

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MIXTURE OF SPARSE ATTENTION: CONTENT-BASED LEARNABLE SPARSE ATTENTION VIA MoES

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent advances in large language models highlighted the excessive quadratic cost of self-attention. Despite the significant research efforts, subquadratic attention methods still suffer from inferior performance in practice. We hypothesize that dynamic, learned content-based sparsity can lead to more efficient attention mechanisms. We present Mixture of Sparse Attention (MoSA), a novel approach inspired by Mixture of Experts (MoE) with expert choice routing. MoSA dynamically selects tokens for each attention head, allowing arbitrary sparse attention patterns. By selecting k tokens from a sequence of length T , MoSA reduces the computational complexity of each attention head from $O(T^2)$ to $O(k^2 + T)$. This enables using more heads within the same computational budget, allowing higher specialization. We show that among the tested sparse attention variants, MoSA is the only one that can outperform the dense baseline, sometimes with up to 27% better perplexity for an identical compute budget. MoSA can also reduce the resource usage compared to dense self-attention. Despite using torch implementation without an optimized kernel, perplexity-matched MoSA models are simultaneously faster in wall-clock time, require less memory for training, and drastically reduce the size of the KV-cache compared to the dense transformer baselines.

1 INTRODUCTION

Modern transformer architectures (Vaswani et al., 2017) have proven to be highly effective for sequence modeling tasks and are the key to the success of large language models (LLMs; (Brown et al., 2020; Touvron et al., 2023; Team et al., 2024; Grattafiori et al., 2024)). One of the key components of their success is the attention mechanism, which enables dynamic information propagation by computing weighted sums of past states for each token. This results in high computational and memory complexity, both quadratic in sequence length. The key to the success of LLMs is the ever-increasing model sizes and context windows. Training and deploying these models becomes increasingly prohibitive. Furthermore, the KV-cache memory footprint during inference presents a significant bottleneck, limiting practical deployment and increasing operational costs.

This led the researchers to explore alternative approaches. State Space Models (Gu et al., 2020; 2022; Gu and Dao, 2023; Wang et al., 2024; Yang et al., 2025) capture long-range dependencies with just a handful of state variables rather than relying on full attention matrices. They, however, fall short of full self-attention in terms of practical performance. To counteract lossy compression of State Space Models, a recent line of work investigates hybrids that combine quadratic attention and linearized memories (Park et al., 2024; Zuo et al., 2022; Lieber et al., 2024). Linear attention (Katharopoulos et al., 2020; Schlag et al., 2021; Schmidhuber, 1992)* optimizes the attention cost by changing the order of the operations in the attention after removing nonlinearity. However, it also performs poorly compared to quadratic attention (Qin et al., 2022).

As an alternative, static sparse attention methods (Child et al., 2019) reduce the quadratic complexity by selectively attending to a subset of tokens to be used in the attention. They use hand-defined coarse-grained patterns that are not data-dependent. Typical examples of these methods are the block-sparse and strided attention (Child et al., 2019; Zaheer et al., 2020; Beltagy et al., 2020). Static sparsity and block aggregation methods, however, impose significant limitations. They encourage the

*Note that *unnormalized linear transformers* (with "linear attention") were first published in 1992 under the name *fast weight controllers* (Schmidhuber, 1992) or *fast weight programmers*.

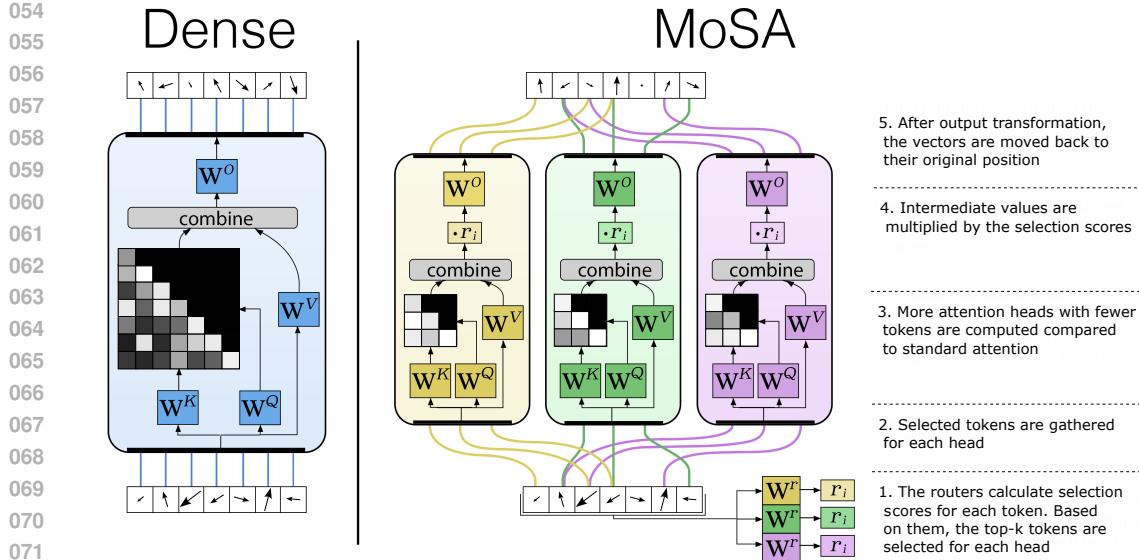


Figure 1: MoSA layer compared to the dense attention layer. MoSA replaces each dense head with multiple heads with a learnable sparsity pattern. Each head selects its own k tokens to process. MoSA calculates query, key, and value projections only for the selected token and computes the attention only between them. It drops the rest of the tokens, leading to more efficient compute utilization. This reduces the computational and memory complexity on a sequence of length T from $O(T^2)$ to $O(k^2 + T)$. The saved compute budget can be used to scale up the number of heads.

compression of multiple tokens into a single, lossy representation. This is necessary to remember information beyond the active block. Such compression makes fine-grained recall difficult. The problem is similar to the well-known limitation of state-space models, which are forced to compress the entire past into a fixed-size representation (Arora et al., 2024; Jelassi et al., 2024). Content-based dynamic sparse attention (Tay et al., 2021; Vyas et al., 2020; Roy et al., 2021) methods can, in principle, learn to attend to individual tokens, regardless of their location in the input, while ignoring less useful tokens. The Routing Transformer (Roy et al., 2021) clusters the tokens within each head using online K-means. However, it fails to show significant performance gains over static sparse-attention methods, possibly due to the slow convergence of online K-means (Bottou and Bengio, 1994).

We propose a novel approach, inspired by Mixture-of-Experts (Shazeer et al., 2017; Fedus et al., 2022; Hampshire and Waibel, 1989; Jacobs et al., 1991), to create a dynamic, content-based, and head-specific selection of tokens for sparse attention. This is achieved with Expert-Choice Routing (Zhou et al., 2022), where each attention head is treated like an expert and selects its own specific tokens from the input. This creates a perfectly balanced selection, avoiding the need for complicated regularization techniques. We name our approach Mixture-of-Sparse Attention(MoSA). Although recent work explored applying ideas from the MoE literature to attention mechanisms (Zhang et al., 2022; Csordás et al., 2024), they focus on reducing the number of materialized attention matrices. We propose a different approach: we make the attention matrices sparse by selecting a small subset of tokens for each attention head.

By selecting k tokens from a sequence of length T , MoSA reduces the computational complexity of the attention head from $O(T^2)$ to $O(k^2 + T)$. Sparse attention techniques have historically been employed out of necessity to manage long sequences that exceed available computational capacities. In contrast, we also explore the use of the saved computation budget for creating additional attention heads. Thus, in this setup, MoSA employs a large number of highly sparse attention heads, encouraging their specialization. We show that this allows for better utilization of the available compute budget and leads to substantially better iso-flop language modeling performance compared to dense attention. Furthermore, we analyze other sparse attention methods, such as fixed sparse attention (Child et al., 2019) and the Routing Attention (the attention introduced in the

108 Routing Transformer) (Roy et al., 2021). MoSA is the only sparse attention method we analyzed that
 109 demonstrates improvement over dense baselines in the IsoFLOP setting.
 110

111 Following observations of sparse attention methods (Child et al., 2019; Roy et al., 2021), we
 112 incorporate MoSA as part of a hybrid model with a different type of attention. Our main results
 113 demonstrate that hybrid models with many MoSA and four dense heads significantly improve the
 114 model’s quality by up to 27% in an IsoFLOP setting. Specifically, we evaluate MoSA on a language
 115 modeling task by starting with dense baselines and incrementally sparsifying the attention. We ensure
 116 FLOP-matching by swapping a specific number of dense heads for *more* sparse heads. We repeat
 117 this procedure on different scales, starting with baselines from 28M to 516M parameters. MoSA
 118 consistently improves perplexity across all model scales. Furthermore, we demonstrate that for long
 119 sequences, MoSA combined with local attention heads clearly outperforms other analyzed sparse
 120 attention methods with a fixed budget.

121 The IsoFLOP results demonstrate MoSA’s superior performance in a FLOP-matched setting. How-
 122 ever, sparse attention methods are often used to reduce computational and memory requirements.
 123 Furthermore, the idealized FLOP requirements often do not reflect wall-clock time. To demonstrate
 124 MoSA’s efficiency, In Section 3, we show that in a perplexity-matched setting, MoSA exhibits both
 125 improved wall-clock time and GPU memory consumption even without a specialized CUDA kernel.
 126 It also reduces the total number of keys and values used in the computation, resulting in a significantly
 127 smaller KV cache. KV-cache size is an important practical problem for LLM inference and is the
 128 main focus of many post-training sparse attention methods (Li et al., 2025; Cai et al., 2024).
 129

130 In summary, our contributions are the following: 1. We propose MoSA, a sparse attention method
 131 that uses a *learned*, context-based token selection, with each of the heads attending to a small subset
 132 of all tokens. 2. We evaluate MoSA in an IsoFLOP setting on four different scales with dense
 133 baselines ranging from 28M parameters to 516M. In this setting, MoSA improves perplexity by up to
 134 27%. MoSA is the only sparse attention method we analyzed that improved perplexity compared
 135 to the dense baseline. 3. We demonstrate that, in a perplexity-matched setting, a pure PyTorch
 136 implementation of MoSA improves both wall-clock time and memory usage simultaneously, without
 137 requiring specialized fast kernels. This setup also drastically reduces the KV cache size by using only
 138 a small subset of keys and values. 4. We demonstrate that on long sequences, MoSA maintains a large
 139 advantage compared to other tested sparse-attention methods. 5. For completeness, we experiment
 140 with a variant of MoSA, called *MoSAIC*, based on token-choice routing.
 141

142 2 METHOD

143 2.1 BACKGROUND

144 **Attention Mechanism.** Attention assigns input-dependent weights to tokens in a sequence, allowing
 145 each token to gather context from the rest of the sequence. To do this, each token is projected to three
 146 vectors: its *query*, *key*, and *value*. For a given token, we compare its *query* vector with the *key* vectors
 147 of all tokens (including itself), producing a set of similarity scores. The scores are then normalized
 148 and used to calculate a weighted sum of the tokens’ *value* vectors. The result is a new representation
 149 that dynamically integrates information throughout the sequence.
 150

151 Let T be the sequence length, h the hidden dimension of the model, and h' the hidden dimension in
 152 each head. $Q, K, V \in \mathbb{R}^{T \times h'}$ represents the query, key and value matrices, respectively.
 153

154 The attention is computed as:
 155

$$156 \text{Attention}(Q, K, V, M) = \text{softmax} \left(\frac{QK^\top + M}{\sqrt{h'}} \right) V \quad (1)$$

157 Here, M denotes the attention mask that represents hard modeling constraints. $M_{i,j} = 0$ if and only
 158 if i ’th token is allowed to attend to j ’th token, otherwise $M_{i,j} = -\infty$. In causal language models,
 159 $M_{i,j} = 0 \iff i \geq j$ ensures that no token can attend to the future.
 160

161 The multi-head attention (MHA) creates multiple instances (heads) of query, key, and value matrices
 162 from an input sequence $X \in \mathbb{R}^{T \times h}$ and applies the attention to each instance independently. Each

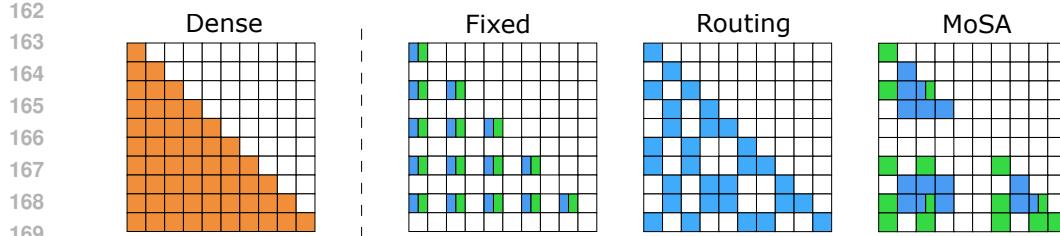


Figure 2: Attention variants visualized. In the plot, the colors indicate different heads. Sparse attention methods are roughly FLOP-matched and have sparsity $\rho = 2$. One Routing Attention head corresponds in FLOP-cost to ρ Fixed/MoSA heads. Fixed sparse attention uses only $k = \frac{T}{\rho}$ tokens in specific positions, with regular stride. The Routing Attention clusters tokens within each head into ρ clusters of size k based on their representations. MoSA selects k tokens for each attention head independently based on their representations.

head has its own mappings $W_i^Q, W_i^K, W_i^V \in \mathbb{R}^{h \times h'}$ and $W_i^O \in \mathbb{R}^{h' \times h}$, where $i \in \{1..H\}$ and H is the number of heads. h' is typically set to $\frac{h}{H}$. $Q_i = XW_i^Q, K_i = XW_i^K, V_i = XW_i^V$.

$$X_{out} = \sum_{i=1}^H \text{Attention}(Q_i, K_i, V_i, M) W_i^O \quad (2)$$

The resulting mechanism allows the model to adaptively focus on relevant information while maintaining differentiability. The lack of recurrence in the operations enables parallel processing of sequence elements. However, $\mathbf{Q}\mathbf{K}^\top$ is a $T \times T$ matrix and therefore introduces quadratic computational and memory complexity as a function of the sequence length.

Mixture of Experts. Mixture of Experts (MoE) combines multiple specialized neural networks (experts) with a gating mechanism that learns to route each input to the best-matching experts, activating only a small subset of experts per example. An MoE layer then computes its output as a sparsely weighted combination of the predictions of selected experts, with routing weights dynamically determined by the gating network.

Formally, given an input $\mathbf{x} \in \mathbb{R}^h$, the MoE layer with E experts and a scoring function (a router) $sel : \mathbb{R}^h \rightarrow \mathbb{R}^n$ can be expressed as $y(\mathbf{x}) = \sum_{i \in \mathcal{E}} r_i(\mathbf{x}) E_i(\mathbf{x})$ where $y(\mathbf{x})$ is the final output of the layer and $E_i(\mathbf{x})$ is the output of the expert i . \mathcal{E} is the set of selected experts, usually defined as $\mathcal{E} = \text{argtopk}(r(\mathbf{x}) + \varepsilon, k)$, where $k \in \mathbb{N}$ is the number of active experts, ε is a stochastic noise present only during the training for exploration. The inputs are processed only by the active experts.

In contrast, Expert-Choice routing (Zhou et al., 2022) ensures perfect load balancing by inverting the traditional routing paradigm. Instead of the tokens choosing their experts, the experts choose which inputs they prefer to process. Given a batch of B inputs, each expert selects the top- k out of the B inputs it will process.[†]

2.2 MIXTURE OF SPARSE ATTENTION (MOSA)

Sparse attention methods model global dependencies by selecting specific tokens that can attend to other specific tokens based on a hand-engineered set of rules (Beltagy et al., 2020; Zaheer et al., 2020) or by blockwise aggregation of tokens (Yuan et al., 2025). Both of these families of methods impose the mixing of information during token aggregation, either explicitly or implicitly.

We propose instead to select tokens adaptively for each head based on the input. Thus, a flexible set of important tokens can be kept around, creating content-based sparsity without the need for information mixing. To achieve that, we take inspiration from Expert-Choice routing in MoEs. We name our method *Mixture of Sparse Attention (MoSA)*. MoSA learns which individual tokens to use for attention through end-to-end training. Each attention head in MoSA learns its own unique sparsity

[†]In our case, each expert selects top- k tokens from the sentence to process independently for each batch.

pattern, allowing different heads to specialize in different subsets of tokens relevant to their particular function within the network. This diverse, head-specific token selection pattern ensures that the model preserves the granular information within each relevant token while dynamically discovering optimal sparsity patterns specific to the data distribution. The architectural difference between MoSA and dense attention is illustrated in Fig. 1.

Model size	#Params Dense	Dense ppl ↓	MoSA Best ppl ↓	Fixed Best ppl ↓	Routing Best ppl ↓
Tiny	28M	22.46	16.37 <small>(-27.1%)</small>	23.28 <small>(+3.7%)</small>	23.33 <small>(+3.9%)</small>
Small	113M	16.01	12.97 <small>(-19.0%)</small>	16.51 <small>(+3.1%)</small>	16.43 <small>(+2.6%)</small>
Medium	210M	13.95	11.22 <small>(-19.6%)</small>	14.35 <small>(+2.9%)</small>	14.21 <small>(+1.9%)</small>
Large	516M	12.20	11.15 <small>(-8.6%)</small>	12.40 <small>(+1.6%)</small>	12.24 <small>(+0.3%)</small>

Table 1: Comparing dense and sparse models (Fixed, Routing, MoSA) under a fixed computational budget (see Section 3). For sparse models, the table contains the best perplexity across all sparsities bigger than 1. The results for sparse models were selected as the best of all sparsities. Relative difference to the dense baseline is displayed in the parentheses. MoSA significantly outperforms the dense baseline, reducing perplexity by up to 27%. The fixed and the Routing Transformer baselines both fail to reach the performance of the dense model.

The sparsity in MoSA reduces the computational cost of each attention head, allowing the use of more heads to develop targeted projections optimized for specific relationship types. The computational savings are particularly substantial when the number of selected tokens is significantly smaller than the sequence length.

In MoSA, in addition to the standard projections, each head has an additional router that selects which tokens are used for that head. Formally, the router is defined using the weight matrix $W^r \in \mathbb{R}^h$. Let $X \in \mathbb{R}^{T \times h}$ be the T -long sequence of input tokens. The router calculates the selection scores for each token $r = \sigma(XW^r) \in \mathbb{R}^T$. For σ we use the non-competitive sigmoid function $\sigma(x) = \frac{1}{1+e^{-x}}$ following observations from σ -MoE (Csordás et al., 2023). Subsequently, we use expert choice for the selection of tokens for each head:

$$r^{topk}, I = TopK(r, k)$$

where $TopK$ returns the highest k values of r called $r^{topk} \in \mathbb{R}^k$, along with their indices $I \in \{0, \dots, T-1\}^k$. I is used to select the subset of inputs for the MoSA head:

$$X^s = (X_{I_1}, X_{I_2}, \dots, X_{I_k}) \in \mathbb{R}^{k \times h}$$

where X_i represents i 'th row from matrix X . After that, queries, keys, and values are calculated identically to the standard MHA: X^s as $Q = X^s W^Q$, $K = X^s W^K$, $V = X^s W^V$. As our primary target is language modeling, we also calculate the mask that prohibits attending to future tokens. Unlike the standard MHA, this mask is not triangular and has to take into account the token indices selected by the head: $M_{i,j} = 0 \iff I_i \geq I_j, -\infty$ otherwise.

The sparse attention can be computed using the standard attention defined in Eq. 1. $A = \text{Attention}(Q, K, V, M)$. This allows the combination of MoSA with optimized attention implementations such as Flash Attention (Dao et al., 2022). The resulting vectors A_i are multiplied by the corresponding router values r_i . Then, after the output transformation W^o , they are moved back to their original positions in the full-length sequence $Y \in \mathbb{R}^{T \times h}$.

$$X^o = \text{diag}(r) A W^o \in \mathbb{R}^{k \times h}$$

$$Y_j = \begin{cases} X_i^o, & \text{if } j = I_i \text{ for some } i \in \{1, \dots, k\}, \\ 0, & \text{otherwise,} \end{cases} \quad \text{for } j = 1, \dots, T.$$

$\text{diag}(\cdot)$ creates a diagonal matrix from a vector, used for elementwise scaling of the columns of the matrix A by a vector r . This ensures that the token's contribution is proportional to the router's output. This also enables the router to receive gradients, making it learnable by gradient descent.

We call the combined transformation of x into y , parameterized by $\theta_i = (W^Q, W^K, W^V, W^O, W^r)$ a single MoSA head: $Y = \text{MoSA}_{head}(X; \theta_i)$. A MoSA layer parameterized by $\theta = \{\theta_i\}_{i \in 1 \dots H}$ is a sum of all MoSA heads

$$\text{MoSA}(X; \theta) = \sum_{i=1}^H \text{MoSA}_{head}(X; \theta_i) \quad (3)$$

270 The entire transformation in the multihead version can be efficiently implemented in PyTorch (Paszke
 271 et al., 2019) using `einsum`, `scatter` and `gather` operations.
 272

273 **Hybridization.** Sparse attention methods are usually combined with local attention (Child et al.,
 274 2019; Roy et al., 2021) when used on long sequences. Sparse attention then captures global depen-
 275 dencies, while local attention preserves local context. As our setup permits the use of dense attention,
 276 in our main experiments, we combine MoSA or corresponding sparse attention baseline with 4 dense
 277 heads. In Appendix D, we demonstrate the necessity of hybridization and motivate our selection
 278 of four dense heads for the models. In Section 3, we combine MoSA with local attention for long
 279 sequences and demonstrate that MoSA demonstrates superior performance in this scenario as well.
 280

281 **MoSAIC.** Building on the central idea of MoSA i.e., learned per-head content-based token selection,
 282 we further explore how this principle can be adapted to the native autoregressive generation. To
 283 this end, we introduce *Mixture of Sparse Attention with Independent Choice (MoSAIC)*, a variant
 284 of MoSA that is natively autoregressive. MoSAIC replaces MoSA’s expert-choice procedure with
 285 standard token-choice routing so that each token independently selects the attention heads it will use,
 286 thereby natively preserving causal decoding. The full details of the routing algorithm and extensive
 287 analysis of design variants is available in Appendix E.
 288

289 3 EXPERIMENTS

290 In this section, we empirically demonstrate MoSA’s performance in different settings. We compare
 291 MoSA to dense and sparse baselines. In Section 3, we evaluate all the methods on language modeling
 292 under a fixed FLOP budget. In Section 3 we demonstrate the practical benefits of MoSA by measuring
 293 wall-clock time, memory usage, and KV cache size in a perplexity-matched setup. In Section 3 we
 294 investigate the performance of MoSA on long sequences. Furthermore, in Appendix 3, we analyze
 295 the performance of different models in downstream zero-shot tasks.
 296

297 We use four model sizes: *Tiny*, *Small*, *Medium* and *Large*. Each size is defined by the *FLOP count*
 298 of the forward pass of the corresponding dense transformer baseline. The parameter count of dense
 299 models associated with each size is: 28M for *Tiny*, 113M for *Small*, 210M for *Medium*, and 516M for
Large.
 300

301 Apart from a dense baseline, we compare MoSA with two sparse attention methods: Fixed sparse
 302 attention with strided selected tokens that participate in the attention and Routing Attention that
 303 represents a content-based sparse attention baseline. Different attention methods are visualized in
 304 Fig. 2. The baselines are described in detail and compared with MoSA in App. A.
 305

306 **IsoFLOP Curves** We evaluate sparse methods by gradually increasing sparsity rate $\rho = \frac{T}{k}$. This
 307 reduces the compute requirements for each sparse head. We use the saved budget to increase the
 308 number of sparse heads. Specifically, we choose the number of sparse heads to be the maximum such
 309 that the FLOPs of the sparse model do not exceed the FLOPs of the baseline model for a given size.
 310 All sparse models include four dense heads that we keep (see Section 2.2), and are included in the
 311 FLOP calculations. Note that increasing the number of attention heads also increases the memory
 312 requirements of all methods. Consequently, for the larger FLOP-matched models, we restricted the
 313 explored sparsity values to ensure that the models fit in the memory budget dictated by our hardware.
 314

315 Starting from sparsity 1, which corresponds to the dense model, we gradually increase the sparsity
 316 and measure the test-set perplexity of FLOP-matched models. Table 1 lists the best results for each
 317 model class and size. Across all model sizes tested, MoSA achieved significantly better perplexity
 318 within fixed FLOP budgets compared to dense baselines. All MoSA hybrids reduce the perplexity
 319 of the baseline, sometimes by 27%. On the other hand, the sparse baselines for all sparsities $\rho > 1$
 320 perform worse than the dense baseline.
 321

322 Figure 3 illustrates the IsoFLOP curves of the models with varying degrees of sparsity. For MoSA,
 323 performance steadily improves as sparsity increases, reaching optimal results at approximately
 $\rho = 64$. Beyond this threshold, performance begins to decline, creating a "U" shape in the curve.
 324 This is likely because the excessively high sparsity values limit the model’s ability to capture complex
 325 attention patterns. For example, at $\rho = 256$ with a sequence length of $T = 1024$, only $k = 4$ tokens
 326 are selected to participate in each attention head.
 327

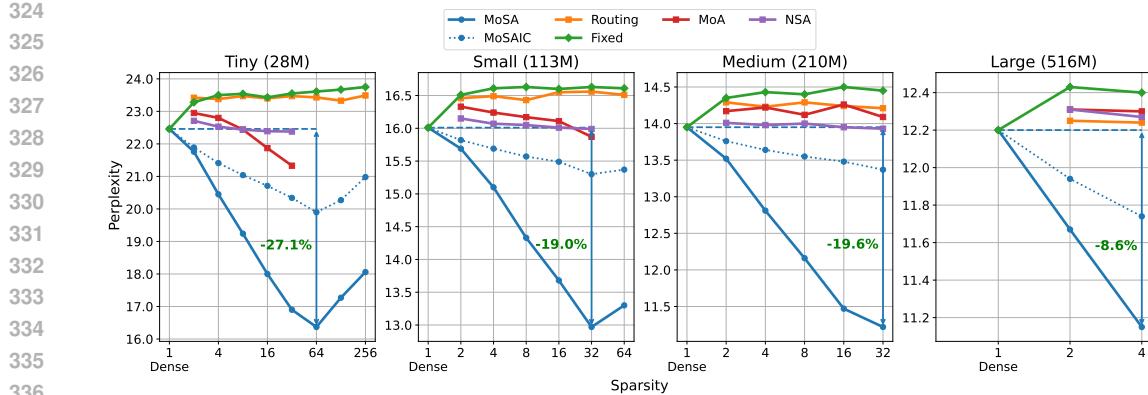


Figure 3: Perplexity (\downarrow) of FLOP matched models under different sparsities. Each plot corresponds to a specified FLOP budget per step. The number in parenthesis is the number of parameters of the dense baseline. Sparsity 1 represents the dense baseline. As sparsity increases, MoSA’s perplexity improves monotonically until reaching a saturation point around sparsity 32-64, beyond which performance deteriorates. This is likely because at very high sparsity levels, each attention head selects only a few tokens, which is insufficient to capture the complex relations. MoSAIC, the token-choice based version of MoSA also leads to significant improvements in comparison to dense model. On the other hand, other sparse methods fail to reach the perplexity of the dense baseline in the IsoFLOP setting. We explore fewer sparsity levels for larger models due to excessive memory requirements.

For some configurations, MoSA turns proves to be more efficient than the dense model even in a parameter-matched setting. For example, *Medium* model with sparsity 8 has $442M$ parameters and perplexity 12.16, while the *Large* baseline model has $516M$ parameters and perplexity 12.20. This shows that a higher specialization of the heads might lead to improved performance even when we discard computational benefits. Detailed results for different MoSA sparsity configurations, together with the total number of parameters and the number of heads, are listed in the Appendix 5.

In contrast to MoSA, both fixed sparse attention and the Routing Attention consistently underperform the dense baseline across all sparsity levels. They exhibit relatively constant, but worse, perplexity across different sparsity values, with only minor fluctuations that reveal no discernible trend.

Resource Optimization The previous section demonstrates MoSA’s ability to achieve better perplexity than dense transformers with an identical compute budget. In this section, we examine MoSA’s practical efficiency gains. Specifically, we match the perplexity scores between the MoSA and the dense baseline to measure wall-clock time, memory, and KV-cache size savings.

To find the perplexity-matched comparison, we select sparsity to be equal to 32 for model sizes *Tiny*, *Small* and *Medium*. For *Large* we select $\rho = 16$ to keep sparsity closer to the range investigated in Section 3. Then, we gradually increase the number of MoSA heads until the perplexity matches the dense baseline. We do it for all four model scales defined in Section 3.

The results are shown in Table 2. MoSA can match the dense baseline, while being faster in wall-clock time and using less memory at the same time. These findings show that MoSA not only improves model quality in the FLOP-matched setting but can also be used to reduce computational and memory requirements when targeting the same performance level. Furthermore, it shows that MoSA uses computation more effectively than standard dense attention across all efficiency metrics. MoSA achieves this without a specialized CUDA kernel using only PyTorch-level operations. We expect that designing a specialized kernel would result in additional significant efficiency gains.

In addition to the speed and memory used for the training, we report the total number of key-value pairs (KV) used, calculated as $KV = TH_{dense} + kH_{mosa}$, where H_{dense} and H_{mosa} represent the number of dense and sparse heads, respectively. KV directly corresponds to the size of the costly KV-Cache in the autoregressive setting. KV cache optimization has been the goal of many post-training sparse-attention methods(Liu et al., 2023; Li et al., 2025; Cai et al., 2024). Our results demonstrate

378 that MoSA offers a significant reduction in KV-cache size while simultaneously improving speed and
 379 memory requirements.
 380

	Tiny		Small		Medium		Large	
	Dense	MoSA	Dense	MoSA	Dense	MoSA	Dense	MoSA
Dense Heads	9	4	9	4	9	4	16	4
MoSA Heads	0	17	0	14	0	12	0	16
Perplexity (↓)	22.46	22.40	16.02	16.01	13.94	13.76	12.20	12.16
Wall-time/step ↓(ms)	137	127	326	319	619	592	807	703
Wall-time/step gain (%)	–	–7.3%	–	–2.1%	–	–4.4%	–	–12.9%
Memory ↓(GB)	21.1	19.0	32.4	31.4	50.2	49.4	104.1	94.5
Memory gain (%)	–	–10.0%	–	–3.1%	–	–1.6%	–	–9.2%
KV Total ↓(K)	9.2	4.5	9.2	4.4	9.2	4.4	16.4	5.0
KV Total gain (%)	–	–51.1%	–	–52.2%	–	–52.2%	–	–69.5%

391 Table 2: Resource usage reduction from perplexity-matched MoSA models. KV is the KV-cache size,
 392 representing the total number of key-value pairs required (in thousands). MoSA models match the
 393 perplexity of dense baselines while at the same time improving wall-clock time, using less memory,
 394 and significantly smaller KV cache for all model sizes. Resource usage was measured on a single
 395 A100 GPU for *Tiny*, *Small* and *Medium* models and on two A100 GPUs for *Large*.
 396

397 **Scaling with Sequence Length** Traditionally, sparse attention methods have been introduced
 398 as a necessity when sequence length makes dense attention computationally prohibitive. After
 399 demonstrating MoSA’s effectiveness in standard-length sequences, we now investigate MoSA’s
 400 benefits in this long sequence setup.

401 In contrast to previous sections, here we combine MoSA or a baseline method with local attention
 402 (Child et al., 2019; Beltagy et al., 2020). We use local attention instead of dense attention
 403 because even a small number of dense attention heads would result in prohibitive memory usage in
 404 a longer context scenario. This is a standard practice in the sparse attention literature (Child et al.,
 405 2019; Roy et al., 2021). Local attention preserves local dependencies, while global, sparse attention
 406 enables efficient processing of long dependencies.

407 We scale our sequence length from 1024 to 8192 tokens and keep the k constant equal to 64. Hence,
 408 the sparsity increases from $\rho = 16$ for $T = 1024$ to $\rho = 128$ for $T = 8192$. Contemporary
 409 sparse attention methods for long sequences are trained in longer sequences (Yuan et al., 2025).
 410 However, due to our limited hardware budget, we restrict our experiments to a sequence length of
 411 8192. We treat this investigation as a preliminary analysis that demonstrates the potential of MoSA
 412 for long sequences. Importantly, it demonstrates that MoSA performs well when combined with local
 413 attention, which is a typical long-sequence setup.

414 As in the previous section, we compare MoSA with fixed sparse attention and the Routing Attention.
 415 All long sequence models have 6 layers and hidden dimension size of 1024. The Routing Transformer
 416 has 4 local attention heads and 4 Routing Transformer heads in all layers, whereas the fixed sparse
 417 attention and MoSA have 60 sparse heads and 4 local attention heads. We chose 60 sparse heads
 418 to roughly FLOP match all models for $T = 1024$. However, as we keep k constant, for longer
 419 sequences with 2048, 4096 and 8192 tokens, the FLOP cost for fixed attention and MoSA will be
 420 much lower than for the Routing Attention. For $T = 8192$ FLOP cost of 60 MoSA’s heads is equal
 421 to only 22.99% of 4 Routing Transformer heads.

422 The results are shown in Fig. 4. MoSA significantly outperforms other sparse attention methods
 423 across all sequence lengths. This is true even at length 8192, where MoSA uses only a small fraction
 424 of the computational cost of the Routing Transformer. The significant performance gap in the results
 425 demonstrates the potential of MoSA for ultra-long sequences (Kitaev et al., 2020; Yuan et al., 2025;
 426 Xu et al., 2025a). Given our limited resources, we leave the investigation of MoSA in this context for
 427 future work.

428 4 LIMITATIONS AND FUTURE WORK

429 As in other context-based sparse attention methods, the perplexity gains do not always translate to
 430 downstream task performance (App. F). This discrepancy stems from two distinct factors: First,

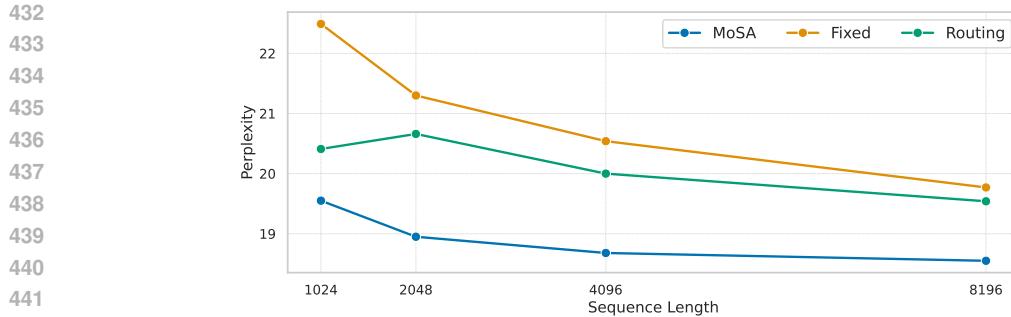


Figure 4: Perplexity of sparse-attention methods (MoSA, Fixed, and Routing) as sequence length increases. Each method has a fixed size window size (cluster size for the Routing Transformer, number of tokens selected for each head in MoSA and Fixed) regardless of total sequence length. MoSA matches the computational cost of the fixed sparsity baseline while requiring fewer FLOPs than the Routing Attention and consistently achieves the lowest perplexity.

sparse attention methods generally underperform on tasks consisting of short sequence lengths. Practitioners have shown that additional training with truncated sequences might alleviate this problem. Second, MoE architectures experience performance gaps in downstream tasks despite strong language modeling capabilities, although recent research demonstrates that instruction tuning can help significantly (Shen et al., 2024a). We consider exploring methods to mitigate the discrepancy between perplexity and downstream task performance in future work; MoSAIC already demonstrates promising progress in this direction.

Several promising research directions emerge from this work. Further exploration of MoSA’s effectiveness on longer sequences. Furthermore, combining multiple sparse attention methods often leads to synergic improvements on long sequences (Zaheer et al., 2020; Beltagy et al., 2020). Thus, we expect that combining other sparse head types with MoSA could lead to additional benefits. From an implementation perspective, developing specialized CUDA kernels would further improve efficiency. MoSA could be integrated with complementary approaches such as MQA(Shazeer, 2019), GQA(Ainslie et al., 2023), or SwitchHead(Csordás et al., 2024) to improve the efficiency even further. Furthermore, exploring MoSA on other modalities, particularly vision transformers, could yield valuable insights into the method’s versatility across different data types and architectures.

5 CONCLUSIONS

This paper introduces Mixture of Sparse Attention (MoSA), a novel attention architecture that selectively focuses on the most relevant tokens for the attention head, redirecting saved compute to create additional heads. MoSA reduces the computational complexity of attention from $O(T^2)$ to $O(k^2 + T)$, where T is the sequence length and k is the number of selected tokens per head.

Unlike other sparse attention methods that primarily show benefits for extremely long sequences, MoSA delivers substantial performance gains even in standard-length contexts. MoSA significantly outperforms both dense attention and sparse methods like fixed attention or the Routing Transformer, achieving up to 27% perplexity improvement over dense baselines across models of different scales. MoSA can also be used to reduce the resource requirements of the models, including a more than 50% reduction in the KV-cache size. Additionally, our results indicate that MoSA maintains its superiority in long-sequence scenarios, outperforming other sparse attention methods in these contexts as well.

The efficiency and corresponding performance gains demonstrated by MoSA have significant implications for the design of adaptive architectures. MoSA or subsequent adaptive models stemming from MoSA can be used for reducing the training costs and environmental impact of large language models, potentially enabling more economical scaling while lowering energy consumption and carbon emissions. Given its versatility and performance advantages, we anticipate that MoSA will drive innovations in both transformer architecture research and industrial applications.

486 REPRODUCIBILITY STATEMENT
487488 We provide our source code to reproduce the results from experimental section in the supplementary
489 material. Furthermore, in the appendix we include the details of each model together with parameters
490 of the training runs and machines used for the experiments.
491492 REFERENCES
493494 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
495 Kaiser, and Illia Polosukhin. Attention is all you need. In *Proc. Advances in Neural Information
496 Processing Systems (NIPS)*, pages 5998–6008, Long Beach, CA, USA, December 2017.
497498 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
499 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
500 few-shot learners. In *Proc. Advances in Neural Information Processing Systems (NeurIPS)*, pages
501 1877–1901, 2020.502 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
503 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Armand
504 Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and efficient foundation language
505 models. *Preprint arXiv:2302.13971*, 2023.506 Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
507 Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal
508 understanding across millions of tokens of context. *arXiv preprint arXiv:2403.05530*, 2024.
509510 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
511 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
512 models. *arXiv preprint arXiv:2407.21783*, 2024.513 Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory with
514 optimal polynomial projections. In *Proc. Advances in Neural Information Processing Systems
515 (NeurIPS)*, volume 33, pages 1474–1487, 2020.517 Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
518 state spaces. In *Int. Conf. on Learning Representations (ICLR)*, 2022.519 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv
520 preprint arXiv:2312.00752*, 2023.522 Xiao Wang, Shiao Wang, Yuhe Ding, Yuehang Li, Wentao Wu, Yao Rong, Weizhe Kong, Ju Huang,
523 Shihao Li, Haoxiang Yang, et al. State space model for new-generation network alternative to
524 transformers: A survey. *arXiv preprint arXiv:2404.09516*, 2024.525 Songlin Yang, Jan Kautz, and Ali Hatamizadeh. Gated delta networks: Improving mamba2 with
526 delta rule. In *Int. Conf. on Learning Representations (ICLR)*, 2025.528 Jongho Park, Jaeseung Park, Zheyang Xiong, Nayoung Lee, Jaewoong Cho, Samet Oymak, Kang-
529 woong Lee, and Dimitris Papailiopoulos. Can mamba learn how to learn? a comparative study on
530 in-context learning tasks. In *Proc. Int. Conf. on Machine Learning (ICML)*, 2024.531 Simiao Zuo, Xiaodong Liu, Jian Jiao, Denis Charles, Eren Manavoglu, Tuo Zhao, and Jianfeng
532 Gao. Efficient long sequence modeling via state space augmented transformer. *arXiv preprint
533 arXiv:2212.08136*, 2022.534 Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez Safahi,
535 Shaked Meiron, Yonatan Belinkov, Shai Shalev-Shwartz, et al. Jamba: A hybrid transformer-
536 mamba language model. *arXiv preprint arXiv:2403.19887*, 2024.
537538 Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
539 RNNs: Fast autoregressive transformers with linear attention. In *Proc. Int. Conf. on Machine
Learning (ICML)*, volume 119, pages 5156–5165, Virtual Only, 2020.

- 540 Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
 541 programmers. In *Proc. Int. Conf. on Machine Learning (ICML)*, volume 139, pages 9355–9366,
 542 Virtual only, 2021.
- 543
- 544 Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to recurrent nets.
 545 *Neural Computation*, 4(1):131–139, 1992.
- 546
- 547 Zhen Qin, Xiaodong Han, Weixuan Sun, Dongxu Li, Lingpeng Kong, Nick Barnes, and Yiran
 548 Zhong. The devil in linear transformer. In *Proc. Conf. on Empirical Methods in Natural Language
 549 Processing (EMNLP)*, pages 7025–7041, 2022.
- 550
- 551 Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
 552 transformers. *arXiv preprint arXiv:1904.10509*, 2019.
- 553
- 554 Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
 555 Ontañon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers
 556 for longer sequences. In *Proc. Advances in Neural Information Processing Systems (NeurIPS)*,
 557 volume 33, pages 17283–17297, 2020.
- 558
- 559 Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer.
 560 *arXiv:2004.05150*, 2020.
- 561
- 562 Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri Rudra,
 563 and Christopher Ré. Zoology: Measuring and improving recall in efficient language models. *Int.
 564 Conf. on Learning Representations (ICLR)*, 2024.
- 565
- 566 Samy Jelassi, David Brandfonbrener, Sham M Kakade, and Eran Malach. Repeat after me: Trans-
 567 formers are better than state space models at copying. In *Proc. Int. Conf. on Machine Learning
 568 (ICML)*, 2024.
- 569
- 570 Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan, Zhe Zhao, and Che Zheng. Synthesizer:
 571 Rethinking self-attention for transformer models. In *Proc. Int. Conf. on Machine Learning (ICML)*,
 572 pages 10183–10192, 2021.
- 573
- 574 Apoorv Vyas, Angelos Katharopoulos, and François Fleuret. Fast transformers with clustered
 575 attention. In *Proc. Advances in Neural Information Processing Systems (NeurIPS)*, volume 33,
 576 pages 21665–21674, 2020.
- 577
- 578 Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based sparse
 579 attention with routing transformers. *Transactions of the Association for Computational Linguistics
 580 (TACL)*, 9:53–68, 2021.
- 581
- 582 Leon Bottou and Yoshua Bengio. Convergence properties of the k-means algorithms. In *Proc.
 583 Advances in Neural Information Processing Systems (NIPS)*, volume 7, 1994.
- 584
- 585 Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
 586 Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
 587 *Int. Conf. on Learning Representations (ICLR)*, Toulon, France, April 2017.
- 588
- 589 William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
 590 models with simple and efficient sparsity. *Journal of Machine Learning Research (JMLR)*, 23(1):
 591 5232–5270, 2022.
- 592
- 593 John Hampshire and Alex Waibel. Connectionist architectures for multi-speaker phoneme recognition.
 594 *Advances in neural information processing systems*, 2, 1989.
- 595
- 596 Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive mixtures
 597 of local experts. *Neural Computation*, 3(1):79–87, 1991.
- 598
- 599 Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai, Quoc V
 600 Le, James Laudon, et al. Mixture-of-experts with expert choice routing. In *Proc. Advances in
 601 Neural Information Processing Systems (NeurIPS)*, volume 35, pages 7103–7114, 2022.

- 594 Xiaofeng Zhang, Yikang Shen, Zeyu Huang, Jie Zhou, Wenge Rong, and Zhang Xiong. Mixture
 595 of attention heads: Selecting attention heads per token. In *Proc. Conf. on Empirical Methods in*
 596 *Natural Language Processing (EMNLP)*, pages 4150–4162, Abu Dhabi, United Arab Emirates,
 597 December 2022.
- 598 Róbert Csordás, Piotr Piękos, Kazuki Irie, and Jürgen Schmidhuber. Switchhead: Accelerating trans-
 599 formers with mixture-of-experts attention. In *Proc. Advances in Neural Information Processing*
 600 *Systems (NeurIPS)*, Vancouver, Canada, December 2024.
- 601 Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
 602 Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
 603 generation. In *Proc. Advances in Neural Information Processing Systems (NeurIPS)*, volume 37,
 604 pages 22947–22970, 2025.
- 605 Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong,
 606 Baobao Chang, Junjie Hu, and Xiao Wen. Pyramidkv: Dynamic kv cache compression based on
 607 pyramidal information funneling. *arXiv preprint arXiv:2406.02069*, 2024.
- 608 Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
 609 YX Wei, Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and natively
 610 trainable sparse attention. *arXiv preprint arXiv:2502.11089*, 2025.
- 611 Róbert Csordás, Kazuki Irie, and Jürgen Schmidhuber. Approximating two-layer feedforward
 612 networks for efficient transformers. In *Findings of the Association for Computational Linguistics: EMNLP 2023*, November 2023.
- 613 Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
 614 memory-efficient exact attention with IO-awareness. In *Proc. Advances in Neural Information
 615 Processing Systems (NeurIPS)*, New Orleans, Louisiana, USA, December 2022.
- 616 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 617 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
 618 Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
 619 Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-performance deep
 620 learning library. In *Proc. Advances in Neural Information Processing Systems (NeurIPS)*, pages
 621 8024–8035, Vancouver, Canada, December 2019.
- 622 Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
 623 Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
 624 hypothesis for llm kv cache compression at test time. In *Proc. Advances in Neural Information
 625 Processing Systems (NeurIPS)*, volume 36, pages 52342–52364, 2023.
- 626 Nikita Kitaev, Kaiser Łukasz, and Anselm Levskaya. Reformer: The efficient transformer. In *Int.
 627 Conf. on Learning Representations (ICLR)*, 2020.
- 628 Chejian Xu, Wei Ping, Peng Xu, Zihan Liu, Boxin Wang, Mohammad Shoeybi, Bo Li, and Bryan
 629 Catanzaro. From 128k to 4m: Efficient training of ultra-long context large language models. *arXiv
 630 preprint arXiv:2504.06214*, 2025a.
- 631 Sheng Shen, Le Hou, Yanqi Zhou, Nan Du, Shayne Longpre, Jason Wei, Hyung Won Chung, Barret
 632 Zoph, William Fedus, Xinyun Chen, et al. Mixture-of-experts meets instruction tuning: A winning
 633 combination for large language models. In *Int. Conf. on Learning Representations (ICLR)*, 2024a.
- 634 Noam Shazeer. Fast transformer decoding: One write-head is all you need. *arXiv preprint
 635 arXiv:1911.02150*, 2019.
- 636 Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
 637 Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints.
 638 In *Proc. Conf. on Empirical Methods in Natural Language Processing (EMNLP)*, pages 4895–4901,
 639 2023.
- 640 Qingru Zhang, Dhananjay Ram, Cole Hawkins, Sheng Zha, and Tuo Zhao. Efficient long-range
 641 transformers: You need to attend more, but not necessarily at every layer. In *Proc. Conf. on
 642 Empirical Methods in Natural Language Processing (EMNLP)*, 2023.

- 648 Krzysztof Marcin Choromanski, Valerii Likhoshesterov, David Dohan, Xingyou Song, Andreea Gane,
 649 Tamás Sarlós, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, David Ben-
 650 jamin Belanger, Lucy J. Colwell, and Adrian Weller. Rethinking attention with performers. In *Int.*
 651 *Conf. on Learning Representations (ICLR)*, Virtual only, May 2021.
- 652
- 653 Guoxuan Chen, Han Shi, Jiawei Li, Yihang Gao, Xiaozhe Ren, Yimeng Chen, Xin Jiang, Zhenguo
 654 Li, Weiyang Liu, and Chao Huang. Sepilm: Accelerate large language models by compressing one
 655 segment into one separator. *arXiv preprint arXiv:2412.12094*, 2024.
- 656
- 657 Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
 658 language models with attention sinks. In *Int. Conf. on Learning Representations (ICLR)*, 2024a.
- 659
- 660 Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu, and
 661 Song Han. Duoattention: Efficient long-context llm inference with retrieval and streaming heads.
 662 *arXiv preprint arXiv:2410.10819*, 2024b.
- 663
- 664 Ruyi Xu, Guangxuan Xiao, Haofeng Huang, Junxian Guo, and Song Han. Xattention: Block sparse
 665 attention with antidiagonal scoring. *arXiv preprint arXiv:2503.16428*, 2025b.
- 666
- 667 Yizhao Gao, Zhichen Zeng, Dayou Du, Shijie Cao, Peiyuan Zhou, Jiaxing Qi, Junjie Lai, Hayden
 668 Kwok-Hay So, Ting Cao, Fan Yang, et al. Seerattention: Learning intrinsic sparse attention in your
 669 llms. *arXiv preprint arXiv:2410.13276*, 2024.
- 670
- 671 Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
 672 Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, et al. Minference 1.0: Accelerating pre-filling
 673 for long-context llms via dynamic sparse attention. *Advances in Neural Information Processing
 674 Systems*, 37:52481–52515, 2024a.
- 675
- 676 Aditya Desai, Shuo Yang, Alejandro Cuadron, Ana Klimovic, Matei Zaharia, Joseph E Gonzalez, and
 677 Ion Stoica. Hashattention: Semantic sparsity for faster inference. *arXiv preprint arXiv:2412.14468*,
 678 2024.
- 679
- 680 Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
 681 Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
 682 computation and automatic sharding. In *Int. Conf. on Learning Representations (ICLR)*, 2021.
- 683
- 684 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 685 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 686 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
- 687
- 688 Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
 689 Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
 690 Mixtral of experts. *arXiv preprint arXiv:2401.04088*, 2024b.
- 691
- 692 Yikang Shen, Zhen Guo, Tianle Cai, and Zengyi Qin. Jetmoe: Reaching llama2 performance with
 693 0.1 m dollars. *arXiv preprint arXiv:2404.07413*, 2024b.
- 694
- 695 Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke Zettlemoyer. BASE layers:
 696 Simplifying training of large, sparse models. In Marina Meila and Tong Zhang, editors, *Proc. Int.*
 697 *Conf. on Machine Learning (ICML)*, volume 139, pages 6265–6274, Virtual only, July 2021.
- 698
- 699 Stephen Roller, Sainbayar Sukhbaatar, Jason Weston, et al. Hash layers for large sparse models. In
 700 *Proc. Advances in Neural Information Processing Systems (NeurIPS)*, volume 34, pages 17555–
 701 17566, 2021.
- 702
- 703 David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys, and Adam
 704 Santoro. Mixture-of-depths: Dynamically allocating compute in transformer-based language
 705 models. *arXiv preprint arXiv:2404.02258*, 2024.
- 706
- 707 Peng Jin, Bo Zhu, Li Yuan, and Shuicheng Yan. Moh: Multi-head attention as mixture-of-head
 708 attention. *arXiv preprint arXiv:2410.11842*, 2024.

- 702 Rubin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
 703 Yanyan Lan, Liwei Wang, and Tie-Yan Liu. On layer normalization in the transformer architecture.
 704 In *Proc. Int. Conf. on Machine Learning (ICML)*, volume 119, pages 10524–10533, Virtual Only,
 705 July 2020.
- 706 William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
 707 models with simple and efficient sparsity. *Preprint arXiv:2101.03961*, 2021.
- 708 Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
 709 Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The LAMBADA dataset:
 710 Word prediction requiring a broad discourse context. In *Proc. Association for Computational
 711 Linguistics (ACL)*, Berlin, Germany, August 2016.
- 712 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
 713 adversarial winograd schema challenge at scale. In *Proc. AAAI Conf. on Artificial Intelligence*,
 714 pages 8732–8740, New York, NY, USA, February 2020.
- 715 Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mohananey, Wei Peng, Sheng-Fu Wang, and
 716 Samuel R. Bowman. BLiMP: The benchmark of linguistic minimal pairs for English. *Transactions
 717 of the Association for Computational Linguistics (TACL)*, 8:377–392, 2020.
- 718 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
 719 really finish your sentence? In *Proc. Association for Computational Linguistics (ACL)*, pages
 720 4791–4800, Florence, Italy, August 2019.
- 721 Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: reasoning about
 722 physical commonsense in natural language. In *Proc. AAAI Conf. on Artificial Intelligence*, pages
 723 7432–7439, New York, NY, USA, February 2020. AAAI Press.
- 724 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
 725 Oyvind Tafjord. Think you have solved question answering? try ARC, the AI2 reasoning challenge.
 726 *Preprint arXiv:1803.05457*, 2018.
- 727 Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
 728 William Fedus. St-moe: Designing stable and transferable sparse expert models. *arXiv preprint
 729 arXiv:2202.08906*, 2022.
- 730 Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
 731 tokenzier and detokenizer for neural text processing. In *Proc. Conf. on Empirical Methods in
 732 Natural Language Processing (EMNLP)*, pages 66–71, Brussels, Belgium, October 2018.
- 733 Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words
 734 with subword units. In *Proc. Association for Computational Linguistics (ACL)*, pages 1715–1725,
 735 Berlin, Germany, August 2016.
- 736 Mike Schuster and Kaisuke Nakajima. Japanese and korean voice search. In *Proc. IEEE Int. Conf. on
 737 Acoustics, Speech and Signal Processing (ICASSP)*, pages 5149–5152, Kyoto, Japan, March 2012.
- 738 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 739 Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
 740 transformer. *Journal of Machine Learning Research (JMLR)*, 21:140:1–140:67, 2020.
- 741 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio
 742 and Yann LeCun, editors, *Int. Conf. on Learning Representations (ICLR)*, San Diego, CA, USA,
 743 May 2015.
- 744 Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. RoFormer: Enhanced transformer with
 745 rotary position embedding. *Preprint arXiv:2104.09864*, 2021.
- 746
- 747
- 748
- 749
- 750
- 751
- 752
- 753
- 754
- 755

756

A BASELINES

757
758 Apart from a dense baseline, we compare MoSA with two sparse attention methods: static, position-
759 based sparse attention, and content-based sparse attention.
760761 **Fixed Sparse Attention.** Position-based static attention patterns have been shown to be a strong
762 sparse attention variant (Child et al., 2019), outperforming strided sliding window attention. Fixed
763 sparse attention for a sparsity ρ selects $k = \frac{T}{\rho}$ tokens with stride ρ . Using the notation intro-
764 duced in Section 2.2, fixed sparse attention can be written as a special case of MoSA, where
765 $I = [0, \rho, 2\rho, \dots, T - \rho]$ and $r = 1$.
766767 Fixed sparse attention reduces computational complexity in two ways. First, it decreases the $O(T^2)$
768 cost of the full attention matrix by limiting attention to predefined token positions. Second, since
769 only these pre-selected tokens participate in attention calculations, the query, key, value, and output
770 transformations need only be computed for this subset rather than all tokens. This is important
771 because MoSA also benefits from calculating transformations only for a selected subset of tokens.
772 Hence, investigating this fixed sparse attention gives insight on whether pure benefits of sparsifying
773 over transformations can lead to performance improvements.
774775 However, fixed sparse attention introduces information flow constraints. Pre-selected tokens must
776 aggregate necessary information in earlier layers. Furthermore, in the subsequent layers they have to
777 be routed back to the positions where they are most useful. This additional overhead in information
778 routing limits the model’s representational capacity and overall expressiveness.
779780 **The Routing Transformer.** We also compare MoSA to the content-based attention proposed in the
781 Routing Transformer (Roy et al., 2021). The Routing Attention is the most similar method to MoSA
782 we found in the literature. It groups tokens with online K-means into ρ clusters of size $k = \frac{T}{\rho}$ inside
783 each head. This is implemented during training by the top- k tokens most similar to the cluster centers
784 using the dot-product distance metric. Cluster centers are learned using a moving average of the most
785 similar tokens.
786787 The Routing Attention might resemble the Expert-Choice selection with MoSA. There are, however,
788 several crucial differences that, as our experiments show, lead to significant differences in the
789 performance of MoSA in comparison to the Routing Transformer. Specifically, online K-means, used
790 for clustering in the Routing Transformer is known for suffering from an extremely slow convergence
791 rate (Bottou and Bengio, 1994). It is also unclear if clustering keys and queries is well aligned with
792 the language modeling objective. In contrast, the learned dynamic matching mechanism of MoSA is
793 directly optimized by the same objective as the model.
794795 MoSA benefits from the sparsity in the W^Q, W^K, W^V, W^O transformations, which need to be
796 computed only for selected tokens. In contrast, the Routing Transformer has to compute all keys and
797 queries before the clustering step. MoSA’s efficiency enables the use of more heads with specialized
798 weights in a smaller subset of tokens. Its selection can also lead to dynamic compute allocation,
799 where some more important tokens are processed by more heads than less important tokens.
800801 Last but not least, the Routing Transformer performs best in language modeling when the clusters
802 share the same destination (query) tokens and source (keys and values) tokens. In our experiments, we
803 also found that MoSA performs better if the same tokens are selected for the source and destination
804 sides. However, to enforce this in the Routing Transformer, they require to set $W^Q = W^K$. In MoSA,
805 however, the same selection for source and destination side can be enforced with W^Q different from
806 W^K , allowing greater flexibility.
807808 We visualize typical schematic attention patterns of the baselines and MoSA in Fig. 2. Note that
809 several previous works proposed combining different types of sparse attention to achieve synergic
810 performance in long-sequence tasks (Beltagy et al., 2020; Zaheer et al., 2020; Zhang et al., 2023).
811 In this work, we focus on investigating sparse attention methods in combination with a few dense
812 attention heads, but without combining multiple sparse attention types. We leave combining MoSA
813 with other sparse-attention methods for future work.
814815 **Mixture of Attention Heads** Mixture of Attention Heads (MoA) (Zhang et al., 2022) addresses
816 the instability of applying Mixture-of-Experts (MoE) to attention mechanisms by enforcing shared
817

key and value projections across all heads, following the MQA design (Vyas et al., 2020). Expert sparsity is applied only to the query transformation. Because all heads use the same key and value mappings, discrepancies between expert-routed queries and the fixed keys/values are avoided: the shared projections are trained to be universally compatible with all query experts. This stabilizes training and enables scaling to many heads. However, MoA inherits a core limitation of MQA: since key and value projections are fixed regardless of head count, scaling the number of heads yields diminishing returns, as only the query pathway benefits from expert specialization.

Native Sparse Attention Native Sparse Attention (NSA) (Yuan et al., 2025) proposes to calculate fine-grained attention only for selected blocks based on proximity scores calculated from aggregated information across tokens from a given block. This reduces the necessity of calculating the entire matrix of attention, and therefore leads to significant efficiency improvements in comparison to the dense baseline. NSA, however, does not sparsify QK transformations, and therefore is not suitable for the design proposed by us in this paper with a lot of small attention heads.

B RELATED WORK

The quadratic cost of attention in the 2017 transformer model (Vaswani et al., 2017) has led to a wide body of research on efficient attention variants (Kitaev et al., 2020; Choromanski et al., 2021). Popular alternatives are different linear attention variants that typically use a fixed vector or matrix memory and update it recurrently. The 1992 unnormalised linear Transformers (Schmidhuber, 1992; Katharopoulos et al., 2020; Schlag et al., 2021) trade performance for better computational efficiency. State space models (Gu et al., 2020; 2022; Gu and Dao, 2023) are popular alternatives that offer efficient, parallel training while keeping linear cost and efficient inference. The parallel training requirement forces only a linear recurrent relation between the timesteps. A common characteristic of such models is the relatively small, fixed memory that requires extreme compression. Despite recent progress, these models still underperform quadratic attention on many benchmarks (Arora et al., 2024; Jelassi et al., 2024).

Sparse attention methods aim to mitigate the quadratic cost of full attention by computing attention scores for only a subset of token pairs rather than the full attention matrix. These methods typically employ various heuristics to strategically identify which tokens and token relationships are the most important to process. This is often done by introducing special tokens that serve as higher-level representations of entire chunks of tokens, or by assuming emergent hierarchical structures within the attention patterns. For example, SepLLM (Chen et al., 2024) uses separators in the sentence as special tokens that sparse attention focuses on. Sparse Transformer (Child et al., 2019) uses static attention patterns to reduce computational complexity. Longformer (Beltagy et al., 2020) combines sliding window attention with additionally selected tokens globally available. BigBird (Zaheer et al., 2020) combines sliding window attention and global attention on selected tokens, while additionally including randomly selected tokens in the attention. Streaming LLM (Xiao et al., 2024a) discovers and preserves attention sinks as a necessary component despite their inefficiency and combines them with sliding window attention. Some methods (Liu et al., 2023; Li et al., 2025; Cai et al., 2024; Xiao et al., 2024b; Xu et al., 2025b; Gao et al., 2024; Jiang et al., 2024a) focus on post-training attention reduction, motivated by KV-cache reduction. Hash Attention(Desai et al., 2024) uses top- k selection in the attention scores to induce sparsity and improve efficiency. However, learnable sparse attention that can also be used during training (Yuan et al., 2025) remains important as the quadratic cost of the self-attention mechanism is also problematic in the very costly pretraining phase.

Mixture-of-Experts (MoE) (Shazeer et al., 2017) have emerged as a promising paradigm for scaling model capacity without a proportional increase in computational cost. By adaptively routing input tokens to specialized experts, MoE architectures selectively activate only a part of the network. MoEs applied to transformer feedforward networks (Lepikhin et al., 2021; Fedus et al., 2022) have been widely adapted in LLMs (Guo et al., 2025; Jiang et al., 2024b; Shen et al., 2024b).

A crucial challenge in MoE is to learn a balanced routing, so that experts are utilized uniformly. Imbalanced routing leads to capacity bottlenecks when certain experts become overused while others are completely ignored. This phenomenon is called expert collapse (Shazeer et al., 2017). Most approaches mitigate it by specific losses that penalize polarized expert selection (Lepikhin et al., 2021), while others propose alternative routing methods (Lewis et al., 2021; Roller et al., 2021).

864 Expert-Choice routing (Zhou et al., 2022) inverts the selection problem, allowing each expert to
 865 choose its preferred tokens. This way, Expert-Choice routing achieves perfect load balancing by
 866 definition, at the cost that some tokens are ignored and some are overutilized. Expert-Choice routing,
 867 however, cannot be directly applied to autoregressive modeling as it uses a non-autoregressive top- k
 868 operation over the tokens. MoD (Raposo et al., 2024) proposes methods to transfer nonautoregressive
 869 expert choice routing to an autoregressive model. We leave the investigation of their adaptation to
 870 MoSA for future work.

871 MoE is most often applied to the feedforward part of the transformer. In contrast, some works explore
 872 MoEs in the attention mechanism to reduce the high computational cost and memory. Mixture-
 873 of-Attention Heads(MoA) (Zhang et al., 2022) selects k query transformations for each token and
 874 shares a single key and value projections similarly to Multi-Query Attention(MQA) (Shazeer, 2019).
 875 MoA allows for increasing the total number of query heads when using MQA without significantly
 876 increasing the computational cost. In contrast, MoSA selects tokens that are routed to full heads
 877 with separate queries, keys, and values (and consequently, outputs) utilizing perfect load balancing
 878 from expert choice routing for efficient sparse attention. This reduces the cost of each attention head
 879 significantly more than MoA and does not require MQA (although it might be combined for further
 880 benefits, which we leave for future work). Moreover, MoSA allows for KV-cache savings by reducing
 881 the number of selected keys, which is not possible with MoA, apart from the MQA benefit of having
 882 single KV transformations. SwitchHead (Csordás et al., 2024) reduces the number of heads (and
 883 therefore the number of computed attention matrices) by adding internal experts that can compensate
 884 for the lower number of heads. This is orthogonal to MoSA and possibly can be combined for further
 885 improvements. Multi-head attention as Mixture of Head Attention (Jin et al., 2024) proposes to use
 886 dynamic weights for the output projection in order to treat the heads as experts for tokens. However,
 887 it requires calculating all attention matrices, lacking the benefits of sparse computation.

888 Mixture-of-Depths(MoD) (Raposo et al., 2024) selects inputs to pass through a given entire trans-
 889 former block to allow adaptive computation. This includes the attention mechanism. This produces
 890 efficiency gains in an FLOP-limited budget for the entire training. MoSA has multiple selection
 891 mechanisms, one for each head, and by increasing the number of heads it processes the sentence in a
 892 distributed way - each head processing its own chunk of the sentence.

900 C FLOPs CALCULATION.

901
 902
 903
 904
 905
 906 Let T be the sequence length, h the hidden dimension of the model, h' the hidden dimension in each
 907 head (after passing through the query, key or value projection), k the number of tokens selected for
 908 each head, and the sparsity rate $\rho = \frac{T}{k}$.

909 Multiplying matrices of shape $[i, j]$ and $[j, k]$ takes precisely $(2j - 1)ik$ FLOPs. For simplicity,
 910 following common practice, we approximate it by $2jik$.

911 In the dense attention layer, calculating each projection (e.g., $Q_i = xW_{Q_i}$) requires $2hh'T$ FLOPs.
 912 Computing the attention matrix QK^\top , and multiplying the attention matrix by values V both cost
 913 $2h'T^2$ FLOPs.

914 Calculating the projections and attention in the MoSA head is identical, except that now we are
 915 operating on k tokens instead of T . The MoSA head involves an additional routing overhead.
 916 Calculating the routing scores costs $2hT$ FLOPs, and multiplying the intermediate values in the
 917 matrix $\in \mathbb{R}^{k \times h'}$ by the scores costs an additional $h'k$ FLOPs per head.

918 FLOPs cost of a single head is equal to:

$$\text{FLOP}_{\text{dense}} = \underbrace{8hh'T}_{\text{Q,K,V,O mappings}} + \underbrace{4h'T^2}_{\text{Attention}}$$

$$\text{FLOP}_{\text{mosa}} = \underbrace{8hh'k}_{\text{Q,K,V,O mappings}} + \underbrace{4h'k^2}_{\text{Attention}} + \underbrace{2hT + h'k}_{\text{routing overhead}}$$

$$\text{FLOP}_{\text{fixed}} = \underbrace{8hh'k}_{\text{Q,K,V,O mappings}} + \underbrace{4h'k^2}_{\text{Attention}}$$

$$\text{FLOP}_{\text{routing}} = \underbrace{6hh'T}_{\text{Q=K,V,O mappings}} + \underbrace{4h'k^2\rho}_{\text{Attention}} + \underbrace{2h'T}_{\text{cluster selection}} = \rho(6hh'k + 4h'k^2) + 2h'T$$

931 Note that, typically $k \ll T$, hence the MoSA head is significantly cheaper compared to a dense
932 head.

933 The selection mechanism in MoSA introduces an additional overhead of $2hT + h'k$ ($2hT$ comes from
934 token scoring and $h'k$ comes from multiplying the output by the scores), which is small compared to
935 the rest. As a consequence, the cost of the MoSA head is comparable to that of the fixed sparsity
936 attention head, while allowing content-based dynamic sparsity.

937 In contrast to MoSA and fixed attention, the Routing Transformer must compute all tokens by query,
938 key, value, and output transformations. However, in the Routing Transformer for autoregressive
939 text $K = Q$, therefore, only 3 projections need to be computed. Hence, the projection cost is equal
940 to $6hh'T$. The attention in the Routing Transformer has multiple clusters inside each head. More
941 specifically, it has ρ clusters of size k , and therefore the attention cost of the head is equal to the
942 attention cost of the cluster multiplied by the number of clusters. The Routing Transformer has an
943 additional layer normalization inside the head, which we omitted for simplicity.

944 FLOP-wise, one Routing Attention head more or less corresponds to ρ fixed attention or ρ MoSA
945 heads. Loosely speaking, MoSA with ρ heads is similar to the Routing Attention head, where each
946 cluster has its own custom linear transformation, rather than a single one shared among clusters.

947 For the multihead version, the FLOPs are multiplied by the number of heads H . There is an additional
948 cost caused by summing the head contributions to a single output (Equations 2 and 3). However,
949 this is already taken into account by the $2hh'TH$ cost of the output projection for multiple heads:
950 $H(2h' - 1)hT + (H - 1)hT = (2h'H - 1)hT \approx 2hh'TH$.

952 Note that in the standard notation (Vaswani et al., 2017), the heads are first concatenated and then
953 transformed with a single output projection instead of splitting the output operation into individual
954 head transformations and summing. However, the result and the derivation of the FLOP counts are
955 the same.

956 In the feedforward block, the intermediate layer has a typical size of $4h$. Therefore, the cost of the
957 block is equal to $16h^2T$. Therefore, the FLOP cost of the forward pass of the entire model with l
958 layers, a hybrid attention with H_{dense} dense heads and H_{mosa} MoSA heads is equal to:

$$lH_{\text{dense}}(8hh'T + 4h'T^2) + lH_{\text{mosa}}(8hh'k + 4h'k^2 + 2hT + h'k) + 16lh^2T$$

959 We omit the operations related to layer normalizations, residuals, and token embeddings from the
960 FLOP calculations as they are negligible compared to the rest and represent an identical overhead
961 for both dense and MoSA models. Thus, incorporating them does not influence the FLOP-matching
962 process. This is also true for the feedforward block; yet, we still included it because it constitutes
963 a significant portion of the total cost. We present the FLOP cost of all of our model classes (*Tiny*,
964 *Small*, *Medium* and *Large*) in Table 4.

966 All models are based on the transformer architecture with Pre-layer normalisation (Xiong et al., 2020).
967 Each model class *Tiny*, *Small*, *Medium* and *Large* follows the hyperparameters of the dense model.
968 The necessary forward pass FLOPs are calculated according to Sec. C. The number of heads in the
969 sparse models is set so that the resulting model is FLOP-matched to the dense baseline as closely as
970 possible. When this is not perfectly possible, we ensure that its FLOP count never exceeds that of the
971 baseline. For pure MoSA, all heads are replaced with MoSA heads. For the hybrid sparse models, 4
dense heads are kept, and the remaining ones are replaced with sparse heads.



Figure 5: Perplexity of IsoFLOP matching models under pure MoSA setting. Each curve corresponds to a given FLOP budget. For a given sparsity, we replace all dense heads with a FLOP equivalent number of MoSA heads. In contrast to Fig 3, sparse models fail to outperform the baseline (apart from the Large model). This demonstrates the symbiotic relation between dense heads and MoSA heads in the hybrid model.

D ANALYSING HYBRID MODELS

While the learned sparse attention can theoretically capture any attention pattern, the introduction of the routing mechanism complicates the learning dynamics. The router and the attention weights must be learned jointly. The router needs to identify relevant token pairs, while the attention weights learn to process these selected interactions. This interdependence can lead to training instabilities, particularly in the early stages, when router decisions are largely random. Poor initial routing can prevent attention heads from learning meaningful patterns, while the lack of meaningful patterns prevents the router from learning to select important tokens, creating a vicious circle.

Our preliminary experiments have shown that pure MoSA models without additional dense heads fail to improve the perplexity of dense baselines. To verify this, we conducted a study similar to our main results in Sec. 3. We gradually increase the sparsity by replacing all dense heads with MoSA heads while maintaining an identical FLOP count to the baseline. We do this by finding the maximum number of MoSA heads for which the FLOP count remains lower than the baseline. The results, shown in Fig. 5, demonstrate that increasing sparsity monotonically worsens model performance in most settings. This performance degradation with pure MoSA heads likely stems from the stability issues explained in the previous paragraph.

Interestingly, the largest model is an exception, and initially there is a visible improvement from 12.20 baseline perplexity to 11.83 perplexity of the FLOP-matched pure MoSA model with sparsity 2. This is still significantly worse than the 11.15 perplexity of the hybrid model with sparsity 4. Moreover, the saturation is much faster than for hybrid models. For hybrid models, the sparsity around 32 or 64 seems to be optimal. In contrast, for the MoSA-only model, the best perplexity is reached for sparsity 2 for the *Large* budget and 1 for the smaller ones. However, the conclusion is consistent across all scales: hybrid MoSA models significantly outperform MoSA-only models, which generally underperform the dense baseline. Thus, hybridization seems necessary.

The impact of sparsification is also visible in the training characteristics. Compared to the baseline, pure MoSA models start to plateau faster. While the losses of dense and hybrid models continue to show steep initial improvement, pure MoSA models slow down much sooner. This supports our hypothesis about the difficulty of learning the routing and attention simultaneously. We compare the training losses in Fig. 6.

Optimal Number of Dense Heads Hybrid models consistently outperform pure MoSA models. This raises a natural question: What is the optimal ratio of dense to sparse heads and how does this ratio relate to the sparsity rate?

To answer these questions, we conducted a series of experiments in which we varied both the sparsity factor of MoSA heads and the number of dense heads while keeping the total FLOP budget constant.

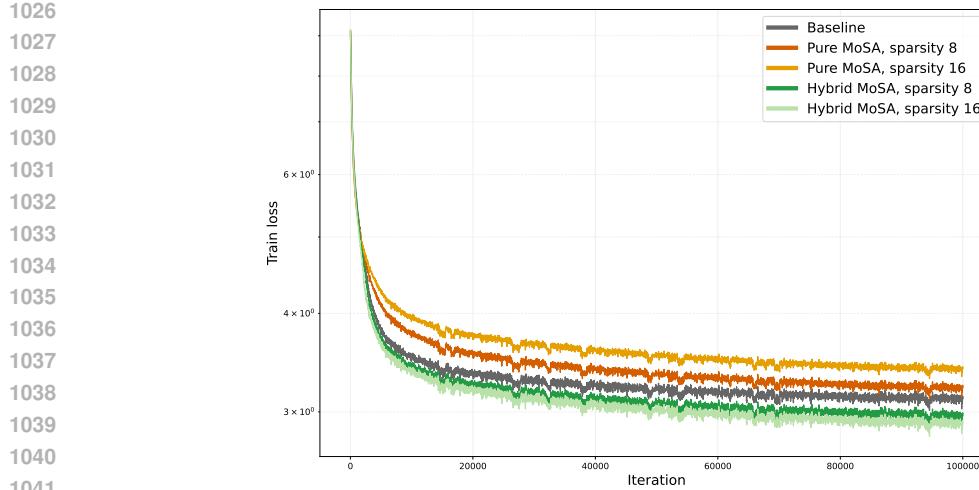


Figure 6: Training losses of the Tiny models comparing the baseline, pure MoSA, and hybrid models. The dense baseline clearly divides the models into two groups: all pure MoSA models perform worse (higher loss), while all hybrid models demonstrate superior performance (lower loss). Notably, increasing sparsity intensifies the difference for both model types: hybrid models achieve progressively lower loss with greater sparsity, whereas pure MoSA models show increasingly higher loss as sparsity increases. Additionally, the early training phase (between 5,000 and 10,000 steps) reveals a distinct pattern where pure MoSA models experience a more rapid slowdown in their learning progress compared to both dense and hybrid models.

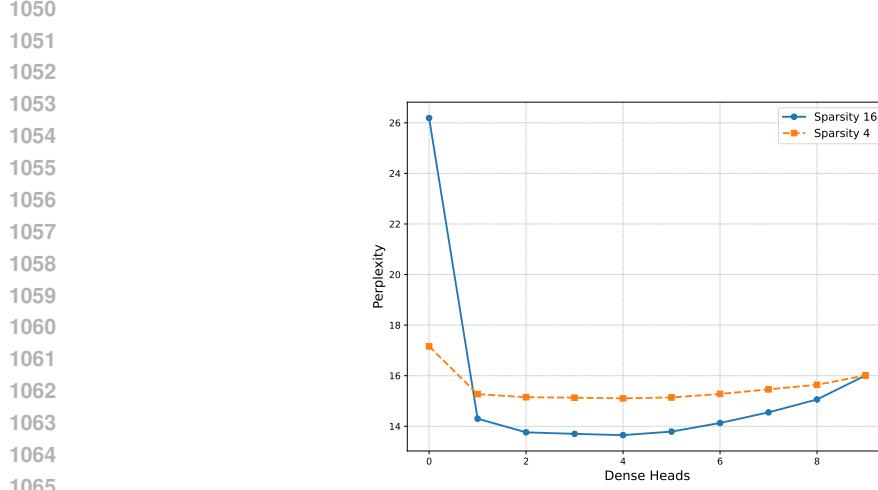


Figure 7: Perplexity of the FLOP matched models with a different number of dense heads for sparsities 4 and 16. 9 dense heads correspond to the dense baseline.

We choose to use the *small* model and investigate sparsities $\rho = 4$ and $\rho = 16$, while we set the number of dense heads in the hybrid model from 0 to 9 (full dense model) and adapt the number of sparse heads to match the FLOP budget. Our results are shown in Fig. 7. We can see that the optimal number of dense heads in this case is 4 and is sparsity-agnostic. Because of this, we chose to use 4 dense heads in our main experiments in Sect. 3. Furthermore, we observe that it is critical to have at least one dense head. Having more than one has diminishing returns, and having more than 4 has a negative effect on the performance. The plot also shows that the lack of dense heads is more hurtful for models with higher sparsities. We conclude that in our case, 4 heads are sufficient to stabilize the training, and it is better to allocate the remaining FLOP budget to the more efficient MoSA heads.

1080 **E MoSAIC**
 1081

1082 In addition to expert-routing, we explored a token-choice routing design for MoSA for completeness
 1083 and demonstration of feasibility. We refer to this variant as Mixture of Sparse Attention with Inde-
 1084 pendent Choice (MoSAIC). Adaptation of MOSA to token-choice routing, which inherently facilitate
 1085 autoregressive modelling, inevitably introduces two design challenges. Specifically, good balancing
 1086 of tokens has to be assured by additional losses. We use standard load balancing tokens (Fedus et al.,
 1087 2021; Lepikhin et al., 2021). In App. E.1 we investigate the impact of load balancing loss on the
 1088 result and demonstrate the fragility of the model.

1089 Imperfect load balancing has a stronger impact on the token-choice attention experts than on token-
 1090 choice FFNs, because of the inter-token dependencies in the attention heads. Specifically, output of a
 1091 token for a given head is influenced by other tokens that are in the head. Because of that, strategies
 1092 for handling imperfectly balanced loads needs to be carefully considered. We investigate two main
 1093 decisions in this context. Which tokens to select to the head in case of overloading (and which to pad
 1094 in case of underutilization), and what to do with the padded tokens (following the argument that they
 1095 might be harmful for other tokens). We propose and investigate different imperfectly balanced load
 1096 handling strategies in App. E.2.

1097 **E.1 LOAD BALANCING**
 1098

1099 In mixture-of-experts architectures with token-level routing, a key challenge is that the routing
 1100 network may converge to a degenerate solution where only a small subset of experts receives most
 1101 tokens. This *collapse* not only wastes model capacity but also destabilizes training, as unused experts
 1102 fail to learn meaningful representations. To counteract this, prior work such as GShard (Lepikhin
 1103 et al., 2021) and Switch Transformer (Fedus et al., 2021) introduced a load balancing loss term. The
 1104 purpose of this auxiliary loss is to encourage more uniform expert utilization while still allowing the
 1105 routing network to specialize experts according to input structure.

1106 **Formulation.** We adopt the same load balancing loss as in GShard and Switch Transformer. Let f_i
 1107 denote the fraction of tokens dispatched to expert i , and p_i the average routing probability assigned
 1108 to expert i . For a system with N experts, the load balancing loss is defined as:

$$1110 \quad \mathcal{L}_{\text{balance}} = \alpha N \cdot \sum_{i=1}^N f_i \cdot p_i. \quad (4)$$

1111 This term is minimized when both the assignment frequencies f_i and the routing probabilities p_i are
 1112 close to uniform across experts. In practice, the overall training objective augments the language
 1113 modeling loss with a weighted contribution from $\mathcal{L}_{\text{balance}}$, controlled by the *load balancing loss*
 1114 *weight*. This provides a direct mechanism to trade off model perplexity against expert utilization
 1115 efficiency.

1116 We investigated how the *load balancing loss weight* α influences the perplexity of MoSAIC models
 1117 across different sizes. The experimental setup follows the configuration described in the preceding
 1118 sections, with sparsity chosen according to the optimal settings reported in the MoSA paper: 64
 1119 experts for the *Tiny* and *Small* models, 32 experts for *Medium*, and 4 experts for *Large*. For each
 1120 model size, we varied the load balancing weight over $\{0.1, 0.2, 0.4, 0.8\}$ and measured perplexity on
 1121 the validation set.

1122 The results, summarized in Figure 8, show that performance depends on the choice of load balancing
 1123 weight, although the sensitivity varies across model sizes. The larger models (*Medium* and *Large*)
 1124 exhibit only modest changes in perplexity, with differences remaining under one point, but the
 1125 variations are still noticeable. For the smaller models (*Tiny* and *Small*), the effect is more pronounced:
 1126 the *Tiny* model in particular benefits from higher load balancing weights, while the *Small* model
 1127 achieves its best performance around moderate values (0.4).

1128 These findings indicate that while the load balancing weight does not dominate performance, it is not
 1129 entirely negligible either. Its influence is most apparent in the *low-capacity regime*, where balancing
 1130 expert usage more directly impacts generalization. In larger models, the effect is less dramatic but
 1131 still measurable, suggesting that careful selection of this parameter can yield incremental gains across
 1132 all scales.

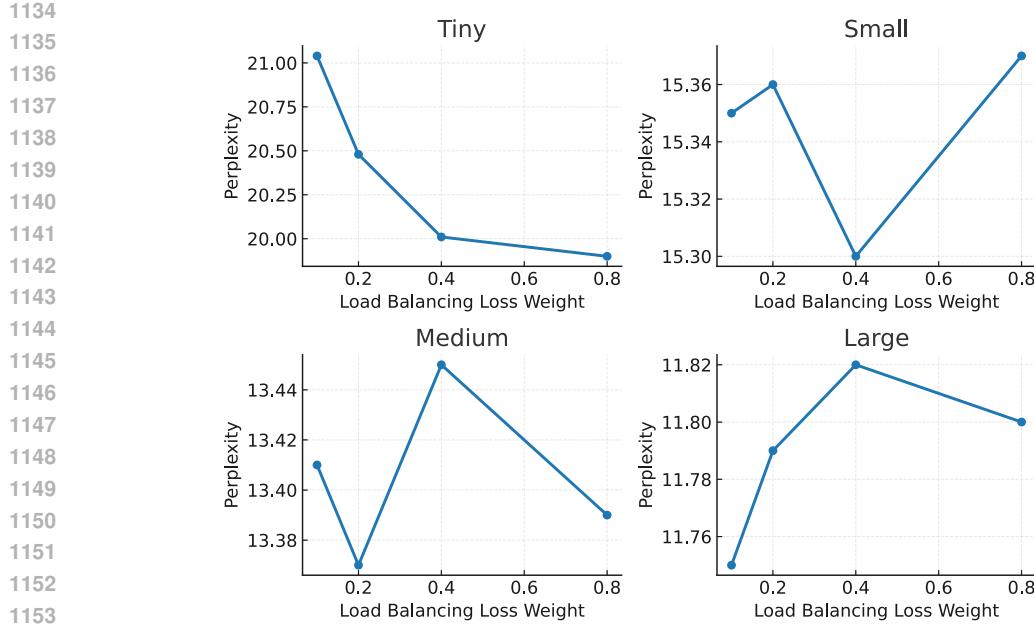


Figure 8: Perplexity of MoSAIC models as a function of the load balancing loss weight α . Each subplot corresponds to a different model size (*Tiny*, *Small*, *Medium*, *Large*), with sparsity fixed to the optimal configuration reported in the MoSA paper. Smaller models exhibit significant sensitivity to the choice of α . However, larger models show only modest variation.

E.2 OVERLOADED TOKENS

Unlike mixture-of-experts applied in the feed-forward blocks, our experts are implemented as attention heads. This structural difference has important consequences: assigning a token to an expert not only determines the output representation of that token, but also shapes the interactions with all other tokens routed to the same head. In other words, expert assignment induces an inter-token relation that propagates beyond the individual token’s output. As a result, the way overloaded tokens are handled becomes especially critical, since decisions about which tokens to include, ignore, or pad can directly alter the relational structure inside the expert.

To probe this phenomenon, we evaluated the model under different design choices for handling overloaded tokens. Specifically, we compared three strategies: (*include*) retaining all padded tokens and including them in the attention computation (while respecting autoregressive mask), (*identity*) allowing the padded tokens to attend to only to themselves, also make them invisible for other tokens. Effectively it transforms the padded tokens directly through V and O transformations. Finally, (*ignore*) - masking out the padded tokens entirely. Each of these options reflects a different trade-off. Inclusion allows the most efficient use of the computation, as the padded tokens will take space in the batch anyway. The identity still allows to use the computation for the padded tokens, without risking that due to their appearance in the batch without being selected they will disrupt the integrity of the expert transformation. Ignore is the safest, clearest theoretical option that transforms only tokens that actually selected given expert.

The results for both the *Tiny* and *Medium* models (Figure 9) demonstrate that these choices yield measurable differences in perplexity. For retaining tokens via inclusion tends to be the best option, while ignoring tokens degrades performance more noticeably. Furthermore, keeping tokens based on their position (prioritizing early tokens) is most often beneficial. We hypothesize that this might be related to the attention sinks that often appear at the beginning of the sequence.

Taken together, these findings emphasize that the semantics of expert assignment in attention-based MoEs make overload handling a first-class design decision. Unlike in feed-forward MoEs where dropping a token primarily affects its own representation, here the effect propagates to all tokens in the expert, making the system more sensitive to overload strategies. This suggests that future work

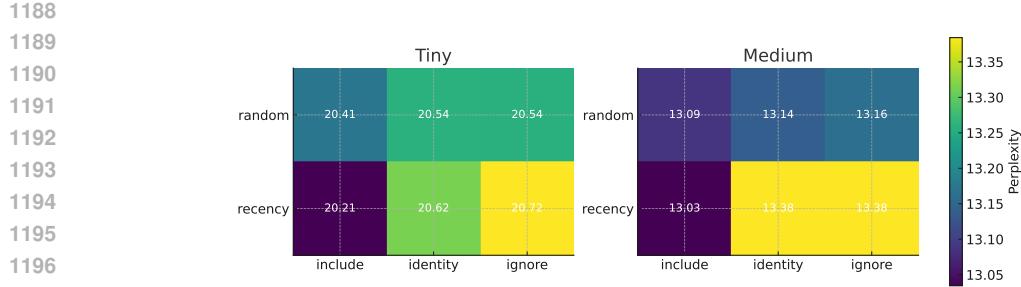


Figure 9: Perplexity of *Tiny* and *Medium* MoSAIC models under different strategies for handling overloaded tokens. The two axes correspond to the choice of routing priority (*random* vs. *recency*) and padded operation (*include*, *identity*, *ignore*). Because experts are attention heads, these design choices affect not only the overloaded tokens themselves but also the inter-token relations within each expert. The results show that the optimal strategy varies across model sizes, highlighting the importance of tuning overload handling rather than treating it as a fixed implementation detail.

on scaling attention-based mixtures must account for overload handling not merely as an engineering detail, but as a factor shaping the model’s representational behavior and generalization.

F DOWNSTREAM TASKS

We evaluate the zero-shot downstream performance of MoSA on six established benchmarks: LAMBADA (Paperno et al., 2016), WinoGrande (Sakaguchi et al., 2020), BLiMP (Warstadt et al., 2020), HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020) and AI2ARC (Clark et al., 2018)—covering tasks from cloze-style completion to commonsense reasoning.

During training, MoSA operates on sequences of more or less constant size $T = 1024$. However, for downstream tasks, some inputs will be much shorter. For example, most datapoints in the BLiMP dataset do not exceed 10 tokens. In order to handle such situations, we adaptively choose the number of tokens for each input to be $k = \max(\lfloor \frac{T}{\rho} \rfloor, 2)$ tokens for each head. This simulates the ratio of tokens selected for the attention head during the training. Moreover, it ensures that at least 2 tokens are selected, which is the minimum necessary for the attention to model any cross-token dependencies.

For each scale and sparse model type, we select the model with sparsity $\rho > 1$ that produced the best perplexity in the IsoFLOP scenario (Sec. 3). We also include the dense baseline for each size. Table 3 reports the performance across the tasks. The best result for a given task across model types is bold.

For *Tiny*, *Small*, and *Medium* scales, MoSA generally outperforms other models. BLiMP stands as a notable exception, where MoSA consistently underperforms. This weak performance on BLiMP can be attributed to the extremely short length of most examples in the dataset. With longer sequences seen during training, each MoSA head can selectively process only the tokens it handles well. However, in short sequences, the shortage of tokens forces MoSA heads to operate on tokens outside their training distribution. Furthermore, when $\lfloor \frac{T}{\rho} \rfloor = 1$, resulting in only 2 tokens being selected, there is a significant discrepancy between the percentage of selected tokens compared to training conditions. Models with a high sparsity factor of 64 typically select only 1.56% tokens in a sequence for each attention head. Yet for a sequence length of $T = 10$, 2 selected tokens represent 20% of the sentence, creating a distribution mismatch.

Moreover, in *Large* scale, the Dense baseline outperforms MoSA despite having much higher perplexity. We attribute the downstream performance gap of MoSA to two main factors. First, MoE architectures have been shown to suffer from expert overspecialization, which often leads to decreased performance in downstream tasks (Fedus et al., 2022; Zoph et al., 2022). Instruction tuning has been shown to mitigate this issue (Shen et al., 2024a).

Furthermore, content-based sparse attention methods tend to struggle on shorter sequence[‡]. Our experiments confirm this pattern, as MoSA outperforms the Routing Attention in most tasks. Furthermore, some runs of the Routing Attention were unstable in context of downstream tasks (Medium scale of the Routing Attention). Practitioners report that extending training by additional epochs on truncated sequences can mitigate the issues of sparse attention methods on short sequences[‡].

	Model	LAMBADA	WinoGrande	BLiMP	HellaSwag	PIQA	AI2ARC
1249 1250 1251 1252 1253 1254	Dense	18.7	50.3	72.0	27.5	59.4	28.0
	Routing	14.0	51.3	66.2	27.8	57.1	25.9
	Fixed	17.1	50.6	72.5	27.7	58.6	28.1
	MoSA	26.5	53.0	65.5	29.1	59.7	29.4
	MoSAIC	22.7	52.2	72.5	28.2	58.0	27.9
1255 1256 1257 1258 1259 1260	Dense	25.8	52.1	76.2	30.9	62.4	30.1
	Routing	19.2	50.7	70.2	28.0	57.6	27.3
	Fixed	24.6	51.6	75.3	30.1	63.2	30.2
	MoSA	29.4	51.9	70.5	31.9	63.2	30.0
	MoSAIC	26.8	52.2	77.6	31.0	62.6	30.3
1261 1262 1263 1264 1265 1266	Dense	31.4	51.2	77.8	33.8	64.5	31.5
	Routing	10.2	51.5	65.9	30.3	57.8	27.8
	Fixed	29.4	51.4	77.3	33.0	64.6	31.5
	MoSA	36.1	52.1	66.1	34.2	63.3	31.4
	MoSAIC	31.8	52.1	78.7	33.9	64.6	31.4
1267 1268 1269 1270 1271 1272	Dense	36.2	52.5	80.4	38.7	67.1	33.8
	Routing	27.5	51.1	76.5	36.2	64.1	32.5
	Fixed	32.3	51.7	79.6	35.9	66.0	32.2
	MoSA	35.0	51.4	74.2	37.5	65.9	31.7
	MoSAIC	40.4	52.7	79.5	37.4	65.4	32.6

Table 3: Accuracy on downstream zero-shot tasks. Each model is selected with the best sparsity in the IsoFLOP comparison. Note that on downstream tasks, the token selection mechanism of MoSA operates out of distribution. Despite this, MoSA often outperforms the dense baseline. Even when it does not, the performance gap is usually small. MoSAIC partially mitigates these issues by providing a token-choice routing mechanism suitable for autoregressive, although residual gaps suggest that some limitations are inherent to content-based sparse attention.

G LLM USAGE

Large language models (LLMs) were used only to help edit the text. They improved grammar, style, and readability, but did not play any role in shaping ideas, designing experiments, analyzing results, or creating new content. All scientific work, including the concepts, methods, and interpretations, was done entirely by the authors.

H DETAILS OF THE MODELS

In the Table 4 we list hyperparameters all of dense baselines.

Implementation details We use the SentencePiece (Kudo and Richardson, 2018) tokenizer based on sub-word units (Sennrich et al., 2016; Schuster and Nakajima, 2012) a vocabulary size of 8000. All

[‡]See: <https://github.com/lucidrains/routing-transformer?tab=readme-ov-file#issues>

1296 our models are trained on the C4 (Raffel et al., 2020) dataset for 100k batches, with batch size $B = 64$
 1297 and sequence length $T = 1024$. This means that we train on the $10^5 SB \approx 6.5B$ tokens from the
 1298 dataset. We use the Adam (Kingma and Ba, 2015) optimizer with a learning rate of 0.00025, gradient
 1299 clipping above the norm of 0.25, and a linear warmup for 4k steps. For detailed hyperparameters,
 1300 please refer to Appendix H.

1301

1302 **Positional encodings.** All our experiments use Rotary Positional Encodings (RoPE) (Su et al.,
 1303 2021). RoPE applies positional encodings for each attention head after query and key mapping. It
 1304 does this by rotating them at an angle determined by the token’s position in a sentence. Similarly to
 1305 the attention mask, we must ensure that the rotations correspond to the token’s original position in the
 1306 sequence X rather than the selected subset X^S . Thus, we adapt RoPE to be aware of token positions
 1307 I . Following standard practice, we rotate half of the dimensions and leave the other half unchanged.

1308

1309 **Resources Used.** All the experiments in the paper were run on NVIDIA-A100 80GB nodes with
 1310 GPUs ranging from 1 for small experiments to 4 GPUs. Each experiment was limited by 24h
 1311 operation time.

1312

	Tiny	Small	Medium	Large
FLOPs per pass (G)	54.76	219.85	430.70	1,130.65
Layers	6	9	18	27
Hidden size	512	1,024	1,024	1,280
Feedforward hidden size	2,048	4,096	4,096	5,120
Head hidden size	64	64	64	64
Number of heads	9	9	9	16

1321

1322 Table 4: Hyperparameters of the different model variants and the corresponding FLOP cost of the
 1323 forward pass for a sequence length of $T = 1024$.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

Sparsity										
		1	2	4	8	16	32	64	128	256
Perplexity (\downarrow) for given sparsity										
Tiny	MoSA	22.46	21.76	20.45	19.24	18.00	16.90	16.37	17.27	18.06
	Pure MoSA	22.46	22.96	23.30	24.78	29.76	-	-	-	-
Small	MoSA	16.01	15.69	15.10	14.33	13.68	12.97	13.30	-	-
	Pure MoSA	16.01	16.35	17.16	19.61	25.41	-	-	-	-
Med.	MoSA	13.95	13.52	12.81	12.16	11.47	11.22	-	-	-
	Pure MoSA	13.95	14.03	14.40	15.87	20.63	-	-	-	-
Large	MoSA	12.20	11.67	11.15	-	-	-	-	-	-
	Pure MoSA	12.20	11.83	11.97	-	-	-	-	-	-
Number of parameters for given sparsity										
Tiny	MoSA	28M	34M	48M	78M	136M	242M	423M	693M	1B
	Pure MoSA	28M	39M	65M	119M	222M	-	-	-	-
Small	MoSA	113M	127M	163M	229M	360M	599M	1B	-	-
	Pure MoSA	113M	142M	203M	324M	559M	-	-	-	-
Med.	MoSA	210M	239M	310M	442M	703M	1.2B	-	-	-
	Pure MoSA	210M	267M	390M	632M	1.1B	-	-	-	-
Large	MoSA	516M	650M	943M	-	-	-	-	-	-
	Pure MoSA	516M	703M	1B	-	-	-	-	-	-
Number of MoSA heads for given sparsity										
Tiny	MoSA	0	13	31	69	142	276	505	848	1277
	Pure MoSA	0	23	56	124	255	-	-	-	-
Small	MoSA	0	11	26	54	109	210	381	-	-
	Pure MoSA	0	21	47	98	197	-	-	-	-
Med.	MoSA	0	11	26	54	109	210	-	-	-
	Pure MoSA	0	21	47	98	197	-	-	-	-
Large	MoSA	0	27	60	-	-	-	-	-	-
	Pure MoSA	0	37	80	-	-	-	-	-	-

Table 5: Detailed statistics of the main IsoFLOP experiments from Sec. 3. Models Tiny, Small, Medium, and Large are as described in App.H. Sparsity 1 corresponds to dense baselines. Pure MoSA models for sparsities ≥ 1 have only MoSA heads, calculated as the biggest number of heads that will not increase the FLOP budget of the dense baseline (other hyperparameters stay the same as in the baseline). MoSA models have 4 dense heads and the rest of the heads are sparse, calculated such that the flop cost of both dense and sparse heads is lower than the baseline. Therefore, the total number of heads in hybrid models (with sparsity ≥ 1) is the number shown in the bottom table + 4. For perplexity, the best result for each row is bold.

1404 This passage beautifully captures the concept of mindfulness and the art of being present in the
1405 moment. It highlights the peacefulness and liberation found in the quiet spaces between thoughts,
1406 where one can embrace the emptiness without the demands of productivity or purpose. This moment
1407 of "pure nothingness" serves as a reminder of the importance of taking a step back from the constant
1408 stream of thoughts and activities that often fill our lives. By finding solace in the absence of activity,
1409 we allow ourselves to experience a different kind of richness—a connection to the simplicity of just
1410 being. This can be a powerful form of meditation, helping to rejuvenate the mind and spirit, and
1411 offering a respite from the relentless pursuit of meaning and achievement.

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457