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ABSTRACT

Factor analysis (FA) is a statistical tool for studying how observed variables with
some mutual dependences can be expressed as functions of mutually independent
unobserved factors, and it is widely applied throughout the psychological, biologi-
cal, and physical sciences. We revisit this classic method from the comparatively
new perspective given by advancements in causal discovery and deep learning,
introducing a framework for Neuro-Causal Factor Analysis (NCFA). Our approach
is fully nonparametric: it identifies factors via latent causal discovery methods
and then uses a variational autoencoder (VAE) that is constrained to abide by the
Markov factorization of the distribution with respect to the learned graph. We
evaluate NCFA on real and synthetic data sets, finding that it performs comparably
to standard VAEs on data reconstruction tasks but with the advantages of sparser
architecture, lower model complexity, and causal interpretability. Unlike traditional
FA methods, our proposed NCFA method allows learning and reasoning about the
latent factors underlying observed data from a justifiably causal perspective, even
when the relations between factors and measurements are highly nonlinear.

1 INTRODUCTION

Since its development over a century ago, factor analysis (FA) (Spearman, 1904) 'has been applied
in many scientific fields, including genomics, computational biology (Pournara & Wernisch, 2007,
Velten et al., 2022), economics (Forni & Reichlin, 1998; Ludvigson & Ng, 2007), sociology (Bollen,
2012) and many others. The goal of FA is to offer explanations of variability among dependent
observables via (potentially) fewer latent variables that capture the degree to which the observables
in the system vary jointly. For the sake of identifiability, it is common to assume linearity, although
in practice it is well-known that many problems exhibit complex nonlinear latent structures. With the
rise of nonparametric deep generative models that allow representing highly nonlinear relationships
between dependent observables, one might hope to combine the best of both worlds.

Moreover, within applications such as those listed above, FA is considered useful because the learned
factors (latents) may offer a possible interpretation of relevant observed correlations. Many applied
FA studies provide an interpretation of the learned factors based on the observed variables whose
joint correlation they encode. A natural tendency when trying to interpret these factors is to assume
they reflect possible common causes linking observed variables. However, the models used in such
studies are not necessarily built with causality in mind. Collectively, these considerations purport a
need for a framework for nonlinear causal factor analysis that combines identifiability with flexibility
through the use of modern advances in deep generative models and causality.

To this end, we propose Neuro-Causal Factor Analysis (NCFA), augmenting classic FA on both
fronts by leveraging advancements of the last few decades, including (i) causal discovery (Spirtes
et al., 2000; Pearl, 2009) and (ii) deep generative models, such as variational autoencoders (VAEs)
(Kingma & Welling, 2014). To formalize this combination of ideas and apply it to the settings where
FA is typically invoked, we consider causal models that directly abide by Reichenbach’s common
cause principle (Reichenbach, 1956, p. 157): dependent variables in a system that do not share
a direct causal relation should be explained by the existence of one or more unobserved common
causes which when conditioned upon render them independent. In particular, NCFA is applicable to

"We would like to briefly draw the reader’s attention to and repudiate the historical context within which factor
analysis and related methods were originally developed (e.g. Saini, 2019; Crenshaw et al., 1995; Stubblefield,
2007).
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Figure 1: Pipeline for learning a neuro-causal factor model. Given a sample from a suitable data
generating process, NCFA estimates a causal structure, which it then uses to constrain a VAE that it
trains on the sample, resulting in a causally-interpretable deep generative model.

problems where one can assume that the observed (or measurement) variables are rendered mutually
independent when conditioning on a set of unobserved latent variables, which may be interpreted
as causally justifiable factors from the FA perspective. Such models naturally arise, for instance,
when one wishes to interpret causal relations among pixel variables in image data, such as biomedical
imaging data. In these contexts, each pixel in the image is treated as a random variable that may be
dependent with other pixels. Since pixels should have no direct causal relations, all dependences
should be explained by the latent information (for instance, neuronal activity in the brain during an
fMRI scan) which resulted in the observed pixel intensities. In such situations, the common cause
principle naturally applies.

Our main contribution is the NCFA framework (Figure 1) for causally interpretable, identifiable
FA models with the flexibility and data replication capabilities afforded by deep generative models.
Our approach does not assume the underlying structure is known (i.e. it is learned from data),
allows for flexible estimation of the latent space with deep generative models, and comes with fully
nonparametric (i.e. no functional assumptions are imposed) identifiability guarantees. One of the
key methodological contributions is the introduction of latent degrees of freedom whereby additional
representational capacity is afforded by giving each causal variable its own factorial prior. We demon-
strate on both synthetic and real data that NCFA injects generative models with interpretable structure
without any significant loss of representational or predictive capacity compared to unstructured
generative models. Moreover, we provide an algorithm and open source implementation for inference
and prediction with NCFA models.

The paper is organized as follows: We begin in Section 2 with a survey of related work in factor
analysis, latent causal modeling, and deep generative models. In Section 3, we formally define NCFA
models and present identifiability results. Next, in Section 4, we provide the NCFA algorithm and
discuss its complexity. We then conclude by comparing NCFA to ground truth causal models and
baseline VAE methods on synthetic and real data sets in Section 5.

2  COMPARISON TO RELATED WORK

We divide the vast amount of related work into three areas: factor analysis (Section 2.1), latent causal
discovery (Section 2.2), and deep generative models (Section 2.3). Before describing each in more
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detail in its respective subsection, we first summarize their differing motivations and methods and
provide a comparison to our proposed NCFA.

Factor analysis focuses on modeling measurement variables in terms of underlying factors (which can
be interpreted as sources), focusing on model simplicity and interpretability, generally by assuming
linear relations and jointly Gaussian random variables. Latent causal models focus on more detailed
causal structure, not being limited to measurement variables and their latent sources, resulting in
extremely interpretable models, but often at the expense of (arguably) strong, untestable assumptions
like faithfulness. Deep generative models focus on learning as accurate a black box model as possible,
optimizing a highly overparamaterized and nonlinear model to still achieve generalizability. Although
the interpretation of deep generative models as nonlinear factor analysis is standard in the literature
(e.g. Roweis & Ghahramani, 1999; Murphy, 2022; Goodfellow et al., 2016), the additional dimensions
of causality and identifiability are new to our approach. NCFA offers a unifying perspective on
structured representation learning, incorporating the strengths of each of these approaches.

Like FA, we focus on modeling measurement variables in terms of their underlying sources; however,
NCFA identifies these sources and their structural connections to the measurements through explicit
latent causal structure learning, which is made easier and requires weaker assumptions by focusing
on source-measurement causal relations instead of more detailed intermediate causal structure.
Furthermore, the source distributions and their corresponding functional relations to the measurements
are estimated using a VAE whose architecture is constrained to respect the learned causal structure,
gaining some of the expressiveness of deep generative models but regularized to maintain causal
interpretability and generalizability. Hence, NCFA is motivated by the simplicity of FA, the causal
interpretability of latent causal models, and the expressive power of deep generative models.

2.1 FACTOR ANALYSIS

We now give a brief introduction to FA, focusing on the key terms and mathematical ideas ? that we
connect to latent causal discovery and deep generative models, but for a more in-depth introduction
and discussion about FA, see Mulaik (2009).

Definition 2.1. A factor model represents a random (row) vector M ~ N(0,X) consisting of
n measurement variables as a linear transformation of a standard jointly normal random vector
L ~ N(0,Ix) of K < n latent factors via factor loading weights W € RX>" plus a jointly normal
random vector of n error terms € ~ N (0, D), where D € R’.*" is a diagonal matrix, via

M=LW +e.

Given a sample M € R*™ ~ M and assuming that L and € are probabilistically independent, the
factor model can be estimated (Adachi, 2019) from the empirical covariance matrix ¥ = %M TM by

finding W and D that minimize the squared Frobenius norm
o ST A
|IX—W'W — D|%.
Such a solution is unique only up to orthogonal transformations of W, and so without further (e.g., in

our case, causal) assumptions, finding a solution does not always warrant a meaningful interpretation
of the resulting factor model. This unidentifiability poses a problem in exploratory FA, where there

is no prior knowledge about f], W or D, but less so in confirmatory FA, where experts incorporate
domain knowledge to constrain and interpret solutions as well as test specific hypotheses.

Additionally, there are possibilities for either restricting or relaxing the FA model, including closely
related methods like PCA (Pearson, 1901; Hotelling, 1933; Jolliffe, 2002), ICA (Comon, 1994;
Hyvirinen & Oja, 2000), and many others beyond our scope. Notably, compared to other related
work, sparse FA (Ning & Georgiou, 2011; Trendafilov et al., 2017; Yamamoto et al., 2017), which

penalizes W according to the number of nonzero entries, produces solutions more closely related to
those we find with NCFA. The two main differences between sparse FA and NCFA are that (i) rather
than explicitly penalizing the solution to encourage sparsity, NCFA simply learns a causal structure
that exhibits a structure typically sought in sparse FA, and (ii) like most FA methods, sparse FA still
assumes linearity and Gaussianity, whereas NCFA can be highly nonlinear and nonparametric.

?In case of conflicting notational conventions, e.g., L to denote a loading matrix in FA literature versus
denoting a set of latent variables in the causal graphical model literature, we favor the latter.
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2.2 LATENT CAUSAL MODELS

Graphical causal modeling (Spirtes et al., 2000; Pearl, 2009) focuses on learning a directed acyclic
graph (DAG) representation of the causal relations among variables. This typically requires a
strengthening of the common cause principle (into what is sometimes called the causal Markov
assumption), which additionally assumes causal sufficiency, i.e., that there are no latent variables,
and hence that all probabilistic dependences among the observed variables are due to causal relations
among them. Methods for learning latent causal models have classically focused on learning DAG-
like structure (using mixed instead of only directed graphs) among the observed variables to the extent
allowed by confounding latent variables, exemplified by algorithms such as FCI (Spirtes et al., 2000;
Colombo et al., 2012) and IC (Pearl & Verma, 1995), which relax the Causal Markov Assumption.
We also mention early work on this problem by (Martin & VanLehn, 1995; Friedman et al., 1997,
Elidan et al., 2000). In contrast, research on causal measurement models (Silva et al., 2003) is more
closely related to the goal of FA, in that it too focuses on factor-measurement relations. Recently,
there has been a surge of interest in these models, with advances leveraging additive noise models
(Maeda & Shimizu, 2021; Yang et al., 2022; Huang et al., 2022; Xie et al., 2022; Ashman et al.,
2022), independent mechanisms (Gresele et al., 2021), weak supervision (Liu et al., 2022; Brehmer
et al., 2022), and interventions (Chalupka et al., 2015; 2017; Ahuja et al., 2022; Squires et al., 2023;
Varici et al., 2023).

2.3  STRUCTURED DEEP GENERATIVE MODELS

The past decade has seen a flurry of work on training large-scale deep latent variable models, fueled
by advances in variational inference and deep learning (e.g. Larochelle & Murray, 2011; Kingma &
Welling, 2014; Rezende et al., 2014; Dinh et al., 2014; Goodfellow et al., 2014; Rezende & Mohamed,
2015; Sohl-Dickstein et al., 2015). More recently, there has been a trend towards structured latent
spaces, such as hierarchical, graphical, causal, and disentangled structures. Conceptually, NCFA
provides a theoretically principled approach to automatically learning latent structure from data in
a way that is causally meaningful. The related work here needs to be divided into two categories:
known (e.g. from prior knowledge) vs. learned latent structure. These can be further divided into
non-causal vs. causal approaches. Given that our main contribution is learned causal structure, we
will focus the discussion on the latter: For causal structure, identifiability becomes crucial, as it is
well-known that nonparametric latent variable models are unidentifiable in general (Hyvérinen &
Pajunen, 1999; Locatello et al., 2019).

Known structure Early work looked at incorporating known structure into generative models, such
as autoregressive, graphical, and hierarchical structure (Germain et al., 2015; Johnson et al., 2016;
Senderby et al., 2016; Webb et al., 2018; Weilbach et al., 2020; Ding et al., 2021; Mouton & Kroon,
2023). This was later translated into known causal structure (Kocaoglu et al., 2017).

Learned structure When the latent structure is unknown, several techniques have been developed
to automatically learn useful (not necessarily causal) structure from data (Li et al., 2019; He et al.,
2019; Wehenkel & Louppe, 2021; Kivva et al., 2022; Moran et al., 2023). More recently, based on
growing interest in disentangled (Bengio, 2013) and/or causal (Scholkopf et al., 2021) representation
learning, methods that automatically learn causal structure have been developed (Moraffah et al.,
2020; Yang et al., 2021; Ashman et al., 2022; Shen et al., 2022; Kaltenpoth & Vreeken, 2023).
Subramanian et al. (2022) assumes a linear Gaussian additive noise model, whereas Moraffah et al.
(2020) uses GANSs. Unlike NCFA, neither Moraffah et al. (2020) nor Subramanian et al. (2022) come
with identifiability guarantees. In order to guarantee identifiability, Causal VAE (Yang et al., 2021)
leverages additional labeled data u, based on iVAE (Khemakhem et al., 2020). DEAR (Shen et al.,
2022) requires a known causal ordering, leaving “causal discovery from scratch to future work™.
More recently, Ashman et al. (2022) used partially additive models and Kaltenpoth & Vreeken (2023)
used post-nonlinear models to guarantee identifiability. In contrast to this existing work, NCFA
admits nonparametric identifiability guarantees without additional labels, known causal ordering, or
specifying a particular parametric or functional form (see subsection 3.2).

3 NCFA MODELS

Consider a collection of jointly distributed measurement variables (M, ..., M,) for which we
assume that all dependences are explained by the existence of a latent common cause of the measured
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Figure 2: A UDG U associated with measurement variables M7, My, Ms, M, and a corresponding
minimum MCM graph G for the minimum edge clique cover C = {Cy = {1,2,3},Cy = {2,3,4}}.
G is the NCFA-graph for G with A\ = 4 latent degrees of freedom. Note that all three graphs encode
the exact same set of (marginal) independencies among the measurement variables M7, Mo, M3, My.

variables, i.e., that no M; and M; share a direct casual relation. If we were able to observe these
latent confounders and condition upon them, M, ..., M,, would become mutually independent.
Hence, the only causal structure encoded via conditional independence in the observed distribution is
contained in their marginal independence structure, which can be encoded in an undirected graph:

Definition 3.1. The unconditional dependence graph (UDG) for the jointly distributed random
variables (M, ..., M,) is the undirected graph ¢/ with node set [n] = {1,...,n} and edge set

To recover a causal interpretation of the relations that hold among the measurement variables, we
extend a UDG graph to a (minimum) MCM graph. Following the principle of Occam’s Razor, we
would like to explain the observed dependences in (Mj, ..., M,,) in the simplest possible way, i.e.,
using the fewest possible latents to serve as the common causes of the measurement variables that
exhibit dependence. To do so, we identify a minimum edge clique cover of the UDG U, which
is a collection C = {C1,...,Ck} of cligues (i.e., complete subgraphs of I{) such that for every
i — j € E the pair 4, j is contained in at least one clique in C and there exists no set of cliques with
this property that has cardinality smaller than |C]|.

Definition 3.2. Let I/ be an undirected graph with minimum edge clique cover C = {C4,...,Ck}.
The (minimum) MCM graph G for U and C is the DAG with vertices [n] U L where L = {l1,...,lx}
and edge set

E:{llﬁjjecl,VZG[K]}
We call |L| the number of causal degrees of freedom of the model.

An example of a UDG and a corresponding MCM graph is presented in Figure 2. Minimum MCM
graphs were originally defined in the context of MeDIL causal models (Markham & Grosse-Wentrup,
2020). A summary of this theory is given in Appendix A, for completeness.

Since we assumed all marginal dependencies in (M, ..., M,,) are explainable by the existence of
a latent common cause, then the observed distribution (M, ..., M,,) is realizable as the marginal
distribution of (Mj, ..., M,,) in the joint distribution (M7, ..., M,,, L1, ..., Li) that is Markov to
the DAG G, where L; is the random variable represented by the node I; in G. From a factor analysis
perspective, the latents L1, ..., L are the factors to be inferred.

3.1 NCFA GRAPHS AND VARIATIONAL AUTOENCODERS

The minimum MCM graph defines a putative causal graph that respects the independence structure
of (My, ..., M,), and our goal is to learn the associated latent representations from data using a
deep generative model. Consider the DAG G depicted in Figure 2 with two latents. A naive approach
would be to design a standard VAE such that the decoder respects the Markov properties implied by
G, however, it is unlikely that any generative model trained with a two-dimensional latent space will
be able to represent the measurement variables accurately. The difficulty is that although the true
causal structure involves only two latent variables, exactly fitting such a model is very difficult in
practice. Thus, there is a tension between expressive capacity and respecting the causal structure.

We overcome this difficulty by replacing each causal latent with an overparametrized, factorial
prior. The virtue of overparametrization is well-documented in the literature (Radhakrishnan et al.,
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2020; Buhai et al., 2020); in our setting this has the effect of increasing representational capacity
without breaking the Markov structure encoded in G. Formally, given a minimum MCM graph
G = ([n] U L, E), we replace each I; with a set of independent latent nodes £; = {¢; 1,...,¢; x, }
for some k; > 1, each with the same connectivity (i.e. children) as /;. Thus, all told, we distribute
A=), c[K] k; latents across the cliques, a parameter called the latent degrees of freedom. 1t is easy
to check that no matter how the A latent degrees of freedom are distributed, the resulting DAG has
the same independence structure over the measurement variables as G. This provides a rigorous
device for increasing complexity without affecting the causal structure, and moreover, \ is a flexible
tuning parameter that can be set arbitrarily large in practice, resulting in potentially overparametrized
models. We call the resulting graph a NCFA-graph of G with A latent degrees of freedom.

Definition 3.3. Let G be a minimum MCM graph for the UDG U = ([n], E') and the minimum edge
clique cover C = {C4,...,Cx} of U. A NCFA graph of G with X latent degrees of freedom is a

graph G with node set [n] U £ and edge set E where
E:£1U-"U£k for £i:{£i,17"'7€i,ki}7 k‘121 ViE[K],

and _
FE = {Ez,m —j:Vj € Ci, VYm € k;, Vi € [K}}

Each node ¢; ,,, represents a latent variable Z; ,,,. Since the latent nodes in £; all have the same

connectivity as the single latent [;, their joint distribution f(L;) = Hfg:l f(Z; m) represents the
common cause of the measurement variables corresponding to the nodes in C;, which was previously
only represented by /; in G. The factors to be inferred from a factor analysis perspective are now the
random vectors Ly, ..., Lg with L; = (Z; 1, ..., Z; 1, ), which still have the causal interpretation
afforded by the minimum MCM graph. However, the multiple latents provide us flexibility to model
the effects of the causal factors.

Definition 3.4. A NCFA model is a joint distribution (M, . .., M,,) for which there is a NCFA-graph
G = ([n] U L, E) and functions f1, ..., f, for which M; := f;(pa,(i),¢;) for all i € [n], where
pay(i) = {Zjm:Ljm € pag(i)}.

When modeling a distribution via a NCFA model, the functions f; are treated as unknowns to be
inferred via a deep generative model such as a VAE. The encoder maps the observations into the
latent space as the joint posterior distribution f(Z|Mj, ..., M,) where Z is the random vector that
collects the Z; ,,,, and the decoder maps latents to observations according to the factorization

FOM, .. M| Z) = [ F(Milpag (i)).

The joint distribution of the latent space is f(Z) = Hzl(zl f(L;); i.e., it is a product of the (joint)
distributions we have specified to represent each of the latent common causes in the minimum MCM
model G for Y. Following training of the VAE, the model may be used to generate predictions in the
observation space via draws from the latent space. Since our representation of the latent space was
constructed according to the minimum MCM graph G, the resulting predictions can be viewed as
causally informed; i.e., they are observations generated from the estimated distribution of the latent
primary causes of the measurement variables.

3.2 IDENTIFIABILITY OF MINIMUM MCM GRAPHS AND ECC-MODEL EQUIVALENCE

While the UDG is identifiable, there may exist multiple minimum MCM graphs that yield the same
UDG. This is because an undirected graph may have multiple, distinct minimum edge clique covers
(see, for instance, the example provided in Appendix B). In other words, similar to DAGs, minimum
MCM graphs may be equivalent when provided with only observational data.

Definition 3.5. We say that two minimum MCM graphs G = ([n] U L, E) and G’ = ([n]U L', E)
are ECC-observationally equivalent if i and j are d-separated given () in G if and only if they are
d-separated given () in G'.

While there exist equivalence classes of minimum MCM graphs containing multiple elements, there
also exist classes that are singletons; in other words, there exist undirected graphs (UDGs) with a
unique minimum edge clique cover. For such UDGs, the minimum MCM graph is identifiable.
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Algorithm 1: Neuro-Causal Factor Analysis (NCFA)

input :sample S of measurement variables M

parameter :significance level «, latent degrees of freedom A

output :neuro-causal factor model (G, f[n] , €), with NCFA graph G, loading functions

Jin]» and residual measurement errors €

Estimate U/, the undirected dependence graph, via pairwise marginal independence tests with
threshold given by «;

Identify a minimum edge clique cover C of U and construct the corresponding minimum MCM
graph G;

Assign the remaining A — |C| latents to the cliques in C to produce the NCFA-graph G;

—

(S

w

Estimate functions f[n] using a VAE constrained by 5 , with residual measurement errors ¢;
return (G, f1,, €)

ES

wn

Theorem 3.6. Suppose that the data-generating distribution is Markov to a minimum MCM graph G.
Then the DAG G is identifiable from the data-generating distribution if:

1. The UDG U for G admits a unique minimum edge clique cover, and
2. M; L M; < i—j¢E"
Corollary 3.7. Suppose that the data-generating distribution is Markov to a minimum MCM graph

G satisfying the 1-pure-child assumption, namely, for each latent l; in G there exists a measurement
node i* such that pag(i*) = {l;}. Then G is identifiable.

Proofs are deferred to Appendix B. The identifiability result in Corollary 3.7 applies to models that
are of practical interest (e.g. as in Donoho & Stodden, 2003; Arora et al., 2012; Bing et al., 2020;
Moran et al., 2023). However, Theorem 3.6 shows that these are not the only models to which the
identifiability result applies. An example of a UDG that admits a unique minimum edge clique cover
but does not satisfy the pure measurement variable condition is given in Appendix B.

4 NEURO-CAUSAL FACTOR ANALYSIS

We now present our main contribution, the Neuro-Causal Factor Analysis (NCFA) algorithm, given
in Algorithm 1. The NCFA algorithm runs by the logic described in Section 3: namely, it infers
a UDG from data, identifies a minimum edge clique cover C = {C1,...,Ck} for U, builds the
corresponding NCFA-graph G with X latent degrees of freedom and then trains a VAE according to

the functional relationships among the measurement and latent variables specified by G.

To estimate the UDG, pairwise marginal independence tests are performed. Starting with the complete
graph, the edge i — j is removed whenever M; and M are deemed independent, i.e. according
to a test with statistics such as distance-covariance (Székely et al., 2007; Markham et al., 2022) or
Chatterjee’s coefficient (Chatterjee, 2021; Lin & Han, 2022). A minimum edge clique cover is then
identified for the estimated UDG Y. In general, this is an NP-hard problem, however there are both
exact algorithms that work well for small graphs and heuristic algorithms that scale to large graphs
(Gramm et al., 2009; Conte et al., 2020; Ullah, 2022).

Once a minimum edge clique cover is identified, the corresponding NCFA graph with A latent degrees
of freedom is constructed. Here, we ensure that at every clique in the minimum edge clique cover of
Uis assigned at least one latent variable. The remaining A — K latents are then distributed uniformly
over the cliques. In this implementation of NCFA, we set default A = |n? /4], a known upper bound
on the number of cliques in a minimum edge clique cover of a graph on n nodes (Erdés et al., 1966).
Finally, a VAE for the functional relations specified by the NCFA-graph is trained. One could, in
principle, alternatively use any deep generative model. See Appendix C for further details.

Since NCFA constructs its model via the MCM graph U, the estimated factors (i.e., joint distributions)
f(L;) in the factorization of the latent distribution represent the distributions for the primary causes
of the measurement variables to which the latent nodes in £; are connected. This yields a factor
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analysis model in which the latent factors can justifiably be causally interpreted. Furthermore, while
each latent variable Z; ; is assigned a Gaussian prior in the VAE, by assigning £; = {¢; 1, ..., ik, }
latents to each clique C;, instead of a single latent /;, each causal latent in the minimum MCM graph
is modeled as a mixture distribution which can be arbitrarily non-Gaussian. Hence, the estimated
factors have both a causal interpretation while additionally being as nonlinear as necessary.

S5 APPLICATIONS ON SYNTHETIC AND REAL DATA

We now present results of applying NCFA to synthetic and real data sets, observing that the perfor-
mance of NCFA is competitive with classical VAEs while additionally offering a nonlinear, causally
interpretable factor model. We provide a Python implementation of the NCFA algorithm as well
as scripts for reproducing all of the following results, released as a free/libre software package:
https://after.review. Here we summarize our main findings; the full experimental pro-
tocol and details can be found in the appendix, including details on the NCFA implementation
(Appendix C), evaluation metrics (Appendix D), synthetic data generation and additional results
(Appendix E), and additional results on real data (Appendix F).

NCFA faces a trade-off between causal constraints and expressivity: an unconstrained, fully connected
VAE ignores this structure, and has free reign to fit the data arbitrarily, at the cost of interpretability
and potentially acausal relationships (e.g. spurious correlations). The additional structure offered by
the minimum MCM graph in NCFA brings in causal structure and interpretation, but can hamper
training if the structure is incorrect. Of course, when the causal structure is correct, there should be
no significant loss in expressivity. Thus, ideally we will see no significant degradation in the loss,
which is an indicator of structural fidelity. We measure this with the metric A which is the difference
between the loss of an unconstrained, baseline VAE and the NCFA loss. On synthetic data where we
know the causal ground truth, we can also directly measure structural fidelity using graph comparison
metrics. See Appendix D for detailed definitions of our metrics.

Except for the last experiment, no hyperparameter tuning was performed, and instead default,
reasonable choices are used (e.g. a = 0.05 and A = |n?/4]). We anticipate improvements are
possible with careful hyperparameter tuning.

Synthetic data We summarize some key results on the synthetic data, compared to both a ground
truth causal model and a baseline VAE, in Figure 3. Results are grouped according to edge density of
the generating UDG, shown along the x-axis. Figure 3a contains box plots of distance between the
true MCM causal structure and that learned by NCFA (lower is better). Here, distance between MCM
graphs is measured using the Structural Frobenius Difference (SFD), which is a modification of the
more common Structural Hamming Distance (SHD) for graphs with possibly different numbers of
nodes (see Appendix D for more details on SFD and its relation to SHD). Figure 3b contains box
plots of Validation-A, the difference between the final validation loss of the baseline VAE and that of
NCFA (higher is better). Additionally, we report that NCFA learned the exact true causal structure at
a proportion of 0.91 for density p = 0.1, at 0.56 for p = 0.2 and between 0.39 and 0.43 for other
values of p.

As is commonly seen in causal discovery tasks, NCFA recovers causal structure well in the sparse
setting but increasingly less so in denser settings. Causal discovery is notoriously difficult, especially
in the small-sample regime, but NCFA benefits from only needing to perform marginal independence
tests (so the conditioning set is always empty). In terms of performance as a generative model, we
see that NCFA generally improves the validation loss compared to the baseline VAE since the median
loss difference is above 0 for all edge densities except for p = 0.1, even as the true graph density
increases. This indicates both that the causal structure provides helpful constraints in the NCFA
pipeline and that NCFA is robust in the face of moderate misestimation of the causal structure.

Real data 'We ran NCFA on two real datasets, MNIST and TCGA, comparing its performance to a
baseline VAE. In both cases, there is no ground truth causal graph, so we focus on VAE metrics as a
benchmark. We report the results in Table 1. For MNIST, sample size is much larger than number
of measurement variables n, but this is not true of TCGA. When run using default settings for o, A
in the first two rows, we see that NCFA achieves comparable training and validation to the baseline
VAE, demonstrating that it learns reasonable constraints (i.e. causal relations) as well as its ability
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Figure 3: Results of NCFA on synthetic data sets from randomly generated graphs: (a) shows distance
(SFD) between learned causal structures and the ground truth; (b) shows Validation-A, the difference
of validation loss between baseline VAE and NCFA (higher means better performance for NCFA).

to scale well to high-dimensional settings. In fact, for TCGA the training and validation losses are
lower for NCFA, suggesting that incorporating the causal structure learned by NCFA improved model
performance. Curiously, for MNIST, the minimum MCM graph consisted of just a single latent (i.e.,
|L| = 1), suggesting the causal structure in this dataset is limited, which matches expectations. This
does not mean that there are not multiple, interpretable latents to be discovered as is well-documented
in the literature, but perhaps that these latents do not have a strong causal interpretation.

Table 1: Results of NCFA on two real data sets

samp size  n «@ A |L|  Training-A  Validation-A
MNIST 42000 784  0.05 153664 1 -0.00475 -0.04814
TCGA 632 1000 0.05 250000 8129 0.11488 0.11865
MNIST 42000 784 0.001 7800 560 -76.682 -74.163
TCGA 632 1000  0.05 10000 969 -78.721 -68.117

On both datasets, the default A and maximum allowed |L| < X were quite large, so we also ran
experiments under the 1-pure-child assumption (see Appendix F for details), which guarantees that
|L| < n, allowing us to safely reduce A from [n?/4] to, e.g., 10n. Additionally, we decreased «
to 0.001 for MNIST, taking advantage of the large sample size and encouraging NCFA to learn a
sparser structure. However, based on the training and validation differences, NCFA failed to converge
properly compared to the baseline VAE. In the case of MNIST, we attribute this to it arguably being a
data set without causally meaningful sparse latents. For TCGA, the performance of NCFA without
the 1-pure-child assumption yielded a better performance than the baseline VAE. Hence, the decrease
in performance of NCFA under this constraint could suggest that the true causal structure of TCGA
simply does not abide by the 1-pure-child assumption. Collectively, these results suggest that NCFA
with default parameter specifications appears to yield competitive, if not improved, performance over
baseline VAE models that successfully incorporate causal structure when it is present to be learned.
When NCFA has free reign to learn whatever causal structure (when it exists, as in TCGA) can be
gleaned from the data, it appears to benefit training. However, the second round of experiments
suggest that one should take care when adjusting the algorithm to fit a specified causal structure, such
as the 1-pure-child constraint, as forcing possibly nonexistent causal structure into the model may be
detrimental to the models predictive capabilities. This is in line with the observation at the start of
Section 5 that one risks hampering training when the causal structure is misspecified.

REFERENCES

Kohei Adachi. Factor analysis: Latent variable, matrix decomposition, and constrained uniqueness
formulations. Wiley Interdisciplinary Reviews: Computational Statistics, 11(3):e1458, 2019.



Under review as a conference paper at ICLR 2024

Kartik Ahuja, Yixin Wang, Divyat Mahajan, and Yoshua Bengio. Interventional causal representation
learning. arXiv preprint arXiv:2209.11924, 2022.

Sanjeev Arora, Rong Ge, and Ankur Moitra. Learning topic models—going beyond svd. In 2072
IEEE 53rd annual symposium on foundations of computer science, pp. 1-10. IEEE, 2012.

Matthew Ashman, Chao Ma, Agrin Hilmkil, Joel Jennings, and Cheng Zhang. Causal reasoning
in the presence of latent confounders via neural admg learning. In The Eleventh International
Conference on Learning Representations, 2022.

Yoshua Bengio. Deep learning of representations: Looking forward. In Statistical Language and
Speech Processing: First International Conference, SLSP 2013, Tarragona, Spain, July 29-31,
2013. Proceedings 1, pp. 1-37. Springer, 2013.

Xin Bing, Florentina Bunea, Yang Ning, and Marten Wegkamp. Adaptive estimation in structured
factor models with applications to overlapping clustering. Annals of Statistics, 48(4), 2020.

Kenneth A Bollen. Instrumental variables in sociology and the social sciences. Annual Review of
Sociology, 38:37-72, 2012.

Johann Brehmer, Pim De Haan, Phillip Lippe, and Taco Cohen. Weakly supervised causal representa-
tion learning. arXiv preprint arXiv:2203.16437, 2022.

Rares-Darius Buhai, Yoni Halpern, Yoon Kim, Andrej Risteski, and David Sontag. Empirical study of
the benefits of overparameterization in learning latent variable models. In International Conference
on Machine Learning, pp. 1211-1219. PMLR, 2020.

Krzysztof Chalupka, Pietro Perona, and Frederick Eberhardt. Visual causal feature learning. In
Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intelligence, UAT’ 15, pp.
181-190, Arlington, Virginia, USA, 2015. AUAI Press. ISBN 9780996643108.

Krzysztof Chalupka, Frederick Eberhardt, and Pietro Perona. Causal feature learning: an overview.
Behaviormetrika, 44(1):137-164, 2017.

Sourav Chatterjee. A new coefficient of correlation. Journal of the American Statistical Association,
116(536):2009-2022, 2021.

Sourav Chatterjee. A survey of some recent developments in measures of association. arXiv preprint
arXiv:2211.04702, 2022.

Diego Colombo, Marloes H Maathuis, Markus Kalisch, and Thomas S Richardson. Learning high-
dimensional directed acyclic graphs with latent and selection variables. The Annals of Statistics,
pp. 294-321, 2012.

Pierre Comon. Independent component analysis, a new concept? Signal processing, 36(3):287-314,
1994.

Alessio Conte, Roberto Grossi, and Andrea Marino. Large-scale clique cover of real-world networks.
Information and Computation, 270:104464, Feb 2020. ISSN 0890-5401. doi: 10.1016/j.ic.2019.
104464. URL http://dx.doi.org/10.1016/7.1c.2019.104464.

Kimberlé Crenshaw, Neil Gotanda, Gary Peller, and Kendall Thomas. Critical race theory: The Key
Writings that formed the Movement. The New Press, 1995.

Danai Deligeorgaki, Alex Markham, Pratik Misra, and Liam Solus. Combinatorial and alge-
braic perspectives on the marginal independence structure of bayesian networks. arXiv preprint
arXiv:2210.00822v2, 2023.

Mucong Ding, Constantinos Daskalakis, and Soheil Feizi. GANs with conditional independence
graphs: On subadditivity of probability divergences. In International Conference on Artificial
Intelligence and Statistics, pp. 3709-3717. PMLR, 2021. arXiv:2003.00652 [cs.LG].

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components
estimation. arXiv preprint arXiv:1410.8516, 2014.

10


http://dx.doi.org/10.1016/j.ic.2019.104464

Under review as a conference paper at ICLR 2024

David Donoho and Victoria Stodden. When does non-negative matrix factorization give a correct
decomposition into parts? Advances in neural information processing systems, 16, 2003.

Gal Elidan, Noam Lotner, Nir Friedman, and Daphne Koller. Discovering hidden variables: a structure-
based approach. In Proceedings of the 13th International Conference on Neural Information
Processing Systems, pp. 458-464, 2000.

Paul Erd6s, Adolph W Goodman, and Louis Pésa. The representation of a graph by set intersections.
Canadian Journal of Mathematics, 18:106—112, 1966.

Mario Forni and Lucrezia Reichlin. Let’s get real: a factor analytical approach to disaggregated
business cycle dynamics. The Review of Economic Studies, 65(3):453—473, 1998.

Nir Friedman et al. Learning belief networks in the presence of missing values and hidden variables.
In ICML, volume 97, pp. 125-133. Citeseer, 1997.

Mathieu Germain, Karol Gregor, lain Murray, and Hugo Larochelle. MADE: Masked autoencoder
for distribution estimation. In International conference on machine learning, pp. 881-889. PMLR,
2015.

E. N. Gilbert. Random Graphs. The Annals of Mathematical Statistics, 30(4):1141 — 1144, 1959. doi:
10.1214/a0ms/1177706098. URL https://doi.org/10.1214/aoms/1177706098.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Jens Gramm, Jiong Guo, Falk Hiiffner, and Rolf Niedermeier. Data reduction and exact algorithms
for clique cover. ACM Journal of Experimental Algorithmics, 13, Feb 2009. ISSN 1084-6654. doi:
10.1145/1412228.1412236. URL http://dx.doi.org/10.1145/1412228.1412236.

Luigi Gresele, Julius Von Kiigelgen, Vincent Stimper, Bernhard Scholkopf, and Michel Besserve.
Independent mechanism analysis, a new concept? Advances in Neural Information Processing
Systems, 34, 2021.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti
Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Ferndndez
del Rio, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy,
Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming
with NumPy. Nature, 585(7825):357-362, September 2020. doi: 10.1038/s41586-020-2649-2.
URL https://doi.org/10.1038/s41586-020-2649-2.

Jiawei He, Yu Gong, Joseph Marino, Greg Mori, and Andreas Lehrmann. Variational autoencoders
with jointly optimized latent dependency structure. In International Conference on Learning
Representations, 2019.

Harold Hotelling. Analysis of a complex of statistical variables into principal components. Journal
of educational psychology, 24(6):417, 1933.

Biwei Huang, Charles Low, Feng Xie, Clark Glymour, and Kun Zhang. Latent hierarchical causal
structure discovery with rank constraints. In Advances in Neural Information Processing Systems,
2022.

Aapo Hyvirinen and Erkki Oja. Independent component analysis: algorithms and applications.
Neural networks, 13(4-5):411-430, 2000.

Aapo Hyvirinen and Petteri Pajunen. Nonlinear independent component analysis: Existence and
uniqueness results. Neural networks, 12(3):429-439, 1999.

Matthew J Johnson, David K Duvenaud, Alex Wiltschko, Ryan P Adams, and Sandeep R Datta.
Composing graphical models with neural networks for structured representations and fast inference.
Advances in neural information processing systems, 29, 2016.

11


https://doi.org/10.1214/aoms/1177706098
http://dx.doi.org/10.1145/1412228.1412236
https://doi.org/10.1038/s41586-020-2649-2

Under review as a conference paper at ICLR 2024

Ian T Jolliffe. Principal component analysis for special types of data. Springer, 2002.

David Kaltenpoth and Jilles Vreeken. Nonlinear causal discovery with latent confounders. In Andreas
Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research, pp. 15639-15654. PMLR, 23-29 Jul 2023.

Ilyes Khemakhem, Diederik Kingma, Ricardo Monti, and Aapo Hyvarinen. Variational autoencoders
and nonlinear ica: A unifying framework. In International Conference on Artificial Intelligence
and Statistics, pp. 2207-2217. PMLR, 2020.

Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. In Proceedings of the
International Conference on Learning Representations (ICLR), 2014. arXiv:1312.6114 [stat. ML].

Bohdan Kivva, Goutham Rajendran, Pradeep Ravikumar, and Bryon Aragam. Identifiability of deep
generative models without auxiliary information. Advances in Neural Information Processing
Systems, 35:15687-15701, 2022.

Murat Kocaoglu, Christopher Snyder, Alexandros G Dimakis, and Sriram Vishwanath. Causal GAN:
Learning causal implicit generative models with adversarial training. arXiv:1709.02023 [cs.LG],
2017.

Hugo Larochelle and Tain Murray. The neural autoregressive distribution estimator. In Proceedings
of the fourteenth international conference on artificial intelligence and statistics, pp. 29-37. IMLR
Workshop and Conference Proceedings, 2011.

Xiaopeng Li, Zhourong Chen, Leonard K. M. Poon, and Nevin L. Zhang. Learning latent super-
structures in variational autoencoders for deep multidimensional clustering. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?
1d=SJgNwi09Km. arXiv:1803.05206 [cs.LG].

Z Lin and F Han. On boosting the power of Chatterjee’s rank correlation. Biometrika, 08 2022. ISSN
1464-3510. doi: 10.1093/biomet/asac048. URL https://doi.org/10.1093/biomet/
asac048. asac048.

Yuhang Liu, Zhen Zhang, Dong Gong, Mingming Gong, Biwei Huang, Anton van den Hengel, Kun
Zhang, and Javen Qinfeng Shi. Identifying weight-variant latent causal models. arXiv preprint
arXiv:2208.14153, 2022.

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard Scholkopf,
and Olivier Bachem. Challenging common assumptions in the unsupervised learning of disentan-
gled representations. In International Conference on Machine Learning (ICML), pp. 4114-4124.
PMLR, 2019.

Sydney C Ludvigson and Serena Ng. The empirical risk—return relation: A factor analysis approach.
Journal of financial economics, 83(1):171-222, 2007.

Takashi Nicholas Maeda and Shohei Shimizu. Causal additive models with unobserved variables. In
Uncertainty in Artificial Intelligence, pp. 97-106. PMLR, 2021.

Alex Markham and Moritz Grosse-Wentrup. Measurement dependence inducing latent causal
models. In Jonas Peters and David Sontag (eds.), Proceedings of the 36th Conference on Uncer-
tainty in Artificial Intelligence (UAI), volume 124 of Proceedings of Machine Learning Research,
pp- 590-599. PMLR, 03-06 Aug 2020. URL http://proceedings.mlr.press/v124/
markham20a.html. arXiv:1910.08778 [stat. ML].

Alex Markham, Richeek Das, and Moritz Grosse-Wentrup. A distance covariance-based kernel for
nonlinear causal clustering in heterogeneous populations. In Conference on Causal Learning and
Reasoning, pp. 542-558. PMLR, 2022.

J Martin and Kurt VanLehn. Discrete factor analysis: Learning hidden variables in bayesian networks.

Technical report, Technical report, Department of Computer Science, University of Pittsburgh,
1995.

12


https://openreview.net/forum?id=SJgNwi09Km
https://openreview.net/forum?id=SJgNwi09Km
https://doi.org/10.1093/biomet/asac048
https://doi.org/10.1093/biomet/asac048
http://proceedings.mlr.press/v124/markham20a.html
http://proceedings.mlr.press/v124/markham20a.html

Under review as a conference paper at ICLR 2024

Raha Moraffah, Bahman Moraffah, Mansooreh Karami, Adrienne Raglin, and Huan Liu. Causal
adversarial network for learning conditional and interventional distributions. arXiv preprint
arXiv:2008.11376, 2020.

Gemma Elyse Moran, Dhanya Sridhar, Yixin Wang, and David Blei. Identifiable deep generative
models via sparse decoding. Transactions on Machine Learning Research, 2023.

Jacobie Mouton and Rodney Stephen Kroon. Integrating Bayesian network structure into residual
flows and variational autoencoders. Transactions on Machine Learning Research, 2023.

Stanley A Mulaik. Foundations of factor analysis. CRC press, 2009.
Kevin P Murphy. Probabilistic machine learning: an introduction. MIT press, 2022.

Lipeng Ning and Tryphon T Georgiou. Sparse factor analysis via likelihood and 1 1-regularization. In
2011 50th ieee conference on decision and control and european control conference, pp. 5188-5192.
IEEE, 2011.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Judea Pearl. Causality. Cambridge university press, 2009.

Judea Pearl and Thomas S Verma. A theory of inferred causation. In Studies in Logic and the
Foundations of Mathematics, volume 134, pp. 789-811. Elsevier, 1995.

Karl Pearson. On lines and planes of closest fit to systems of points in space. The London, Edinburgh,
and Dublin philosophical magazine and journal of science, 2(11):559-572, 1901.

lTosifina Pournara and Lorenz Wernisch. Factor analysis for gene regulatory networks and transcription
factor activity profiles. BMC bioinformatics, 8:1-20, 2007.

Adityanarayanan Radhakrishnan, Mikhail Belkin, and Caroline Uhler. Overparameterized neural
networks implement associative memory. Proceedings of the National Academy of Sciences, 117
(44):27162-27170, 2020.

Carlos Ramos-Carrefio and José L Torrecilla. dcor: Distance correlation and energy statistics in
python. SoftwareX, 22:101326, 2023.

Hans Reichenbach. The direction of time. University of California Press, 1956.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In International
conference on machine learning, pp. 1530-1538. PMLR, 2015.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In International conference on machine learning,
pp. 1278-1286. PMLR, 2014.

Sam Roweis and Zoubin Ghahramani. A unifying review of linear gaussian models. Neural
computation, 11(2):305-345, 1999.

Angela Saini. Superior: the return of race science. Beacon Press, 2019.

Bernhard Scholkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner,
Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning. Proceedings of the
IEEE, 109(5):612-634, 2021.

Xinwei Shen, Furui Liu, Hanze Dong, Qing Lian, Zhitang Chen, and Tong Zhang. Weakly supervised

disentangled generative causal representation learning. Journal of Machine Learning Research, 23:
1-55, 2022.

13



Under review as a conference paper at ICLR 2024

Ricardo Silva, Richard Scheines, Clark Glymour, and Peter L Spirtes. Learning measurement models
for unobserved variables. In Proceedings of the 19th Conference on Uncertainty in Artificial
Intelligence (UAI), pp. 543-550, 2003.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learning,
pp. 2256-2265. PMLR, 2015.

Casper Kaae Sgnderby, Tapani Raiko, Lars Maalge, Sgren Kaae Sgnderby, and Ole Winther. Ladder
variational autoencoders. Advances in neural information processing systems, 29, 2016.

C Spearman. General ability, objectively determined and measured. American Journal of Psychology,
15:201, 1904.

Peter Spirtes, Clark N Glymour, Richard Scheines, and David Heckerman. Causation, prediction,
and search. MIT press, 2000.

Chandler Squires, Anna Seigal, Salil Bhate, and Caroline Uhler. Linear causal disentanglement via
interventions, 2023.

Anna Stubblefield. “Beyond the pale”: Tainted whiteness, cognitive disability, and eugenic steriliza-
tion. Hypatia, 22(2):162—-181, 2007.

Jithendaraa Subramanian, Yashas Annadani, Ivaxi Sheth, Nan Rosemary Ke, Tristan Deleu, Stefan
Bauer, Derek Nowrouzezahrai, and Samira Ebrahimi Kahou. Learning latent structural causal
models. arXiv preprint arXiv:2210.13583, 2022.

Gébor J Székely, Maria L Rizzo, and Nail K Bakirov. Measuring and testing dependence by
correlation of distances. The Annals of Statistics, pp. 2769-2794, 2007.

Nickolay T Trendafilov, Sara Fontanella, and Kohei Adachi. Sparse exploratory factor analysis.
Psychometrika, 82:778-794, 2017.

Ahammed Ullah. Computing clique cover with structural parameterization. arXiv preprint
arXiv:2208.12438, 2022.

Burak Varici, Emre Acarturk, Karthikeyan Shanmugam, Abhishek Kumar, and Ali Tajer. Score-based
causal representation learning with interventions. arXiv preprint arXiv:2301.08230, 2023.

Britta Velten, Jana M Braunger, Ricard Argelaguet, Damien Arnol, Jakob Wirbel, Danila Bredikhin,
Georg Zeller, and Oliver Stegle. Identifying temporal and spatial patterns of variation from
multimodal data using mefisto. Nature methods, 19(2):179-186, 2022.

Stefan Webb, Adam Golinski, Rob Zinkov, Tom Rainforth, Yee Whye Teh, Frank Wood, et al.
Faithful inversion of generative models for effective amortized inference. Advances in Neural
Information Processing Systems, 31, 2018.

Antoine Wehenkel and Gilles Louppe. Graphical normalizing flows. In International Conference on
Artificial Intelligence and Statistics, pp. 37-45. PMLR, 2021.

Christian Weilbach, Boyan Beronov, Frank Wood, and William Harvey. Structured conditional
continuous normalizing flows for efficient amortized inference in graphical models. In International
Conference on Artificial Intelligence and Statistics, pp. 4441-4451. PMLR, 2020.

Feng Xie, Biwei Huang, Zhengming Chen, Yangbo He, Zhi Geng, and Kun Zhang. Identification
of linear non-Gaussian latent hierarchical structure. In International Conference on Machine
Learning, pp. 24370-24387. PMLR, 2022.

Michio Yamamoto, Kei Hirose, and Haruhisa Nagata. Graphical tool of sparse factor analysis.
Behaviormetrika, 44:229-250, 2017.

Mengyue Yang, Furui Liu, Zhitang Chen, Xinwei Shen, Jianye Hao, and Jun Wang. CausalVAE:
Disentangled representation learning via neural structural causal models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9593-9602, 2021.
arXiv:2004.08697 [cs.LG].

14



Under review as a conference paper at ICLR 2024

Yuqin Yang, AmirEmad Ghassami, Mohamed Nafea, Negar Kiyavash, Kun Zhang, and Ilya
Shpitser. Causal discovery in linear latent variable models subject to measurement error.
In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Ad-
vances in Neural Information Processing Systems, volume 35, pp. 874-886. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/05b63fa06784b71aab3939004e0f0al0d-Paper—-Conference.pdf.

15


https://proceedings.neurips.cc/paper_files/paper/2022/file/05b63fa06784b71aab3939004e0f0a0d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/05b63fa06784b71aab3939004e0f0a0d-Paper-Conference.pdf

Under review as a conference paper at ICLR 2024

A MEDIL CAUSAL MODELS

The NCFA models used in this paper are a subfamily of the models known as MeDIL causal models,
originally introduced in (Markham & Grosse-Wentrup, 2020). For contextualization purposes, we
give a brief description of MeDIL causal models here.

A MCM graphis atriple G = (M, L, E) where M = {1,...,n}and L = {l;,...,lx} are disjoint
sets of vertices corresponding, respectively, to observed variables and latent variables, and E is the
collection of directed edges between the nodes. In a MCM graph we require that the nodes in M
are all sinks (i.e., have out-degree 0) and that the edges E are such that G is a directed acyclic graph
(DAG). A distribution belongs to the Measurement Dependence Inducing Latent (MeDIL) Causal
Model if it factors according to G; i.e., the probability density function (or probability mass function)
satisfies

n K
floy, o xn, @y, ) = H f(@ilTpag 1)) H f@y | pag s))-
i=1 j=1

Since we do not observe the latent variables, but only the observed variables, X, ..., X,, the
distributions of interest factorizes as
n K n
[, an) = Hf(xi|xpag(i))Hf(xl_j|xpag(li))dxlz = Hsﬁi(mi)- )]
XL =1 j=1 i=1

Note that since all observed variables are sink nodes in G, integration over the latents yields a
factorization of the distribution into a product of potential functions, one for each observed variable
X; that depends only on ;. The MeDIL model M (G) consists of all observable distributions that
arise according to this factorization.

In general, MCM graphs may have a complex directed acyclic structure over the latents that induce
correlations amongst the observables. However, since we only consider the observed variables, we
may reduce to a minimum MCM representation of the distribution. In a minimum MCM graph, we
further assume that the latent variables are source nodes (i.e., have in-degree 0) and out-degree at least
1. Hence, a minimum MeDIL model; i.e., a MeDIL model that factorizes as in equation (1) explains
the associations amongst the observed variables in the simplest possible way: via a collection of
independent latents. These independent latents can be thought of as source nodes in the original
MCM graph G, and the associated minimum MCM graph as the graph produced after we marginalize
out all non-source latent variables. While learning the complex causal structure on the latents in
a general MCM graph may be intractable, one can apply existing methods to estimate the simpler
minimum MCM structure. Intuitively, one can think of learning the minimum MCM graph of a model
as identification of the "primary causes" of the associations between the observed variables.

It follows from the factorization of a distribution according to a minimum MCM graph that the only
conditional independence constraints amongst the observed variables are marginal independence
constraints. These, in turn, encode the condition that two nodes do not have a shared (latent) parent.
From the causal perspective, we see that two nodes in the system are marginally independent if
and only if they share a latent common cause. Hence, minimum MeDIL models are the natural
representation of Reichenbach’s Common Cause Principle.

It follows that a natural representation of the model using only the observed variables is via an
undirected graph U = (M, E'), where i — j ¢ E if and only if ¢ and j are independent in the joint
distribution of the observed variables. We call this graph the unconditional dependence graph (UDG)
of the model. A minimum edge clique cover of the undirected graph U is a collection of cliques
C ={C4,...,Ck} for which every pair ¢, j satisfying ¢ — j € E is contained in at least one clique
in C and there exists no set of cliques with this property that has cardinality smaller than |C|. Since
a UDG depends only on the observed variables, it is possible to learn a UDG from the available
data via pairwise marginal independence tests. A minimum MCM graph that captures the marginal
independence structure encoded via the UDG is then the minimum MCM graph where we have
one latent I; for each clique C; € C and [; has a directed arrow to each node j € C; (and no other
adjacencies).

To learn the assignment of latents producing a minimum MCM graph from a UDG U/, we must learn
a minimum edge clique cover of /. The problem of identifying a minimum edge clique cover of an
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Figure 4: A MCM graph G; with observed variables 1, 2, 3,4, a minimum MCM graph G» repre-
senting the same set of observable distributions f(x1, z2, 23, x4) and the associated UDG U. The
(unique) minimum edge clique cover of U/ is C = {{1, 2,3}, {2, 3,4}}. Hence, G» has exactly one
latent variable for each of these two cliques, connected to exactly the nodes in a single clique in C.
The NCFA-graph G- is an augmentation of G for A = 4 latent degrees of freedom (see Section 3). All
four graphs encode a single marginal independence constraint, X; 1 X, (shown via the d-separation
of 1 and 4 in Gy, Go, and G, and the lack of edge 1 — 4 in Uf), and hence represent the same family
of observed distributions.

undirected graph is NP-hard. There are exact algorithms (Gramm et al., 2009; Ullah, 2022) showing it
to be NP-complete and fixed-parameter tractable. However, there are also polynomial-time heuristic
algorithms (Conte et al., 2020) that can efficiently handle very large graphs.

B IDENTIFIABILITY OF MINIMUM MCM GRAPHS: EXAMPLES AND
COUNTEREXAMPLES

Proof of Theorem 3.6. Because the data-generating distribution is Markov to G, the use of any
consistent hypothesis test for independence (e.g., (Chatterjee, 2021)) is guaranteed to identify all
marginal independence statements. Using the UDG U induced by these marginal independence
statements (according to 2), and using (Markham & Grosse-Wentrup, 2020, Proposition 7) to associate
G to a minimum edge clique cover, the uniqueness of the edge clique cover (according to 1) guarantees
the identifiability of G. O

Proof of Corollary 3.7. The association of a minimum MCM graph G with a minimum edge clique
cover of U (Markham & Grosse-Wentrup, 2020, Proposition 7) induces an association between a
maximum independent set in U and a set of pure children in G with different parents. Observe that G
satisfies the 1-pure-child assumption if and only if there exists a maximum independent set {i* }% | in
U consisting of one pure child for each latent. In other words, G satisfies the 1-pure-child assumption
if and only if the independence number (i.e., size of a maximum independent set, which is the number
latents with at least one pure child) and intersection number (i.e., the number of cliques in a minimum
edge clique cover, which is the number of latents) of its corresponding U are equal. Such graphs are
known (Deligeorgaki et al., 2023, Lemma 2.3.5) to have a unique minimum edge clique cover, so G
is identifiable by Theorem 3.6. O

An example of a minimum MCM graph that cannot be identified because it admits multiple edge
clique covers is the graph:

The UDG of G is the edge graph U of the octahedron which admits exactly two
minimum edge clique covers: C; = {{1,3,4},{1,5,6},{2,3,6},{2,4,5}} and C; =
{{1,3,6},{1,4,5},{2,3,4},{2,5,6}}. C; recovers the minimum MCM graph G, whereas C,
produces the minimum MCM graph H, depicted below:
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This issue arises due to the spherical structure of the UDG U/, depicted on the left below. In the
remaining two figures, the each shaded triangle represents the children of a latent node (i.e., a clique

in a minimum edge clique cover) of a possible MCM graph with associated UDG /. The middle
figure represents the minimum MCM graph G and the rightmost figure represents the alternative H.

/é\
] /
\2/4

The spherical structure of this graph creates symmetry allowing for multiple minimum edge clique
covers. In particular, this gives an example to where we lack identifiability and Theorem 3.6 does not
apply. Interestingly, we see that this lack of identifability can be "worst possible” in the sense that if
the true minimum MCM graph is G, but the wrong edge clique cover is chosen, we could learn H,,
which captures none of the true latents and instead specifies four completely incorrect latents. Future
work, possibly incorporating interventional knowledge, to address such identifiability concerns would
be of interest.

On the other hand, graphs admitting a pure measurement variable in each clique of a minimum edge
clique cover will have a unique minimum edge clique cover, making the resulting minimum MCM
graph identifiable (see Theorem 3.6). From a graphical perspective, we call this condition the /-pure
child constraint since it insists that each latent node [; in the minimum MCM graph has (at least) one
child ¢* which has no other parents than /; (i.e., [; — ¢* is an edge of G and 7* has no other adjacencies
in G). However, the 1-pure-child constraint is not necessary for a UDG to have a unique minimum
edge clique cover and hence for identifiability to hold (according to Theorem 3.6). In particular, the
following UDG U has the unique minimum edge clique cover C = {{1,4},{2,5}, {3,6},{4,5,6}}
and hence the corresponding minimum MCM graph G is identifiable:

= —

2
—35
N ! l l !
U 6 1 2 3 4
| ¢
3 1 2 3 4 5 6
Note here that the latent variables [, l2 and [3 each have a pure child (1,2 and 3, respectively).

However, the latent Iy does not. Hence G is identifiable but does not satisfy the 1-pure-child
constraint.

C NCFA IMPLEMENTATION

We provide a Python implementation (including thorough documentation) of the NCFA algorithm
(Algorithm 1) as well as scripts for reproducing all of our results, released as a free/libre software
package: https://after.review.

Our implementation makes use of the following Python packages: NumPy (Harris et al., 2020),
PyTorch (Paszke et al., 2019), dcor (Ramos-Carrefo & Torrecilla, 2023), and xicorrelation
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(https://github.com/jettify/xicorrelation). Additionally, we provide a Python
wrapper of the Java ECC package (https://github.com/Pronte/ECC).

Further details can be found in our code and documentation, but we summarize the most important
implementation details in the following:

* Marginal independence testing (Step 1, Algorithm 1): We use statistical hypoth-
esis tests of independence (either using dcor for distance covariance based tests or
xicorrelation for Chatterjee’s coefficient based tests) for specified threshold value
«, with the p-values being computed based on the asymptotic theory as opposed to with
permutation tests.

* Edge clique cover (Step 2, Algorithm 1): We use the default heuristic solver of the ECC
package, except when making the 1-pure-child assumption, in which case the corresponding
learned UDG I/ has equal intersection and independence numbers, a condition known
(Deligeorgaki et al., 2023) to allow for a subcubic time exact solver, which we implement
ourself (see package documentation for further details).

* Assignment of latent degrees of freedom according to )\ (Step 3, Algorithm 1): First,
each of the K cliques from the edge clique cover is assigned one latent; then, the remaining
A — K latents are distributed equally over the cliques.

* VAE architecture (Step 4, Algorithm 1): The learned UDG U induces an NCFA model

with NCFA graph G (cf. Section 3.1). The NCFA graph encodes the structural connections
between the latents and observables as a biadjacency matrix, which is used to mask the
connections in the decoder of the VAE. In this way, each observable only depends on the
latent it is connected to in the learned NCFA graph G (cf. Definition 3.4). The decoder
structure is given by a single layer of the SparseLinear network with a masked linear
activation function. The model was trained using the AdamW optimizer with a learning rate
of le-5 and each time run for 200 epochs.

All experiments were run on Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz. Total combined runtime
was about 50 hours.

D EVALUATION METRICS

Distance measures Unlike classical VAE methods, NCFA has a causal discovery step in which it
infers the UDG upon which the VAE in the model is based. The structural Hamming distance (SHD)
is commonly used to quantify the difference between graph structures and is simply defined to be the
number of edges that appear in one graph but not the other. SHD, however, is not applicable in our
case as (i) it is defined for graphs having the same number of vertices, whereas for a fixed finite sample
from a set of measurement variables, differently estimated minimum MCMs may have differing
numbers of latent variables, and (ii) even if we compute, e.g., the SHD between the undirected graphs
U, U’ (which do have the same number of vertices), this aligns poorly with intuitions about distance
between their respective generating MCM graphs G, G'. To remedy this, we introduce the following
distance:

Definition D.1. The structural Frobenius (or medil) distance between biadjacency matrices B; €
{0,1} 51 and By € {0, 1}%2", corresponding to minimum MCM graphs G1, G2 each with n = | M|
measurement variables and K; latents, respectively, for ¢ = 1, 2, is defined as

SFD(By, By) := || B] By — B, Bs||%.

Note that, by virtue of being defined using the Frobenius norm, the medil distance is a proper distance
metric. The intuition behind this definition is that we transform a given minimum MCM structure into
a weighted undirected graph, allowing it to be easily compared to other minimum MCM structures
over the same set of measurement variables. Via this transformation, the weights keep track of how
many latent parents each pair of measurement variables have in common as the (4, j)-th entry in the
matrix B{ B; records the number of colliderless paths between measurement variables 4 and j in the
graph. For our graphs, two nodes admit such a path between them if and only if they are connected
by a latent, and this connection adds exactly 1 to the (i, 7)-th matrix entry. Hence, these matrices will

19


https://github.com/jettify/xicorrelation
https://github.com/Pronte/ECC

Under review as a conference paper at ICLR 2024

be equal if and only if the MeDIL models are identical (for a consistent ordering of measurement
variables) (Deligeorgaki et al., 2023, Section 2.2). Figure 5 provides an example comparing the
SFD between minimum MCMs and the SHD between their corresponding (unweighted) undirected
graphs.

G1 Go gs
Lo b S S R 1 L b

PAP SN PX X XY LN N

mq mo ms my miq mo ms my m

U, ma2 Uy, m2 Us ma2
m / \m m / \m m / m
N N\ N

1 1 1 0 1 1 0 0 1 1 1 0
Bl—{o111} B |10 10 BS—[0011]
27101 0 1

0 0 1 1
| Giand Gy GiandGs Gy and Gs
structural Hamming distance 1 1 2
medil distance 10 5 7

Figure 5: Pairwise comparison of structural Hamming distance and medil distance on three causal
factor structures, G1, G2, and Gs. For each structure G;, we also show its associated undirected graph
U; and its biadjacency matrix B;.

VAE loss function The training and validation losses reported here and in the main paper are
standard ELBO metrics (e.g. Kingma & Welling, 2014) computed using a 70/30 training/validation
split.

E SIMULATIONS: SPECIFICATIONS AND ADDITIONAL RESULTS

Data Generation We generated 10 Erdés-Rényi random undirected graphs (Gilbert, 1959) on
10 nodes for each density value p € {0.1,0.2,...,0.9}. These are actual density values, not
expectations, i.e., for each density value we sample uniformly from graphs with p(120) edges. These
random graphs constitute UDGs, so we compute their minimum edge clique covers to determine
the corresponding MCM structure. Importantly, while this approach lets us sample from the entire
space of minimum MCM structures, it only lets us directly specify the graph density of the UDG
over measurement variables and not the number of latent causal factors or the density of the MCM
structure.

Using the ground truth MCM structures as generated above, we construct a linear factor model
(Definition 2.1) with factor loading weights drawn from the interval [—2, —0.5)U(0.5, 2] and standard
normal error terms, from which we draw 10 different data sets (per edge density p) containing 1000
observations each, totaling 90 different ground truth causal structures and 900 different data sets.

Model Hyperparameters For each data set, we trained a NCFA model with o = 0.05, A = 25
(which includes estimating the causal structure) as well as two baselines: (i) a classic fully connected
VAE with the same number of latent degrees of freedom, and (ii) a NCFA model given the true causal
structure and with the latent degrees of freedom A being set equal to the true number of causal latent
factors K = |L|.
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Figure 6: Results of NCFA on synthetic data sets from randomly generated graphs, in terms of causal
structure learning: (a) shows structural Frobenius distance (SFD) between learned (biadjacency
matrix representation of) causal structures and the ground truth; (b) shows structural Hamming
distance (SHD) between (undirected graph representation of) learned causal structures and the ground
truth.

Additional Results Figure 6 shows the distances (both SFD and SHD) between the learned and
true causal structures, in the form of a box plot for each different edge density p, demonstrating
better performance (in terms of causal structure learning) for sparser graphs. However, in terms
of performance as a generative model, Figures 7 and 8 (respectively showing boxplot summary of
the A losses and averaged A losses for different generating edge densities) demonstrate that NCFA
generally achieves training loss comparable to the baseline VAE while improving the validation loss,
and at the same time improving both training and validation loss compared to the ground truth model
(owing to NCFA’s more expressive VAE architecture and higher \). Together, these results indicate
both that the causal structure provides helpful constraints in the NCFA pipeline and that NCFA is
robust in the face of moderate misestimation of the causal structure.
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Figure 7: Results of NCFA on synthetic data sets from randomly generated graphs, in terms of final
loss of the trained deep generative models: (a) shows Training-A-True, the difference of training
loss between the learned NCFA model and the NCFA model when given the ground truth causal
structure; (b) shows Validation-A-True, difference between NCFA and ground truth validation losses;
(c) shows Training-A-Baseline, difference between NCFA and Baseline VAE training losses; (d)
shows Validation-A-Baseline, difference between NCFA and Baseline validation losses.
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Figure 8: A curves for NCFA versus baseline and ground truth on synthetic data sets from randomly
generated graphs, averaged over the 100 data sets for each edge density p € (0.1,0.2,...,0.9).
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F REAL DATA ANALYSIS: SPECIFICATIONS AND ADDITIONAL RESULTS

Model Hyperparameters As noted in Section 5, we used default settings for the first run on
MNIST and TCGA (first and second rows of Table 1, and Figures 9a and 9b ). For the second run on
each (third and fourth rows of Table 1, and Figures 9c and 9d ), we tuned the hyperparameters slightly,
changing o = 0.001 and using distance covariance based tests * on MNIST to encourage greater
sparsity in the learned NCFA model. Furthermore, for the second run we made the 1-pure-child
assumption for both MNIST and TCGA, allowing us to greatly reduce A and make use of a polynomial
time exact minimum edge clique cover solver (described in Appendix C).

Additional Results Figure 9 shows the A curves corresponding to the runs described in Section 5
and Table 1, demonstrating that NCFA with default parameter specifications yields competitive, if
not improved, performance over baseline VAE models. When NCFA has free reign (as in the default
run) to learn whatever causal structure (when it exists, as in TCGA) can be gleaned from the data,
it appears to benefit training. However, the second round of experiments suggest that one should
take care when adjusting the algorithm to fit a specified causal structure, such as the 1-pure-child
constraint, as forcing possibly nonexistent causal structure into the model may be detrimental to the
models predictive capabilities.

Differences in losses between Baseline and NCFA for MNIST Differences in losses between Baseline and NCFA for TCGA
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Figure 9: A curves for NCFA versus baseline VAE on MNIST and TCGA data sets. (a) and (b) show
results of NCFA with default settings (on MNIST and TCGA respectively), while (c) and (d) show
results of NCFA with additional 1-pure-child assumption (for both) and more sensitive independence
tests (for MNIST).

3Instead of Chaterjee’s coefficient based tests—it is known that distance covariance can be more powerful
when one is concerned with finding independence, whereas Chatterjee’s coefficient may be preferred for
measuring strength of dependence (Chatterjee, 2022; Lin & Han, 2022).
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