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Abstract
In this communication, we propose an attempt of pipeline to
determine the best acquisition protocols automatically from
ensemble of images acquired in different conditions. This is
discussed to be specially useful in the field of variety test-
ing where similar traits are measured in non standardized
ways with help of images. Illustrations are given on distinct
traits including detection of head wheat and sugar beet leaves.
We discuss the methodological questions opened by this pilot
proposal.

Introduction
As a consequence of climate change, there is an urgent need
to develop new varieties capable of facing new climatic sce-
narios. However, the process of variety selection is rather
long (10 years). To commercialize a new variety of an agri-
cultural or vegetable species, a plant breeder has to follow
a process managed by a national authority and delegated to
an examination office (EO) that will describe and evaluate
the variety for its registration on the national list. Evaluation
results including variety descriptions may also serve for the
granting of Plant Variety Rights (PVR). Currently a large
majority of these tests are based on manual measurements
performed from visual inspection. This method has conse-
quences in terms of efficiency due to the time consuming
nature of these tests. It is also an issue for the reproducibility
of these tests when some characteristics are based on qual-
itative characteristics which may suffer from subjectivity in
their assessment. Improving efficiency and reproducibility
of these observations would be extremely useful for EOs
that are continuously seeking for optimized testing meth-
ods implemented in testing protocols. It could also provide
means to assess new characteristics developed in response
to new agricultural constraints, particularly in the perspec-
tive of climate change. In addition, more efficient measure-
ment methods would assist in addressing the challenge of the
constant increase in the number of varieties that have to be
tested. The described challenges encourage to head toward
the use of sensors and numerical practices to progressively
replace classical manual methods of examination whenever
there is a need to speed up measurement or increase their re-
producibility and objectiveness (Garbouge et al. 2020). The
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trend of using more and more imaging for plant science has
started some decades ago and has been extensively reviewed
(Li, Zhang, and Huang 2014; Qiu et al. 2018) for most recent
ones, including with cost-effective strategies (Reynolds et al.
2019). While imaging modalities used in plant science and
variety testing may be similar, the types of measures in plant
science and variety testing differ either by their nature and
technical aspects. So far, few attention from the academic
imaging community focus on these specific aspects of va-
riety testing. This ongoing numerical transition is currently
encouraged at the European level via collaborative network-
ing projects (including https://www.h2020-invite.eu/).

There are several challenges to address in order to reach
common numerical practices in variety testing. One of them
lays right at the level of image acquisition. How to de-
fine optimal protocols of acquisition which would be shared
and strictly followed by several countries? A Top-down ap-
proach would consists in letting engineers propose a strict
protocol including the brand and set up of a camera, light-
ing mode, vector on which to fix the camera, position of the
imaging setup toward the targeted crops, ... Such a rigid ap-
proach would by sure normalize the practices, but would run
the risk to face non-compliant behaviors among the local ex-
perts in charge of image acquisition since it may not system-
atically be applicable due to local environmental constraints
not envisioned before-hand. Another bottom-up approach
would consists in letting the local experts of all interested
nations discuss before-hand with engineers to define a com-
mon protocol. A risk here is to have a low convergence of
these discussions. We believe that another option is possible
to help this process of selection of best acquisition protocol.

We propose in this communication to consider the situ-
ation where existing datasets gathered in several places for
the same purposes are fed to an algorithm capable of identi-
fying automatically the best images for a final measurement.
This methodology is illustrated on three datasets. We finally
discuss the perspectives opened by this first pilot trial which
could be extended and enriched in many ways.

Method
We assume a dataset constituted of raw images is acquired
with various acquisition protocols for the same purpose and
the associated ground truth (binary masks for segmentation
for instance (e.g. binary masks for segmentation)) exists. We



Figure 1: Proposed generic pipeline proposed to select best
acquisition protocol in variety testing.

propose the following method to automatically detect the
best imaging conditions for acquisition protocols inside this
dataset (See Fig. 1). At the first step, we split the dataset to
the train and the test. These datasets are composed of bal-
anced (uniform) images from the different acquisition pro-
tocols. In the second step, handcrafted features correspond-
ing to the expected optical quality of the acquired images
are computed and a clustering method is applied on these
features. The clustering method includes two classes for the
expected good and bad quality of images. A statistical test is
then made to decide if the distribution of the quality metric
inside each cluster can be considered distinct or not. Finally
in step 3, based on the results of the statistical test, a recom-
mendation setting of the optical parameters are generated for
the users.

We did not identified clear most related work from the
computer vision community on this problem. Ideally, we
would like to come up with a caption associated to an im-
age were the expected quality of the image would be directly
indicated to the technician in the field if acquisition parame-
ters (focal, focus, angle, light, ...) are not in agreement with
the reference dataset.

Dataset

We implemented the generic pipeline of Fig. 1 and tested it
on three datasets shown in Fig. 2. The first dataset includes
213 images (150 in training and 63 in test) of a sugar beets
acquired under various illuminations including overexposed
(i.e. where the sensor is saturating) conditions. The purpose
of this dataset is the segmentation of the leaves from the
soil. The percentage of coverage of the soil at a given date
is an important trait in variety testing. The second dataset
includes 190 images( 160 in training and 30 in test) of wheat
observed for side view. The task is the segmentation of the
spikes from the first raw of the micro-parcel. The last dataset
is taken from the global wheat data challenge (David et al.
2021) with a subset of 3422 images (2758 images in training
and 664 in test) of wheat ears observed from top view in the
field. The task is to segment the ears. Here again the angle
of view may vary from top view (90 degrees) to 45 degrees
from top view. Images from these three datasets have been
manually annotated to produce binary masks of the objects
to be segmented.

.

Figure 2: Datasets and ground truth used to test the pipeline
of Fig. 1. Top raw: sugar beets observed from top view with
various illuminations; Middle raw: wheat observed from the
side view with various angles of the cameras; Bottom raw:
hear observed from top view with various angles of the var-
ious angles of the cameras .

Algorithms
We now provide more details about the specific algorithms
used in the generic pipeline of Fig. 1. The three considered
datasets being dedicated to segmentation, we used a stan-
dard U-Net neural network architecture (Ronneberger, Fis-
cher, and Brox 2015) for the image processing algorithm of
step 1. The evaluation metric was chosen as the Sørensen-
Dice coefficient D of the segmentation

D =
2|X ∩ Y |
|X|+ |Y |

(1)

where X is the predicted segmentation and Y the ground
truth.

The features extracted were selected to test the impact of
variations of acquisition conditions on the final result. The
sugar beet dataset were acquired under various spatial illu-
mination including risks of image saturation and low expo-
sure. We proposed for this dataset to simply count the per-
centage of pixels having low values, arbitrarily chosen from



0-30 after RGB to gray conversion, and the pixels close to
saturation level, arbitrarily chosen from 227-255. An image
with correct exposition is expected to have low percentage
of pixels in these saturation part of its input-output charac-
teristic. Wheat from side view were acquired under various
angles of the camera toward the ground. To probe this opti-
cal parameter, we included an estimation of the depth from
RGB monocular view (arbitrarily chosen from (Liu et al.
2015) among many deep learning variants from the litera-
ture) and simply computed the standard deviation of the es-
timated depth map. An image with low standard deviation in
this depth map is expected to be acquired with an angle of 90
degree from the main vertical axis of the wheat heads. Last,
to also probe the angle of view, the percentage of vegetation
was computed from a standard semantic segmentation such
as the one used in (Samiei et al. 2018). A high percentage of
vegetation indicates a side or top view with low part due to
the sky or additional non plant items (humans, tractors, ...).
These three simple features were applied on each images to
feed the clustering method.

Image quality control by binary clustering (K-means with
K=2) is applied to test the hypothesis of the quality of im-
ages based on the defined acquisition protocol. All features
were normalized to 1 to avoid distortion effects when using
Euclidean distance in the K-Means algorithm. A Wilcoxon
rank-sum test (Kanji 2006) was applied on the distribution of
the Dice coefficient inside each cluster. The null-hypothesis
was chosen as the equality of the medians. This null hypoth-
esis is validated at the default 5% on the P-Value. A recom-
mendation of specific care about the tested optical parameter
is finally recorded based on the result of this test.

Results
The distribution of the Dice coefficient in each cluster pro-
duced by the K-Means algorithm are displayed in Fig. 3 for
the three tested data sets. The P-value indicates in all these
cases that hypothesis H0 can be rejected. This indicates that
the optical parameters tested (Illumination for dataset 1 and
3, Orientation for dataset 2) have an impact on the quality of
the segmentation performance. Interestingly, when gazing at
the image in each cluster (see Fig. 4) the clustering indeed
corresponds to uniform optical conditions, i.e. saturated or
well exposed images in dataset 1 and 3 and uniform angle
of view is dataset 2. On could use the result of such an ex-
periment to identify the most important optical parameters
and define in a data driven way the best practices. Here the
experiment indicates to avoid saturation and favor side view
or 45 degree view rather than top view. One can also notice
that the distribution of the Dice coefficients are overlapping
in the three conditions. This means that despite a statistically
grounded difference in the performance in each cluster the
difference is limited and could probably be reduced again
by extending significantly the size of the training data sets
with optical parameters in the range of what was included in
the first. With both analysis our pipeline of Fig. 1 provides
fruitful feedback and strategy to define the best acquisition
protocol depending on the size of the dataset and the associ-
ated effort of image annotation.

Figure 3: Distribution of Dice coefficient in each cluster for
the three datasets processed in the study.

Conclusion and perspective
In this communication, we have introduced the problem of
normalization of acquisition protocol in variety testing. We
believe that machine learning can help to define the best pro-
tocol in a reverse engineering mode. In this pilot study, first
we proposed a supervised approach where handcrafted fea-
tures correlated to optical parameters were used to cluster
images. The approach was then successfully illustrated on
datasets dedicated to segmentation tasks.

The work could be extended in many ways. While the
problem appears to us original and challenging for computer
vision some clear limitations can be underlined on the way
we tackled it so far. Because we have chosen a supervised
approach, we have to deliver a similar amount of data for
all the tested variants of the protocol. This may seem prob-
lematic since we especially do not completely specify the



Figure 4: Instances of each cluster in each of three datasets
processed in this study.

protocol itself but rather propose to dive into the dataset to
select the best practices. Also, annotation of the images has
to be done on the whole dataset while we suspect that some
of these data has insufficient quality. This appears as a loss of
time. We can expect that expert that will do the annotation,
will, by common sense, be able to identify the quality of the
images by themselves and may not in the end have to wait
for the answer of our algorithm to sort out the good from
the bad quality images. One could envision heading toward
a fully unsupervised and end-to-end approach. Variational
auto-encoders (VAE) (Girin et al. 2020) could be used to
produce a latent space where the clustering would operate.
A possible limitation is that this latent space would still de-
pend on the composition of the initial dataset. What would
happen if among all the protocols, the best one was repre-
sented with few images only. This last remark rely on the
fact that in the implementation presented in this communi-
cation the datasets were limited. A direction would be to
bet on unsupervised algorithms trained on huge dataset pur-
posely acquired in diverse conditions in order to ensure from
the data rather than from the protocol itself sufficient robust-
ness.

Another direction would be to investigate the possible use
of synthetic plants positioned in virtual environment such as
the one used for video gaming conception. There are mod-
els of virtual plants for almost all crops of interest and the
libraries are continuously growing. The production of these
models benefit from extensive use of L-System grammars
(Room, Hanan, and Prusinkiewicz 1996; Mishra and Mishra
2007; Boudon et al. 2012) to simply but very realistically
produce in-silico plant models. Optical parameters such as
lighting, angle, optics, depth of field, exposure, resolution
of the cameras can automatically be simulated in virtual en-
vironment. Annotation of the plants themselves can also be
automated since the ground truth is created by the computer
directly. The selection of the optimal acquisition protocols
would in this case be more direct since the optical parame-
ters would directly be known and not only correlated with
handcrafted features. Our group has expertise in this field of
digital twin (Douarre et al. 2019; Sapoukhina et al. 2019)
and we are working in this direction to overcome some of
the mentioned limitations of our proposed approach.
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