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1. Introduction
The clinical trial is a crucial step in the development of
new treatments to demonstrate the safety and efficacy of
the drug. However, the clinical trial is time-consuming and
experiments expensive, taking multiple years and costing
up to hundreds of millions of dollars (Martin et al., 2017).
In addition, the success rate of clinical trials is exceedingly
low and many drugs fail to pass these clinical trials (Blass,
2015; Huang et al., 2020a). Therefore, the ability to predict
clinical trial outcomes beforehand, allowing the exclusion
of drugs with a high likelihood of failure, holds the potential
to yield significant cost savings. Given the increasing accu-
mulation of clinical trial data over the past decade (e.g., drug
descriptions, and patient criteria), we can now leverage this
wealth of data for the prediction of clinical trial outcomes.

Early attempts aim to improve the clinical trial outcome
prediction results by modeling the components of the drugs
(e.g., drug toxicity (Gayvert et al., 2016), modeled the phar-
macokinetics (Qi & Tang, 2019)). Recently, deep learning
methods have been proposed for trial outcome predictions.
However, those approachs rely on modal-specific encoders
to extract representations from different modal data, which
require manually designed encoder structures and limit their
extensibility when new modal data becomes available for
use. To address this, we aim to design a unified encoder to
extract representations from various modalities, but it poses
the following three challenges:

• How to extract representations from different modali-
ties with a unified encoder? Different modalities are rep-
resented in various data formats. For instance, molecule
information is typically depicted as a graph, while disease
names rely on relationships between different diseases.

• How to effectively utilize both the modality-
independent information patterns and the modality-
specific patterns to enhance the extracted represen-
tations? Information across different modalities can be
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presented in both similar and different forms. For exam-
ple, descriptions of a disease and corresponding drugs
may mention the same symptoms, which can be extracted
similarly. However, molecules and drug names repre-
sent information differently and should be extracted using
distinct methods.

• How to integrate extracted information from differ-
ent modalities? Extracted representations from various
modalities need to be integrated for predictions. However,
the contribution of extracted information from different
modalities may vary significantly between samples. For
instance, in one patient, a specific disease, such as type 2
diabetes mellitus, which is difficult to treat, may strongly
influence the final outcome (Wu et al., 2022). In contrast,
another patient’s trial result may be primarily determined
by the drugs they are prescribed, particularly if those med-
ications have a high success rate in treating the disease.

To address those challenges, we propose an approach called
muLti-modal mIx-of-experts For ouTcome prEDiction
(LIFTED), which extracts information from different
modalities with a transformer based unified encoder, en-
hances the extracted features by a Sparse Mixture-of-
Experts (SMoE) framework and integrates multimodal in-
formation with Mixture-of-Experts (MoE). Specifically,
LIFTED unifies diverse multimodal features by converting
them into natural language descriptions. Subsequently, we
build a unified transformer-based encoder to extract repre-
sentations from these modal-specific language descriptions
and refine the representations with an SMoE framework.
Here, the representations from different modalities are dy-
namically routed by a noisy top-k gating network to a por-
tion of shared expert models, facilitating the extraction of
similar information patterns. Furthermore, LIFTED treats
the extracted representations from various modalities as
distinct experts and utilizes a Mixture-of-Experts module
to dynamically combine these multimodal representations
for each example. This dynamic combination allows for
the automatic assignment of higher weights to more crucial
modalities. Finally, we evaluate LIFTED on the HINT ben-
chamark (Fu et al., 2022) to demonstrate the effectiveness of
LIFTED and the effectiveness of our proposed components.
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Figure 1. An overview of LIFTED. Step 1: Transforming multimodal data into natural language descriptions, where all modalities are
converted into natural language descriptions to facilitate the representation extraction process of the transformer encoders. Step 2: Extract
and combine representations from different modalities, where representations are extracted by the noise-resilient unified encoders and
integrated by a Mixture-of-Experts (MoE) framework to make the final predictions.

2. Multimodal Mixture-of-Experts for
Outcome Prediction

2.1. Overview

This section presents our proposed muLti-modal mIx-of-
experts For ouTcome prEDiction (LIFTED) method. The
goal of LIFTED is to unify multimodal data using natural
language descriptions and integrate this information within
a Mixture-of-Experts (MoE) framework, as illustrated in
Figure 1. To elaborate, we start by extracting specific modal-
ities from the clinical trial dataset, subsequently transform-
ing this multimodal data into natural language descriptions
using a Large Language Model (LLM). Following this, we
augment the embeddings of the language descriptions de-
rived from these different modalities. We then feed both
the original and augmented embeddings into transformer-
based encoders for representation learning. Subsequently,
an SMoE framework is utilized to route the embeddings
from different modalities to different sets of experts, where
similar information patterns in different modalities will be
routed to the same experts while the different patterns will
be routed to experts with more specialized knowledge. To
enhance the robustness of encoders, we introduce a con-
sistency loss that aligns the original representations with
the augmented ones. Moving forward, we implement an
MoE framework to integrate these representations for each
trial, which originate from various modalities. Finally, these

integrated representations are input into a classifier for pre-
diction. Simultaneously, we introduce an auxiliary unimodal
prediction loss to improve the quality of modal-specific rep-
resentations. Below, we detail LIFTED.

2.2. Transforming Multimodal Data into Natural
Language Descriptions

In LIFTED, we unify these different modality data by con-
verting them into natural language descriptions. Specifically,
we first format the input features into a key-value pair. Af-
ter that, we use a prompt coupled with the corresponding
key-value pair to ask an LLM to generate a natural language
description for our input. Subsequently, these descriptions
will be fed into a unified tokenizer for further encoding,
except the SMILES string modality, which is tokenized by a
specifically designed tokenizer to enhance the representation
of molecule information. The first two steps, linearization
and prompting, are detailed below:

Linearization. In linearization, we format each data point
xi,k of trial i and modality k into a key-value pair. In this
pair, the key of each element represents the feature name
ci,k, and the corresponding value is xi,k.

Prompting. The prompts we use to communicate with the
LLM consist of three components: a prefix p to describe the
schema of the input features, the linearization and a suffix
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s to instruct the LLM on how to describe the input data
point in natural language. Given the prompts, the LLM will
generate a readable and concise natural description zi,k.

2.3. Representation Learning and Refinement

After transforming multimodal data into natural language
descriptions, we build K + 1 transformer-based encoders
on the top on these descriptions. Specifically, each modal-
ity description zi,k is tokenized into a sequence of tokens
{zti,k}Tt=1 with length T by a tokenizer T and embedded into
a sequence of embeddings {ut

i,k}Tt=1 by a modal-specific
embedding layer Ek first, and then they are added by the
position embeddings post and fed into the correponding
modal-specific transformer encoder Fk coupled with a learn-
able token [cls]k to get encoded representation Ui,k. The
encoding process can be formulated as follows:

{zti,k}Tt=1 =T (zi,k)

ut
i,k =Ek(zti,k)

Ui,k =Fk({ut
i,k + post}Tt=0),

(1)

Furthermore, to equip LIFTED with the capability to dynam-
ically identify similar information patterns across different
modalities and route them to the same encoder, we employ
a Sparse Mixture-of-Experts (SMoE) framework to further
refine the extracted representations. The encoded represen-
tations Ui,k from different modalities will be dynamically
routed by a modality-independent noisy top-k gating net-
work G to a subset of shared expert models {Rr}Rr=1 to
facilitate the extraction of similar information patterns, fol-
lowing the original design of SMoE (Shazeer et al., 2017).
The whole process can be formulated as follows:

G(Ui,k) =Softmax(TopK(P(Ui,k), k))

P(Ui,k) =Ui,k ·Wg + µSoftplus(Ui,k ·Wnoise)
(2)

where the µ is random noise sampled from a standard nor-
mal distribution, Wg is a learnable weight matrix shared
through different modalities and Wnoise is another learnable
noise matrix to control the amount of noise per compo-
nent. Subsequently, the encoded representations Ui,k will
be routed only to the shared expert models {Rr}Rr=1 with
top-k gating scores generated by the gating network G. The
refined representations Ũi,k can then be calculated by com-
bining the encoding results from the top-k expert models
with their corresponding gating scores.

2.4. Representation Augmentation and Consistency Loss

However, building informative modal-specific encoders and
the SMoE framework solely from these modal-specific natu-
ral language descriptions remains challenging, primarily due

to potential data noise introduced during the data collection
process. To make the encoders and the SMoE framework
more robust to the noise in the data, we augment the em-
beddings ut

i,k with a minor perturbation to vti,k and add
a consistency loss to require the encoders and the SMoE
framework insensitive to small perturbation, which is de-
tailed as the following two steps:

Representation Augmentation. To perform representa-
tion augmentation, we begin by considering each embed-
ding vector ut

i,k ∈ RL, where L represents the number of
elements {ml}Ll=1. We randomly select a subset of these
elements from ut

i,k with a probability p for perturbation,
while leaving the remaining elements unchanged. Next, we
proceed to sample a small value αl from a uniform distribu-
tion Uniform(−λ, λ) for each selected element. Following
this, each selected element is multiplied by exp(αl) to apply
the perturbation, resulting in the perturbed vector vti,k.

Consistency Loss. These perturbed embeddings
{vti,k}Tt=1 are then input into the encoder Fk and the
SMoE framework to generate the encoded representation
Ṽi,k. In order to ensure the robustness of the encoded
embeddings, we introduce a consistency loss Lcon to
control the disparity between the encoded representation of
the original embeddings and the augmented embeddings.
This consistency loss can be defined as the sum of MSE
loss between Ũi,k and Ṽi,k.

2.5. Integrating Multimodal Information with
Mixture-of-Experts

As illustrated in Figure 1, we employ a Mixture-of-Experts
(MoE) framework to dynamically integrate multimodal rep-
resentations. In this framework, we treat the extracted repre-
sentations from various modalities as distinct experts.

Concretely, for each example i, we start by concatenating
the extracted representations from the selected modalities
and then feed them into a fully connected layer denoted as
C to calculate the modality importance weights Wi,k for
each modality. Subsequently, we multiply these weights by
their corresponding representations {Ui,k}Kk=0 and aggre-
gate them to obtain the integrated representation Ui. The
process can be formulated as follows:

Wi,k =Softmax(C(⊕j∈JUi,j) ∗ γk)

Ui =

K∑
k=0

Wi,k ∗ Ũi,k,
(3)

where the ⊕ is the concatenate operation along the represen-
tation dimension and the J is the set of selected modalities.
γk is a learnable modal-specific temperature factor.

Following this, we make the prediction ŷi by inputting the
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integrated representation Ui into the classifier H. The classi-
fication loss Lc is defined as the cross entropy loss between
the prediction ŷi and ground truth label yi. To ensure that
the unimodal representations are of high quality and con-
sistently contribute to the final prediction, we introduce
an auxiliary loss to align the representations from differ-
ent modalities. Similar to the classification loss Lc, the
auxiliary loss Laux is calculated as the sum of uni-modal
prediction losses.

3. Experiments
In this section, we evaluate the performance of LIFTEDto
compare with the existing methods. More experiments and
analysis can be found in Appendix A.

3.1. Dataset Descriptions.

We evaluate our method and other baselines on the HINT
dataset (Fu et al., 2022; Chen et al., 2024), which includes
the information on diseases, the name, description, and
SMILES string of drugs, eligibility criteria for each clinical
trial record, the phase, and also, the trial outcome labels as
success or failure covering Phases I, II and III trials. In our
implementation, we incorporate all modalities, including dis-
ease, the name, description and SMILES string of drugs and
criteria, totaling five modalities. Additionally, we include
phase information when generating the natural language
summarization for samples. The transform-based encoder
for the SMILES string modality is pre-trained and the cor-
responding tokenizer is specifically designed for SMILES
string data. However, all the other modalities are tokenized
by a unified tokenizer and none of the other encoders are
pre-trained.

3.2. Experimental Setup

Baselines. We compare LIFTED with both machine learn-
ing methods, including Logistic regression (LR) (Siah et al.,
2021; Lo et al., 2019), Random Forest (RF) (Lo et al., 2019;
Siah et al., 2021), XGBoost (Rajpurkar et al., 2020; Siah
et al., 2021), Adaptive boosting (AdaBoost) (Fan et al.,
2020), k Nearest Neighbor (kNN) + RF (Lo et al., 2019) and
deep learning models, such as Feedforward Neural Network
(FFNN) (Tranchevent et al., 2019), Multi Modal Fusion
(MMF), DeepEnroll (Zhang et al., 2020), COMPOSE (Gao
et al., 2020), HINT (Fu et al., 2022; Wang et al., 2024),
SPOT (Wang et al., 2023b). Among these, HINT and SPOT
are specifically designed for clinical trial outcome predic-
tion. More details are presented in Appendix D.

Evaluation Metrics. Following Fu et al. (2022) and Wang
et al. (2023b), we use F1 score, PR-AUC, and ROC-AUC to
measure the performance of all methods. For all these three
metrics, higher scores indicate better performance.

3.3. Overall Performance

Table 1. The clinical trial outcome performance (%) of LIFTED
and baselines. The mean and standard deviations are calculated
from 30 independent runs with different random seeds. †: The
results of the HINT and SPOT methods were obtained by running
their released codes. The best results and second best results are
bold and underlined, respectively.

Method PR-AUC F1 ROC-AUC

LR 50.0± 0.5 60.4± 0.5 52.0± 0.6
RF 51.8± 0.5 62.1± 0.5 52.5± 0.6
XGBoost 51.3± 6.0 62.1± 0.7 51.8± 0.6
AdaBoost 51.9± 0.5 62.2± 0.7 52.6± 0.6
kNN+RF 53.1± 0.6 62.5± 0.7 53.8± 0.5
FFNN 54.7± 1.0 63.4± 1.5 55.0± 1.0
MMF (early fusion) 60.6± 2.8 59.4± 2.3 54.4± 2.4
MMF (late fusion) 63.4± 3.0 67.5± 2.2 59.0± 2.8
DeepEnroll 56.8± 0.7 64.8± 1.1 57.5± 1.3
COMPOSE 56.4± 0.7 65.8± 0.9 57.1± 1.1
HINT† 58.4± 2.3 68.2± 1.7 62.1± 2.2
SPOT† 69.8± 1.7 68.4± 1.2 64.6± 2.1

LIFTED (ours) 70.7 ± 2.3 71.6 ± 1.4 64.9 ± 2.1

We conduct experiments to evaluate the performance of
LIFTED on phase I compared to our baselines. The trial
outcome prediction results of all models are reported in
Table 1. We first observed that the deep learning-based
methods, especially the methods designed for clinical trial
outcome prediction including MMF, HINT and SPOT, out-
performs the machine learning based methods with a sig-
nificant performance gap, showcasing the powerful ability
to extract critical information from different modalities in
various formats of the deep learning encoders, especially
those encoders specifically designed to extract representa-
tion hidden in the clinical trial records. This observation
is not surprising, since the critical information of different
modalities is represented in different ways, which is hard
to extract for those traditional machine learning methods
or those deep learning encoders that are not designed for
clinical trial outcome prediction. Nevertheless, LIFTED
consistently outperforms all other methods, verifying its ef-
fectiveness in unifying different modalities and dynamically
integrating them within the MoE.

Limitations Though LIFTED outperforms the existing
models, there still are several limitations to our work. As
we mentioned in Section 2.2, different modality data is
transformed into natural language descriptions by LLM,
specifically, the GPT-3.5. However, the output from LLM is
unstable, which may affect the performance of LIFTED.
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A. Experiments
A.1. Dataset Descriptions.

The HINT dataset contains 17,538 clinical trial records,
with 1,787 trials in Phase I, 6,102 trials in Phase II, and
4,576 trials in Phase III (Fu et al., 2021). The detailed data
statistics of the HINT dataset are shown in Table 2.

A.2. Overall Performance

We also conduct experiments to evaluate the performance of
LIFTED on phase II and III compared to our baselines. The
trial outcome prediction results of all models are reported
in Table 3.

A.3. Ablation Study

In this section, we perform comprehensive ablation studies
to demonstrate the effectiveness of our key components,
including the representation augmentation, the auxiliary loss
and the modalities used to generate weights in the Mixture-
of-Experts (MoE) framework. The ablation models are
described as:

• LIFTED-aug: In LIFTED-aug, the representation augmen-
tation component and the consistency loss are removed.
Representations from different modalities are directly fed
into the multimodal data integration component without
the constraint of robustness to the noise in the data.

• LIFTED-aux: In LIFTED-aux, we remove the auxiliary
loss component. Representations from different modali-
ties are no longer required to make consistent predictions
with the final representation integrated by the MoE frame-
work.

• LIFTED-LLM: In LIFTED-LLM, we remove the trans-
formation preprocessing step and utilize the linearization,
instead of the natural language description, of each modal-
ity as input. In addition, the summarization modality is
also removed, since it is generated by LLM.

• LIFTED-gating: In LIFTED-gating, we use all modalities
instead of just disease modality to generate the weights
for the multimodal data integration component.

The results are shown in Table 4, and the results of LIFTED
are also reported for comparison. From those tables, we ob-
serve that: (1) LIFTED outperforms all the variants without
certain components, including LIFTED-aug, LIFTED-aux
and LIFTED-LLM, showcasing the effectiveness and com-
plementary of the representation augmentation component,
the auxiliary loss component and the LLM transformation
preprocessing step; (2) LIFTED outperforms its variant,
LIFTED-gating, with a slight advantage in performance.
This suggests that determining the modality importance for

Figure 2. The SMoE experts’ importance weights of our model
predicting the knee osteoarthritis patient. Experts 6 and 7 play
a crucial role in extracting common information patterns across
modalities, while other experts specialize in a single specific modal-
ity.

each trial based solely on disease information is sufficient.
Including additional modality information, even to a slight
extent, appears to have a negative impact on performance.

A.4. Analysis of Multimodal Data Integration

We further analyze how multimodal data integration con-
tributes to clinical outcome prediction. Here, we compare
the performance of models using data from only one modal-
ity with LIFTED that integrates all those modalities. We re-
port the results in Table 5. The results indicate that LIFTED
outperforms all unimodal models in terms of all metrics,
demonstrating the effectiveness of multimodal integration.
The reason why the F1 score of LIFTED is lower than that of
the drug description unimodal models on phase I and III is
that the drug description unimodal models, tend to produce
all-positive or all-negative predictions, which results in un-
expectedly high F1 score with near zero standard deviation
due to the high success rate on the dataset. In addition, the
results also demonstrate that the drug description modality
is the least important modality, while the criteria modality
is the most important modality. This is within expectation
since the quality of recruited patients plays a crucial role in
trial success (Jin et al., 2017).

A.5. Analysis of Sparse Mixture-of-Experts

In addition, we delve into an analysis of the Sparse MoE
model to understand the performance enhancements ob-
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Table 2. The statistics of the HINT Datasets (Fu et al., 2021). # is short for the number of. The number of Trials is shown by the split of
train/validation/test sets.

# Trials # Drugs # Diseases # patients/trial # Success # Failure

Phase I 1,044/116/627 2,020 1,392 45 1,006 781
Phase II 4,004/445/1,653 5,610 2,824 183 3,039 3,063
Phase III 3,092/344/1,140 4,727 1,619 1418 3,104 1,472

Table 3. The clinical trial outcome performance (%) of LIFTED and baselines. The mean and standard deviations are calculated from 30
independent runs with different random seeds. †: The results of the HINT and SPOT methods were obtained by running their released
codes. The best results and second best results are bold and underlined, respectively. We observe that LIFTED consistently outperforms
all other methods over all three phases.

Phase II Trials Phase III Trials

Method PR-AUC F1 ROC-AUC PR-AUC F1 ROC-AUC

LR 56.5± 0.5 55.5± 0.6 58.7± 0.9 68.7± 0.5 69.8± 0.5 65.0± 0.7
RF 57.8± 0.8 56.3± 0.9 58.8± 0.9 69.2± 0.4 68.6± 1.0 66.3± 0.7
XGBoost 58.6± 0.6 57.0± 0.9 60.0± 0.7 69.7± 0.7 69.6± 0.5 66.7± 0.5
AdaBoost 58.6± 0.9 58.3± 0.8 60.3± 0.7 70.1± 0.5 69.5± 0.5 67.0± 0.4
kNN+RF 59.4± 0.8 59.0± 0.6 59.7± 0.8 70.7± 0.7 69.8± 0.8 67.8± 1.0

FFNN 60.4± 1.0 59.9± 1.2 61.1± 1.1 74.7± 1.1 74.8± 0.9 68.1± 0.8
MMF (early fusion) 60.2± 1.9 62.6± 1.4 60.7± 1.3 85.5± 1.4 81.5± 0.9 70.6± 1.7
MMF (late fusion) 62.9± 2.0 63.0± 1.5 62.6± 1.6 86.9± 1.6 83.1± 1.1 71.8± 2.2
DeepEnroll 60.0± 1.0 59.8± 0.7 62.5± 0.8 77.7± 0.8 78.6± 0.7 69.9± 0.8
COMPOSE 60.4± 0.7 59.7± 0.6 62.8± 0.9 78.2± 0.8 79.2± 0.7 70.0± 0.7
HINT† 59.1± 1.2 63.9± 1.2 62.8± 1.4 85.9± 1.1 80.9± 0.8 70.8± 1.3
SPOT† 62.6± 0.7 64.3± 0.6 63.0± 0.6 81.7± 0.8 81.0± 0.4 71.0± 0.4

LIFTED (ours) 69.8 ± 1.8 66.2 ± 1.1 65.1 ± 1.4 88.3 ± 1.1 83.8 ± 0.8 73.5 ± 1.6

tained by the sparse MoE model. Here, we select a knee
osteoarthritis patient case. For each modality, the SMoE
framework selects top-3 experts from a pool of 16 experts
with the highest weights. The weights of these selected
SMoE experts are visualized in Figure 2. As expected, cer-
tain experts, such as 6 and 7, are consistently chosen across
multiple modalities, indicating their pivotal role in extract-
ing similar information patterns among different modalities.
Furthermore, other experts demonstrate a more focused
expertise, concentrating on one or two modalities. This
demonstrates the effectiveness of the SMoE framework in
both extracting similar information patterns across different
modalities and capturing specialized information patterns
within a single modality.

A.6. Case Study

In addition, we conduct a case study to analyze the contri-
bution of each modality in clinical trial outcome prediction.
Specifically, we analyze the result of a type 2 diabetes melli-
tus patient, who was inadequately controlled with metformin

at the maximal effective and tolerated dose of metformin
for at least 12 weeks. Since type 2 diabetes mellitus is hard
to cure (Chang et al., 2019), the model should pay attention
to the name of the disease and predict the trial as failed,
which is consistent with the behavior of our model. The
modality importance weights are shown in Figure 3. As
we expected, the attention weights of the disease modality
are much higher than other modalities, which demonstrates
that our model pays attention to the disease modality and
predicts the trial correctly.

B. Related Works
B.1. Clinical Trials Outcome Prediction

Machine learning methods have been proven efficient on
diverse tabular data prediction tasks, especially the clinical
trial outcome prediction task, resulting in profound perfor-
mances (Huang et al., 2020b; Arik & Pfister, 2021; Chen
et al., 2022b; Klambauer et al., 2017; Badirli et al., 2020;
Chen et al., 2023; Hazimeh et al., 2020; Chen et al., 2022a;
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Table 4. The clinical trial outcome prediction performance (%) of LIFTED and variants without certain key component. The best results
are bold. LIFTED outperforms all variants, showcasing the effectiveness of our proposed components.

Phase I Trials Phase II Trials Phase III Trials

Method PR-AUC F1 ROC-AUC PR-AUC F1 ROC-AUC PR-AUC F1 ROC-AUC

LIFTED-aug 68.4± 2.0 69.8± 2.1 64.8± 1.5 69.5± 1.4 66.0± 1.1 64.3± 0.8 86.9± 1.7 82.4± 0.9 72.1± 1.6
LIFTED-aux 69.0± 2.9 71.2± 1.7 63.7± 1.6 69.6± 1.6 64.5± 1.5 64.6± 1.3 87.4± 1.4 82.8± 1.0 71.1± 2.2
LIFTED-LLM 68.5± 2.7 70.8± 1.3 64.0± 2.3 69.7± 2.0 64.9± 1.4 65.0± 1.5 86.7± 1.0 82.7± 1.0 70.8± 1.3
LIFTED-gating 69.9 ± 2.3 71.3 ± 1.8 64.9 ± 1.9 69.7 ± 1.7 65.5 ± 1.4 65.0 ± 1.6 87.0 ± 0.8 82.7 ± 0.8 72.4 ± 1.1

LIFTED (ours) 70.7 ± 2.3 71.6 ± 1.4 64.9 ± 2.1 69.8 ± 1.8 66.2 ± 1.1 65.1 ± 1.4 88.3 ± 1.1 83.8 ± 0.8 73.5 ± 1.6

Table 5. Performance analysis of multimodal data integration. The best results and second best results are bold and underlined, respectively.
Phase I Trials Phase II Trials Phase III Trials

PR-AUC F1 ROC-AUC PR-AUC F1 ROC-AUC PR-AUC F1 ROC-AUC

Summarization 63.2± 2.4 69.9± 2.2 57.8± 2.2 66.1± 1.3 61.2± 1.5 61.2± 1.0 85.1± 1.0 80.7± 1.0 66.6± 1.6
Drugs 62.1± 1.2 67.2± 1.5 57.9± 1.1 60.5± 1.1 62.3± 1.5 55.8± 1.1 83.8± 0.7 81.7± 1.0 63.8± 1.3
Disease 65.3± 1.1 67.3± 1.8 59.7± 1.3 68.0± 0.5 59.9± 1.3 62.4± 0.6 86.0± 0.8 80.5± 1.1 69.1± 0.9
Description 55.5± 0.5 71.3 ± 0.1 50.2± 1.0 55.5± 0.7 0.0± 0.0 50.0± 1.3 74.9± 0.6 85.7 ± 0.0 49.7± 1.3
SMILES 62.8± 0.7 69.6± 1.7 58.5± 0.9 59.3± 0.6 58.3± 2.2 54.9± 0.7 76.1± 1.5 83.6± 0.5 51.1± 2.5
Criteria 68.0± 3.0 70.5± 1.9 63.1± 2.1 67.6± 1.1 64.4 ± 1.0 63.0± 1.3 83.7± 1.2 82.7± 0.7 65.0± 2.1

All (LIFTED) 70.7 ± 2.3 71.6 ± 1.4 64.9 ± 2.1 69.8 ± 1.8 66.2 ± 1.1 65.1 ± 1.4 88.3 ± 1.1 83.8± 0.8 73.5 ± 1.6

Criteria
22%

Summarization
15%

Drugs
14%

Diseases
34%

SMILESS
9%

Description
6%

Figure 3. The modality importance weights of our model predict-
ing the type 2 diabetes mellitus patient. LIFTED pay more atten-
tion to the disease modality as expected (Chang et al., 2019), since
type 2 diabetes mellitus is hard to cure.

Popov et al., 2019; Yan et al., 2023). Specifically, Gayvert
et al. (2016) employed random forests to integrate drug
chemical structures and properties to predict drug toxic-
ity; Qi & Tang (2019) utilized recurrent neural networks
(RNNs) to predict pharmacokinetic outcomes at phase III,
leveraging data acquired from phase II trials. Similarly, Lo
et al. (2019) employed statistical machine learning models
to predict drug approval. Recently, Fu et al. (2023); Lu
et al. (2024) proposed a hierarchical interaction network
employing different encoders to fuse multiple modal data
and capture their correlations for trial outcome predictions;
based on Fu et al. (2022), Chen et al. (2024) quantifies un-
certainty in the prediction; Wang et al. (2023b) clustered
multi-sourced trial data into different topics, organizing trial
embeddings for prediction. Wang et al. (2023a) converted
clinical trial data into a format compatible description for
prediction. However, converting all modalities into a sin-
gle description poses significant challenges. This approach
makes it difficult for the model to distinguish the unique in-
formation of each modality and necessitates external data to
aid in differentiating these modalities. In contrast, LIFTED
extracts representations for each modality separately and
dynamically integrates them, providing a more effective
way to preserve distinct characteristics of each modality.

B.2. Mixture-of-Experts

Mixture-of-Experts (MoE) is a special type of neural net-
work whose parameters are partitioned into a series of sub-
modules, called experts, functioning in a conditional compu-
tation fashion (Jacobs et al., 1991; Jordan & Jacobs, 1993).
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Since traditional dense MoE models (Eigen et al., 2013)
utilize all experts for each input, they are computationally
expensive. Recently, Shazeer et al. (2017) simplified the
MoE layer by selecting a sparse combination of the experts,
instead of all experts, to process input data, significantly
reducing the computational cost and improving the train-
ing stability. Subsequently, Fedus et al. (2022) further re-
duced the routing computation cost of the MoE layer by
routing one sample to only a single expert instead of K ex-
perts, enabling the scaling of language models to enormous
sizes, such as trillions of parameters, without sacrificing
performance. To encourage specialization and decrease re-
dundancy among experts (Chen et al., 2022c), Dai et al.
(2022) pre-defined the expert assignment for different input
categories, and Hazimeh et al. (2021) advocated multiple,
diverse router policies, facilitating the intriguing goals of
SMoE is to divide and conquer the learning task by solving
each piece of the task with adaptively selected experts (Aoki
et al., 2022; Hazimeh et al., 2021; Ma et al., 2018; Mittal
et al., 2022). In addition, different neural network struc-
tures (Dauphin et al., 2017; Vaswani et al., 2017) have
been proposed and achieved surprising successes in various
NLP (Shahbaba & Neal, 2009; Lepikhin et al., 2020; Zhou
et al., 2022; Dauphin et al., 2017) and vision (Riquelme
et al., 2021; Eigen et al., 2013; Ahmed et al., 2016; Gross
et al., 2017) tasks. To identify similar information patterns
between different modalities and extract them with the same
expert model, LIFTED follows the original design of Sparse
Mixture-of-Experts (Shazeer et al., 2017), routing inputs
to a subset of experts instead of just one expert, dynami-
cally selecting the experts instead of using a pre-defined
assignment.

C. Prompt
The whole prompt, including the system message, is demon-
strated in Table 6, and some examples are demonstrated in
Table 7.

D. Baselines
Many methods have been selected as baselines in our exper-
iments, including both statistical machine learning and deep
learning models. We use the same setups in Fu et al. (2022)
and Wang et al. (2023b) for most of them.

• Logistic regression (LR) (Lo et al., 2019; Siah et al.,
2021): logistic regression with the default hyperpa-
rameters implemented by scikit-learn (Pedregosa et al.,
2011).

• Random Forest (RF) (Lo et al., 2019; Siah et al.,
2021): similar to logistic regression, the random forest
is also implemented by scikit-learn with the default

Table 6. Prompting.

System Message
You are a helpful assistant.

Prompting
Here is the schema definition of the table:
$schema definition
This is a sample from the table:
$linearization
Please briefly summarize the sample with its value in one
sentence. You should describe the important values, like
drugs and diseases, instead of just the names of columns in
the table.
A brief summarization of another sample may look like:
This study will test the ability of extended-release nifedipine
(Procardia XL), a blood pressure medication, to permit a
decrease in the dose of glucocorticoid medication children
take to treat congenital adrenal hyperplasia (CAH).
Note that the example is not the summarization of the sam-
ple you have to summarize.

Response
$summarization of the sample

hyperparameters (Pedregosa et al., 2011).

• XGBoost (Rajpurkar et al., 2020; Siah et al., 2021):
An implementation of gradient-boosted decision trees
optimized for speed and performance.

• Adaptive boosting (AdaBoost) (Fan et al., 2020): an
adaptive boosting-based decision tree method imple-
mented by scikit-learn (Pedregosa et al., 2011).

• k Nearest Neighbor (kNN) + RF (Lo et al., 2019): a
combined model using kNN to imputate missing data
and predicting by random forests.

• Feedforward Neural Network (FFNN) (Tranchevent
et al., 2019): a feedforward neural network that uses
the same feature as HINT (Fu et al., 2023). The FFNN
contains three fully-connected layers with hidden di-
mensions of 500 and 100, as well as a rectified linear
unit (ReLU) activation layer to provide nonlinearity.

• Multi-Modal Fusion (MMF): This technique amalga-
mates multi-modal data to arrive at a final prediction,
employing both early fusion and late fusion strategies.
In the early fusion approach, various modal inputs are
first concatenated before being fed into the prediction
model. Conversely, in the late fusion variant, multiple
prediction models are employed on each modal input,
and the ultimate prediction is derived through fusion
techniques, such as voting, which integrates predic-
tions from each modality.
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Table 7. Examples of Prompting.

Linearization Summarization

phase: phase 1/phase 2; diseases: [’adenocarcinoma of the lung’,
’non-small cell lung cancer’]; icdcodes: [”[’D02.20’, ’D02.21’,
’D02.22’]”, ”[’C78.00’, ’C78.01’, ’C78.02’, ’D14.30’, ’D14.31’,
’D14.32’, ’C34.2’]”]; drugs: [’erlotinib hydrochloride’, ’hsp90 in-
hibitor auy922’]; criteria: \n Inclusion Criteria:\n - All patients
must have pathologic evidence of advanced lung adenocarcinoma
(stage IIIBor stage IV) confirmed histologically/cytologically at NU,
MSKCC, or DFCI and EITHER previous RECIST-defined response
. . .

This sample is a phase 1/phase 2 trial for patients with
advanced lung adenocarcinoma, testing the efficacy of
erlotinib hydrochloride and hsp90 inhibitor auy922 in
patients who have previously responded to erlotinib or
gefitinib or have a documented mutation in the EGFR
gene. The study has specific inclusion and exclusion cri-
teria, and patients must meet certain medical conditions
and have negative pregnancy tests to be eligible.

phase: phase 2; diseases: [’multiple myeloma’]; icdcodes:
[”[’C90.01’, ’C90.02’, ’C90.00’]”]; drugs: [’dexamethasone’,
’thalidomide’, ’lenalidomide’]; criteria: \n Inclusion Criteria:\n\n
- Subject must voluntarily sign and understand written informed
consent.\n\n - Age > 18 years at the time of signing the consent
form.\n\n - Histologically confirmed Salmon-Durie stage II or III
MM. Stage I MM patients will be\n eligible if they display poor
prognostic factors (ß2M ≥ 5.5 mg/L, plasma cell\n proliferation
index ≥ 5%, albumin of less than 3.0, and unfavorable cytogenetics).
. . .

This sample is a phase 2 clinical trial for patients with re-
lapsed or refractory multiple myeloma, testing the com-
bination of dexamethasone, thalidomide, and lenalido-
mide as a treatment option. The eligibility criteria in-
clude specific disease stage, prior treatment history, and
certain laboratory parameters. Exclusion criteria include
non-secretory MM, prior history of other malignancies,
and certain medical conditions.

phase: phase 3; diseases: [”Alzheimer’s disease”]; icdcodes:
[”[’G30.8’, ’G30.9’, ’G30.0’, ’G30.1’]”]; drugs: [’rivastigmine 5
cmˆ2 transdermal patch’, ’rivastigmine 10 cmˆ2 transdermal patch’];
criteria: \n Inclusion Criteria:\n\n - Be at least 50 years of age;\n\n
- Have a diagnosis of probable Alzheimer’s Disease; \n\n - Have an
MMSE score of ≥ 10 and ≤ 24;\n\n - Must have a caregiver who
is able to attend all study visits;\n\n - Have received continuous
treatment with donepezil for at least 6 months prior to\n screening,
and received a stable dose of 5 mg/day or 10 mg/day for at least the
last 3\n of these 6 months.\n\n . . .

This sample is a phase 3 clinical trial for Alzheimer’s
disease, testing the efficacy of rivastigmine transder-
mal patches in patients aged 50 and above with a diag-
nosis of probable Alzheimer’s disease and an MMSE
score between 10 and 24. The inclusion criteria also
require patients to have a caregiver who can attend all
study visits and have received continuous treatment with
donepezil for at least 6 months prior to screening. The
exclusion criteria include various medical conditions
and disabilities that may interfere with the study.
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• DeepEnroll (Zhang et al., 2020): initially intended
for patient-trial matching, DeepEnroll employs three
key components: (1) a pre-trained BERT model (De-
vlin et al., 2019) to encode eligibility criteria into sen-
tence embeddings, (2) a hierarchical embedding model
to handle disease information, and (3) an alignment
model to capture interactions between eligibility crite-
ria and diseases. In our experiments, to adapt DeepEn-
roll for predicting trial outcomes, its functionality is
extended by concatenating the molecule embeddings
(hm) computed by the MPNN algorithm (Huang et al.,
2020a) over molecule graphs with the output of the
alignment model.

• COMPOSE (Gao et al., 2020): similar to DeepEnroll,
COMPOSE was originally proposed for patient-trial
matching. A convolutional neural network and a mem-
ory network are employed to encode eligibility crite-
ria and diseases, respectively. Similarly, a molecule
embedding from MPNN is also concatenated with its
embedding for trial outcome prediction.

• HINT (Fu et al., 2022): several key components are in-
tegrated with HINT, including a drug molecule encoder
utilizing MPNN algorithm, a disease ontology encoder
based on GRAM, a trial eligibility criteria encoder
leveraging BERT, and also, a drug molecule pharma-
cokinetic encoder, surplus a graph neural network to
capture feature interactions. After the interacted fea-
tures are encoded, they are fed into a prediction model
for accurate outcome predictions.

• SPOT (Wang et al., 2023b): SPOT contains several
steps. Firstly, trial topics are identified to group the
diverse trial data from multiple sources into relevant
trial topics. Subsequently, trial embeddings are pro-
duced and organized according to topic and timestamp
to construct organized clinical trial sequences. Finally,
each trial sequence is treated as a separate task, and a
meta-learning approach is employed to adapt to new
tasks with minimal modifications.

E. Hyperparameter Settings
We follow the settings of most hyperparameters in HINT (Fu
et al., 2022). The models are trained for a total of 5 epochs
using a mini-batch size of 32 on one NVIDIA 4090 GPUs,
which will take up to 2 hours. We employ the AdamW
optimizer with a learning rate of 3 × 10−4, β values of
(0.9, 0.99), and a weight decay of 1×10−2 with a CosineAn-
nealing learning rate scheduler.
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