
1

Abstract 1

The use of "prompts" in the creation 2

process of Generative Artificial 3

Intelligence (GenAI) systems is receiving 4

increasing interest. The significance of 5

these prompts throughout the development 6

cycle, however, is not properly used by 7

current software development lifecycle 8

approaches. This study proposes a unique 9

methodology for integrating timely 10

engineering and management into the 11

creation of GenAI applications. 12

Organizations may benefit from using 13

“PromptOps” to create GenAI applications 14

more quickly, effectively, and securely. It 15

offers a technique to lower the danger of 16

bias, increase the accuracy and 17

dependability of GenAI systems, and 18

decrease the cost of development and 19

implementation. Our platform facilitates 20

the seamless integration of several 21

automated technologies in software 22

development by performing prompt 23

operations (PromptOps). These include 24

Continuous Integration/Continuous 25

Deployment (CI/CD) pipelines, workflows, 26

APIs, and more. Our approach enables 27

developers to easily include automated 28

technologies, leading to a more simplified 29

and efficient process. Furthermore, this 30

study indicates that the framework may 31

enable all stakeholders, including non-32

engineering units, to convert prompts into 33

services, expanding their use in the building 34

of applications. This study emphasizes the 35

critical significance of prompts in GenAI 36

and shows how their incorporation may 37

improve AI application development, 38

eventually stimulating creativity and 39

driving the adoption of Generative AI 40

technology. 41

1 Introduction 42

The advent of Large Language Models (LLMs) 43

represents a monumental milestone in the field of 44

Natural Language Processing (NLP). Attention-45

based architectures have revolutionized the field by 46

replacing complex recurrent or convolutional 47

neural networks with a network architecture solely 48

based on attention mechanisms, resulting in models 49

that excel in both quality and efficiency, 50

significantly influencing subsequent LLM 51

advancements (Kaplan et al., 2020; Vaswani et al., 52

2017). These powerful LLMs, such as GPT-3 53

(Generative Pre-trained Transformer 3), Palm2 54

(Pathways Language Model 2) and their successors, 55

have demonstrated remarkable capabilities as 56

versatile computational engines.Their ability to 57

process and generate natural language text has 58

found applications across a wide range of domains, 59

from language translation to content generation. 60

However, harnessing the full potential of LLMs 61

and effectively utilizing them in real-world 62

applications necessitates a nuanced understanding 63

of the critical role that prompts play in steering 64

these models. 65

Emergence of Large Language Models 66

(LLMs): The emergence of LLMs has reshaped 67

the landscape of AI-driven applications. These 68

models have the capacity to understand, interpret, 69

and generate human language at an unprecedented 70

scale and complexity. They have demonstrated the 71

capability to perform tasks that range from text 72

completion to question-answering and text 73

summarization. This transformative technology 74

has laid the foundation for a new era of AI-driven 75

applications, where human-machine interactions 76

are facilitated through natural language. 77

 The Trend Towards LLM-Based 78

Application Development: In recent years, there 79

has been a noticeable trend towards building 80

applications that leverage LLMs as the underlying 81

A Framework for PromptOps in GenAI Application Development Lifecycle

Anonymous ACL submission

2

intelligence. This trend can be attributed to the 82

versatility and adaptability of LLMs, which allow 83

developers to create a wide array of applications 84

without the need for custom-built machine learning 85

models. From simple text-based chatbots to 86

sophisticated content generators, LLMs have 87

become the go-to choice for developers seeking to 88

integrate natural language understanding and 89

generation capabilities into their applications. This 90

shift is evident in domains like customer support, 91

content creation, and data analysis. 92

 The Crucial Role of Prompts in LLM 93

Communication: To harness the power of LLMs 94

effectively, communication with these models is 95

achieved primarily through prompts. A prompt is a 96

natural language input or instruction that is 97

provided to the LLM to elicit a desired response or 98

behavior. It acts as the bridge between human 99

intent and machine execution. For example, a 100

prompt might instruct an LLM to translate a 101

sentence from English to French or generate a 102

summary of a news article. The quality, clarity, and 103

specificity of prompts are paramount in obtaining 104

the desired output from the LLM. 105

 The Impact of Prompts and Model 106

Variants on Output: However, it is essential to 107

recognize that prompts alone are not the sole 108

determinants of LLM behavior. The choice of 109

prompt and the specific LLM variant being used 110

can significantly influence the output generated. 111

Different prompts may yield varying results, even 112

when targeting the same task. Moreover, LLMs 113

often exist in multiple versions or variants, each 114

with its own characteristics and performance 115

nuances. The interaction between prompts and 116

model versions is complex and requires careful 117

consideration. The significance of prompts and 118

their management has become increasingly evident 119

as more organizations and developers integrate 120

LLMs into their workflows and applications. The 121

quality of prompts directly impacts the utility, 122

reliability, and accuracy of LLM-based systems. 123

Hence, the effective control and optimization of 124

prompts have emerged as critical areas of research 125

and development in the field of NLP. 126

 As LLMs continue to evolve and grow in power, 127

the importance of prompt engineering becomes a 128

prominent concern (Reynolds & McDonell, 2021). 129

There has been some prior research of identifying 130

suitable prompts (Sanh et al., 2021; Wei et al., 2021; 131

Min et al., 2021; Mishra et al., 2021) along with the 132

proposal of relevant tools (Bach et al., 2022; Zhou 133

et al., 2023). However, there is a lack of research 134

concerning prompt management and operation. To 135

address this gap, we propose the ''GenFlow'' 136

framework, aimed at streamlining prompt 137

management and operations. Our main 138

contributions are: 139

• We introduce the concept of 140

incorporating prompt management into 141

the DevOps (Development and 142

Operations) flow. By aligning PromptOps 143

with established software development 144

practices, we facilitate the seamless 145

integration of prompt operations into 146

development pipelines, workflows, and 147

APIs. This integration ensures that 148

prompts are managed consistently, 149

enhancing the reliability and efficiency of 150

GenAI application development. 151

• Our proposed method, "GenFlow", 152

empowers both developers and non-153

coders. This tool democratizes Prompt 154

usage by providing an accessible 155

interface for creating, modifying, and 156

optimizing prompts. Its user-friendly 157

design allows stakeholders from diverse 158

backgrounds to harness the potential of 159

prompts, thereby broadening their utility 160

in application development. 161

• Within our framework, we introduce the 162

concept of Prompt as a Service (PaaS). 163

This extends the reach of prompts beyond 164

development teams, enabling various 165

stakeholders to utilize prompts as integral 166

components in application building. This 167

extension aligns with the growing 168

recognition that prompt engineering will 169

be a pivotal focus in the future of GenAI 170

technology. 171

2 Related works 172

Prompt Engineering: The utilization of 173

prompts provides an intuitive and natural way for 174

human interaction with generative models, such as 175

text-to-image model and LLMs. (Brown et al., 176

2020; Schick & Schütze, 2021; Sanh et al., 2022; 177

Rombach et al., 2022). However, the effectiveness 178

of LLMs requires accurate prompt design, either 179

through manual intervention (Reynolds & 180

McDonell, 2021) or automated methods (Gao et al., 181

2021; Shin et al., 2020). It is primarily since LLMs 182

3

do not interpret prompts in the same manner as 183

humans (Webson & Pavlick, 2021; Lu et al., 2021). 184

While numerous successful prompt tuning 185

methods have leveraged gradient-based 186

optimization over continuous spaces (Liu et al., 187

2021; Qin & Eisner, 2021; Lester et al., 2021), the 188

computational cost of computing gradients 189

escalates, especially when access to models shifts 190

to APIs that may not offer gradient access. This 191

raises a practical challenge: How can we empower 192

users to create, design, and refine prompts 193

effectively? This process, known as prompt 194

engineering, is crucial for successful deployment 195

due to the significant impact downstream 196

predictions caused by prompt choices, especially in 197

zero-shot settings (Perez et al., 2021; Zhao et al., 198

2021; Webson and Pavlick, 2021). 199

 200

 Prompt Management: Prompt management is 201

a vital aspect of the emerging field of Natural 202

Language Processing (NLP) where prompts serve 203

as a bridge for interaction with Large Language 204

Models (LLMs). Researchers have developed 205

various techniques to search suitable prompts, such 206

as prompt generation (Gao et al., 2021; Ben-David 207

et al., 2021), prompt scoring (Davison et al., 2019), 208

and prompt paraphrasing (Jiang et al., 2020; Yuan 209

et al., 2021). However, the journey doesn't end with 210

well-engineered prompts, there arises a need for 211

prompt management. Prompt management 212

encompasses the organization, storage, and 213

retrieval of these well-designed prompts to 214

facilitate their efficient use in different contexts. 215

The most notable tools in prompt management are 216

OpenPrompt (Ding et al., 2022) and PromptSource 217

(Bach et al., 2022). 218

OpenPrompt simplifies prompt management 219

within the world of pre-trained language models 220

(PLMs). With the rise of prompt learning in natural 221

language processing, there emerged a pressing 222

need for a standardized framework. OpenPrompt 223

fills this void by offering a user-friendly, research-224

focused toolkit. It's designed to cater to diverse 225

PLMs, task formats, and prompting modules, 226

providing a unified platform for effective prompt 227

management. 228

Alongside OpenPrompt, PromptSource steps in 229

as an essential tool for prompt development and 230

sharing within the NLP landscape. As a prompt 231

repository, its templating language for crafting 232

data-linked prompts, an intuitive iterative 233

development interface, and a vibrant community 234

that contributes and collaborates, PromptSource 235

empowers users with a wealth of over 2,000 236

prompts spanning around 170 datasets. This 237

invaluable resource fosters seamless prompt 238

management and utilization in language model 239

training and querying, ultimately enhancing your 240

NLP endeavors. 241

Although these tools have been introduced, the 242

increasing prevalence of incorporating large 243

language models (LLMs) into diverse applications 244

highlights the imperative requirement for 245

establishing operational workflows for prompts 246

within this context. In pursuit of enhanced 247

operational capabilities for prompts, encompassing 248

Continuous Delivery (CD), version control, and 249

more, we introduce a novel framework known as 250

"GenFlow." 251

3 System design and workflow 252

The conventional approach to leveraging Large 253

Language Models (LLMs) often involves the use 254

of numerous prompts and processes to construct 255

an application, particularly when each prompt 256

requires fine-tuning. This method, while effective 257

Figure 1:(a) The diagram depicts the role of prompt

designing in software development. (b) The

diagram which describes each step in the workflow

of prompt management.

4

in achieving specific results, can lead to 258

complications in maintenance, deployment, and 259

management. 260

3.1 GenFlow framework 261

Through the abstraction of prompts into a 262

configurable format, we simplify the development 263

"process" significantly. Once prompts are 264

transformed into configurations, they consist of 265

parameters (variables) and prompt text. The 266

prompt's parameters can be set through a user-267

friendly front-end interface. Prompt configurations 268

become a resource introduced to the backend, 269

allowing the backend or core application to focus 270

on communication with the generative AI model, 271

reducing its coupling with backend or core 272

applications. 273

PromptConfig can be engineered by AI 274

consumers from various domains and can be 275

configured accordingly. In other words, the same 276

backend/core application can generate different 277

applications simply by employing different 278

PromptConfigs. 279

With PromptConfigs in place, we can establish 280

independent version control processes for prompts. 281

This includes version tracking, diff comparisons, 282

and version control. Prompts become 283

independently manageable, effectively 284

transforming prompts into PromptOps that 285

seamlessly integrate into DevOps practices (Figure 286

1b). 287

However, this architecture has its limitations, as 288

it does not facilitate a sequence of operations, even 289

though many applications are composed of a series 290

of prompts. To address this limitation, we elevate 291

the concept of promptConfig to that of a web API. 292

Web APIs are constructed using URLs (Endpoints) 293

and parameters, where each Endpoint can represent 294

a functional module. This implies that every 295

promptConfig can become an individual API. The 296

structure of a PromptConfig as a web API is 297

represented as follows: 298

 299

PromptConfig: 300

{ 301

"param1": "value1", 302

 "param2": "value2", 303

 ... 304

} 305

 306

PromptAPI(GET): 307

https://domain.name/{promptName}?param1=val308

ue1¶m2=value2... 309

 310

PromptAPI (POST): 311

https://domain.name/{promptName} 312

 313

POST data: 314

{ 315

 "param1": "value1", 316

 "param2": "value2", 317

 ... 318

} 319

 320

When each prompt becomes an API, it becomes 321

straightforward to manage and integrate through 322

workflow management tools. Consequently, 323

diverse prompts can be seamlessly combined to 324

create extensive applications, and even the 325

composition of prompts can be exposed as an API. 326

promptCombosAPI = (prompt 1 API -> prompt 327

2 API -> prompt 3 API) 328

This approach allows us to regard Prompts as a 329

Service. We term this entire process a "FLOW," 330

where each PromptConfig/PromptAPI serves as a 331

"NODE." This sequence of operations forms a 332

"FLOW", as Figure 2b, where PromptConfigs are 333

Figure 2: The diagram of GenFlow framework

5

used as "NODES" that can be orchestrated into a 334

coherent process. 335

3.2 GeNode 336

Within the GenFlow framework, there exists a 337

fundamental component known as "GeNode", 338

which assumes the role of facilitating prompt 339

editing and serves as a fundamental unit for prompt 340

configuration. Within the user interface of GeNode, 341

users are provided with the flexibility to tailor 342

various facets of GeNode in accordance with their 343

specific requirements. This entails the ability to 344

designate a user-defined title, specify personalized 345

variables, and construct the prompt content 346

according to their preferences. For instance, users 347

have the autonomy to create a GeNode themselves, 348

as exemplified in Table 1. Once these 349

configurations have been meticulously defined and 350

subsequently saved, the GeNode is preserved as a 351

prompt template, effectively culminating in the 352

creation of a GeNode aptly named "Social Media 353

Post Generator". 354

Through the innovative power of GeNode, users 355

gain the remarkable ability to effortlessly create a 356

multitude of applications, all without the need for 357

advanced coding skills. By simply configuring 358

various parameters within the GeNode interface, 359

users can easily craft a diverse range of utilities. 360

These encompass a broad spectrum of functions, 361

including translation services, computational tools, 362

code generation aids, and much more. 363

By wholeheartedly embracing GeNode's 364

capabilities, users not only unlock the untapped 365

potential of prompts for comprehending natural 366

language but also effectively harness this resource 367

to build an impressive array of real-world 368

applications. Each of these applications is 369

meticulously tailored to meet their unique 370

requirements. This adaptability and flexibility 371

undeniably position GeNode as an indispensable 372

and cardinal component within the continually 373

evolving landscape of prompt-driven tool 374

development. 375

 376

3.3 GeNode version list 377

Within the GenFlow framework, we have 378

incorporated the concept of version control. When 379

creating a GeNode, users can establish new 380

versions for the same GeNode. These new versions 381

can be directly modified from the original GeNode 382

prompt. Consequently, a single application 383

(GeNode) can have multiple distinct versions, with 384

the option to select one as the published version. 385

Users can access this published version through a 386

user-friendly URL link that leads to the 387

application's web user interface. Alternatively, they 388

can serve the application directly by copying its 389

API URL link. 390

Through this meticulously designed system, we 391

have seamlessly integrated prompt configuration, 392

version control, and serving as API endpoints and 393

web UIs within our framework. This integration 394

greatly simplifies the processes of application 395

development and deployment, rendering them 396

more accessible, manageable, and user-friendly. 397

3.4 GeNode List 398

Once a GeNode has been successfully created, it 399

will be listed in the GeNode List page. Each 400

GeNode will be accompanied by essential details 401

such as its title, published version, version Create 402

time, and actions. Specifically, under the “Actions” 403

Figure 3: The diagram of GenFlow framework.

Title Social Media Post Assistant

Set Input Fields

Variable socialPlatform Name RelatedTopic

Placeholder Please enter

the name of

the social

platform

Your

nickname

on the

platform

The topic of

this post

Prompt You are a super editor known as {{Name}} on

the social platform {{socialPlatform}}. You

will write an article about {{RelatedTopic}}

on {{socialPlatform}}. Please generate a

specific post in the json format:

{

“socialPlatform”: “The name of the social

platform”,

“Name”: “Your nickname”,

“RelatedTopic”: “The generated content”

}

Table 1: An example of GeNode design.

6

column, users will find convenient links to perform 404

actions such as creating a new version, accessing 405

the UI via URL link, and serving the application 406

using the API URL link. In the GenFlow UI section, 407

visual representations will provide further insights 408

and guidance on these features. 409

 410

4 Implement Based on our framework 411

To facilitate user interaction and streamline the 412

process further, we have developed the GenFlow 413

web interface, as illustrated in Figure 4. Within this 414

interface, we have integrated various models, 415

including options for users to choose from within 416

the interface, encompassing both LLMs and image 417

generation models. Currently available language 418

models include Google PALM2-related models 419

and OpenAI GPT (Figure 5a); image generation 420

models include Google Imagen (Vertex AI) and 421

DALL-E (Figure 5b). Users can choose to generate 422

text or images based on their needs. Through this 423

interface, it becomes possible to utilize different 424

sources and types of models on a single platform, 425

enabling the creation of customized applications. 426

Furthermore, in the GenFlow web interface, 427

users can seamlessly engage in prompt design and 428

editing on the GeNode edit page. This flexibility 429

allows a single GeNode to be edited into multiple 430

versions, with users having the prerogative to select 431

which version to publish. Figure 6 showcases a 432

user-friendly version list UI, which enhances the 433

management of these different GeNode versions. 434

This framework empowers users to rapidly create 435

customized applications. Through the utilization of 436

UI links and API links, these applications can be 437

served effortlessly. Notably, this entire workflow is 438

devoid of coding complexities, as users can solely 439

focus on prompt editing. This concept aligns 440

harmoniously with our previously introduced 441

notion of "Prompt as a service," revolutionizing the 442

application development paradigm. 443

By using nodes (GeNode) strung together as a 444

flow can be achieved through various methods. 445

Currently, there are similar services available. For 446

instance, GCP offers Workflow (as shown in Figure 447

6), and AWS provides Step Functions. 448

5 Conclusion 449

In this study, we have introduced a 450

comprehensive framework, GenFlow, to 451

streamline and enhance the development of 452

applications powered by Large Language Models 453

(LLMs) through prompt management and 454

operation. As the utilization of LLMs becomes 455

increasingly prevalent in diverse applications, the 456

role of prompts in shaping the behavior of these 457

models has become paramount. 458

Our framework, GenFlow, addresses the critical 459

need for prompt management within the context of 460

LLM-driven application development. By 461

seamlessly integrating prompt operations 462

(PromptOps) into established DevOps practices, 463

we have demonstrated the potential to enhance the 464

reliability and efficiency of GenAI application 465

development. This integration extends to 466

Continuous Integration/Continuous Deployment 467

Figure 4: With the GeNode view, users can build

their own application by designing the prompt and

choosing proper models.

Figure 5: With the Config view, users can choose

proper models for different applications.

7

(CI/CD) pipelines, workflows, APIs, and more, 468

ensuring that prompts are consistently managed. 469

One of the key contributions of our approach is 470

the democratization of prompt usage. Genflow 471

empowers not only developers but also non-472

engineering units to create, modify, and optimize 473

prompts through its accessible interface. This 474

democratization broadens the utility of prompts in 475

application development, facilitating collaboration 476

and creativity across diverse teams. 477

Furthermore, our framework introduces the 478

concept of Prompt as a Service (PaaS), allowing 479

various stakeholders to leverage prompts as 480

integral components in application building. This 481

extension aligns with the growing recognition that 482

prompt engineering will play a pivotal role in the 483

future of GenAI technology. 484

Overall, the GenFlow framework offers a 485

holistic solution to the challenges of prompt 486

management and operation in GenAI application 487

development. It empowers users to harness the full 488

potential of LLMs while simplifying the process 489

and promoting collaboration across disciplines. As 490

the field of GenAI continues to evolve, prompt 491

management will remain a critical aspect, and 492

GenFlow is poised to play a pivotal role in driving 493

innovation and efficiency in this domain. 494

In conclusion, the effective control and 495

optimization of prompts through GenFlow hold the 496

promise of transforming the GenAI landscape, 497

ultimately fostering creativity, reliability, and 498

widespread adoption of Generative AI technology. 499

We look forward to further research and 500

development in this exciting field, with the aim of 501

advancing the state of the art in GenAI application 502

development. 503

Limitations 504

Limited Validation: The paper primarily 505

focuses on proposing the GenFlow framework 506

without providing extensive empirical validation or 507

case studies to demonstrate its effectiveness in real-508

world scenarios. While the theoretical foundation 509

is well-articulated, empirical evidence is crucial to 510

validate the practical applicability and performance 511

of the proposed framework. 512

Scalability Concerns: regarding the GenFlow 513

framework are particularly pertinent, especially 514

considering its intended deployment on the Google 515

Cloud Platform (GCP). While the paper outlines 516

the potential benefits of GenFlow in streamlining 517

prompt management and operation, it's essential to 518

consider how well the framework can scale within 519

the infrastructure provided by GCP. Additionally, 520

the scalability of network infrastructure plays a 521

vital role in facilitating communication between 522

different components of the GenFlow framework 523

deployed across distributed environments. GCP 524

provides scalable networking solutions, such as 525

Virtual Private Clouds (VPCs) and load balancers, 526

to ensure low-latency communication and high 527

availability of applications. 528

References 529

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom 530

B Brown, Benjamin Chess, Rewon Child, Scott 531

Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 532

2020. Scaling laws for neural language models. 533

Computing Research Repository, arXiv:2001.08361. 534

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 535

Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz 536

Kaiser and Illia Polosukhin. 2017. Attention Is All 537

You Need. Computing Research Repository, 538

arXiv:1706.03762. 539

Laria Reynolds and Kyle McDonell. 2021. Prompt 540

programming for large language models: Beyond 541

the few-shot paradigm. In Extended Abstracts of the 542

2021 CHI Conference on Human Factors in 543

Figure 6: GeNode Version List view.

Figure 7: An example of GCP Workflow service.

8

Computing Systems, pages 1–7. 544

https://doi.org/10.1145/3411763.3451760. 545

Victor Sanh, Albert Webson, Colin Raffel, Stephen H. 546

Bach, Lintang Sutawika, Zaid Alyafeai, Antoine 547

Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, 548

Manan Dey, M Saiful Bari, Canwen Xu, Urmish 549

Thakker, Shanya Sharma Sharma, Eliza Szczechla, 550

Taewoon Kim, Gunjan Chhablani, Nihal Nayak, 551

Debajyoti Datta, Jonathan Chang, Mike Tian-Jian 552

Jiang, Han Wang, Matteo Manica, Sheng Shen, 553

Zheng Xin Yong, Harshit Pandey, Rachel Bawden, 554

Thomas Wang, Trishala Neeraj, Jos Rozen, 555

Abheesht Sharma, Andrea Santilli, Thibault Fevry, 556

Jason Alan Fries, Ryan Teehan, Tali Bers, Stella 557

Biderman, Leo Gao, Thomas Wolf and Alexander M. 558

Rush. 2022. Multitask Prompted Training Enables 559

Zero-Shot Task Generalization. Computing 560

Research Repository, arXiv:2110.08207. 561

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin 562

Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew 563

M. Dai and Quoc V. Le. 2021. Finetuned language 564

models are zero-shot learners. Computing Research 565

Repository, arXiv:2109.01652. 566

Sewon Min, Mike Lewis, Luke Zettlemoyer and 567

Hannaneh Hajishirzi. 2021. MetaICL: Learning to 568

Learn In Context. Computing Research Repository, 569

arXiv:2110.15943. 570

Swaroop Mishra, Daniel Khashabi, Chitta Baral and 571

Hannaneh Hajishirzi. 2021. Cross-Task 572

Generalization via Natural Language 573

Crowdsourcing Instructions. Computing Research 574

Repository, arXiv:2104.08773. 575

Stephen H. Bach, Victor Sanh, Zheng-Xin Yong, Albert 576

Webson, Colin Raffel, Nihal V. Nayak, Abheesht 577

Sharma, Taewoon Kim, M Saiful Bari, Thibault 578

Fevry, Zaid Alyafeai, Manan Dey, Andrea Santilli, 579

Zhiqing Sun, Srulik Ben-David, Canwen Xu, 580

Gunjan Chhablani, Han Wang, Jason Alan Fries, 581

Maged S. Al-shaibani, Shanya Sharma, Urmish 582

Thakker, Khalid Almubarak, Xiangru Tang, 583

Dragomir Radev, Mike Tian-Jian Jiang and 584

Alexander M. Rush. 2022. PromptSource: An 585

Integrated Development Environment and 586

Repository for Natural Language Prompts. In 587

Proceedings of the 60th Annual Meeting of the 588

Association for Computational Linguistics: System 589

Demonstrations, pages 93–104. 590

https://aclanthology.org/2022.acl-demo.9. 591

Ning Ding, Shengding Hu, Weilin Zhao, Yulin Chen, 592

Zhiyuan Liu, Haitao Zheng and Maosong Sun. 2022. 593

Openprompt: An open-source framework for 594

prompt-learning. In Proceedings of the 60th Annual 595

Meeting of the Association for Computational 596

Linguistics: System Demonstrations, pages 105–113. 597

https://aclanthology.org/2022.acl-demo.10. 598

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie 599

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind 600

Neelakantan, Pranav Shyam, Girish Sastry, Amanda 601

Askell, Sandhini Agarwal, Ariel Herbert-Voss, 602

Gretchen Krueger, Tom Henighan, Rewon Child, 603

Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, 604

Clemens Winter, Christopher Hesse, Mark Chen, 605

Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin 606

Chess, Jack Clark, Christopher Berner, Sam 607

McCandlish, Alec Radford, Ilya Sutskever and 608

Dario Amodei. 2020. Language models are few-shot 609

learners. Computing Research Repository, 610

arXiv:2005.14165. 611

Timo Schick and Hinrich Schütze. 2021. Exploiting 612

cloze-questions for few-shot text classification and 613

natural language inference. In Proceedings of the 614

16th Conference of the European Chapter of the 615

Association for Computational Linguistics: Main 616

Volume, pages 255–269. 617

https://doi.org/10.48550/arXiv.2001.07676. 618

Victor Sanh, Albert Webson, Colin Raffel, Stephen H. 619

Bach, Lintang Sutawika, Zaid Alyafeai, Antoine 620

Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, 621

Manan Dey, M Saiful Bari, Canwen Xu, Urmish 622

Thakker, Shanya Sharma Sharma, Eliza Szczechla, 623

Taewoon Kim, Gunjan Chhablani, Nihal Nayak, 624

Debajyoti Datta, Jonathan Chang, Mike Tian-Jian 625

Jiang, Han Wang, Matteo Manica, Sheng Shen, 626

Zheng Xin Yong, Harshit Pandey, Rachel Bawden, 627

Thomas Wang, Trishala Neeraj, Jos Rozen, 628

Abheesht Sharma, Andrea Santilli, Thibault Fevry, 629

Jason Alan Fries, Ryan Teehan, Tali Bers, Stella 630

Biderman, Leo Gao, Thomas Wolf and Alexander M. 631

Rush. 2022. Multitask Prompted Training Enables 632

Zero-Shot Task Generalization. Computing 633

Research Repository, arXiv:2110.08207. 634

Yong chao Zhou, AndreiIoan Muresanu, ZiwenHan, 635

Keiran Paster, Silviu Pitis, Harris Chan and Jimmy 636

Ba. 2023. Large Language Models Are Human-637

Level Prompt Engineers. arXiv:2211.01910. 638

Version 2 639

Robin Rombach, Andreas Blattmann, Dominik Lorenz, 640

Patrick Esser and Björn Ommer. 2022. High-641

Resolution Image Synthesis with Latent Diffusion 642

Models. Computing Research Repository, 643

arXiv:2112.10752. Version 2 644

Tianyu Gao, Adam Fisch and Danqi Chen. 2021. 645

Making pre-trained language models better few-646

shot learners. Computing Research Repository, 647

arXiv:2012.15723. Version 2 648

Taylor Shin, Yasaman Razeghi, RobertL. LoganIV, 649

Eric Wallace and Sameer Singh. 2020. AutoPrompt: 650

Eliciting knowledge from language models with 651

automatically generated prompts. Computing 652

Research Repository, arXiv:2010.15980. Version 2 653

https://doi.org/10.1145/3411763.3451760
https://aclanthology.org/2022.acl-demo.9
https://aclanthology.org/2022.acl-demo.10
https://doi.org/10.48550/arXiv.2001.07676

9

Albert Webson and Ellie Pavlick. 2022. Do prompt-654

based models really understand the meaning of their 655

prompts?. Computing Research Repository, 656

arXiv:2109.01247. Version 2 657

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel 658

and Pontus Stenetorp. 2022. Fantastically Ordered 659

Prompts and Where to Find Them: Overcoming 660

Few-Shot Prompt Order Sensitivity. Computing 661

Research Repository, arXiv:2104.08786. Version 2 662

Guanghui Qinand and Jason Eisner. 2021. Learning 663

how to ask: Querying lms with mixtures of soft 664

prompts. In Proceedings of the 2021 Conference of 665

the North American Chapter of the Association for 666

Computational Linguistics: Human Language 667

Technologies, pages 5203–5212. 668

https://aclanthology.org/2021.naacl-main.410. 669

Brian Lester, Rami Al-Rfou and Noah Constant. 2021. 670

The power of scale for parameter-efficient prompt 671

tuning. In Proceedings of the 2021 Conference on 672

Empirical Methods Natural Language Processing, 673

pages 3045–3059. 674

https://aclanthology.org/2021.emnlp-main.243. 675

Ethan Perez, Douwe Kiela and Kyunghyun Cho. 2021. 676

True few-shot learning with language models. 677

Advances in Neural Information Processing 678

Systems, 34:11054–11070. 679

Tony Z. Zhao, Eric Wallace, ShiFeng, Dan Klein and 680

Sameer Singh. 2021. Calibrate Before Use: 681

Improving Few-Shot Performance of Language 682

Models. Computing Research Repository, 683

arXiv:2102.09690. Version 2 684

Eyal Ben-David, Nadav Oveda and Roi Reichart. 2022. 685

PADA: Example-based Prompt Learning for on-the-686

fly Adaptation to Unseen Domains. Computing 687

Research Repository, arXiv:2102.12206. Version 4 688

Joe Davison, Joshua Feldman and Alexander M Rush. 689

2019. Common sense knowledge mining from 690

pretrained models. In Proceedings of the 2019 691

Conference on Empirical Methods Natural 692

Language Processing and the 9th International 693

Joint Conference on natural language processing, 694

pages 1173–1178. https://aclanthology.org/D19-695

1109. 696

Zhengbao Jiang, Frank F. Xu, Jun Araki and Graham 697

Neubig. 2020. How Can We Know What Language 698

Models Know?. Transactions of the Association for 699

Computational Linguistics, 8:423–438. 700

https://aclanthology.org/2020.tacl-1.28. 701

Weizhe Yuan, Graham Neubig and Pengfei Liu. 2021. 702

Bartscore: Evaluating generated text as text 703

generation. Advances in Neural Information 704

Processing Systems, 34:27263–27277. 705

A Appendices 706

The GenFlow demo site: http://pse.is/59pzbr. 707

https://aclanthology.org/2021.naacl-main.410
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/D19-1109
https://aclanthology.org/D19-1109
https://aclanthology.org/2020.tacl-1.28
http://pse.is/59pzbr

