLEGe
a “motorized vehicle with a cabin and
a platform for passengers to stand on.”

in a manner that is intended to attract
attention or admiration

HiCE a word” “the a word a” is a a ” a “a” a a word a word a a a

Additive
that the place where you are the place. that the same.

TT-1
follows. ’the opposite of the word ” ” in the dic-

tionary

TT-2
follows. the opposite of the word,

Prompting
in the heart of bustling 19th century
Boston, he spent his mornings as a
loyal conductor, navigating through

a flamboyant manner of acting or
speaking.

Table 12: Side-by-side comparison between CoLLEGe-generated definitions and definitions
generated by the baselines.

In general, the baselines (without Prompting) are unable to generate usable definitions for
the new concept.

G.3 Failures of Generated Definitions

Word2Vec Baselines: Both Word2Vec baselines tended to produce embeddings that were
unusable for generating definitions.

CoLLEGe Failures: When analyzing generated definitions, it is clear that there are some
“default” definitions the model will generate when the embedding for the new token is not
informative enough.

Some of these common “default” definitions, listed in order of frequency, are:

• a person who is not a member of a particular group or class
• a place of refuge or shelter
• a person who is a source of annoyance or irritation
• a noun

H Slang Examples
We highlight a few Twitter slang examples from the hand-curated subset of our task dataset
in Table 13.

Slang Term Definition Example Tweet

rizz The ability to confidently approach
people and talk to them, in a more
romantic or flirty way.

Imagine having so little rizz that even the AI
girlfriend rejects you. Just complete negative
game.

hits different When something is significantly bet-
ter than usual or is way better under
certain circumstances.

getting called pretty in person just hits different.
people be making my day.

gorpcore A fashion style that is similar to that
of
hiking/wilderness/utility tech wear.

An anecdote from my coverage of Gorpcore
as a trend: This vintage seller put 4 Gore-Tex
hats up for sale on his website at $135....

Table 13: Examples from the Twitter Slang task, showing the slang term, its definition, and
an example tweet.
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