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Abstract

The MedYOLO architecture, adapting YOLOv5 for 3D medical object detection, was re-
ported by its original authors to have failed to train effectively in LIDC for the detection
of lung lesions and to fail in BraTS for the detection of brain tumors when using a large
model configuration. This work introduces RevisedMedYOLO"!, achieved by carefully re-
viewing and correcting the original training implementation. We fixed critical bugs related
to dataset shuffling, initialization of bias parameters, and bounding box clamping during
zoom augmentation. Consequently, RevisedMedYOLO demonstrates successful learning on
these datasets (AP@0.5 > 0), unlike the original implementation. This study underscores
the crucial role of careful code implementation and debugging in enabling deep learning
model performance for challenging tasks in medical image analysis.
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1. Introduction

The YOLO family of deep learning models (Redmon et al., 2016) is a well-known family of
models for object detection in 2D images. Two-dimensional YOLO-based models have been
successfully applied in a wide range of applications in the medical domain (Ragab et al.,
2024). In a recent study Sobek et al. (2024) extended YOLOV5 (Jocher, 2020) to object
detection in 3D medical images, calling it MedYOLO. The benefit of MedYOLO compared
to other medical object detection models such as nnDetection (Baumgartner et al., 2021) is
that its light weight model design and one-shot architecture make it very computationally
efficient. MedYOLO has been reported to work well for the detection of abdominal organs
and the detection of heart and thoracic aorta in CT scans. However, the MedY OLO authors
reported that the model did not work at all for the detection of lung lesions in the LIDC
dataset (Armato III et al., 2015) and worked only for one of the two model configurations
tested for the detection of brain tumors in the BraTS 2021 dataset (Baid et al., 2023). In this
study, we present a revised version of MedYOLO. For this, we performed a thorough code
review and refactored the code where needed, which enabled the model to work properly in
experiments on which it has been reported to fail before.

1. Code available at: github.com/FraunhoferMEVIS/RevisedMedYOLO
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2. Methods

Our changes to the MedYOLO training setup were as follows. First, we enabled dataset
shuffling for the training data, as this is important to ensure unbiased gradient estimates
for each iteration of stochastic gradient descent. Especially if the dataset is ordered with
respect to some data characteristic, training with unshuffled data is highly detrimental to
the training process. Second, we fixed an index error in the weight initialization of the
objectness neuron bias. In YOLOVS) this is initialized to a small value that depends on the
image size, so that the model defaults to predicting most of the image as background. When
moving from 2D to 3D the indexing of the bias initialization was not properly adapted, and
therefore the model initialized the bias weight of the bounding box widths to extremely
small values, while the objectness bias was not initialized to small values accordingly. This
had the consequence that the initial model predicts extremely narrow bounding boxes in
one dimension and predicts too much foreground, so the model training always first has
to recover from this improper initialization. Third, in the random zoom augmentation,
we fixed an off-by-one error in the clamping of bounding box coordinates for zoom factors
greater than one. As MedYOLO uses only cubic images, this only caused the height of the
boxes not to be clamped correctly, potentially leading to box heights that reached out of
the visible image area.

After applying these fixes, we retrained the model on the two public datasets used by
Sobek et al. (2024), which were LIDC and BraTS. We split the data into training, validation
and test data using a 70/10/20 split, resulting in 704/101/201 training/validation/test cases
for LIDC and 876/125/250 for BraTS. We used the validation data to select the best model
during training, which was later evaluated on the test split. The models for both datasets
were trained using an image size of 350 x 350 x 350. In the LIDC data, only the small
MedYOLO configuration was trained, while on BraTS both a small and a large variant
were trained. The large variant uses 64 filters in the first convolutional layer with width
and depth multipliers of 1, while the small variant uses a width multiplier of 0.5 and a depth
multiplier of 0.33, significantly reducing the model capacity. To stay close to the original
MedYOLO study, we used the same hyperparameters and also report the average precision
metrics at a bounding box overlap of 0.5 (AP@0.5) and additionally at an overlap of 0.1
(AP@0.1).

3. Results

Our results are shown in Table 1. Although the original MedYOLO did not learn properly
in LIDC, our adapted model achieves an AP@Q.5 of 0.102. This result is not very high,
but suffices to show that the model can in principle be trained successfully on the dataset.
Also note that LIDC is a challenging dataset because the lung lesions are mostly very small
and therefore difficult to detect and localize. We assume that by proper hyperparameter
tuning these results can be significantly improved. In BraTS Sobek et al. (2024) reported an
AP@O0.5 of 0.861 for the small model and 0.000 for the large model. With our adaptions, the
model achieves an AP@Q.5 of 0.747 for the small model and 0.008 for the large model. It is
important to point out that we used different data splits than the original MedYOLO study
because we do not know which ones they used. Therefore, the metric for the small model
in BraTS is only meant to show that our model performance stays in the same range and
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Table 1: Average precision at a bounding box overlap threshold of 0.5 (@0.5) and 0.1(@0.1)
for selected datasets. MedYOLO results shown as reported in Sobek et al. (2024);
RevisedMedYOLO shows our results.

Dataset (Model) MedYOLO@0.5 RevisedMedYOLO@0.5 RevisedMedYOLO@O.1

LIDC (Small) 0.000 0.102 0.361
BraT$ (Small) 0.861 0.747 0.813
BraTS (Large) 0.000 0.008 0.411

should not be used to judge which model is better. Noting the large discrepancy between
the small and large model versions, we inspected the training and validation loss curves
and observed that the training loss decreased steadily over time while the validation loss
plateaued. We hypothesize that the large MedYOLO model overfits heavily on the BraTS
data, causing the reduced model performance compared to the small model.

In addition, we note that average precision at a bounding box overlap of 0.5 is not
well suited for 3D object detection. For 3D boxes, this is already a quite large overlap
because the additional third dimension adds into the overlap error. Therefore, many model
predictions which capture the reference object quite well are considered false positives in
the metric computation. When we instead compute the average precision at a bounding
box overlap of 0.1, the result on LIDC increases from 0.102 to 0.361, and the BraTS results
increase from 0.747 to 0.813 and from 0.008 to 0.411, indicating that the models detect
many more objects correctly than indicated by the small AP@O0.5 values.

To summarize our observations, we find that models such as RevisedMedYOLO are much
more broadly applicable to 3D medical object detection than it appeared in the original
MedYOLO study (Sobek et al., 2024). It will be the subject of future work to thoroughly
evaluate the best achievable performance of RevisedMedYOLO and compare it with other
established 3D medical object detection methods, such as nnDetection.

4. Conclusion

We revised MedYOLO, an object detection model for 3D medical images, by carefully
inspecting its training code and fixing crucial issues. After the original model failed on
two out of three experiments on public data, our RevisedMedYOLO works in all of these
cases. We expect the training results to improve significantly from the current baseline by
hyperparameter tuning and the addition of more data augmentation techniques, such as
random image rotations and intensity augmentations.
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