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Abstract

Respiratory audio, such as coughing and breathing sounds, has predictive power for1

a wide range of healthcare applications, yet is currently under-explored. The main2

problem for those applications arises from the difficulty in collecting large labeled3

task-specific data for model development. Generalizable respiratory acoustic4

foundation models pretrained with unlabeled data would offer appealing advantages5

and possibly unlock this impasse. However, given the safety-critical nature of6

healthcare applications, it is pivotal to also ensure openness and replicability for7

any proposed foundation model solution. To this end, we introduce OPERA,8

an OPEn Respiratory Acoustic foundation model pretraining and benchmarking9

system, as the first approach answering this need. We curate large-scale respiratory10

audio datasets (∼136K samples, 440 hours), pretrain three pioneering foundation11

models, and build a benchmark consisting of 19 downstream respiratory health12

tasks for evaluation. Our pretrained models demonstrate superior performance13

(against existing acoustic models pretrained with general audio on 16 out of 1914

tasks) and generalizability (to unseen datasets and new respiratory audio modalities).15

This highlights the great promise of respiratory acoustic foundation models and16

encourages more studies using OPERA as an open resource to accelerate research17

on respiratory audio for health. The system is accessible from https://github.18

com/evelyn0414/OPERA.19

1 Introduction20

Respiratory audio, such as coughing and breathing sounds generated by the respiratory system’s21

airflow, contains multiple physiological characteristics of individuals and therefore its modeling could22

be instrumental in health monitoring and disease detection applications [49, 59]. For instance, audio23

recordings can be used to estimate respiratory rate and lung function [14, 53, 71], detect snoring and24

apnea events during sleep [37, 27, 52], assess the effect of smoking on health [43, 42] and diagnose25

diseases like flu and asthma [39, 36, 28, 50].26

To enable the widespread adoption of these applications, high-performing algorithms are needed.27

Related studies rely on traditional signal processing methods [14, 53, 37, 27, 43, 39, 36], which28

require domain knowledge and often exhibit limited performance. Supervised deep acoustic models29
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Figure 1: System overview of OPERA. After data curation, respiratory acoustic foundation models
(Encoder) are pretrained and then evaluated on various downstream health tasks.

have been proposed [71, 28, 60] but their performance heavily depends on the volume and quality30

of available labels, which might be difficult and expensive to collect. Hence, foundation models31

pretrained with large unlabeled respiratory audio data have a high potential to improve performance32

through transfer learning and supervised fine-tuning [13, 68]. However, in contrast with other health33

data modalities like clinical imaging [48], electronic health records (EHRs) [66], and medical time34

series [74, 1, 15], foundation models for respiratory audio are largely under-explored.35

Respiratory audio datasets are available but no comprehensive collection has been curated.36

Recent years have seen an ever-increasing accumulation of respiratory audio [69, 47, 12], exhibiting37

heterogeneous properties such as varying acquisition modalities and sampling rates. These datasets38

exhibit significant potential for acoustic model development and evaluation. However, no existing39

effort has curated such data systematically.40

There is no open respiratory acoustic foundation model, impeding the field’s growth and41

understanding. Existing open-source acoustic models like AudioMAE [35] and CLAP [17] are42

pretrained on general audio event datasets such as YouTube audio, containing very few (around43

0.3%) respiratory sounds [38, 24]. These models may not be able to effectively capture the subtle44

nuances of respiratory sounds, which can vary in abrupt bursts, aperiodic components, and frequency45

distributions, particularly across different health conditions [49]. Although a model pretrained on46

respiratory sounds has been recently presented [6], it is not open-source, making it hard to analyze,47

replicate, or compare its workings. The insights on how to effectively train respiratory acoustic48

foundation models also remain limited.49

There is no ready-to-use benchmark for respiratory audio research. Current task-specific studies50

evaluate their models on purposely collected datasets, leaving the models’ generalizability to other51

tasks unclear [6]. A benchmark that combines multiple public datasets across diverse applications52

to enable fair and comprehensive evaluations of the developed foundation models is essential but53

currently lacking. This is crucial for safety-critical health applications, where models must be54

rigorously evaluated before use [67, 64].55

To mitigate these gaps, in this paper, we put forward OPERA, an OPEn Respiratory Acoustic56

foundation model pretraining and benchmarking system (Figure 1). It curates unlabeled respiratory57

audio datasets, pretrain three pioneering foundation models, and evaluates them against existing58

pretrained acoustic models across various applications. Specifically, our contributions are:59

• We curate a unique large-scale (∼136K samples, 440 hours), multi-source (5 datasets), multi-60

modal (breathing, coughing, and lung sounds) and publicly available (or available on request)61

respiratory audio dataset for foundation model pretraining, orders of magnitude larger than the62

number of respiratory audio samples in datasets used for training existing open acoustic models.63

2



• We pretrain 3 foundation models with the curated unlabeled data using the most common self-64

supervised approaches (a contrastive learning-based transformer, a contrastive learning-based65

CNN model, and a generatively pretrained transformer) to study the effect of the training designs.66

• We employ 10 labeled datasets (6 not covered by pretraining) to formulate 19 respiratory health67

tasks (12 in health condition inference and 7 in lung function estimation), ensuring fair, compre-68

hensive and reproducible downstream evaluation.69

• We benchmark the performance of our 3 foundation models, one commonly used acoustic feature70

set, and 3 open pretrained acoustic models on these tasks as a starting point for future exploration.71

Extensive experiments demonstrate that our foundation models outperform the models pretrained72

with general audio on 16 out of 19 benchmark tasks, confirming the power and promise of dedicated73

respiratory acoustic foundation models. Results also show that our models are generalizable across74

multiple downstream tasks, including new datasets and unseen respiratory audio modalities. This is a75

critical advancement towards realizing the potential of respiratory sounds as a mainstream technique76

for health monitoring.77

Within our three models, we find that the contrastive pretraining model is better for classification-78

based downstream tasks, while the generative pretrained model performs better in regression tasks,79

possibly due to the nature of their training objectives: contrastive learning can capture the nuances of80

the local patterns to make features distinguishable while generative learning focuses more on global81

features which are vital for regression. Our transformer models generally outperform the CNN model82

because they have stronger modeling capability, though requiring more intensive computation. These83

findings provide insightful guidance to the development and application of such types of models.84

In summary, this paper introduces the first open-source respiratory acoustic foundation model85

pretraining and benchmarking system. This represents a critical first step towards comprehensive and86

reproducible audio foundation models for health: future foundation model research can leverage our87

system as an experimental resource, and application studies can take advantage of our foundation88

models as feature extractors. This can facilitate progress in both machine learning and healthcare.89

These efforts will extend current machine learning capabilities, now able to see (via vision) and read90

(via natural languages), to also listen to (via audio) our health.91

2 Related Work92

2.1 Pretraining in Acoustic Modeling93

Models pretrained on large-scale datasets have demonstrated great generalizability in diverse down-94

stream tasks, especially when labeled data are limited [8, 16, 25, 35]. For audio-driven health95

applications, several general audio pretrained models can be used as feature extractors. One widely96

used model is VGGish [30], trained on 5.24 million hours of audio from YouTube videos to predict97

30,871 categories of video labels. Other models have been developed for audio event classification98

tasks [40, 10, 35]. Among them, AudioMAE [35] is an open model trained via an auto-encoding99

objective without requiring any audio labels. Inspired by recent advances in large language models,100

language-supervised pretraining has also been explored. CLAP [17] is an open model pretrained in101

this manner. We have included these open models in our benchmark.102

It is also worth noting that these open models are pretrained on general audio event datasets such as103

AudioSet [24], FSD50K [21], and FreeSound [22], which contains few samples of respiratory-related104

audio. For instance, AudioSet’s 2 million clips include only 2334 snoring, 871 cough, 834 breathing,105

and 1200 sneeze clips, making up only 0.3% of the total. In face of this issue, we curate large-scale106

respiratory audio datasets to pretrain our foundation models for comparison.107

In terms of pretraining methods, given the difficulty in collecting large-scale labeled health-related108

datasets, we consider self-supervised learning (SSL) to leverage unlabelled data for learning mean-109

ingful representations [62, 1, 6]. Main SSL methods fall into two categories: contrastive [11, 5, 54]110

and generative [29, 35, 46]. Contrastive learning trains models to distinguish between similar and111

dissimilar samples, while generative models are trained to reconstruct original audio data or features112
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from masked or corrupted versions. Since they have been demonstrated to be effective in general113

audio, We implement both methods in our system.114

A recent work, HeAR [6], curated millions of respiratory audio clips from YouTube videos to pretrain115

a foundation model using a generative SSL approach. However, neither the data nor the model116

are publicly available, resulting in a lack of transparency and reproducibility. Limited exploration117

has been conducted on the reasoning behind the chosen SSL method for various downstream tasks.118

Our work investigates, for the first time, open pretraining respiratory acoustic foundation models to119

provide a better understanding of their limits and their potential.120

2.2 Benchmarks in Respiratory Audio-based Applications121

Current respiratory audio-based health studies typically evaluate their developed models using their122

self-formulated protocols[6, 70, 72], instead of following a uniform evaluation pipeline. This leads to123

weak reproducibility due to several challenges [28]: lack of implementation details or released code,124

absence of reliable training and testing division, and varying implementation frameworks (e.g., some125

in TensorFlow [28] while other in PyTorch [4]) making them difficult to compare.126

High-quality benchmarks are essential in machine learning to ensure advancements are reliable and127

applicable to real-world problems. While several benchmarks exist for pretrained representation128

models on general audio event detection and speech recognition [63, 56, 26, 73], similar benchmarks129

are missing in respiratory audio for health, despite their equal importance. The only related bench-130

mark [32] in this area compares supervised models for breath phase and adventitious sound detection131

using a single dataset, and is thus not applicable for evaluating foundation models. A comprehensive132

benchmarking effort of respiratory acoustic foundation models is lacking but has the potential to133

really shed light on the power of these techniques in the context of respiratory health tasks.134

3 System Overview135

As shown in Figure 1, OPERA comprises three main components: data curation (including unla-136

beled data for pretraining and labeled data for evaluation), general-purpose pretraining to develop137

acoustic foundation models (Encoder), and a benchmark comparing the pretrained models on various138

downstream tasks.139

In OPERA, we employ five datasets for pretraining and ten datasets for benchmarking. Four of the140

downstream datasets overlap with the pretraining resources, but we ensure the testing data is held141

out before pretraining and thus is never seen by the models. During the pretraining step, we build142

two SSL strategies enabling the use of different encoder architectures. We then use the pretrained143

models to extract features and apply linear probing to report the performance for downstream tasks.144

Detailed information about data curation and pretraining methods is elaborated on in Section 4, and145

the benchmark data curation and evaluation results are summarized in Section 5.146

4 Self-supervised Pretraining147

4.1 Pretraining Datasets148

Five open data resources are curated in OPERA to enable the training of respiratory acoustic149

foundation models (Table 1). They were collected by different research institutions using various150

protocols, and are all publicly available or accessible upon request. Some recordings were made with151

a microphone near the mouth [69, 12, 47], while others used a digital stethoscope attached to the152

chest [51, 31]. This allows the pretrained models to see heterogeneous data for better generalizability.153

We only include qualified samples (those identified as respiratory audio, not noise) in the pretraining154

step. Some labeled audio samples from these datasets, which can be used for downstream evaluations,155

are held out. We then trim the remaining audio recordings by removing the beginning and ending156

silence to further ensure the quality of the data. The statistics of the data after quality check are157

summarized in Table 1 (extended description can be found in Appendix A.1). As a result, the entire158

pretraining dataset consists of 135,944 samples, with a total duration of about 404.1 hours.159
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Table 1: Statistics of the data used for model pretraining (SR: sampling rate; Duration: mean [95%
quantile range]; Crop: cropped length for pretraining).

Data name Collected by SR Modality #Sample Duration (s) Crop (s)
COVID-19 Sounds [69] Microphone 16∼44.1kHz Induced cough (3 times) 40866 6.1[2.6∼11.2] 2

Deep breath (5 times) 36605 20.5[9.7∼31.6] 8
UK COVID-19 [12] Microphone 48kHz Induced cough (3 times) 19533 4.1[2.1∼9.2] 2

Exhalation (5 times) 20719 7.7[4.2∼15.6] 4
COUGHVID [47] Microphone 48kHz Induced cough (up to 10s) 7179 6.9[2.4∼9.9] 2
ICBHI [51] Stethoscope 4∼44.1kHz lung sound (several breath cycles) 538 22.2[20.0∼65.9] 8
HF LUNG [31] Stethoscope 4kHz lung sound (several breath cycles) 10554 15.0[15.0∼15.0] 8
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Figure 2: Self-supervised learning methods used in our system.

Before pretraining, all recordings are resampled to 16 kHz and merged into a mono channel. They160

are then transformed into spectrograms using 64 Mel filter banks with a 64 ms Hann window that161

shifts every 32 ms [57, 75]. For example, a 4s recording will be converted into a spectrogram of162

1× 126× 64 dimension. Finally, these spectrograms are used to pretrain our respiratory acoustic163

foundation models.164

4.2 Pretraining Models and Methods165

We pre-train our models using a combination of the aforementioned data resources, dividing each166

dataset into equally-sized batches for consistent processing. We randomly shuffle the batches and167

reserve 10% for validation. Due to inherent variations in audio length within individual batches, we168

employ random cropping of spectrograms, with crop lengths specified in Table 1. Considering the169

unlabeled nature of the pretraining data, we adopt the most representative SSL methods: contrastive170

learning-based and generative pretraining-based objectives to pretrain our models. The rationale171

behind this choice is that if an encoder can distinguish the source of audio segments (contrastive) or172

reconstruct masked spectrograms (generative), it is expected to have encoded useful and generalizable173

acoustic features. The three foundation models we pretrained are:174

• OPERA-CT: OPERA-CT is a contrastive learning based [54] transformer model. Two segments175

from the same spectrogram are regard as a positive pair, otherwise negative pairs. As shown in176

Figure 2(a), an encoder network (a transformer [10]) extracts features from these segments, and a177

projector maps them into a low-dimensional representation space, where bilinear similarity is178

calculated. The optimization objective aims to maximize the similarity between positive pairs179

and minimize it for negative pairs. The encoder has 31M trainable parameters.180

• OPERA-CE: Similar to OPERA-CT, CE leverages a contrastive pre-training approach. However,181

it utilizes a more lightweight and efficient CNN encoder (EfficientNet-B0) [61], which has182

approximately 4M trainable parameters.183

• OPERA-GT: OPERA-GT is a generatively pretrained transformer model [3]. As shown in184

Figure 2(b), the encoder (a vision transformer with 21M trainable parameters) is utilized to185

extract useful features from masked spectrograms, from which the decoder (a lightweight swin-186

transformer with 12M trainable parameters) can reconstruct the original spectrograms. To train187

the encoder and the decoder, spectrograms are cropped to equal lengths and then split into small188

patches. We randomly mask 70% of patches per spectrogram for reconstruction.189
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Table 2: Downstream task characteristics grouped by task category. Datasets in grey are entirely new
(not used in pretraining), while others have test sets held out unseen. For T13-T19, FVC denotes
forced vital capacity (L), FEV1 is the forced expiratory volume in 1 second, and FEV1/FVC refers to
the ratio of the two.

Dataset ID Task Modality #Sam. (#Sub.) Data Distribution
UK COVID-19 [12] T1 Covid / Non-covid Exhalation 2500 (2500) 840 / 1660

T2 Covid / Non-covid Cough 2500 (2500) 840 / 1660
COVID-19 Sounds [69] T3 Symptomatic / Healthy Breath 4138 (3294) 2029 / 2109

T4 Symptomatic / Healthy Cough 4138 (3294) 2029 / 2109
CoughVID [47] T5 Covid / Non-covid Cough 6175 (n/a) 547 / 5628

T6 Female / Male Cough 7263 (n/a) 2468 / 4795
ICBHI [51] T7 COPD / Healthy Lung sounds 828 (90) 793 / 35

Coswara [7] T8 Smoker / Non-smoker Cough 948 (n/a) 201 / 747
T9 Female / Male Cough 2496 (n/a) 759 / 1737

KAUH [23] T10 Obstructive / Healthy Lung sounds 234 (79) 129 / 105
Respiratory@TR [2] T11 COPD severity Lung sounds 504 (42) 72 / 60 / 84 / 84 / 204

SSBPR [70] T12 Body position recognition Snoring 7468 (20) 1638 / 1454 / 1269 / 1668 / 1439

MMlung [44] T13 FVC Deep breath 40 (40) 3.402 ± 1.032 L
T14 FEV1 Deep breath 40 (40) 2.657 ± 0.976 L
T15 FEV1/FVC Deep breath 40 (40) 0.808 ± 0.190 L
T16 FVC O Vowels 40 (40) 3.402 ± 1.032 L
T17 FEV1 O Vowels 40 (40) 2.657 ± 0.976 L
T18 FEV1/FVC O Vowels 40 (40) 0.808 ± 0.190 L

NoseMic [9] T19 Respiratory rate Breath 1297 (16) 13.915 ± 3.386 bpm

Detailed introduction to these three models can be found in Appendix A.2. We train them for up to190

200 epochs and save the best model based on the held-out validation set (i.e., its performance on the191

pretraining objective). Model checkpoints are also released. More pretraining results and analysis are192

available in Appendix A.3.193

5 Benchmarking194

5.1 Benchmark Datasets and Tasks Setup195

Tasks. To facilitate the evaluation of our pretrained models, existing acoustic models, and future196

emerging respiratory acoustic foundation models, we introduce a new benchmark. A total of 10197

labeled respiratory audio datasets, encompassing 6 respiratory audio modalities, are curated for this198

benchmark. Among these 10 datasets, 6 are new and unseen during the pretraining stage.199

Using these 10 datasets, we formulate 19 downstream tasks: 12 for health condition inference200

and 7 for lung function estimation. The first group covers disease detection such as COVID-19201

and COPD (Chronic Obstructive Pulmonary Disease), participant attribute inference like smoker202

and gender, disease severity classification, and body position in sleep monitoring. Tasks 1-10 are203

binary classification, while Tasks 11-12 involve 5 classes. The second group includes spirometry204

test performance and respiratory rate estimation, which are regression tasks aimed at predicting205

continuous values. Data and task statistics are summarized in Table 2, with detailed descriptions and206

licenses provided in Appendix A.1.207

All data in this benchmark are publicly available or under controlled access procedures. When208

available, we follow the official train-test split (Tasks 1-4 and 12-18); otherwise, we implement a209

random participant-independent split to ensure realistic evaluation (Tasks 5-11 and 19). Due to the210

limited number of participants in Tasks 13-19, we employ leave-one-subject-out evaluation. For all211

other tasks, we adopt a fixed random train-validation-test split.212

Baselines. In addition to our pretrained models, we also include a commonly used acoustic feature set213

and three open pretrained acoustic models in this benchmark. They are Opensmile [18] (Emobase214

acoutic feature set), VGGish [30] (supervised pretrained), AudioMAE [35] (self-supervised pre-215

trained) and CLAP [17] (language-supervised pretrained). We consider these four methods as216

baselines to be distinguished from our pretrained models.217
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Table 3: Mean reciprocal ranks on task groups (higher is better). The best model within each group is
highlighted in pink and the second-best is highlighted in blue.

Task # Opensmile VGGish AudioMAE CLAP OPERA-CT OPERA-CE OPERA-GT
All 19 0.2920 0.1882 0.2861 0.3435 0.5576 0.4307 0.4947

Health condition inference 12 0.2073 0.1853 0.2044 0.4014 0.7361 0.4083 0.4500
Lung function estimation 7 0.4371 0.1932 0.4262 0.2442 0.2517 0.4690 0.5714

Evaluation protocol. All tasks are evaluated using the standard linear probe protocol [11, 54, 45]:218

training a single fully connected layer on top of the representations extracted from the frozen219

encoder. Linear evaluation focuses on the quality of learned representations and is applicable to220

some very small datasets. AUROC (area under the receiver operating characteristic) is reported for221

classification (Task 1-12) and MAE (mean absolute error) is reported for regression (Task 13-19).222

For a comprehensive overall evaluation, we report MRR (mean reciprocal rank) [58] across tasks.223

For baselines, both the data pre-processing and feature extraction strictly follow their official imple-224

mentation. For our pretrained models, the same audio preprocessing is used as in pretraining. We225

then segment our audio into short frames to feed into our foundation models to extract features, and226

use the averaged representation over these frames as the input for the linear layer [35]. An extended227

description of the implementing details can be found in Appendix A.2. Note that the baselines228

and our pretrained models are implemented within the same pipeline, making our results easy to229

reproduce and our benchmark ready to use.230

5.2 Experimental Results231

We report the MRR of different task groups in Table 3, with the detailed reciprocal ranks of all232

evaluated methods on each task provided in Appendix A.3. The performance metrics for each task are233

summarized in Table 4 and Table 5. Our benchmark demonstrates reliability, as our implementation234

of baselines achieves comparable performance to those reported in the literature (e.g., existing235

cough-based COVID-19 detection studies report an AUROC of about 0.65 [12, 69], aligning with236

our baseline results in Task 2) Through these extensive experimental results, we now answer the237

following two main research questions (RQs):238

RQ1. Can pretraining a foundation model with diverse unlabeled respiratory audio data lead239

to better performance than baselines designed for general audio?240

From results highlighted in Table 3, it is evident that our pretrained respiratory acoustic foundation241

models outperform both the acoustic feature set and existing general audio pretrained models.242

Among them, OPERA-CT and OPERA-GT achieve the highest MMR scores of 0.5576 and 0.4947,243

respectively. Looking at ✓ and * in Table 4 and 5, the best OPERA model outperforms the acoustic244

feature set on 18 tasks and the baseline pretrained models on 16 tasks out of the 19 evaluated tasks.245

This provides a clear positive answer to RQ1. This advantage likely stems from their exposure to246

large-scale and heterogeneous respiratory audio data, showing the power and promise of respiratory247

audio foundation models for health applications.248

Now let us dive into the task performance at a finer granularity. For classification, an AUROC249

exceeding 0.7 is typically desirable to demonstrate the utility of the extracted features [20]. When250

examining the AUROC in Table 4, OPERA models achieve an AUROC exceeding 0.7 on 6 of the 12251

health condition inference tasks (Task 2, 6-7, 9-10, and 12), whereas the best baseline, CLAP, only252

surpasses this threshold on 4 tasks (Task 7, 9-10, and 12). This indicates that our models better encode253

health condition-related information from respiratory audio. Regarding lung function estimations254

(regression tasks), the model needs to capture the global dynamics from the entire audio sample and255

lower MAE indicates better performance. In Table 5, our pretrained models reduce the error in FEV1256

estimation using breathing sounds (Task 14), FVC estimation using vowel sounds (Task 16), FEV1257

estimation using vowel sounds (Task 17), and respiratory rate estimation (Task 19), with performance258

close to baselines on other tasks. Furthermore, OPERA-GT also achieves a lower standard deviation259

across subjects, suggesting better generalizability and robustness to different subjects, which are of260

great importance for healthcare applications.261
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Table 4: AUROC on health condition inference tasks (higher is better). The best model for each task
is highlighted. We report mean and standard deviation from five independent runs. ✓ and * indicates
superiority over the opensmile feature set and the other pretrained baselines respectively.

ID Task Abbr. Opensmile VGGish AudioMAE CLAP OPERA-CT OPERA-CE OPERA-GT
T1 Covid (Exhale) 0.550 ± 0.015 0.580 ± 0.001 0.549 ± 0.001 0.565 ± 0.001 0.586 ± 0.008 0.551 ± 0.010 0.605 ± 0.001 ✓*
T2 Covid (Cough) 0.649 ± 0.006 0.557 ± 0.005 0.616 ± 0.001 0.648 ± 0.003 0.701 ± 0.002 0.629 ± 0.006 0.677 ± 0.001 ✓*
T3 Symptom (Breath) 0.571 ± 0.006 0.571 ± 0.003 0.583 ± 0.003 0.611 ± 0.006 0.603 ± 0.005 0.610 ± 0.004 0.613 ± 0.002 ✓*
T4 Symptom (Cough) 0.633 ± 0.012 0.605 ± 0.004 0.659 ± 0.001 0.669 ± 0.002 0.680 ± 0.006 0.665 ± 0.001 0.673 ± 0.001 ✓*
T5 Covid (Cough) 0.546 ± 0.008 0.602 ± 0.001 0.549 ± 0.005 0.603 ± 0.013 0.609 ± 0.004 0.584 ± 0.003 0.575 ± 0.006 ✓*
T6 Gender (Cough) 0.639 ± 0.010 0.608 ± 0.000 0.666 ± 0.002 0.684 ± 0.002 0.801 ± 0.000 0.722 ± 0.004 0.762 ± 0.001 ✓*
T7 COPD (Lung) 0.579 ± 0.043 0.605 ± 0.077 0.886 ± 0.017 0.933 ± 0.005 0.855 ± 0.012 0.872 ± 0.011 0.741 ± 0.011 ✓
T8 Smoker (Cough) 0.534 ± 0.060 0.507 ± 0.027 0.549 ± 0.022 0.680 ± 0.009 0.685 ± 0.012 0.674 ± 0.013 0.650 ± 0.005 ✓*
T9 Gender (Cough) 0.753 ± 0.008 0.606 ± 0.003 0.724 ± 0.001 0.742 ± 0.001 0.874 ± 0.000 0.801 ± 0.002 0.825 ± 0.001 ✓*
T10 Obstructive (Lung) 0.502 ± 0.080 0.505 ± 0.110 0.614 ± 0.040 0.703 ± 0.036 0.719 ± 0.018 0.742 ± 0.014 0.700 ± 0.013 ✓*
T11 COPD severity (Lung) 0.494 ± 0.054 0.590 ± 0.034 0.510 ± 0.021 0.635 ± 0.040 0.625 ± 0.038 0.683 ± 0.007 0.615 ± 0.019 ✓*
T12 Position (Snoring) 0.772 ± 0.005 0.657 ± 0.002 0.649 ± 0.001 0.702 ± 0.001 0.781 ± 0.000 0.769 ± 0.000 0.742 ± 0.001 ✓*

Table 5: MAE on lung function estimation tasks (lower is better). Best model per task is highlighted.
We report mean and standard deviation across subjects.

ID Task Abbr. Opensmile VGGish AudioMAE CLAP OPERA-CT OPERA-CE OPERA-GT
T13 FVC (Breath) 0.965 ± 0.589 1.545 ± 2.084 1.345 ± 0.792 1.138 ± 0.962 1.606 ± 1.312 1.023 ± 0.854 1.191 ± 0.721 *
T14 FEV1 (Breath) 0.859 ± 0.815 1.738 ± 2.967 1.081 ± 0.720 1.130 ± 0.845 1.459 ± 1.074 0.771 ± 0.752 0.996 ± 0.732 ✓*
T15 FEV1/FVC (Breath) 0.194 ± 0.397 0.279 ± 0.629 0.143 ± 0.153 0.178 ± 0.151 0.155 ± 0.155 0.148 ± 0.165 0.155 ± 0.172 ✓
T16 FVC (Vowel) 0.724 ± 0.532 0.900 ± 1.377 0.983 ± 0.721 0.710 ± 0.585 1.737 ± 1.041 0.672 ± 0.535 0.593 ± 0.414 ✓*
T17 FEV1 (Vowel) 0.605 ± 0.541 1.103 ± 1.466 0.960 ± 0.741 0.838 ± 0.694 1.488 ± 1.005 0.736 ± 0.566 0.561 ± 0.348 ✓*
T18 FEV1/FVC (Vowel) 0.179 ± 0.204 0.227 ± 0.301 0.150 ± 0.184 0.276 ± 0.300 0.179 ± 0.127 0.220 ± 0.217 0.245 ± 0.185 ✓
T19 Breathing Rate 3.852 ± 1.060 2.611 ± 0.786 2.630 ± 0.832 2.615 ± 0.804 2.567 ± 0.785 2.623 ± 0.831 2.537 ± 0.782 ✓*

RQ2. Are the pretrained respiratory acoustic foundation models generalizable to new data?262

It is crucial that foundation models can generalize to new and unseen data once developed. In our263

benchmark, we have 12 tasks formulated from unseen datasets (Task 8-19) and unseen respiratory au-264

dio modalities (Task 12, 16-18) not used for pretraining. Notably, our respiratory acoustic foundation265

models demonstrate good generalization capabilities, achieving the best performance on 5 out of 5266

classification tasks and 4 out of 7 regression tasks. They are able to outperform the acoustic feature set267

and general audio pretrained models which are supposed to exhibit generalizability. Specifically, in268

Table 4, Task 8-12 all have an AUROC higher than 0.68. Comparing Task 6 and Task 9 with the same269

prediction target, the performance on unseen data (Task 9) is comparable. Therefore, our foundation270

models are generalizable, likely due to the minimal assumptions made during SSL pretraining.271

RQ3. How to design SSL methods and model architectures of respiratory acoustic foundation272

models with different applications in mind?273

Within the OPERA system, we train foundation models using two different SSL strategies: contrastive274

and generative. From Table 3, 4, and 5, it can be observed that the models pretrained with a contrastive275

objective (OPERA-CT, OPERA-C) generally achieve superior performance on classification tasks276

(i.e., health condition inference), while the generative pretrained models (OPERA-GT and baseline277

AudioMAE) perform better on regression tasks (i.e., lung function estimation). This finding aligns278

with the inherent nature of the methods, as contrastive learning’s discriminative training goal naturally279

aligns with the classification objective, and it discards the decoder in the architecture compared to280

generative models. It is also consistent with prior observations on various vision benchmarks [41].281

We also compare CNN and transformer encoder architectures using the same SSL strategy. Overall,282

our results suggest a strong representation ability of the transformer architecture for audio. Specifi-283

cally, OPERA-CT performs the best in 7 out of the 12 health condition inference tasks (Figure 15(a)),284

with a mean reciprocal rank as high as 0.7361 (Table 3). For lung function estimation tasks, OPERA-285

GT performs the best in 3 out of the 7 tasks (Figure 15(b), with the highest mean reciprocal rank286

of 0.5714 (Table 3) and achieves the second on health condition inference tasks. As a lightweight287

CNN model, OPERA-CE also demonstrates satisfactory results, with a mean reciprocal of 0.4690,288

and performs third and second best in the two groups of tasks respectively(Table 3). This shows the289

promise of training a lightweight foundation model for efficient computing and on-device learning290

for resource-constrained scenarios.291
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Table 6: AUROC (higher is better) for linear probing and finetuning on T4. Best model highlighted.

Method # Train AudioMAE CLAP OPERA-CT OPERA-CE OPERA-GT

Linear 1749 0.659 ± 0.001 0.669 ± 0.002 0.680 ± 0.006 0.665 ± 0.001 0.673 ± 0.001
Fine-tune 1749 0.672 ± 0.039 0.691 ± 0.008 0.710 ± 0.003 0.703 ± 0.003 0.715 ± 0.006
Fine-tune 6648 0.723 ± 0.010 0.723 ± 0.009 0.739 ± 0.008 0.733 ± 0.002 0.735 ± 0.005

6 Conclusion and Future Research Directions292

In this paper, we present OPERA, the first open-source respiratory acoustic foundation model293

pretraining and benchmarking system. OPERA offers a unique curated dataset pool, a ready-to-use294

evaluation portal as well as a thorough analysis of performance across architectures and tasks. We295

discuss the limitations of our work and how it can serve as a foundation for future explorations:296

(1) Studying data-efficient fine-tuning. Section 5 uses linear evaluation with frozen encoders297

following standard protocols and accommodating limited downstream data (see Table 2). We select298

some tasks with relatively abundant labeled data to examine fine-tuning performance (details in299

Appendix A.4). Results for Task 4 are presented in Table 6 . Using the same number of labeled data300

as in linear probing (1749 samples), all models show improved performance and the three OPERA301

models achieve an AUROC above 0.7. With more labeled data for fine-tuning (6648 samples), the302

best OPERA-GT model achieves an AUROC of 0.739. Similarly, OPERA-CT’s performance on Task303

12 (7468 samples) could be enhanced to 0.994 compared to 0.781 in linear evaluation.304

However, most other tasks have a much smaller training set, and thus data efficient large model305

fine-tuning approaches are desirable. Methods have been proposed in the machine learning literature306

such as adapter tuning [34], prefix tuning [65], prompt tuning [19], and low-rank adaptation [33].307

Yet, they are not designed for audio (spectrograms) or acoustic foundation models. Considering the308

properties of downstream health-related tasks which often exhibit limited and imbalanced data, novel309

audio-specific data efficient fine tuning methods need to be explored.310

(2) Investigating scaling law in respiratory acoustic foundation models. Recent research on311

foundation models has uncovered their emergent abilities, largely arising from scaling up pretraining312

data and model size [55]. It is also interesting to study the scaling laws in respiratory acoustic313

foundation models. Our benchmark can help to quantify how increasing a model’s scale and its314

training data can significantly enhance performance on downstream tasks. Based on the currently315

404 hours of respiratory audio, our OPERA-CT (31M parameters) and OPERA-GT (21M) models316

surpass the lightweight OPERA-CE model (4M). With the rapid accumulation of respiratory audio317

datasets [68, 13], more evaluation of scaling laws should be conducted in future.318

(3) Exploring novel pretraining strategies for unlabeled health audio. We have pretrained319

three models (OPERA-CT, OPERA-GT, OPERA-CE) and compared their performance. More320

configurations in terms of model size, architecture, and pretraining methods could be compared321

in the future. Among the two representative SSL approaches we adapted for pretraining, there322

exist limitations: For contrastive learning, defining positive and negative pairs is challenging due323

to downstream task diversity, and our definitions might not be optimal. In generative pretraining,324

using alternative objectives to reconstruction might improve performance on discriminative tasks.325

Combining these methods could be beneficial but presents challenges in balancing objectives, and326

previous studies suggest simple combinations do not improve performance [3]. Audio data also327

pose unique challenges like heterogeneous sound types, varying sampling rates and durations, and328

complex temporal-frequency correlations, requiring tailored solutions to better pretrain and apply the329

foundation models. OPERA provides a framework for exploring these technical challenges.330

By introducing this open-source system, we hope to lay the groundwork for responsible, reliable,331

and sustainable development of foundation models in respiratory healthcare, paving the way for a332

healthier future for generations to come.333
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A.1 Datasets Overview587

We have used 11 datasets in our benchmark. Their statistics are summarized in Table 1 and Table 2588

in the main paper. Here, we supplement their access methods and licenses in Table 7 with a more589

detailed description below. It can be noted that all datasets contain an audio set and a metadata part.590

Audio data used are anonymous and the metadata do not contain personally identifiable information591

or offensive content.592

COVID-19 Sounds [69] . The COVID-19 Sounds dataset consists of 53,449 audio samples (over593

552 hours in total) crowd-sourced from 36,116 participants through the COVID-19 Sounds app.594

This dataset is comprehensive in terms of demographics and spectrum of health conditions. It also595

provides participants’ self-reported COVID-19 testing status with 2,106 samples tested positive. It596

consists of three modalities including breathing, cough, and voice recordings. Only breathing and597

cough modalities are used in this paper.598

This dataset is crowdsourced through the COVID-19 Sounds project, approved by the Ethics Com-599

mittee of the Department of Computer Science and Technology at the University of Cambridge.600

Informed consent was obtained from all the participants. The dataset is accessible under controlled601

access through a Data Transfer Agreement and has been widely shared and used [72, 50].602

UK COVID-19 [12]. The UK COVID-19 Vocal Audio Dataset is designed for the training and603

evaluation of machine learning models that classify SARS-CoV-2 infection status or associated604

respiratory symptoms using vocal audio. The UK Health Security Agency recruited voluntary605

participants through the national Test and Trace programme and the REACT-1 survey in England606

from March 2021 to March 2022, during dominant transmission of the Alpha and Delta SARS-CoV-2607

variants and some Omicron variant sublineages. Audio recordings of volitional coughs, exhalations,608

and speech (speech not included in open access version, nor used in this paper) were collected in the609

‘Speak up to help beat coronavirus’ digital survey alongside demographic, self-reported symptom and610

respiratory condition data, and linked to SARS-CoV-2 test results.611

The study has been approved by The National Statistician’s Data Ethics Advisory Committee612

(reference NSDEC(21)01) and the Cambridge South NHS Research Ethics Committee (reference613

21/EE/0036) and Nottingham NHS Research Ethics Committee (reference 21/EM/0067). Participants614

reviewed the participant information and confirmed their informed consent to take part.615

COUGHVID [47]. The COUGHVID dataset provides over 25,000 crowdsourced cough recordings616

representing a wide range of participant ages, genders, geographic locations, and COVID-19 statuses.617

All of the data collection and annotation was done in compliance with relevant ethical regulations.618

Informed consent was obtained by all participants who uploaded their cough sounds and metadata.619

ICBHI [51]. The ICBHI Respiratory Sound Database contains audio samples, collected independently620

by two research teams in two different countries, over several years. Ethical approval was obtained621

from the ethics committees of the appropriate institutions.622
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Table 7: Dataset availability. *ICBHI and HF Lung datasets coming from multiple sources, please
refer to the text description below. COVID-19 Sounds, SSBPR, MMLung and NoseMic are available
upon request. The custom license is detailed in the DTA (data transfer agreement).

Dataset Source Access license

COVID-19 Sounds[69] UoC https://covid-19-sounds.org/blog/neurips_dataset Custom license
UK COVID-19 [12] IC https://zenodo.org/records/10043978 OGL 3.0
CoughVID[47] EPFL https://zenodo.org/records/4048312 CC BY 4.0
ICBHI[51] * https://bhichallenge.med.auth.gr CC0
HF Lung [31] * https://gitlab.com/techsupportHF/HF_Lung_V1 CC BY 4.0

https://gitlab.com/techsupportHF/HF_Lung_V1_IP CC BY-NC 4.0
Coswara[7] IISc https://github.com/iiscleap/Coswara-Data CC BY 4.0
KAUH[23] KAUH https://data.mendeley.com/datasets/jwyy9np4gv/3 CC BY 4.0
Respiratory@TR[2] ITU https://data.mendeley.com/datasets/p9z4h98s6j/1 CC BY 4.0
SSBPR[70] WHU https://github.com/xiaoli1996/SSBPR CC BY 4.0
MMlung[44] UoS https://github.com/MohammedMosuily/mmlung Custom license
NoseMic[9] UoC https://github.com/evelyn0414/OPERA/tree/main/datasets/nosemic Custom license

Figure 3: Examples of different respiratory audio modalities used.

Most of the database consists of audio samples recorded by the School of Health Sciences, University623

of Aveiro (ESSUA) research team at the Respiratory Research and Rehabilitation Laboratory (Lab3R),624

ESSUA and at Hospital Infante D. Pedro, Aveiro, Portugal. The second research team, from the625

Aristotle University of Thessaloniki (AUTH) and the University of Coimbra (UC), acquired respiratory626

sounds at the Papanikolaou General Hospital, Thessaloniki and at the General Hospital of Imathia627

(Health Unit of Naousa), Greece. The database consists of a total of 5.5 hours of recordings in 920628

annotated audio samples from 126 subjects.629

HF Lung [31] . HF Lung V2 dataset comprises of HF Lung V1 and HF Lung V1 IP: The lung630

sound recordings of HF Lung V1 come from two sources. The first source was a database used in a631

datathon in Taiwan Smart Emergency and Critical Care (TSECC), 2020, under the license of Creative632

Commons Attribution 4.0 (CC BY 4.0), provided by the Taiwan Society of Emergency and Critical633

Care Medicine (TSECCM). Lung sound recordings in the TSECC database were acquired from634

261 patients. The second source was sound recordings acquired from 18 residents of a respiratory635

care ward (RCW) or a respiratory care center (RCC) in Northern Taiwan between August 2018 and636

October 2019. The recordings were approved by the Research Ethics Review Committee of Far637

Eastern Memorial Hospital (case number: 107052-F). Written informed consent was obtained from638

the 18 patients.639

The lung sound recordings of HF Lung V1 IP come from two sources. The Lung sound recordings640

from the first source are provided by Taiwan Society of Emergency and Critical Care Medicine641

(TSECCM) acquired from 32 patients by using a commercial digital stethoscope Littmann 3200 (3M).642

The lung sound recordings of the second source are acquired by from 7 residents of a respiratory643

care ward (RCW) or a respiratory care center (RCC) in Northern Taiwan between August 2019 and644

December 2019. The recordings were approved by the Research Ethics Review Committee of Far645

Eastern Memorial Hospital (case number: 107052-F). Written informed consent was obtained from646

the 7 patients or their statutory agents.647

Coswara [7]. The Coswara dataset contains respiratory sounds recorded between April 2020648

and February 2022 from 2635 individuals (1819 SARS- CoV-2 negative, 674 positive, and 142649

recovered subjects). The respiratory sounds contained nine sound categories associated with variants650

of breathing, cough and speech. The metadata contains demographic information associated with651

age, gender and geographic location, as well as the health information relating to the symptoms,652

pre-existing respiratory ailments, comorbidity and SaRS-CoV-2 test status.653
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The data collection procedure was approved by the Institutional Human Ethics Committee, at the654

Indian Institute of Science, Bangalore. The informed consent was obtained from all participants who655

uploaded their data records. All the data collected was anonymized and excluded any participant656

identity information.657

KAUH [23]. The KAUH dataset includes sounds from seven ailments (i.e., asthma, heart failure,658

pneumonia, bronchitis, pleural effusion, lung fibrosis, and chronic obstructive pulmonary disease659

(COPD) as well as normal breathing sounds. The dataset contains the audio recordings from660

the examination of the chest wall at various vantage points using an electronic stethoscope. The661

stethoscope placement on the subject was determined by the specialist physician performing the662

diagnosis. Each recording was replicated three times corresponding to various frequency filters that663

emphasize certain bodily sounds. The dataset can be used for the development of automated methods664

that detect pulmonary diseases from lung sounds or identify the correct type of lung sound.665

All study participants (or their parents in the case of underage subjects) provided written informed666

consent to be included in the study and allowed their data to be shared. This study was approved by667

the institutional review board at King Abdullah University Hospital and Jordan University of Science668

and Technology, Jordan (Ref. 91/136/2020). The data collection was carried out under the relevant669

guidelines and regulations. The authors have the right to share the data publicly.670

Respiratory@TR [2]. Respiratory@TR contains lung sounds recorded from left and right sides of671

posterior and anterior chest wall and back using two digital stethoscopes in Antakya State Hospital.672

The chest X-rays and the pulmonary function test variables and spirometric curves, the St. George673

respiratory questionnaire (SGRQ-C) are collected as multimedia and clinical functional analysis674

variables of the patients. The 12 channels of lung sounds are focused on upper lung, middle lung,675

lower lung and costophrenic angle areas of posterior and anterior sides of the chest. The recordings676

are validated and labeled by two pulmonologists evaluating the collected chest X-ray, PFT and677

auscultation sounds of the subjects. Labels fall into 5 COPD severities (COPD0, COPD1, COPD2,678

COPD3, COPD4). The dataset was released by Iskenderun Technical University, Turkey. Voluntary679

admittance was evaluated on a voluntary basis form with minimal information. The patients aged680

38 to 68 are selected from different occupational groups, socio-economic status and genders for an681

accomplished analysis of the disorders.682

SSBPR [70] . SSBPR is a snore-based sleep body position recognition dataset consisting of 7570683

snoring recordings, which comprises six distinct labels for sleep body position: supine, supine but684

left lateral head, supine but right lateral head, left-side lying, right-side lying and prone. One of the685

labels is only present in a few subjects and thus is excluded from the task following the 5-class setup686

in [70].687

The data were collected from 20 adult patients who underwent overnight PSG at a local Sleep688

Medicine Research Center within the hospital. The study was conducted with the approval of the689

local medical ethics committee, and patients provided signed consent for their participation, including690

audio and video recordings during sleep. The personal information of the study subjects was collected691

and stored anonymously to ensure privacy protection.692

MMLung [44] . This data was collected from 40 participants (20 male, 20 female) with an age range693

of 18-85 years old. All participants are English speakers from the UK. Among them, 12 were healthy694

participants, while the others consisted of seven self-reported COPD patients, seven self-reported695

asthma patients, and 14 people with other long-term conditions. Ethics approval for this study was696

obtained from the University of Southampton.697

Three devices were used to collect the data: Google Pixel 6 Smartphone with an app installed for the698

data collection, and an Easy on-PC ultrasonic spirometer by ndd Medical Technologies. The audio699

data collection from smartphones was conducted in stereo mode at a sampling rate of 44100 Hz. The700

data was saved in the WAV format. The collection took place in a silent room conditions. The process701

consisted of collecting data for four audio modalities i.e. cough, vowels, mobile spirometry, and702

speech via a series of tasks from each participant in a single session. In this paper, we only include703

the deep breath and the vowel sound of ‘o’. Ground truth data were collected using a medical-grade704
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Figure 4: Age distribution of the pretraining datasets.

spirometer by a healthcare professional as per European Respiratory Society (ATS/ERS) clinical705

standards. However, it should be noted that with any objective measure that is reliant on individual706

effort, there may always be unforeseen errors (effort dependent blows). This data is available upon707

request.708

NoseMic [9] . NoseMic is a subset of the data collected for a respiratory rate estimation project. The709

audio data was collected using microphones attached close to the nose, and the respiratory dynamics710

were measured with a Zephyr pressure sensor on the chest. The data was collected in stationary711

settings, both before and after the participants exercised. A total number of 21 participants were712

involved, while data from some participants were excluded because of the poor sensing quality. Audio713

recordings before and after running were included in our benchmark. Each recording was segmented714

into 30-second windows with a 15-second overlap. The average respiratory rate of each window was715

used as the ground truth.716

A.1.1 Pretraining Data Demographics717

Diversity and representativeness of the training data are important for a generalizable model. We718

examine the demographic distribution of the five datasets used for model pretraining. The bar plots in719

Figure 4 and Figure 5 illustrate the age and gender distributions across four of these datasets. While720

the demographic details of HF Lung are not publicly available, the data includes 35 male and 21721

female subjects, with an average age of 66.58 (according to the paper [31]). By integrating these722

diverse datasets in OPERA, we achieve a more representative and unbiased demographic distribution723

compared to any single data source. This highlights the importance of uniting varied sources for724
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Figure 5: Gender distribution of the pretraining datasets.

pretraining a foundational model: not only increasing the number of data samples but also ensuring a725

more comprehensive distribution.726

A.1.2 Downstream Task Description727

Here we give a detailed description of all 19 tasks formulated in the OPERA benchmark. The tasks728

are categorized into three types:729

• Binary Classification (Tasks 1-10): Tasks requiring prediction of a binary outcome (positive/neg-730

ative, smoker/non-smoker, etc.) based on respiratory audio recordings.731

• Multi-Class Classification (Tasks 11, 12): Tasks involving classification of respiratory audio732

recordings into one of several predefined categories (5 classes of COPD severity, sleeping position)733

• Regression (Tasks 13-19): Tasks aiming to predict continuous values (lung function metrics,734

respiratory rate) from respiratory audio data.735

Task 1. Each of the audio in UK COVID-19 [12] has a binary label indicating the COVID-19736

test result of the participant. This task is to predict whether the test result is positive based on the737

exhalation recording, consisting of three successive “ha” exhalation sounds.738

Task 2. The data source and prediction target is the same as Task 1, while Task 2 is based on the739

cough recording consisting of three successive volitional coughs.740

Task 3. The audio samples in COVID-19 Sounds [69] have the reported symptoms at the moment of741

participation. This task aims at predicting respiratory abnormalities, where the symptomatic group742

consists of participants who reported any respiratory symptoms, including dry cough, wet cough,743

fever, sore throat, shortness of breath, runny nose, headache, dizziness, and chest tightness, while744

asymptomatic controls are those who reported no symptoms. The audio data consists of 3 to 5 deep745

breathing sounds. This task follows the subset and split from [69], with the training set downsampled.746

Task 4. The dataset and prediction target is the same as Task 3, but the audio includes three coughs.747

Task 5. Each of the audio in CoughVID[47] contains a cough and is associated with labels of748

self-reported demographics and COVID-19 status. This task involves predicting the COVID-19 status749

based on the cough recording.750

Task 6. The dataset and audio modality are the same as Task 5, while the prediction target is gender751

as reported in demographics.752

Task 7. The ICBHI [51] dataset contains labels of the diagnosis of the subjects. We use the subset of753

COPD patients and healthy controls to formulate a binary classification of COPD detection.754

Task 8. Each audio in the Coswara [7] dataset contains a binary label of smoker in the metadata.755

This task aims to predict the smoker from non-smokers from the cough-shallow audio modality in the756

dataset, aligning with the implementation in [6].757
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Task 9. Each audio in the Coswara [7] dataset contains a label of sex in the metadata. This task758

aims to predict this label from the cough-shallow audio modality in the dataset, aligning with the759

implementation in [6].760

Task 10. The KAUH [23] dataset contains the disease diagnosis labels of the participants. This761

task aims to use lung sound audio to distinguish patients with COPD and asthma (obstructive lung762

diseases) from healthy controls.763

Task 11. The Respiratory@TR [2] dataset associates each audio with a COPD severity label from 0764

to 4. This task aims to predict this severity level from lung sounds.765

Task 12. The SSBPR [70] dataset associates each snoring audio with a label of the body position:766

supine, supine but left lateral head, supine but right lateral head, left-side lying, right-side lying and767

prone. The last class is excluded here as it is only present in some of the male participants. Thus this768

task aims to predict one of the five body positions from the snoring sounds.769

Task 13. Spirometry is a gold standard for diagnosing Long-term respiratory illnesses like COPD770

and Asthma. It is a lung health test that requires specialized equipment and trained healthcare experts,771

making it expensive and difficult to scale. Moreover, blowing into a spirometer can be quite hard772

for people suffering from pulmonary illnesses. To address this problem, researchers aim to develop773

audio-based testing methods without requiring the best efforts from patients. MMLung [44] was774

collected for this purpose. Task 13 evaluates how accurate the forced vital capacity (FCV) can be775

estimated from a deep breath sound.776

Task 14. Similar with Task 13 , Task 14 evaluates how accurate the forced expiratory volume in 1777

second (FEV1) can be estimated from a deep breath sound.778

Task 15. While FEV1 and FVC are very personal, the ratio between them is the proportion of lung779

capacity that can be exhaled in the first second. It is expressed as a percentage and is used to diagnose780

and determine the severity of obstructive and restrictive lung diseases. Task 15 uses breathing sounds781

to estimate this ratio.782

Task 16. Task 16 again aims to evaluate an individual’s FVC, similar to Task 13. However, a vowel783

sound is used, i.e., the participant speaks out the ‘o’ sound for as long as possible.784

Task 17. Task 17 involves the use of ‘o’ vowel sound for FEV1 estimation.785

Task 18. This task predicts the ratio between FEV1 and FVC from the collected ‘o’ vowel sounds.786

Task 19. Continuous respiratory rate (RR) monitoring is integral to mobile healthcare and fitness787

tracking, offering valuable insights into longitudinal health and wellness due to its strong correlations788

with both physical and mental health. This task involves the estimation of RR from 30 seconds of789

breathing sounds.790

A.2 Implementation Details791

All of the experiments are implemented in Python 3.10.4, with main supporting libraries: PyTorch,792

Librosa, PyTorch Lightning, numpy, with the exact environment detailed in ‘environment.yml’ in the793

code repository. All our experiments are conducted using a NVIDIA A100 GPU with 80GB memory.794

Our code is accessible from https://github.com/evelyn0414/OPERA.795

A.2.1 Pretraining Models and Methods796

We pre-train our models on a combination of seven sets of data derived from the first five data797

sources in Table 7 (including separate modalities from COVID-19 Sounds and UK COVID-19).798

Each set of data is split into batches of equal length to ensure consistent data processing. These799

batches maintain both modality and source homogeneity. We then randomly shuffle the batches and800

reserve 10% for validation. Due to inherent variations in audio length within individual batches, we801

employ random cropping of spectrograms. Crop lengths for each of the seven datasets are detailed802

in Table 1, and the crop methods depend on the pretraining methods, which will be elaborated on803
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Fig. 1: The model architecture of HTS-AT.

• HTS-AT takes fewer parameters (31M vs. 87M), fewer
GPU memories, and less training time (80 hrs vs. 600 hrs)
than AST’s to achieve the best performance.

• HTS-AT further enables the audio transformer to produce
the localization results of event only with weakly-labeled
data. And it achieves a better performance than the previ-
ous CNN-based model.

2. PROPOSED MODEL

2.1. Hierarchical Transformer with Window Attention

A typical transformer structure consumes lots of GPU mem-
ories and training time, because the length of input tokens
is too long and remains unchanged in all transformer blocks
from beginning to end. As a result, the machine saves the out-
put and its gradient of each block via large GPU memories,
and spends much calculation time maintaining a large global
self-attention matrix. To combat these problems, as depicted
in Figure 1, we propose two key designs: a hierarchical trans-
former structure and a window attention mechanism.

2.1.1. Encode the Audio Spectrogram

In the left of Figure 1, an audio mel-spectrogram is cut into
different patch tokens with a Patch-Embed CNN of kernel
size (P ⇥ P ) and sent into the transformer in order. Dif-
ferent from images, the width and the height of an audio mel-
spectrogram denote different information (i.e. the time and
the frequency bin). And the length of time is usually much
longer than that of frequency bins. Therefore, to better cap-
ture the relationship among frequency bins of the same time
frame, we first split the mel-spectrogram into patch windows
w1, w2, ..., wn and then split the patches inside each window.
The order of tokens follows time!frequency!window as
shown in Figure 1. With this order, patches with different
frequency bins at the same time frame will be organized adja-
cently in the input sequence.

2.1.2. Patch-Merge and Window Attention

In the middle of Figure 1, the patch tokens are sent into sev-
eral groups of transformer-encoder blocks. At the end of each
group, we implement a Patch-Merge layer [17] to reduce the

sequence size. This merge operation is applied by first reshap-
ing the sequence to its original 2D map (T

P ⇥ F
P , D), where D

is the latent state dimension. Then it merges adjacent patches
as ( T

2P ⇥ F
2P , 4D) and finally applies a linear layer to reduce

the latent dimension to ( T
2P ⇥ F

2P , 2D). As illustrated in Fig-
ure 1, the shape of the patch tokens is reduced by 8 times from
(T

P ⇥ F
P , D) to ( T

8P ⇥ F
8P , 8D) after 4 network groups, thus

the GPU memory consumption is reduced exponentially after
each group.

For each transformer block inside the group, we adopt a
window attention mechanism to reduce the calculation. As
shown in different color boxes in the middle right of Figure
1, we first split the patch tokens (in 2D format) into non-
overlapping (M⇥M) attention windows aw1, aw2, ..., awk.
Then we only compute the attention matrix inside each M ⇥
M attention window. As a result, we have k window atten-
tion (WA) matrices instead of a whole global attention (GA)
matrix. The computational complexities of these two mecha-
nisms in one transformer block for f ⇥ t audio patch tokens
with the initial latent dimension D are:

GA: O(ftD2 + (ft)2D) (1)

WA: O(ftD2 + M2ftD) (2)

where the window attention reduces the second complexity
term by ( ft

M2 ) times. For audio patch tokens in a time-
frequency-window order, each window attention module will
calculate the relation in a certain range of continuous fre-
quency bins and time frames. As the network goes deeper,
the Patch-Merge layer will merge adjacent windows, thus
the attention relation is calculated in a larger space. In the
code implementation, we use the swin transformer block with
a shifted window attention [17], a more efficient window
attention mechanism. This also helps us to use the swin
transformer pretrained vision model in the experiment stage.

2.2. Token Semantic Module

The existing AST uses a class-token (CLS) to predict the clas-
sification label, which limits it from further indicating the
start and end times of events as realized in CNN-based mod-
els. In the final layer output, each token contains information
about its corresponding time frames and frequency bins. We
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Figure 6: The hierarchical token-semantic audio transformer architecture, from [10].

Table 8: The EfficientNet-B0 architecture.

Layer Kernel Size #channels #layers

Input - 32 1
MBConv1 3x3 16 1
MBConv6 3x3 24 2
MBConv6 5×5 40 2
MBConv6 3x3 80 3
MBConv6 5x5 112 3
MBConv6 5x5 192 4
MBConv6 3x3 320 1
Conv head & Avg Pooling 1280 1

below. Two representative SSL approaches are adopted: contrastive learning-based methods and804

generative pretraining-based methods, to pretrain three models. The high-level reasoning behind805

this is that if an encoder can distinguish the source of audio segments (contrastive) or reconstruct806

masked spectrograms (generative), it is expected to encode useful and generalizable acoustic features.807

Specifically:808

OPERA-CT: OPERA-CT is a contrastive learning-based transformer model. Following [54], we809

randomly crop two segments from a spectrogram and regard them as a positive pair. Segments from810

different samples within one batch are regarded as negative pairs. As shown in Figure 2(a), an encoder811

network (a transformer here) extracts features from these segments, and a projector (a multi-layer812

perception) maps them into a low-dimensional representation space, where bilinear similarity is813

calculated as,814

s(x, x′) = g(f(x))TWg(f(x′)). (1)

The optimization objective aims to maximize the similarity between positive pairs and minimize it815

for negative pairs. The loss function for this instance discrimination objective is a multi-class cross816

entropy applied to similarities,817

L = − log
exp (s(x, x+))∑

x−∈X−(x)∪{x+} exp (s(x, x
−))

, (2)

where x+ is the positive anchor for x and X−(x) refers to negative distractors.818

Specifically, the transformer we employ is a hierarchical token-semantic audio transformer [10], which819

improves the computing and memory efficiency of the typical vision transformer for spectrograms. A820

patch size of 4× 4 is used and the output feature dimension is 768. The encoder has 31M trainable821

parameters.822

OPERA-CE: Similar to OPERA-CT, CE leverages a contrastive pre-training approach. However, it823

utilizes a more lightweight and efficient CNN encoder (EfficientNet-B0) [61]. The architecture is824

detailed in Table 8. This encoder outputs a feature dimension of 1280 and has approximately 4M825

trainable parameters.826

OPERA-GT: OPERA-GT is a generative pretrained transformer model. It uses a masked auto-827

encoder to extract useful features from masked spectrograms, which a decoder then uses to reconstruct828
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Figure 7: OPERA-GT architecture.

the original spectrograms, as illustrated in Figure 2(b). Following [3], we employ a vision transformer829

as the encoder (21M trainable parameters) and a lightweight swin-transformer (12M trainable830

parameters) as the decoder. The detailed architecture is shown in Figure 7.831

To train this model, spectrograms from each dataset are cropped to equal lengths, as summarized in832

Table 1, and then split into patches of 4× 4. Considering the varying lengths of different modalities,833

our model uses a unique patching order and accommodates any input length (no larger than the834

number of positional embeddings), as indicated by the arrows in Figure 7. Each patch is converted835

into a patch embedding via a 2-dimensional convolutional layer with a kernel size of 4 × 4 and a836

channel number of 384. We randomly mask 70% of patches per spectrogram and only feed the837

embeddings of the visible patches into the encoder. The encoder is a typical vision transformer with838

l = 12 blocks and 2 heads in each block. The output feature dimension is 384.839

To reconstruct the spectrograms, both the embeddings of the masked patches and the new embeddings840

from the encoder are fed into the decoder. The decoder is a typical swin-transformer with both local841

and global attention. The output of the decoder is an array resembling a spectrogram. Mean square842

error loss is used for optimization, and only the masked pixels are considered in the loss,843

LMSE =
1

N

N∑
i=1

(yi − ŷi)
2, (3)

where y is the vector only with the masked pixels in the i-th spectrogram.844

A.2.2 Benchmark implementation details845

Within our benchmark of downstream tasks, we have four baselines to compare with the OPERA846

models. Opensmile is chosen as a baseline representing the traditional feature extraction methods.847

VGGish, AudioMAE and CLAP are chosen as baselines for this study since they are open-source848

pretrained models representing the cutting edge of deep learning approaches.849

Opensmile. OpenSMILE [18] is a powerful tool for extracting features from audio data. It offers850

pre-defined feature sets designed to capture various aspects of an audio signal. This established toolkit851

serves as a strong baseline for traditional feature extraction. It offers a diverse set of handcrafted852

features, providing a foundation for comparison.853

VGGish. The VGGish model [30] is a modified VGG model using mel spectrograms as input,854

pretrained to classify the soundtracks of a dataset of 70M training videos (5.24 million hours) with855

30,871 video-level labels.856
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Table 9: Number of parameters and feature dimension of all the models.

Opensmile VGGish AudioMAE CLAP OPERA-CT OPERA-CE OPERA-GT
# Parameters (M) - 62 86 80 31 4 21
Input length (s) - 1 10 5 <32 >1.5 <8.18
Feature Dim. 988 128 768 1024 768 1280 384

AudioMAE. AudioMAE [35] leverages self-supervised learning for audio, inspired by image-based857

Masked Autoencoders (MAE) [29]. During training, AudioMAE masks a high proportion (70%) of858

the spectrogram patches and feeds the remaining unmasked tokens through a transformer encoder,859

which then attempts to reconstruct the original spectrogram. This process forces the model to learn860

robust features by relying on context and relationships within the spectrogram.861

CLAP. The CLAP model is trained under natural language supervision, leveraging text descriptions862

to learn about audio concepts. It utilizes two encoders: one for processing audio spectrograms and863

another for handling text descriptions. Through a contrastive learning approach, CLAP brings these864

audio and text features into a shared space and encourages similarity within the same audio-text pair.865

For baselines, both the data pre-processing and feature extraction strictly follow their official imple-866

mentation. For our pretrained models, the same audio preprocessing is used as in pretraining. The867

required audio input length is also summarized in Table 9.868

Our OPERA models can accept audio input of different lengths. Specifically, OPERA-CT has an869

interpolation step that transforms all spectrogram inputs to the same size, fitting the hierarchical870

structure of the model [10]. Audio longer than the maximum input length of about 32 seconds will871

need to be cropped, although this is not relevant to our downstream tasks. OPERA-CT is a CNN872

model with a pooling layer, allowing it to always output fixed-length features. However, it requires873

a minimum length of 1.5 seconds (the input size must be larger than the kernel size). OPERA-GT,874

a transformer model, incorporates a special patching method (see Figure 7) that allows it to accept875

varying lengths of audio shorter than its maximum input length of 8.18 seconds. For input audio876

exceeding 8 seconds, we segment the audio into short frames with overlaps, feed them into the model,877

and use the averaged representation of these frames as the final embedding [35].878

Our evaluation employs linear evaluation for all downstream tasks. This technique leverages the879

pre-trained model’s weights without modification, preserving their learned features. A new linear880

layer, sized according to the feature dimension (see Table 9) and the number of output classes (or 1881

dimension for regression) in the specific downstream task, is added on top of the pre-trained model’s882

output. This approach offers an efficient way to transfer the knowledge of the pre-trained models883

without extensive fine-tuning of the entire model and can be used for tasks with very limited data884

size. For classification tasks, a standard cross-entropy loss is used. For regression tasks, an MAE loss885

is used. A L2 regularization of 10−5 is employed.886
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A.3 Pretraining Results887

Pretraining loss. We showcase the training process of our three OPERA models here. Specifically,888

Figure 8 exhibits the training loss of different subsets of the data, converging at different speeds889

and levels, due to heterogeneity in data quality, data modality, etc. Figure 9 present the evolution890

of the loss on the validation set (a set combined a small proportion from all the data resource). It891

demonstrates a continued decay until convergence.892

(a) OPERA-CT (b) OPERA-CE (c) OPERA-GT

Figure 8: Training loss of the three OPERA models. The OPERA-GT and OPERA-CE use contrastive
instance discrimination loss, while OPERA-GT uses generative mean square error loss.

(a) OPERA-CT (b) OPERA-CE (c) OPERA-GT

Figure 9: Validation loss of the three OPERA models. The OPERA-GT and OPERA-CE use
contrastive instance discrimination loss, while OPERA-GT uses generative mean square error loss.
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Embedding distribution analysis for constructive pretraining. Figure 10 and Figure 11 present893

the T-SNE visualization applied to features extracted from the contrastive pretraining models on the894

held-out test set of pretraining data. The visualization depicts four random crops of the same audio895

sample (the same color) close together in the embedding space. This suggests that the model can896

effectively capture the underlying characteristics of the audio data despite variations introduced by897

cropping.898

(a) COVID-19 Sounds (breath) (b) UK COVID-19 (cough) (c) HF Lung (lung sounds)

Figure 10: T-SNE visualization result of features from OPERA-CT on the held-out validation of
pretraining data. Each dot is an audio segment and the same color represents the same audio recording.
It can be seen that audio segments from the same recording are close to each other while far away
from other recordings in the embedding space.

(a) COVID-19 Sounds (breath) (b) UK COVID-19 (cough) (c) HF Lung (lung sounds)

Figure 11: T-SNE visualization result of features from OPERA-CE on the validation data.
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Spectrogram reconstruction result for generative pretraining. OPERA-GT aims to learn a useful899

encoder by extracting features that can be used to reconstruct the entire spectrogram. Figure 9(c)900

demonstrates a very small MSE loss on the validation set when the model converges, suggesting901

a good reconstruction ability. To show it more straightforward, some examples are visualized in902

Figure 12, Figure 13, Figure 14. From the visualization, it is clear that our pretrained encoder can903

capture both the local and global distribution of the spectrograms and the decoder can accurately904

recover the original information.905

(a) Original spectrogram (b) Masked spectrogram (c) Reconstructed spectrogram

Figure 12: Reconstruction result for a breath sound recording (cropped into 8s) from COVID-19
Sounds dataset.

(a) Original spectrogram (b) Masked spectrogram (c) Reconstructed spectrogram

Figure 13: Reconstruction result for a cough sound recording (cropped into 2s) from COUGHVID
dataset.

(a) Original spectrogram (b) Masked spectrogram (c) Reconstructed spectrogram

Figure 14: Reconstruction result for a lung sound recording (cropped into 8s) from ICBHI dataset.

[Correction] The reciprocal ranks of all the 19 tasks are detailed in Figure 15 in Appendix A.4.906
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A.4 Additional Evaluation Results907

Table 3 summarized the over mean reciprocal ranks, with the reciprocal ranks of all the 19 tasks908

detailed in Figure 15.909

(a) Health Condition Inference (b) Lung Function Estimation

Figure 15: Radar plot of reciprocal ranks on two groups of tasks.

A.4.1 Another Metric for Lung Function Estimation Tasks910

While AUROC, used for classification, ranges from 0.5 to 1, MAE, used for regression, doesn’t911

have a bounded range for comparison. Hence, here we additionally report the relative error for the912

estimation measured by MAPE (Mean Absolute Percentage Error) in Table 10. MAPE ranges from 0913

to 1, with a lower value indicating better estimations.914

Table 10: MAPE on lung function estimation tasks (lower is better). The best model per task is
highlighted. We report mean and standard deviation across subjects.

ID Task Abbr. Opensmile VGGish AudioMAE CLAP OPERA-CT OPERA-CE OPERA-GT
T13 FVC (Breath) 0.300 ± 0.189 0.535 ± 0.961 0.419 ± 0.272 0.375 ± 0.397 0.515 ± 0.509 0.363 ± 0.502 0.399 ± 0.370 *
T14 FEV1 (Breath) 0.386 ± 0.481 0.834 ± 1.646 0.474 ± 0.457 0.483 ± 0.437 0.592 ± 0.425 0.367 ± 0.493 0.460 ± 0.554 ✓*
T15 FEV1/FVC (Breath) 0.264 ± 0.563 0.333 ± 0.687 0.177 ± 0.149 0.230 ± 0.194 0.199 ± 0.194 0.197 ± 0.221 0.193 ± 0.184 ✓
T16 FVC (Vowel) 0.237 ± 0.206 0.356 ± 0.910 0.335 ± 0.320 0.240 ± 0.267 0.581 ± 0.449 0.217 ± 0.213 0.184 ± 0.142 ✓*
T17 FEV1 (Vowel) 0.287 ± 0.383 0.571 ± 1.095 0.456 ± 0.516 0.350 ± 0.334 0.650 ± 0.508 0.319 ± 0.302 0.246 ± 0.208 ✓*
T18 FEV1/FVC (Vowel) 0.228 ± 0.240 0.315 ± 0.578 0.188 ± 0.211 0.350 ± 0.393 0.234 ± 0.209 0.279 ± 0.257 0.304 ± 0.210
T19 Breathing Rate 0.299 ± 0.113 0.202 ± 0.076 0.203 ± 0.078 0.204 ± 0.083 0.199 ± 0.074 0.201 ± 0.076 0.196 ± 0.074 ✓*
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A.4.2 Fine-tuning Performance915

Apart from the standard linear evaluation, we also explore the effect of fine-tuning in improving the916

performance, using some of the tasks with a comparatively sufficient number of samples.917

For OPERA-CE, due to the small number of parameters that could easily overfit and forget the918

pretraining, we freeze two-thirds of the blocks and only fine-tune the first 5 blocks dealing with the919

input data (along with the classification head). For all other models and baselines, we fine-tune the920

entire model together with the classifier.921

In addition to the result for Task 4 detailed in Section 6, the performance of Task 7 and 12 after922

fine-tuning are presented in Table 11 and Table 12. It is obvious that the performance can be greatly923

improved after fine-tuning, and the two transformer-based OPERA models demonstrate superior924

performance.925

Table 11: AUROC (higher is better) for linear probing and finetuning on T7 (COPD detection). Best
model highlighted.

Method # Train AudioMAE CLAP OPERA-CT OPERA-CE OPERA-GT

Linear 828 0.886 ± 0.017 0.933 ± 0.005 0.855 ± 0.012 0.872 ± 0.011 0.741 ± 0.011
Fine-tune 828 0.984 ± 0.012 0.980 ± 0.007 0.957 ± 0.024 0.808 ± 0.032 0.986 ± 0.006

Table 12: AUROC (higher is better) for linear probing and finetuning on T12 (snoring based body
position recognition). Best model highlighted.

Method # Train AudioMAE CLAP OPERA-CT OPERA-CE OPERA-GT

Linear 7468 0.649 ± 0.001 0.702 ± 0.001 0.781 ± 0.000 0.769 ± 0.000 0.742 ± 0.001
Fine-tune 7468 0.981 ± 0.002 0.935 ± 0.004 0.994 ± 0.001 0.981 ± 0.002 0.986 ± 0.003
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