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Abstract

The successes of artificial neural networks
(ANNs) are largely attributed to mimicking the
human brain structures. Recent advances in neu-
roscience revealed that neurons interact with each
other through various kinds of connectivity pat-
terns to process information, in which the com-
mon connectivity patterns are also called circuit
motifs. However, many existing ANNs can only
model one or two circuit motifs in their archi-
tectures, so that their performance may drasti-
cally vary among different types of machine learn-
ing tasks. In this paper, we propose a new type
of neural network inspired by the architectures
of neuronal circuits, namely Circuit Neural Net-
work (CircuitNet). In CircuitNet, a group of
densely connected neurons, namely circuit mo-
tif unit (CMU), form the basic unit of the network,
which is capable of modeling universal circuit
motifs by adjusting the weights within the CMUs.
Compared with traditional feed-forward networks,
CircuitNet has the ability to model more types of
neuron connections such as feed-back and lat-
eral motifs. Inspired by the locally dense and
globally sparse structure of the human brain, sev-
eral iterations of signal transmission among dif-
ferent CMUs are achieved by sparse connections
through the input ports and output ports of dif-
ferent CMUs. Experiments have demonstrated
that CircuitNet can outperform popular neural
network architectures in function approximation,
reinforcement learning, image classification, and
time series forecasting tasks.
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1. Introduction
In the past decades, artificial neural networks (ANN) (Mc-
Culloch & Pitts, 1943) have been widely used as function
estimators to solve regression and classification problems,
which massively push deep learning forward in vastly differ-
ent fields such as computer vision (He et al., 2016), natural
language processing (Vaswani et al., 2017), deep reinforce-
ment learning (Mnih et al., 2015), etc. The successes of
ANN are largely attributed to mimicking the simplified hu-
man brain structures. For example, the original multi-layer
perceptrons (MLP) are collections of neurons organized as
layers (Minsky & Papert, 1969; Rosenblatt, 1958), and sig-
nals are controlled and transmitted between layers via linear
transformations and non-linear activation functions, just like
the synapses in a biological brain. Recently, the network
architectures become rather complex, but their basic units
such as convolutional layers and recurrent layers are still dif-
ferent abstractions of human nervous systems (Fukushima
& Miyake, 1982; Hubel & Wiesel, 1968; Lindsay, 2021;
Kietzmann et al., 2019; van Bergen & Kriegeskorte, 2020).

In recent years, understanding on both deep learning and
neuroscience has made great advances, and it is time to
rethink how artificial neural network designs can be further
inspired by neuroscience. Following previous ANNs, we
simplify the signal from a neuron as a real number and
focus more on how to model the signal transmission and
connectivity patterns among neurons. Recent findings in
neuroscience (Luo, 2021; Peters, 1991; Standring, 2021;
Swanson, 2012) emphasized the role of specific patterns
of synaptic connectivity in neuron communication across
different brain regions. These patterns are analogous to
the connection of neurons in ANNs, and in the rest of this
section, we will introduce how these findings can inspire
the ANN design.

One line of advances in neuroscience revealed that neurons
interact with each other through various kinds of connectiv-
ity patterns, namely the circuit motifs (Luo, 2021). There
are four types of most common circuit motifs, including
feed-forward excitation and inhibition, feed-back inhibi-
tion, lateral inhibition, and mutual inhibition, as shown in
Figure 1. However, neurons in most existing ANNs (includ-
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ing those with residual connections (He et al., 2016)) that
incorporate merely feed-forward networks can only func-
tion as the feed-forward excitation and inhibition patterns.
Even if some recurrent structures, e.g., RNNs (Hochreiter
& Schmidhuber, 1997; Cho et al., 2014), are able to model
cyclic patterns, they may fail with complex interactions
among upstream neurons before information comes in.

Another typical property of the biological nervous system
is the local density and global sparsity (Swanson, 2012).
Although a single neuron can have thousands of synapses,
most of them are located within a small region and form
a functional group for specific tasks (Hawkins & Ahmad,
2016). Only a few of them travel to other functional groups
as bridges between regions (Peters, 1991; Standring, 2021;
Swanson, 2012). In conclusion, the biological nervous sys-
tem has a locally dense and globally sparse connection struc-
ture. This is typically not true in ANNs where if we consider
the vectors in a network as functional groups with some
specific meanings, connections within a group are mostly
missing but those between groups are of high density. For
instance, the attentions between vectors in the original type
of transformer form a complete graph and are of the highest
density (Vaswani et al., 2017). On the other hand, many
parameters within a neural network have been proven to be
redundant (Glorot et al., 2011; Schwarz et al., 2021; Wen
et al., 2016; Yoon & Hwang, 2017) and the global sparsity
of the biological neurons can provide insight for us to reduce
the complexity of the neural network (Mocanu et al., 2018;
Pessoa, 2014; Strogatz, 2001).

As a result, the design of our proposed ANN follows two
principles that previous work does not fully consider: 1) the
low-level interaction pattern among neurons should contain
different types of circuit motifs (universal circuit motifs),
and 2) neuron connections should follow a locally-dense
and globally-sparse pattern to form the high-level structure.
In this paper, we propose a new type of architecture named
Circuit Neural Network (CircuitNet) for neural network
design. CircuitNet uses densely connected neurons as ba-
sic functional structure called Circuit Motif Unit (CMU)
to support universal circuit motifs. The communication
among different CMUs is achieved by the sparse connec-
tions between subsets of special neurons in CMUs, namely
input/output ports. Experiments on both synthetic and real-
world datasets prove that, with comparable or even fewer pa-
rameters, CircuitNet can outperform popular neural network
architectures in various types of tasks, demonstrating its
effectiveness and generalizability in machine learning. No-
tably, CircuitNet outperforms multi-layer perceptron in func-
tion approximation, image classification, and reinforcement
learning tasks, outperforms MLP-based, CNN-based, and
Transformer-based neural networks in image classification
tasks on CIFAR-10, CIFAR-100, and ImageNet datasets,
and outperforms CNN-based, RNN-based and Transformer-

(a) Feed-
forward

(b) Mutual (c) Feed-back (d) Lateral

Figure 1. Different motifs among neurons (Luo, 2021). A neuron
in green is the target neuron in a motif and is updated in every
iteration based on the signals from other neurons.

based neural networks in time series forecasting tasks.

Our work contributes to the machine learning community
not only by proposing a particular model that works well
with fewer parameters, but also by demonstrating the po-
tential for inspiration from neuroscience to benefit deep
learning. Moreover, our results provide computational evi-
dence for understanding the locally-dense, globally-sparse
structure of brain connections and the need for diverse types
of interactions.

2. Circuit Neural Network
In this section, we introduce the detailed implementation
of the proposed Circuit Neural Network, including how to
model the signal transmission between neurons in a Circuit
Motif Unit (CMU) to support universal circuit motifs and the
overall locally dense globally sparse connection structure.

2.1. Neuron Signal Transmission for Universal Circuit
Motifs

In this paper, the signal from a neuron is simplified as a
real number. Given two or more connected neurons, their
interaction is achieved by signal transmission, which is
modeled as a transformation function g(·; ·). As shown in
Figure 1, we aim at designing a transformation function that
can model four types of neuron connection patterns (i.e.,
circuit motifs), including feed-forward, mutual, feed-back,
and lateral motifs, corresponding to the four patterns in
recent biological findings (Luo, 2021). In feed-forward and
mutual motifs, the input signal depends merely on the state
of the previous neuron, while in the other two motifs, an
input signal may be affected by the state of another neuron or
the target neuron itself. In the following, we show the design
of our proposed transformation function and elaborate on
why this design can model different circuit motifs.

Linear Transformation One of the simplest transforma-
tion to pass signals from neuron xj to xi is written as:

g(xi;xj) = Wijxj . (1)

Wij is a learnable parameter indicating the intensity of influ-
ence from xj to xi. Most of the previous ANNs also follow
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the idea of linear transformation because it is straightfor-
ward yet effective at modeling feed-forward and mutual
motifs where input signals to a neuron are considered inde-
pendently and added up simply.

Neuron-wise Attention Linear transformation modeling
the feed-forward and mutual motifs assumes that the in-
fluence of an input signal is independent with other sig-
nals. However, this is sometimes over-simplified since there
are also feed-back and lateral connections in human brains
where the intensity of the input signal may be influenced
by signals from other neurons and the target neuron itself.
To equip CircuitNet with the ability to model these more
complicated patterns, we need to find some transformations
which take the interactions between input signals into con-
sideration.

One concept we can borrow from traditional ANNs to model
the interactions is the self-attention mechanism (Vaswani
et al., 2017), but in CircuitNet, it is calculated between
neurons (scalars) rather than groups (vectors). Therefore,
we name it neuron-wise attention and formulate it as:

g(xi;xj) = αijVjX, (2)
αij = softmax

j
((QiX)(KjX))

=
exp((QiX)(KjX))∑
k exp((QiX)(KkX))

. (3)

X contains the states of all the M neurons in a group of
connected neurons and Vi, Ki, Qi ∈ R1×M are learnable
linear projection weights for calculating value, key and
query (which are 3 scalars) for the i-th neuron.

This type of transformation can be used to model the feed-
back motif well because the influence of the input signal is
adjusted by the target neuron state.

Product between Neurons Another way to model the
interactions between input signals is to directly calculate the
product of every pair of neurons, i.e.,

g(xi;xj , xk) =
1

2
Wijkxjxk, (4)

where Wijk is a learnable parameter to model the intensity
of the influence from xj , xk to xi. It is divided by 2 to elim-
inate the influence to the gradient caused by the quadratic
term. Note that j = i or k = i is allowed in this formula
so that the lateral motif (input signal is affected by another
neuron) and the feed-back motif (input signal is affected by
the target neuron) can be modeled at the same time.

In order to model the universal circuit motifs, different trans-
formations will be used together to get a more comprehen-
sive depiction of the circuit motifs. For example, we can use
the product between neurons and the linear transformation

together and write the transformation function as below:

g(xi;xj , xk) =
1

2
Wijkxjxk + Vijxj + Vikxk. (5)

In this way, all four patterns illustrated in Figure 1 can be
modeled properly.

2.2. Locally Dense and Globally Sparse Neuron
Connections

In the previous section, we introduced how CircuitNet mod-
els the signal transmission among the connected neurons.
Now we introduce how neurons are connected in the pro-
posed CircuitNet.

Circuit Motif Unit (CMU) Following the locally-dense
and globally-sparse principle, CircuitNet contains clusters
of neurons forming several densely connected neural cir-
cuit groups as its basic units, namely Circuit Motif Units
(CMU), as X = {X1,X2, . . . ,XN} with N units and
Xi = (xi1, xi2, . . . , xiM )⊤ with M neurons per unit. By
applying the transformation function introduced in the previ-
ous section and dense connection, CMU is able to model all
types of circuit motifs, i.e., universal circuit motifs. These
CMUs are then sparsely connected by their input/output
ports. The overall architecture of CircuitNet and the struc-
ture of CMU are shown in Figure 2.

As a result, after initialization by the task-specific input, dif-
ferent CMUs cooperate with each other by a certain number
of iterations of intra-unit and inter-unit signal transmission.
Specifically, when we look at a single unit, its state is up-
dated based on two sources of signal input: the internal
update among neurons within the CMU with the aforemen-
tioned transformations, and the received signals from other
CMUs with edges to it, as follows:

Xi
(k+1) = f(g

(k)
i (Xi

(k);Xi
(k)) +

eji∈E∑
j

h
(k)
ij (Xj

(k)) + bi
(k)),

(6)
where E denotes the set of connected CMU pairs. An edge
eji ∈ E means the i-th CMU will receive signals from the j-
th CMU at every iteration. Xi

(k) denotes the state of the i-th
CMU at iteration k. g(k)i (·; ·) is the transformation function
as described in Section 2.1 to model the universal circuit
motif, h(k)

ij (·) is the transformation function to process the
signals from other CMUs, and f(·) is the normalization
and activation function. bi is the bias term. To simplify
the notation without loss of generality, i, k may be omitted
elsewhere in the formulas when we are unconcerned about
a specific CMU or iteration.

Inter-unit Signal Transmission To enable inter-unit inter-
actions by signal transmission, a specific sub-set of neurons

3



CircuitNet: A Generic Neural Network to Realize Universal Circuit Motif Modeling

Figure 2. CircuitNet architecture. As a generic neural network, CircuitNet can be used in different tasks, take different forms of inputs
and give corresponding outputs (left). It consists of several Circuit Motif Units (CMUs) connected with each other through their ports
and maintains a global sparsity (middle). Within a single CMU, neurons are interconnected densely in a complicated manner in order
to model a universal circuit motif, e.g., the green line connecting two neurons can be a linear transformation and the red lines can be a
transformation involving 3 neurons (right).

from the CMU are responsible for sending out signals based
on their own states, and another set for receiving signals
from others. We call these neurons input and output ports,
respectively. In this way, the update of neurons in a CMU
through ports can be written as:

hij(Xj) = Pin,i ◦ (Wji(Pout,j ◦Xj)). (7)

Here, Wji is a learnable linear transformation from the j-th
CMU to the i-th. Pin, Pout are binary vectors with p non-
zero elements, identifying which p neurons are the input or
output ports, and ◦ is the element-wise multiplication which
picks these neurons out when processing the signals received
or sent by the CMU. Note that we do not set the strict limit
that one neuron can only work as one role in a CMU, which
means the input port and output port may overlap on some
neurons. This can actually help the signal transmit faster
between CMUs without a direct edge between them.

3. Adaptation of CircuitNet in Specific
Applications

As a generic network architecture, we expect that CircuitNet
can be adapted to all kinds of tasks just like the MLP does.
In order to use CircuitNet as a general function approxi-
mator, different portions of the input data should be fed
into different Circuit Motif Units as initialization. Ideally,
each CMU is responsible for a specific sub-task. After that,
CircuitNet will perform several iterations of signal trans-
mission as aforementioned, and a task-specific aggregation
transformation will finally extract the information from the
network and make a prediction.

The general structure of CircuitNet is quite different from
traditional ANNs although they both take the neurons as the
most basic building blocks, so that some commonly-used
techniques may or may not be applied directly in CircuitNet.

Before diving into the details of the experiments, in this
section, we briefly show typical cases of how CircuitNet
can be adapted in specific tasks. More details on the designs
of our model under different circumstances are included in
Appendix B.

3.1. Deep Reinforcement Learning Tasks

One of the tasks we choose to evaluate CircuitNet is deep
reinforcement learning (DRL). Here, we choose a range of
challenging continuous control tasks with proprioceptive
observations (e.g., positions & velocities), which have been
widely used as the benchmarks in DRL research (Schulman
et al., 2015; 2017; Haarnoja et al., 2018). In these tasks,
MLPs are usually used as backbones for policy and value
networks. Thus, we directly substitute MLPs with Circuit-
Net without changing other parts in the learning process.

3.2. Image Classification

Another chosen task is image classification in computer vi-
sion to investigate how CircuitNet behaves in large-scale
structured data. Individual CMUs in CircuitNet are designed
to work for specific tasks or embed specific meanings. In
computer vision tasks, it is natural to use CMUs to repre-
sent features in different locations. Specifically, CircuitNet
will start the signal transmission after a convolutional layer
initializes neurons states in grid-arranged CMUs with repre-
sentations of image regions.

Previous MLPs work well on small datasets, but can hardly
scale up due to the gradient vanishing problem (Nair & Hin-
ton, 2010). Therefore, many advanced techniques have been
proposed to help ANNs to work with deeper networks (He
et al., 2016; Simonyan & Zisserman, 2014). Correspond-
ingly, we also adopt similar ideas to help CircuitNet per-
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form better when the numbers of CMUs and iterations of
signal transformation are large including weight sharing,
normalization, and feature aggregation. Also, to stabilize
the training when we stack the quadratic terms over a large
number of iterations, we propose a novel clipped sinusoidal
activation function ClipSin(x), as follows:

ClipSin(x) =


−A+ ϵ(x+ 3), x < −3,

A sin(
π

6
x), − 3 ≤ x ≤ 3,

A+ ϵ(x− 3), x > 3.

(8)

The activation function is half a period of a sinusoidal func-
tion within [-3, 3], and is clipped to a linear function outside
with a small slope to prevent zero gradients. The amplitude
is controlled by a hyperparameter A. Practically, we set
ϵ = 0.01 and A = 3.388235. In this way, we can avoid the
gradient exploding problem caused by ReLU activation or
the gradient vanishing problem caused by Tanh activation
when optimizing deep CircuitNet models. A theoretical jus-
tification on why we suppose it to work and how we choose
the hyperparameters can be found in Appendix C.

3.3. Time Series Forecasting

As a general neural network architecture, CircuitNet can
also be applied to sequence data in an autoregressive manner
just like the Recurrent Neural Network (RNN) and its vari-
ants (Hochreiter & Schmidhuber, 1997; Cho et al., 2014).
To demonstrate how this can be achieved, we adopt Circuit-
Net to several time series forecasting tasks.

The modification of CircuitNet to an autoregressive model
is simple and straightforward. First, during every iteration,
the state of a specific CMU will be updated with both the
signals from all the CMUs and the information from the
input at this timestep. Second, since the number of iterations
to transmit signals may vary according to the lengths of the
input, the parameters are shared across iterations. In this
way, we rewrite Eq. (6) to an auto-regressive form as:

Xi
(k+1) = σ(fs,i(Xi

(k)) + fin,i(tk)) (9)

fs,i(Xi) = gi(Xi;Xi) +

eji∈E∑
j

hij(Xj
(k)) + bi (10)

fin,i(tk) = σ(win,i(tk) + bin,i). (11)

In this form of the state update equation, the neuron states
will be updated from two sources: the neuron states in the
previous iteration fs,i(Xi

(k)) and the input at this time step
fin,i(tk). win,i and bin,i are the iteration-invariant learn-
able parameters to map the k-th input in the sequence to the
i-th group. After consuming the whole sequence, the final
states of the CMUs are used to predict the following data
points by a linear forecasting layer. We call the CircuitNet
in this form Recurrent CircuitNet (R-CircuitNet) to dis-

tinguish with the non-autoregressive version introduced in
Section 2.

4. Experiments and Analysis
In this section, we present the experiment results and anal-
ysis on several tasks. Introductions to the datasets and the
metrics used to compare CircuitNet with baselines can be
found in Appendix A. Although our primary goal is not
to beat the state-of-the-art models, we list them as a com-
parison. A further study on the limitations and possible
improvements are presented in the Appendix D.3.

4.1. Synthetic Experiments

The universal approximation theorem states that a feed-
forward network with bounded depth can be an arbitrarily
good approximator for any continuous functions if the width
is allowed to grow (Hornik et al., 1989; Scarselli & Tsoi,
1998). However, in practice, it may take a lot of neurons
and parameters to fit a rather simple function such as the
multiplication between two numbers, if linear transforma-
tion is the only allowed computation before the activation
function.

Because the Circuit Motif Units are able to model universal
circuit motifs, we expect our network can be used to better
approximate some complex functions with an equal number
of neurons or parameters than MLP. Therefore, we design
four types of functions and generated the synthetic datasets,
upon which we conduct the experiments to demonstrate
the function approximation ability of CMU. Appendix A.1
includes details of the synthetic functions.

4.1.1. RESULTS ON SYNTHETIC DATASETS

The performance of the two different models on the syn-
thetic datasets is presented in Table 1. Models under direct
comparison for the same dataset have similar numbers of
parameters. From the table, we can see that CMU obtains a
significantly lower error than MLP across all the functions,
indicating the better ability of CMU to perform universal
function approximation by modeling the complex interac-
tions between signals.

4.1.2. VISUALIZATION OF THE LOSS LANDSCAPES

To gain a deeper insight into the optimization process, we
plot in Figure 3 the loss landscapes of MLP and CMU on the
two multivariate datasets with GradVis (Chatzimichailidis
et al., 2019), in which the parameter space is projected onto
the plane formed by the eigenvectors corresponding to the
largest two eigenvalues of the Hessian matrix.

From the figure, we can see that the landscapes are rather
smooth for MLP and CMU. On the multivariate linear
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(a) Linear, MLP (b) Linear, CMU (c) Quadratic, MLP (d) Quadratic, CMU

Figure 3. Loss landscape and the optimization trajectory of MLP and CMU in the first 100 epochs.

Table 1. Fitting errors on the synthetic datasets. n denotes the
number of neurons.

Univariate Exponential Univariate Periodic

Model RRSE Model RRSE

MLP (n=7) 0.0021 MLP (n=64) 0.0057
CMU (n=3) 0.0013 CMU (n=15) 0.0027

Multivariate Linear Multivariate Quadratic

Model RRSE Model RRSE

MLP (n=60) 0.0029 MLP (n=129) 0.0077
CMU (n=15) 0.0010 CMU (n=25) 0.0062

dataset, both models start to converge properly to the min-
imal point within a few epochs. However, the behavior
of CMU differs from MLP on the multivariate quadratic
dataset. While CMU is still able to find the right direction to
converge within 10 epochs, MLP drifts for over 50 epochs
before the final converging process. Around these points,
the eigenvalues of the Hessian matrix are close to zero or
negative and the MLP model struggles to escape from the
relatively flat saddle points (Dauphin et al., 2014; Chatz-
imichailidis et al., 2019). This suggests that by modeling
different kinds of motifs, CMU can not only approximate
the function more accurately, but also shape the loss land-
scape advantageously for quicker convergence.

4.2. Deep Reinforcement Learning

The goal of DRL algorithms is to achieve a lower sample
complexity or higher sample efficiency, i.e., to obtain a near-
optimal policy using fewer interactions with the environ-
ments. We compare CircuitNet with MLP as the backbones
of the Soft Actor-Critic (SAC) (Haarnoja et al., 2018) policy
on several challenging continuous control tasks from the
OpenAI gym benchmark suite (Brockman et al., 2016). Be-
sides, to compare different kinds of transformation methods,
we run the SAC policy with several variants of our models.
Refer to Appendix B.2 for more training details.

The learning curves on these continuous control benchmarks

are shown in Figure 4. L, P, A after CircuitNet represents
the 3 types of transformations (linear transformation, prod-
uct between neurons, neuron-wise attention) respectively.
Among the shown 3 environments here, CircuitNet achieves
significantly better performance than MLP on 2 benchmarks
and is comparable in the third environment. It’s notable
that with the product between neurons, CircuitNet fails in
DRL tasks. This may be because the overly small number of
neurons in CMU (in order to achieve a comparable number
of parameters) conversely harms the expressiveness of the
network.

4.3. Image Classification

We conduct experiments on the image classification
tasks on MNIST(LeCun & Cortes, 2010), CIFAR-
10/100(Krizhevsky et al., 2009) and ImageNet (Deng et al.,
2009) to demonstrate how CircuitNet performs after scaling
up with techniques listed in Section 3.2.

Table 2. Experiment results on MNIST. Numbers in parentheses
for MLP denote the number of hidden units.

Model Accuracy # Params (M)

3-layer MLP (500, 150) (LeCun et al., 1998) 0.976 0.47
2-layer MLP (800) (Simard et al., 2003) 0.984 0.64

CircuitNet 0.993 0.14

Ensemble of ensembles (An et al., 2020) 0.999 -

MNIST We design a tiny CircuitNet containing 64 neu-
rons and 48 ports in every CMU and for every batch of
inputs with two iterations of signal transmissions. As shown
in Table 2, comparing with two MLP models, CircuitNet
obtains a higher accuracy with less than 30% of parameters
because of the ability to model the universal circuit motifs
among features.

CIFAR-10/100 For CIFAR datasets, we design a larger
CircuitNet containing 32 neurons and 24 ports in each CMU
with 9 iterations of signal transmissions. As shown in Table
3, we compare CircuitNet with some of the existing SOTA
image classification models, including CNN-based method
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(a) Ant-v2 (b) HalfCheetah-v2 (c) Hopper-v2

Figure 4. Learning curves of CircuitNet and MLP on the first three continuous control benchmarks.

Table 3. Experiment results on CIFAR-10 and CIFAR-100.

Model
Accuracy

# Params (M) # FLOPs (M)
CIFAR-10 CIFAR-100

12-layer MLP 0.572 0.246 5.2 5.5
ResNet-18 (He et al., 2016) 0.870 0.570 11.2 75.1
VIT (Dosovitskiy et al., 2020) 0.809 0.542 9.6 1283
Swin Transformer (Liu et al., 2021) 0.846 0.554 26.7 1049
MLP-Mixer (Tolstikhin et al., 2021) 0.801 0.547 18.7 406

CircuitNet-L 0.858 0.588 15.5 39.7
CircuitNet-L+A 0.853 0.588 15.7 74.9
CircuitNet-L+P 0.913 0.649 4.0 41.3

EffNet-L2+SAM (An et al., 2020) 0.970 0.961 - -

(ResNet), transformer-based methods (ViT and Swin Trans-
former) and MLP-based method (MLP-Mixer). For more
complex natural images, vanilla MLP does not converge
well and performs badly after a direct increase in model size.
Since CIFAR-10/100 are relatively small, transformer-based
methods perform worse due to the lack of training data, e.g.,
without pretraining on ImageNet. CircuitNet outperforms
all the compared methods when applying product to model
the interactions between neurons. Meanwhile, by doubling
the number of neurons and ports, CircuitNet achieves com-
parable performance with only linear or neuron-wise atten-
tion (i.e., CircuitNet-L and CircuitNet-L+A).

ImageNet As shown in Table 4, by further scaling up
CircuitNet to 12 transmission iterations, on the large-scale
ImageNet dataset, CircuitNet achieves better performance
than existing state-of-the-art methods (with a comparable or
larger number of parameters) including CNN-based method
(ResNet), MLP-based method (ResMLP), transformer-
based methods (ViT-B/16, PVT-Tiny, and Poolformer-S12)
and a very recent GNN-based method (Pyramid ViG-Ti).

4.4. Time series Forecasting

To test the ability of CircuitNet in the autoregressive manner,
i.e., Recurrent CircuitNet (R-CircuitNet), to be applied to
sequential data, we include several multivariate time series
forecasting tasks and compare our model to various kinds
of time series forecasting methods.

Table 4. Experiment results on ImageNet. The baseline results
were from (Han et al., 2022).

Model # Params (M) # FLOPs (B) Accuracy

ResNet-18 (He et al., 2016) 12 1.8 0.706
ViT-B/16 (Dosovitskiy et al., 2020) 86.4 55.5 0.779
PVT-Tiny (Wang et al., 2021) 13.2 1.9 0.751
ResMLP-S12 (Touvron et al., 2022) 16.7 3.2 0.770
Poolformer-S12 (Yu et al., 2022b) 12 2.0 0.772
Pyramid ViG-Ti (Han et al., 2022) 10.7 1.7 0.782

CircuitNet 11.0 1.8 0.785

CoCa (Yu et al., 2022a) 2100 - 0.910

The time series forecasting results are presented in Ta-
ble 5. Statistical methods (ARIMA (Box et al., 2015),
GP (Roberts et al., 2013)), CNN-based model (TCN (Lea
et al., 2017)), RNN-based model (GRU (Cho et al., 2014)),
transformer based-models (Autoformer (Wu et al., 2021), In-
former (Zhou et al., 2021)), and hybrid model (LSTNet (Lai
et al., 2018)) are all listed for comparison and they tend to be
effective in one or two specific settings. As for R-CircuitNet,
the three different variants perform similarly and outperform
strong baselines by a considerable margin across most tasks,
and still get comparable numbers in others.

5. Related Works
Many previous neural network architectures were designed
by closely mimicking biological neural organizations (Ben-
gio et al., 2015). One of the earliest prior arts might
be single/multi-layer perceptron (Rosenblatt, 1958; Min-
sky & Papert, 1969), which was a mathematical simplifi-
cation of signals being received from dendrites and sent
down to the axon once activated. Convolutional neural net-
works (Fukushima & Miyake, 1982; LeCun et al., 1998;
Krizhevsky et al., 2012) apply filters over an input image,
which can learn feature maps akin to the planes of S-cells
in the Neocognitron (Hubel & Wiesel, 1968; Fukushima
& Miyake, 1982; Lindsay, 2021). Recurrent neural net-
works (Hochreiter & Schmidhuber, 1997; Cho et al., 2014)
achieved great successes in modeling sequential dependen-
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Table 5. Experiment results on time series datasets with different forecasting horizons (6, 24).

Model
Solar-energy Pems-bay Metr-la

6 24 6 24 6 24

RRSE↓ R2↑ RRSE↓ R2↑ RRSE↓ R2↑ RRSE↓ R2↑ RRSE↓ R2↑ RRSE↓ R2↑
ARIMA (Box et al., 2015) 0.202 0.951 0.365 0.847 0.532 0.741 0.548 0.723 0.575 0.687 0.742 0.441
GP (Roberts et al., 2013) 0.225 0.944 0.388 0.836 0.544 0.732 0.532 0.712 0.572 0.685 0.738 0.437
LSTNet (Lai et al., 2018) 0.218 0.950 0.360 0.857 0.521 0.752 0.560 0.706 0.564 0.697 0.732 0.475
GRU (Cho et al., 2014) 0.219 0.950 0.355 0.875 0.529 0.747 0.573 0.703 0.517 0.759 0.797 0.429
TCN (Lea et al., 2017) 0.210 0.954 0.445 0.804 0.487 0.785 0.551 0.718 0.570 0.698 0.705 0.545
Autoformer (Wu et al., 2021) 0.212 0.960 0.432 0.852 0.452 0.782 0.543 0.711 0.565 0.762 0.692 0.548
Informer (Zhou et al., 2021) 0.239 0.948 0.358 0.889 0.522 0.755 0.547 0.733 0.579 0.697 0.747 0.516

R-CircuitNet-L 0.194 0.964 0.350 0.884 0.377 0.870 0.545 0.730 0.445 0.822 0.665 0.603
R-CircuitNet-L+A 0.199 0.963 0.344 0.888 0.375 0.872 0.555 0.719 0.456 0.814 0.664 0.603
R-CircuitNet-L+P 0.200 0.962 0.369 0.871 0.370 0.875 0.551 0.723 0.444 0.823 0.673 0.594

cies among the data due to mimicking the recurrent connec-
tions within and between stages of the cascade in the human
brain (Kietzmann et al., 2019; van Bergen & Kriegeskorte,
2020). In spiking neural networks (Maass, 1997; Woźniak
et al., 2020), each neuron fires when its input crosses a
threshold, which was inspired by the occurrence of infor-
mation transmission when a membrane potential reaches a
threshold in the cortex (Gerstner & Kistler, 2002; Ghosh-
Dastidar & Adeli, 2009). Inspired by visual information
representation in the human visual cortex (Qiao et al., 2018),
the capsule neural network adds structures called “capsules”
to a CNN, each of which represents an object or object part
and the combinations of which form more stable represen-
tations. Although the above neural network architectures
have achieved huge successes in specific tasks, they are not
generic enough to model the combinations of different types
of neural circuits, e.g., a combination of feedforward excita-
tion/inhibition, lateral inhibition, and mutual inhibition in
human brains (Luo, 2021).

Besides neural network architectures, the successes of many
popular operations in deep learning can also be explained
from the perspective of biological neural processes. For
instance, the attention mechanism has become an integral
part of many sequence modeling algorithms, which can cap-
ture both local dependencies and long-range dependencies
in the sequence or space (Bahdanau et al., 2014; Vaswani
et al., 2017; Veličković et al., 2018). In the biological visual
systems, the attention mechanism is also considered as an
important ability to flexibly control with limited computa-
tional resources in nervous systems, in which neurons that
represent the attended features have higher firing rates than
those that represent unattended features (Treue & Trujillo,
1999; Lindsay, 2020). Dropout (Srivastava et al., 2014)
is another popular technique for preventing deep neural
networks from overfitting, which is analogous to the charac-
teristic of biological neural networks randomly switching

neurons on or off during training and inference (Faisal et al.,
2008; Deco et al., 2009). Normalizations, such as batch
normalization (Ioffe & Szegedy, 2015) and weight normal-
ization (Salimans & Kingma, 2016), are popular techniques
to facilitate the training of deep neural networks. This phe-
nomenon has been found in invertebrates to mammals as
a canonical neural computation, in which the responses of
some neurons are divided by a common factor reflecting
the summed activity of a pool of neurons (Carandini &
Heeger, 2012). The S-shaped rectified linear activation unit
(SReLU) (Jin et al., 2016) was designed by following two
fundamental laws in psychophysics and neurosciences. The
noisy softplus activation function (Liu & Furber, 2016) and
evolvable neural units (ENU) (Bertens & Lee, 2020) were
both inspired by the response function of Leaky Integrate-
and-Fire neurons. The above works are orthogonal to the
proposed CircuitNet, and we leverage these operations to
improve CircuitNet in machine learning tasks.

6. Conclusion
This paper proposes a new type of neural network inspired
by the architecture of neural circuits, where groups of
densely connected neurons, namely Circuit Motif Units,
form the basic units for modeling universal circuit motifs,
and a locally-dense and globally-sparse high-level network
structure is applied inspired by the connections among func-
tional regions of the brain. Experiments on synthetic and
real datasets demonstrate that CircuitNet can outperform
popular neural network architectures, such as MLP, CNN,
RNN, and transformer, in various machine learning tasks.

We expect two lines of works lying ahead to be explored.
One direction is to refine the architecture with more fine-
grained knowledge from brain connectome researches, and
the other is to further boost the model’s capability with
advanced machine learning techniques.
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Woźniak, S., Pantazi, A., Bohnstingl, T., and Eleftheriou, E.
Deep learning incorporating biologically inspired neural
dynamics and in-memory computing. Nature Machine
Intelligence, 2(6):325–336, 2020.

Wu, H., Xu, J., Wang, J., and Long, M. Autoformer: Decom-
position transformers with auto-correlation for long-term
series forecasting. Advances in Neural Information Pro-
cessing Systems, 34:22419–22430, 2021.

11



CircuitNet: A Generic Neural Network to Realize Universal Circuit Motif Modeling

Yoon, J. and Hwang, S. J. Combined group and exclusive
sparsity for deep neural networks. In International Con-
ference on Machine Learning, pp. 3958–3966. PMLR,
2017.

Yu, J., Wang, Z., Vasudevan, V., Yeung, L., Seyedhosseini,
M., and Wu, Y. Coca: Contrastive captioners are image-
text foundation models. arXiv preprint arXiv:2205.01917,
2022a.

Yu, W., Luo, M., Zhou, P., Si, C., Zhou, Y., Wang, X., Feng,
J., and Yan, S. Metaformer is actually what you need
for vision. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 10819–
10829, 2022b.

Zainuddin, Z. and Pauline, O. Function approximation
using artificial neural networks. WSEAS Transactions on
Mathematics, 7(6):333–338, 2008.

Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H.,
and Zhang, W. Informer: Beyond efficient transformer
for long sequence time-series forecasting. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 11106–11115, 2021.

A. Details of the Datasets
A.1. Synthetic Datasets

The synthetic datasets are generated via:

y = f(X),

where f(·) is a known function which the model needs to
fit. We include both univariate and multivariate functions in
our synthetic dataset.

• The univariate functions are from (Zainuddin &
Pauline, 2008) with proper normalization. The train set
and test set are generated by evenly sampling x within
[-1, 1].

• The multivariate functions are generated by sampling
randomly ak from U(−1, 1) and ik, jk from {1, 2,
..., 10}. The train set and test set are generated by
randomly sampling Xi from U(−1, 1).

The details of the datasets are presented in Table 6. We lever-
age the Root Relative Squared Error (RRSE) to evaluate the
fitting quality:

RRSE =

√√√√∑M
m=1 ∥ym − ŷm∥2∑M
m=1 ∥ym − ȳ∥2

, (12)

where M is the size of the test set and ȳ is the average of
ym.

(a) Univariate Exponential (b) Univariate Periodic

Figure 5. The two univariate functions in synthetic datasets.

A.2. Reinforcement Learning for Continuous Control

The continuous control experiment on 5 different bench-
marks are fetched directly from the OpenAI gym bench-
mark suite (Brockman et al., 2016). The dimensions of the
observation space and action space are listed in Table 7:

A.3. Image Classification

CircuitNet is evaluated on three public image classifica-
tion datasets, namely MNIST (LeCun & Cortes, 2010), CI-
FAR(Krizhevsky et al., 2009) and ImageNet (Deng et al.,
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Table 6. Synthetic datasets

Dataset Name y = f(x) or f(X) # Train # Test Dimension of X Range of Xi

Univariate Exponential (x+ 1)e−3x+3/50 100 200 1 [-1, 1]

Univariate Periodic sin(4πx)e−5x 100 200 1 [-1, 1]

Multivariate Linear
∑20

k=1 akXk 2,000 200 20 [-1, 1]

Multivariate Quadratic
∑20

k=1 akXikXjk 2,000 200 10 [-1, 1]

Table 7. Dimension of spaces in continuous control environments.

Environment Observation Action

Ant-v2 111 8
HalfCheetah-v2 17 6
Hopper-v2 11 3
Humanoid-v2 376 17
Walker2d-v2 17 6

2009). MNIST is a handwriting digit recognition dataset
using 60,000 images as training set and 10,000 images as
test set, with ten categories, 0 to 9. The CIFAR-10 dataset
consists of 50,000 images of size 32 × 32 in training set
and 10,000 images in test set with 10 classes. CIFAR100
has the same train/test split but contains 100 classes in total.
For ImageNet dataset we use the most common ImageNet
(ILSVRC) subset that contains 1,000 object classes with
totally 1,281,167 training images and 50,000 validation im-
ages.

A.4. Time Series Forecasting

We have leveraged three common benchmarking datasets
for time series forecasting task. Solar (Lai et al., 2018) in-
cludes the solar power production records in 2006, which
are sampled every 10 minutes from 137 PV plants in Al-
abama State. Pems-bay (Li et al., 2017) contains average
traffic speed records measured by 325 sensors in the Bay
Area ranging from Jan 2017 to May 2017, offered by Califor-
nia Transportation Agencies (CalTrans). Metr-la (Li et al.,
2017) contains average traffic speed measured by 207 loop
detectors on the highways of Los Angeles County ranging
from Mar 2012 to Jun 2012, provided by the Los Angeles
Metropolitan Transportation Authority.

In addition to the Root Relative Squared Error (RRSE) in
Equation (12), we also include coefficient of determination
(R2) as the evaluation metric:

R2 =
1

MNT

M∑
m=1

N∑
i=1

T∑
t=1

[
1− ∥yi,tm − yi,tm ∥

∥yi,tm − ȳi,t∥

]
. (13)

Here, M is the size of test sets, N is the number of variables,
and T is the forecasting horizon. yi,tm is the t-th future value

of the i-th variable for the m-th sample in the test set, and ȳ
is the average over all test samples.

B. Model Choices and Training Details
We list the details of training for reproducing.

B.1. Synthetic Datasets

We use an MLP with 3 layers for this experiment. This
is the closest structure to our CMU, where input data is
first mapped to CMU via a linear function, then one iter-
ation of signal transmission is conducted with both linear
transformation, neuron-wise attention, and product between
neurons, and the 1-dimension result is obtained by another
linear function. Since modeling universal motifs introduces
more parameters, we list models with similar number of
parameters rather than hidden neurons for fair comparison
in Table 1.

When training with gradient descent optimizer in the two
univariate datasets, we find that both models will occasion-
ally stuck in some local minima. Therefore, we leverage the
Adam optimizer (Kingma & Ba, 2015). As for the multivari-
ate functions, because we need to obtain the optimization
trajactory for analysis, we still use the mini-batch gradient
descent algorithm with batch size of 128. The learning rate
was set to 1× 10−2 with 0.9 momentum, and all the mod-
els are optimized for 10,000 epochs at maximum to ensure
convergence.

B.2. Reinforcement Learning for Continuous Control

In this paper, we use Soft Actor-Critic (SAC) (Haarnoja
et al., 2018), a popular off-policy deep reinforcement learn-
ing (DRL) algorithm with high sample efficiency as an
example, but our method can be similarly applied to other
Reinforcement Learning algorithms using neural networks
as value function approximators or policy networks. We use
CircuitNet as backbones for the policy function and two Q-
functions in the SAC algorithm. Intuitively, for tasks where
the states and actions have specific and known meanings,
we may divide the inputs into groups based on their mean-
ings and each group corresponds to the input of a CMU in
CircuitNet. However, the physical meaning of the states
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and actions are not exposed in selected tasks, so we simply
map all the input dimensions to groups with differently ini-
tialized linear layers. The CircuitNets used in DRL tasks
are relatively small and do not have many CMUs, so the
connections among CMUs can be designed as a complete
graph without introducing too many parameters.

The detailed hyperparameters are listed in Table 8. The
sizes of the network are designed to match the number of
parameters of the MLP baseline in the original paper. As for
the learning rate and the activation function, we conducted
grid search for every possible value in the sets and the best
results of each model is reported. Because of the high
fluctuation in deep reinforcement learning, we ran all the
experiments with 4 different seeds to present the error bar
in the figure.

Table 8. Training details for deep reinforcement learning. Hyper-
parameters with multiple choices are searched.

Soft Actor Critic

Optimizer Mini-batch gradient descent
Batch size 256
Learning rate { 3× 10−4, 1× 10−4, 5× 10−5

3× 10−5, 1× 10−4 }
Discount 0.99
Starting Steps 10000
Replay buffer size 1× 106

Model Details

# CMUs 4
# Iterations of signal transmission 2
# Neurons per CMU

CircuitNet-L 64
CircuitNet-L+A 40
CircuitNet-L+P 32

# Ports per CMU
CircuitNet-L 48
CircuitNet-L+A 30
CircuitNet-L+P 24

Activation function {ReLU, ClipSin}

B.3. Image Classification

B.3.1. GENERAL DESIGN CHOICES

Topology of CMUs We first map the input image to
CMUs based on the regions. Specifically, a convolution
layer is applied to the input image and extracts representa-
tions for different regions. Then we directly use the repre-
sentations to initialize the states of the neurons in CMUs.
As a result, each CMU corresponds to a region of the input
image after initialization and the CMUs are arranged as
grids.

For MNIST and CIFAR datasets, to transmit signals among
CMUs, we use 2k-hop connections (k ∈ N), meaning that
the (i × 2k)-th CMU in every row and every column can
communicate with the [(i− 1)× 2k]-th and [(i+ 1)× 2k]-

th CMUs. This topology keeps the global sparsity with
O(N) connections while enabling arbitrary two CMUs to
communicate within O(logN) iterations, where N is the
total number of CMUs.

For ImageNet dataset, because of the huge number of CMUs,
even grid connections will introduce too many edges. Thus
we follow (Han et al., 2022) and consider the correlation
between CMU signals by adding edges between CMUs with
top-K(K = 9) lowest output signal distance to accelerate
signal transmission process.

Weight Sharing In order to reduce the dimension of the
parameter space and utilize the spatial-invariant property
for the image classification task, weights are shared across
CMUs in the same iteration to transmit signals within the
units. However, since the topological position of CMUs are
not completely symmetric, inter-unit weights between ports
are not shared.

Weight Normalization Normalization is a useful tech-
nique to stabilize the training process. Besides batch nor-
malization, in CircuitNet, we also consider the weight nor-
malization (Salimans & Kingma, 2016) as an alternative
option. If we rewrite the update of neurons as:

Xi
(k+1) = ϕ(VX̂(k)), (14)

instead of using V directly, we use its direction W to do
the transformation:

W =
V

∥V∥
. (15)

Here, X̂(k) is a vector whose elements can be calculated by
the states from the previous iteration k and constants and V
is the learnable parameters in this iteration.

We use this type of normalization to address the problem
caused by the different number of inputs for different neu-
rons due to the incoming edges and different roles of neu-
rons. Without the weight normalization technique, this
problem becomes even harmful when parameters are shared
across CMUs which are topologically asymmetric.

Feature Aggregation Compared to the number of cate-
gories in image classification datasets, the hidden size in
every iteration is still too high to project onto the output
space. Therefore, we apply learnable linear aggregation
function similar to pooling layers to merge different CMUs
together based on the spatial locations after certain itera-
tions.

B.3.2. TRAINING DETAILS FOR DIFFERENT DATASETS

MNIST We design a tiny CircuitNet that contains 4× 4
groups with each CMUs containing 64 neurons and 48 ports,
and the signal transmission is conducted for two iterations.
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Table 9. Training details for Image Classification. Hyperparame-
ters with multiple choices are searched.

Optimization

Optimizer {Adam, SGD}
Maximum learning rate { 1× 10−1, 1× 10−2, 1× 10−3

5× 10−4, 1× 10−4 }
# Warm-up iterations {0, 5}
Learning rate decay Cosine Annealing Scheduler
Number of epochs 600

Model Details

# CMUs
MNIST 4 × 4
CIFAR 16 × 16
ImageNet 112 × 112

# Iterations of signal transmission
MNIST 2
CIFAR 9
ImageNet 12

# Neurons per CMU
MNIST 64
CIFAR

CircuitNet-L 64
CircuitNet-L+A 52
CircuitNet-L+P 32

ImageNet 48
# Ports per CMU

MNIST 48
CIFAR

CircuitNet-L 48
CircuitNet-L+A 39
CircuitNet-L+P 24

ImageNet 36
Activation function {Tanh, ReLU, ClipSin}
Normalization {Batch Normalization

Weight Normalization}

CIFAR CircuitNet-L+P contains 16 × 16 CMUs with
each CMU containing 32 neurons and 24 ports, the signal
transmission is conducted for 9 iterations. To reduce the
computation cost and accelerate the signal transmission, we
merge the neighboring 4 CMUs at the 3rd and 6th signal
transmission iteration to reduce the total CMU numbers,
which cut the number of CMUs to 1/4 after each merge
operation. CircuitNet-L simply leverages Equation (1) to
transmit signals and CircuitNet-L+A replace the product
transformation in Equation (5) with neuron-wise attention
in (2) and (3). In order to make the these two CircuitNet
variants to have comparable number of parameters and/or
FLOPs, the CMU size is increased to 64, 52 neurons and
the port size is increase to 48, 39 ports, respectively.

ImageNet We further scale-up the CircuitNet to achieve
better performance on ImageNet containing 12 transmission
iterations splitted to 4 stages with 2, 2, 4 and 2 iterations,
respectively. Following (Han et al., 2022), to suppress over-
smoothing, a linear transformation is added both before and
after the signal transmission. Furthermore, before feed in-

puts into the CircuitNet, we add a Stem structure containing
3 convolution layers that down-sample the original image
to a 112 × 112 feature-map. Each feature vector in the
feature-map corresponds to a initial state of a CMU.

Currently, for ImageNet, CircutNet applies only linear trans-
formation for intra-CMU signal transmission but already
achieves comparable performance with existing state-of-the-
art methods.

For training implementation, random-crop and horizontal-
flip data augmentations are applied. The hyperparameters
are summarized in Table 9.

B.4. Time Series Forecasting

The recurrent CircuitNet initialize all the states of CMUs
with zeros at the beginning, i.e., Xi

(0) = 0. Then it con-
sumes the incoming data point, maps it to CMUs, and up-
dates the states according to Equation (9). After the whole
time series are proceeded, we obtained the feature vector of
the sequence by down-sampling from the final states of all
the CMUs.

The tasks introduced in A.4 are multivariate time series
forecasting tasks. However, in order to limit the extra de-
signs to the minimal, we simplify the multivariate inputs
to univariate time series. Specifically, we use the same re-
current CircuitNet to generate the feature vectors for all the
variate sequences separately, and aggregate them before the
forecasting layer.

In our experiment, we have 1 ∼ 12 CMUs for the recur-
rent CircuitNet. Thus the connections among CMUs are
designed as a complete graph similar to the case in reinforce-
ment learning. A summary of hyperparameters are included
in Table 10. We run all the experiments with 3 different
seeds and the average results are reported.

Table 10. Training details for time series forecasting. Hyperparam-
eters with multiple choices are searched.

Optimization

Optimizer Adam
Loss function MSELoss
Learning rate 1× 10−3

Weight decay 1× 10−5

Number of epochs 1000

Model Details

# Neurons per CMU {4, 8, 16}
# Ports per CMU 0.75 × # Neurons per CMU
# Total Neurons {16, 32, 48}
Dimension of feature vector {1, 2, 4, 8} × # Variates
Activation function Tanh
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C. Activation Design for Quadratic Terms in
CMU

In the image classification task, the signals will transmit for
several iterations within a CMU. When the number of itera-
tions becomes large, it may cause the gradient vanishing or
gradient exploding problem, prohibits the model to converge
correctly. If all the operations are linear, this problem has
already been solved effectively with Rectified Linear Units
(ReLU)(Krizhevsky et al., 2012). However, when quadratic
terms are introduced in Equation (4) and (5), we need to
seek another solution to address this problem. As mentioned
in Section 3.2, instead of traditional activation functions, we
use a clipped sinusoidal activation function ClipSin(x):

ClipSin(x) =


−A+ ϵ(x+ 3), x < −3,

A sin(
π

6
x), − 3 ≤ x ≤ 3,

A+ ϵ(x− 3), x > 3.

(16)

And we set ϵ = 0.01 and A = 3.388235. We provide some
theoretical justification on this design here. We will start by
investigating how ReLU may prevent the gradient from van-
ishing or exploding and why it fails in quadratic situations.
Then we introduce how to find a satisfactory function and
why the proposed ClipSin may be useful. Finally, we show
how we determine the parameters.

Figure 6. Plot of y = ClipSin(x)

C.1. ReLU Activation in Linear Transmissions

The linear transmission of signals in iteration k with an
activation function can be written as:

X(k+1) = σ(W(k)X(k) + b(k)), (17)

or if we focus on a specific neuron:

x(k+1)
m = σ(

∑
i

w
(k)
mix

(k)
i + b(k)m ) = σ(x′(k+1)

m ). (18)

The derivative of neurons between iterations is:

∂x
(k+1)
m

∂x
(k)
n

= σ′(x′(k+1)
m )w(k)

mn. (19)

According to the chain rule, the derivatives will be multi-
plied together with some additional terms introduced by
normalization and the optimization target. When the activa-
tion function σ(·) is the ReLU function, σ′(·) is either 0 or
1. This means the ReLU function is essentially turning on
or off the paths to pass the gradient without bringing in any
bias on the gradient scales.

C.2. Gradients in Quadratic Transmissions

When we have the linear and quadratic terms at the same
time, the equation of transmission will be rewritten as:

X(k+1) =σ(
1

2
W(k)X̂(k) +V(k)X(k) + b(k)), (20)

x(k+1)
m =σ(

1

2

∑
i,j

w
(k)
mijx

(k)
i x

(k)
j +

∑
i

v
(k)
mix

(k)
i + b(k)m )

=σ(x′(k+1)
m ). (21)

Here, X̂ is the vector containing the product between every
two elements in X = (x1, x2, ..., xn)

⊤ ∈ Rn, i.e. X̂ =

(x2
1, x1x2, ..., xnxn−1, x

2
n)

⊤ ∈ Rn2

. Now the derivative of
neurons between adjacent iterations is:

∂x
(k+1)
m

∂x
(k)
n

= σ′(x′(k+1)
m )·t(k)mn, (22)

t(k)mn =
1

2

∑
i̸=n

(w
(k)
min + w

(k)
mni)x

(k)
i + w(k)

mnnx
(k)
n + v(k)mn

=
1

2

∑
i̸=n

(w
(k)
min + w

(k)
mni)σ(x

′(k)
i )

+w(k)
mnnσ(x

′(k)
n ) + v(k)mn

If we apply the chain rule once, we get:

∂x
(k+1)
m

∂x
(k−1)
n

=
∑
l

∂x
(k+1)
m

∂x
(k)
l

∂x
(k)
l

∂x
(k−1)
n

=σ′(x′(k+1)
m )

∑
l

t
(k)
mlσ

′(x
′(k)
l )t

(k−1)
ln

=σ′(x′(k+1)
m )

∑
l

t
(k−1)
ln

[1
2

∑
i ̸=l

(w
(k)
mil + w

(k)
mli)σ(x

′(k)
i )σ′(x

′(k)
l )

+ w
(k)
mllσ(x

′(k)
l )σ′(x

′(k)
l ) + v

(k)
ml σ

′(x
′(k)
l )

]
(23)

From Equation (23), we can find 3 factors from the
activation function that influence the gradient scale:
σ(x

′(k)
i )σ′(x

′(k)
l ), σ(x

′(k)
l )σ′(x

′(k)
l ), and σ′(x

′(k)
l ), and

similar terms will be multiplied when we apply the chain
rule to more iterations. Then we can analyze how different
activation functions behave:

• σ(x) = ReLU(x). When x < 0, σ′(x) = 0 and
it turns off the gradient propagation path properly.
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(a) Ant-v2 (b) HalfCheetah-v2 (c) Hopper-v2

(d) Humanoid-v2 (e) Walker2d-v2

Figure 7. Learning curves of CircuitNet and MLP on all 5 continuous control benchmarks.

However, when x ≥ 0, y ≥ 0, even if we have
σ′(x) = σ′(y) = 1, σ(x)σ′(y) = σ(x)σ′(x) = x are
both unbounded. This will cause gradient explosion or
gradient vanishing based on the input scale.

• σ(x) = tanh(x), then we have |σ(x)| < 1, |σ′(x)| ≤
1, and |σ(x)σ′(x)| ≤ 2

√
3

9 ≈ 0.385. The occurrence
of gradient vanishing is doomed.

Therefore, we must come up with a new activation func-
tion which can properly locate all |σ′(x)|, |σ(y)σ′(x)|, and
|σ(x)σ′(x)| around 1.

C.3. Clipped Sinusoidal Activation Function

The simplest function we find to be satisfactory is the si-
nusoidal function A sin(ωx). Let σ(x) = A sin(ωx), we
have:

|σ′(x)| = |Aω cos(ωx)| ≤ Aω, (24)

|σ(y)σ′(x)| = |A2ω sin(ωy) cos(ωx)| ≤ A2ω, (25)

|σ(x)σ′(x)| = |1
2
A2ω sin(2ωx)| ≤ 1

2
A2ω, (26)

which can all be probably bounded and scaled by carefully
choosing A and ω.

However, one thing annoys us is the fact that sin(x) is
not monotonic, so we choose to use only half a period of
the function in [− π

2ω ,
π
2ω ] and use a linear function with

small slope outside this region. The complete format of the

Clipped Sinusoidal Activation Function ClipSin(x) is:

ClipSin(x) =


−A+ ϵ(x+

π

2ω
), x < − π

2ω
,

A sin(ωx), − π

2ω
≤ x ≤ π

2ω
,

A+ ϵ(x− π

2ω
), x >

π

2ω
.

(27)

C.4. Choice of Parameters

The intuition of selecting the parameters is to make the
scales of the terms in Equation (24), (25), and (26) as close
to 1 as possible, or at least, in the sense of expectation.
Supposing that we can have a normalization layer before
the activation function that normalize x

′(k)
l to the standard

normal distribution N (0, 1), we first choose ω = π
6 so

that [− π
2ω ,

π
2ω ], i.e. [-3, 3], contains the majority of x′(k)

l .
Also, considering that most terms in Equation (23) are
σ(x

′(k)
i )σ′(x

′(k)
l ), we force:

E
x
′(k)
i ,x

′(k)
l ∼N (0,1)

[|A2ω sin(ωx
′(k)
i ) cos(ωx

′(k)
l )|] = 1.

(28)

Solving the equation and discarding the negative root, we
get:

A = 2e
π2

72

√
3

πerfi( π
6
√
2
)
≈ 3.388235, (29)
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Table 11. Description of different CircuitNet variants. N is the number of neurons per Unit.

Variant of CircuitNet Intra-unit Signal Transmisson Motifs to Model # Parameters per CMU

(R-)CircuitNet-L Linear Feed-forward, Mutual N2

(R-)CircuitNet-L+A Linear, Neuron-wise attention Feed-forward, Mutual, Feed-back 4N2

(R-)CircuitNet-L+P Linear, Product between Neurons Feed-forward, Mutual, Feed-back, Lateral N3 +N2

Table 12. Part of the experiment results on time series datasets with different forecasting horizons (6, 24).

Model
Solar-energy Pems-bay Metr-la

6 24 6 24 6 24

RRSE↓ R2↑ RRSE↓ R2↑ RRSE↓ R2↑ RRSE↓ R2↑ RRSE↓ R2↑ RRSE↓ R2↑
Best of compared baselines 0.202 0.960 0.355 0.889 0.452 0.782 0.532 0.733 0.517 0.762 0.692 0.548

R-CircuitNet-L 0.216 0.956 0.382 0.861 0.378 0.869 0.545 0.730 0.450 0.818 0.692 0.570
R-CircuitNet-L+A 0.212 0.957 0.409 0.841 0.377 0.870 0.561 0.712 0.448 0.820 0.667 0.600
R-CircuitNet-L+P 0.211 0.958 0.515 0.748 0.380 0.868 0.563 0.711 0.447 0.820 0.656 0.613

where erfi(z) = −i · erf(iz) is the imaginary error function.
This is the amplitude of the sinusoidal function we use in
our model. As for the slope of the linear function ϵ, we
follow the design in LeakyReLU(Maas et al., 2013) to set it
to 0.01.

D. Additional Experiment Results and
Analysis

D.1. Additional Experiment Results of Deep
Reinforcement Learning in More Environments

We present results on all 5 environments in Figure 7. For
the additional two environments, our model outperforms the
baseline on Walker2d-v2 and achieved comparable results
on Humanoid-v2.

D.2. Ablation Studies

In order to investigate the effect of modeling different types
of motifs in real tasks, we compared 3 variants of CircuitNet
in our experiments, (R-)CicuitNet-L, (R-)CicuitNet-L+A,
and (R-)CicuitNet-L+P. The transition functions used for
intra-unit signal transmissions and motifs to model are listed
in Table 11.

We attached some results from Table 3 and Table 5 here for
convenience.

• Deep Reinforcement learning (Figure 4): both Circuit-
L and Circuit-L+A achieved better or comparable re-
sults to the MLP baseline. However, with product
between neurons, CircuitNet fails in DRL tasks. This
may be explained by that the overly small number of
neurons in CMU (in order to achieve comparable num-
ber of parameters) conversely harms the expressiveness

Table 13. Part of the experiment results on CIFAR-10 and CIFAR-
100.

Model
Accuracy

CIFAR-10 CIFAR-100

Best of compared baselines 0.870 0.570

CircuitNet-L 0.858 0.588
CircuitNet-L+A 0.853 0.588
CircuitNet-L+P 0.913 0.649

of the network.

• Image Classification (Table 13): on Cifar-10/Cifar-100
dataset, Circuit-L and Circuit-L+A perform similarly
with ResNet-18 (He et al., 2016) of comparable num-
ber of parameters and FLOPs. However, when product
between neurons are added as a transition function,
Circuit-L+P has a significant improvement on perfor-
mance with comparable FLOPs and less parameters.

• Time Series Forecasting (Table 12): All the varients
can achieve better results than the baselines on at least
half of the settings. However, we don’t observe a con-
sistent trend which variant of CircuitNet can dominate
the others among all the datasets.

In conclusion, even if the transition function is a linear func-
tion, the design of local density and global sparsity helps
CircuitNet achieve a superior or comparable performance
to the baselines. As for the comparison among variants,
there isn’t a consistent conclusion which is the best due to
the trade-off between capturing more interactions among
neurons and involving more neurons while maintaining a
similar number of parameters.
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D.3. Limitations and Possible Directions for
Improvements

Recent years, there are an enormous number of works pro-
posed to improve the performance of neural networks in
different tasks and some of them have achieved state-of-
the-art performances. Quite a few branches of techniques
have been proved to be very effective and widely used in the
machine learning community, however, considering the fact
that they are almost completely orthogonal to CircuitNet, we
neither used them in CircuitNet implementations nor listed
them in our experiments. These works include large-scale
pre-training, advanced data augmentation, automatic neural
architecture search, etc. We optimistically expect a further
improvement with exquisite task-specific designs and these
advanced techniques.
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