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Abstract: How do we imbue robots with the ability to efficiently manipulate un-1

seen objects and transfer relevant skills based on demonstrations? End-to-end2

learning methods often fail to generalize to novel objects or unseen configurations.3

Instead, we conjecture that the task-specific pose relationship between relevant4

parts of interacting objects is a generalizable notion of a manipulation task that5

can transfer to new objects in the same category; examples include the relation-6

ship between the pose of a lasagna relative to an oven or the pose of a mug relative7

to a mug rack. We call this task-specific pose relationship “cross-pose” and pro-8

vide a mathematical definition of this concept. We propose a vision-based system9

that learns to estimate the cross-pose between two objects for a given manipula-10

tion task. The estimated cross-pose is then used to guide a downstream motion11

planner to manipulate the objects into the desired pose relationship (placing the12

lasagna into the oven or the mug onto the mug rack). We train a cross-pose esti-13

mator in simulation and we demonstrate the capability of our system to generalize14

to unseen objects in both simulation and the real world, deploying our policy on a15

Franka Emika with no finetuning. Results show that our system achieves state-of-16

the art performance in both simulated and real-world experiments. Supplementary17

information can be found at this anonymized website.18

Keywords: Learning from Demonstration, Manipulation, 3D Learning19

1 Introduction20

Many manipulation tasks require that a robot is able to move an object to a location relative to an-21

other object. For example, a cooking robot may need to place a lasagna in an oven, place a pot on22

a stove, place a plate in a microwave, place a mug onto a mug rack, or place a cup onto a shelf.23

Understanding and placing objects in task-specific locations is a key skill for robots operating in24

human environments. Further, the robot should be able to generalize to novel objects within the25

training categories, such as placing new lasagnas into the oven or new mugs onto the mug rack. A26

common approach in robot learning is to train a policy “end-to-end,” mapping from pixel observa-27

tions to low-level robot actions. However, end-to-end trained policies cannot easily reason about28

complex pose relationships such as the ones described above, and they have difficulty generalizing29

to novel objects.30

In contrast, we propose achieving these tasks by learning to reason about an object’s three-31

dimensional geometry. For the type of tasks defined above, the robot needs to reason about the32

relationship between key parts on one object with respect to key parts on another object. For exam-33

ple, to place a mug on a mug rack, the robot must reason about the relationship between the pose34

of the mug handle and the pose of the mug rack; if the mug rack changes its pose, then the pose of35

the mug must change accordingly in order to still be placed on the rack (see Figure 2). We name36

this task-specific notion of the pose relationship between a pair of objects as “cross-pose” and we37

formally define it mathematically. Further, we propose a vision system that can efficiently estimate38

the cross-pose from a small number of demonstrations of a given task, generalizing to novel ob-39

jects within the training categories (see Figure 1). To achieve the manipulation task, we input the40
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Figure 1: TAX-Pose in action. Top: PartNet-Mobility Placement Task. Bottom: Mug Hanging Task. The
model is trained using demonstrations of anchor and action objects in their ground-truth cross-pose for the task.
The model first observes the initial configuration of the objects, estimates correspondence between the pair of
objects, and then calculates the desired pose. The desired pose is then used to guide robot motion planning.

estimated cross-pose into a motion planning algorithm which will manipulate the objects into the41

desired pose relationship (e.g. placing the mug onto the rack, placing the lasagna into the oven, etc).42

In this paper, we present TAX-Pose (TAsk-specific Cross-Pose), a deep 3D vision-based robotics43

method that learns to predict a task-specific pose relationship between a pair of objects based on44

a set of demonstrations. We use this prediction to plan a trajectory that actuates the objects to45

achieve the desired relative pose. Our cross-pose estimation system is translation equivariant and46

can generalize from a small number of demonstrations to new objects in unseen poses.47

The contributions of this paper include:48

1. A precise definition of “cross-pose,” which defines a task-specific pose relationship be-49

tween two objects.50

2. A novel method that estimates the cross-pose between two objects; this method is provably51

translation equivariant and can learn from a small number of demonstrations.52

3. A robot system to manipulate objects into the desired cross-pose needed to achieve a given53

manipulation task.54

We present simulated and real-world experiments to test the performance of our system in achieving55

a variety of cross-pose manipulation tasks, learning from a small number of demonstrations. We56

show the generalizabilty of our model though an object placement task, where the robot must ac-57

curately place objects in, on, or around novel objects. We then show the precision of the method,58

hanging unseen mugs onto a mug rack.59

2 Related Work60

Learning from Demonstration (LfD): LfD is a diverse field of study which focuses on enabling61

robots to learn skills from expert demonstrations. We refer the readers to previous survey papers62

[1, 2, 3] for a comprehensive review of LfD approaches. The commonly-used LfD technique is63

Behavior Cloning (BC) [4, 5], which involves imitating an expert agent given a set of demonstration64

trajectories by learning to predict the expert’s action in a given state. This simple formulation has65

proven successful in a variety of tasks, including autonomous driving [6], robotic manipulation66

[7], and many more. More recently, CLIPort [8] and Socratic Models [9] improve LfD agents’67

versatility by adding a multi-modal (language) component to the policy, making the decision-making68

process also conditioned on language instructions. In this project, we focus primary on the geometric69

relationships between objects, and use the demonstrations to estimate a “goal pose”, which can be70

used by a motion planner to manipulate the objects into the desired poses.71

Object Pose Estimation: Pose estimation is the task of detecting and inferring the 6DoF pose of an72

object, which includes its position and orientation, with respect to some previously defined object73

reference frame [10, 11, 12, 13, 14, 15]. Recent work [16, 17, 18, 19] proposed to use 3D semantic74
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keypoints as an alternative form of object representation for manipulation. While keypoint-based75

methods can generalize within an object class, they require a significant amount of hand annotated76

data or access to simulated version of the task to estimate the keypoint locations. In contrast, our77

method is able to learn from just 10 demonstrations.78

Dense descriptors [20, 21] and descriptor fields [22] achieve generalization across classes by pre-79

dicting a dense embedding over the full image/point cloud space. To convert these task agnostic80

descriptors to a task specific pose, a subset of the descriptors are matched to demonstration objects.81

In Dense Object Nets (DON), a single point of reference is specified by a user [20]; in the Dense82

Object Nets baseline from NDF [22], this is extended to a set of user-selected points. In contrast,83

our method learns from just a set of demonstrations without needing extra user annotations. Further,84

we show that our method significantly outperforms the Dense Object Nets baseline [20].85

Neural Descriptor Fields “assumes a static environment that remains fixed between demonstration-86

time and test-time” [22]. NDF needs this assumption because it uses a “known canonical config-87

uration” for the reference object in the environment (e.g. the mug rack). In contrast, our method88

reasons about the “cross-pose” which describes a task-specific relationship between a pair of objects89

and thus does not need to assume a static environment. Our method learns from a small number of90

demonstrations to reason about the important task-specific relationships between object parts that91

enables our method to generalize to novel objects.92

Point Cloud Registration: Our method for estimating the cross-pose between two objects builds93

upon previous work in point cloud registration. The typical objective in point cloud registration94

is to find the optimal rigid alignment between two point clouds, to minimize the sum of squared95

distances between two sets of points. Traditionally, ICP [23] and its variants [24, 25, 26, 27, 28, 29]96

have been used to compute the optimal rigid alignment between two point clouds. Deep Closest97

Point (DCP) [30] avoids local minima common for ICP by seeking to approximate correspondence98

in a high-dimensional learned feature space. Our method builds upon the architecture of DCP for99

cross-pose estimation; however, in contrast to point cloud registration, in which the objective is100

to minimize the sum of squared distances between two sets of points, our objective is to estimate101

a task-specific pose relationship between two different objects. From a technical standpoint, our102

work is the first to introduce the notion of cross-pose, which we define in Section 3 and analyze103

theoretically in Supplement Section 1. Extending the framework from DCP, we learn a residual to104

the soft correspondences, allowing for points to match outside the convex hull of each object. This105

component is necessary when matching between objects of drastically different morphologies. Also,106

DCP does not use a weighted SVD; in contrast, we learn importance weights for different regions107

of the point cloud, allowing the system to focus on certain regions of each object that are important108

for the given task, which we integrate into a weighted differentiable SVD. Our ablation experiments109

show that each of these components contribute to our final performance.110

3 Problem Statement111

We first define the notion of cross-pose in the context of object placement tasks. Given two objects112

A and B, we define the “relative placement” task of placing object A at a pose relative to object B.113

For example, consider the task of placing a lasagna in an oven, placing a pot on a stove, or placing114

a mug on a rack, or placing a robot gripper on the rim of a mug. All of these tasks involve placing115

one object (which we call the “action” object A) at a semantically meaningful location relative to116

another object (which we call the “anchor” object B)1. Relative placement tasks can either admit a117

single unambiguous solution (i.e. placing an asymmetric object in a specific pose, such as inserting118

an asymmetric peg into a hole), or a set of solutions (e.g. when there are object symmetries, or when119

the goal is semantically defined, such as “place the object somewhere on top of the table”).120

In this work, we make the simplifying assumption that, for a given pair of objects A and B, there121

is a single, unambiguous relative pose needed to achieve a given task. Let PA, PB be the point122

clouds of the objects, where Pk ∈ R3×Nk , and Nk denotes the number of (x, y, z) points in the123

point cloud of object k. We define the task-specific “cross-pose” between objects A and B via the124

function f(PA,PB) which has the following properties: f(PA,PB) = I (where I is the identity)125

when A and B are each in the target pose needed to complete the task (lasagna is in the oven; mug126

1Note that the definition of action and anchor is symmetric; either object can be treated as the action object
and the other as the anchor.
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is on the rack, etc). The task-specific cross-pose function f has these further properties:127

f(T ·PA,PB) = T · f(PA,PB), f(PA,T ·PB) = f(PA,PB) ·T−1 (1)

where T ∈ SE(3) is a pose transformation. We explore the limitations of other potential definitions128

of cross-pose in the appendix.129

As a corollary, if f(PA,PB) = I, then f(T ·PA,T ·PB) = I. In other words, the target cross-pose130

is invariant to the reference frame or a global pose transformation. Suppose that our task is to place131

a mug on a rack in a particular configuration. If we transform (rotate and translate) the mug by132

transformation T and we similarly transform the rack also by T, then the cross-pose between the133

mug and the rack will be unchanged and the mug will still be “on” the rack, as seen in Figure 2.134

Demonstration 
Pose

Transform 
Anchor

Transform 
Action

Figure 2: Visualization of the properties of cross-pose. If we transform both the action (mug) and the anchor
(rack) objects by the same transform, then the relative pose between these objects is unchanged (the mug is still
“on” the rack) so the cross-pose is unchanged.

We aim to learn a model, fθ, that takes as input the two point clouds and predicts an SE(3) rigid135

transformation: fθ(PA,PB) = TAB, where TAB denotes the cross-pose between object A and136

object B as defined above. We can then transform object A by Tα and B by Tβ such that Tα ·137

TAB · T−1β = I. Given the properties of “cross-pose” described above, this will shift objects A138

and B into the desired target pose for the task. In practice, we typically transform only object A by139

Tα = T−1AB without moving object B, although in theory either (or both) objects can be moved.140

4 Method141

Embedding 
Network

Soft Correspondence & 
Correspondence Residual 

Motion 
Planning

Weighted 
SVD

Demo 
Task-Specific 
Cross-Pose

Apply Random 
SE(3)

Point Embeddings

Corrected
Corresponding Points (during inference)

Cross Object 
Attention

Transformer

Transformer

Task Embedding 
(Optional)

Figure 3: TAX-Pose Training Overview: Our method takes as input two point clouds given a specific task
and outputs the cross-pose between them for the task. TAX-Pose first learns point clouds features using two
DGCNN networks and two transformers. Then the learned features will be input to two point residual networks
to predict per-point soft correspondence and weights between the two objects. Then the desired cross-pose can
be inferred analytically using singular value decomposition.

Method Overview: We frame the task of cross-pose estimation as a correspondence-prediction142

task between a pair of point clouds, followed by an analytical least-squares optimization to find the143

optimal cross-pose for the predicted correspondences. This framing allows our cross-pose to adjust144

to novel positions of both the anchor and action objects, removing the restrictions to static anchor145

objects found in previous methods [22]. At a high level, our method performs the following steps:146
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1. Soft Correspondence Prediction: For a pair of objects A,B, a neural network learns to147

predict a per-point embedding to establish a (soft) correspondence between A and B.148

2. Adjustment via Correspondence Residuals: To accommodate estimation tasks where A149

and B may not be in direct contact or overlap, we apply a pointwise residual vector to150

displace each of the predicted virtual corresponding points. This allows points in A to151

correspond to points in free space near B, for instance when a pot (A) sits on top of a stove152

(B).153

3. Find the optimal Cross-Pose Transform: We use a standard SVD solution to the weighted154

Procrustes problem to find the optimal alignment given the corrected virtual correspon-155

dence.156

Because each step above is fully-differentiable, our method can learn arbitrary correspondences157

that solve arbitrary cross-pose estimation tasks. Our method is heavily inspired by Deep Closest158

Point (DCP) [30]. The key difference between our pose alignment model and DCP is that we are159

predicting the cross-pose between two different objects for a given task instead of registering two160

point clouds of an identical object. An overview of our method can be found in Figure 3. As we161

will discuss, this correspondence-based approach allows our method to be translation-equivariant:162

translating one object (A or B) will lead to a translated cross-pose prediction.163

We now describe our Cross-Pose estimation algorithm in detail. To recap the problem statement,164

given objects A and B with point cloud observations PA, PB respectively, our objective is to esti-165

mate the task-specific cross-pose TAB = f(PA,PB) ∈ SE(3). Note that the cross-pose between166

object A and B is defined with respect to a given task (e.g. putting a lasagna in the oven, putting a167

mug on the rack, etc).168

4.1 Cross-Pose Estimation via Soft Correspondence Prediction169

Soft Correspondence Prediction: The first step of the method is to compute two sets of cor-170

respondences between A and B, one which maps from points in A to B, and one which171

maps from points in B to A. These need not be a bijection, and can be asymmetric. We172

desire for this correspondence to be differentiable, so following DCP we define a soft cor-173

respondence, which assigns for every point pAi ∈ PA a corresponding virtual correspond-174

ing point vA→Bi , which is a convex combination of points in PB, and vice versa. Formally:175

vA→Bi = PBw
A→B
i s.t.

NB∑
j=1

wA→Bij = 1 vB→Ai = PAw
B→A
i s.t.

NA∑
j=1

wB→Aij = 1176

with normalized weight vectors wA→Bi and wB→Ai . Importantly, these virtual corresponding points177

are not constrained to the surfaces ofA or B; instead, they are constrained to the convex hulls of PA178

and PB, respectively. Thus, we can reduce the soft correspondence prediction problem to predicting179

wA→Bi ∈ RNB and wB→Ai ∈ RNA for each point in PA and PB, respectively.180

To accomplish this, we first encode each point cloud PA and PB into a latent space using a neural181

network encoder. This encoder head is comprised of two distinct encoders gA and gB, each of which182

receives point cloud PA and PB, respectively, and outputs a dense, point-wise embedding for each183

object: ΦA = gA(PA), ΦB = gB(PB) where φAi ∈ ΦA is the d-dimensional embedding of the i-184

th point in objectA, and likewise for object B (see Figure 3). We zero-center each observation point185

cloud before passing it into its encoder, and we employ a cross-object attention module between the186

two embedding spaces (architecture details can be found in the appendix).187

Since the point-wise embeddings φAi and φBi have the same dimension d, we can select the inner188

product of the space as a similarity metric between two embeddings. For any point pAi , we can189

extract the desired normalized weight vector wB→Ai with the softmax function:190

wA→Bi = softmax
(
Φ>Bφ

A
i

)
, wB→Ai = softmax

(
Φ>Aφ

B
i

)
(3)

Adjustment via Correspondence Residuals: Correspondences which are constrained to the convex191

hull of objects are insufficient to express a large class of desired tasks. For instance, we might want192

a point on the handle of a teapot to correspond to some point above a stovetop, which lies outside193

the convex hull of the points on the stovetop. To allow for such placements, we further learn a194
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residual vector that corrects each virtual corresponding point, allowing us to displace each virtual195

corresponding point to any arbitrary location that might be suitable for the task. Concretely, we use196

a point-wise neural network gR which maps each embedding into a 3-D residual vector:197

rA→Bi = gR
(
φAi
)
, rB→Ai = gR

(
φBi
)

Applying these to the virtual points, we get our corrected virtual correspondence:198

ṽA→Bi = vA→Bi + rA→Bi , ṽB→Ai = vB→Ai + rB→Ai (4)

Least-Squares Cross-Pose Optimization with Weighted SVD: We now have two sets of points199

and their associated corrected virtual correspondence:
(
PA, ṼB

)
and

(
PB, ṼA

)
, where ṼB =200 [

ṽA→B1 . . . ṽA→BNA

]>
and similarly for ṼA. We would like to compute the cross-pose transformation201

TAB that minimizes the weighted distance between correspondences, where the weights signify the202

importance of specific correspondences and are predicted as an additional channel of the encoding203

neural networks. This is the well-known weighted Procrustes problem, for which there exists an204

analytical solution (see appendix for details). We use a differentiable SVD operation [31], which205

allows us to compute a rotation R and translation t that minimizes the weighted distance between206

correspondences (where TAB = [R, t]).207

4.2 Supervision208

To train the encoders gA(PA), gB(PB) as well as the residual networks gR
(
φAi
)
, gR

(
φBi
)
, we use209

a set of losses defined below. We assume we have access to a set of demonstrations of the task, in210

which the action and anchor objects are in the target relative pose such that TAB = I.211

Point Displacement Loss [12, 32]: Instead of directly supervising the rotation and translation (as212

is done in DCP), we supervise the predicted transformation using its effect on the points. For this213

loss, we take the point clouds of the objects in the demonstration configuration, and transform each214

cloud by a random transform, P̂A = TαPA, and P̂B = TβPB. This would give us a ground truth215

transform of TGT
AB = TβT

−1
α ; the inverse of this transform would move object B to the correct216

position relative to object A. Using this ground truth transform, we compute the MSE loss between217

the correctly transformed points and the points transformed using our prediction.218

Ldisp =
∥∥TABPA −TGT

ABPA
∥∥2 +

∥∥T−1ABPB −TGT−1
AB PB

∥∥2 (5)
Direct Correspondence Loss. While the Point Displacement Loss best describes errors seen at219

inference time, it can lead to correspondences that are inaccurate but whose errors average to the220

correct pose. To improve these errors we directly supervise the learned correspondences ṼA and ṼB:221

222

Lcorr =
∥∥∥ṼB −TGT

ABPA

∥∥∥2 +
∥∥∥ṼA −TGT−1

AB PB

∥∥∥2 . (6)

Correspondence Consistency Loss. Furthermore, a consistency loss can be used. This loss penal-223

izes correspondences that deviate from the final predicted transform. A benefit of this loss is that it224

can help the network learn to respect the rigidity of the object, while it is still learning to accurately225

place the object. Note, that this is similar to the Direct Correspondence Loss, but uses the predicted226

transform as opposed to the ground truth one. As such, this loss requires no ground truth:227

Lcons =
∥∥∥ṼB −TABPA

∥∥∥2 +
∥∥∥ṼA −T−1ABPB

∥∥∥2 . (7)

Overall Training Procedure. We train with a combined loss Lnet = Ldisp + λ1Lcorr + λ2Lcons,228

where λ1 and λ2 are hyperparameters. We use a similar network architecture as DCP [30], which229

consists of DGCNN [33] and a Transformer [34]. We also optionally incorporate a contextual em-230

bedding vector into each DGCNN module - identical to the contextual encoding proposed in the231

original DGCNN paper - which can be used to provide an embedding of the specific placement re-232

lationship that is desired in a scene (e.g. selecting a “top” vs. “left” placement position) and thus233

enable goal conditioned placement. We refer to this variant as TAX-Pose GC (goal-conditioned).234

We briefly experimented with Vector Neurons [35] and found that this led to worse performance on235

this task. In order to quickly adapt to new tasks, we optionally pre-train the DGCNN embedding236

networks over a large set of individual objects using the InfoNCE loss [36] with a geometric dis-237

tance weighting and random transformations, to learn SE(3) invariant embeddings (see appendix238

for further details).239
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5 Experiments240

To evaluate TAX-Pose, we conduct a wide range of simulated and real-world experiments on two241

classes of relative placement tasks: Object Placement and Mug Hanging. The Object Placement242

objective is to place an action object on a flat surface on or near an anchor object. The Mug Hanging243

task objective is to grasp and then hang unseen mugs on a rack.244

5.1 PartNet-Mobility Placement245

Task Description: The PartNet-Mobility Placement task is defined as placing a given action object246

relative to an anchor object based on a semantic goal position. We select a set of household furniture247

objects from the PartNet-Mobility dataset [37] as the anchor objects, and a set of small rigid objects248

released with the Ravens simulation environment [38] as the action objects. For each anchor object,249

we define a set of semantic goal positions (i.e. ‘top’, ‘left’, ‘right’, ‘in’), where action objects should250

be placed relative to each anchor. Each semantic goal position defines a unique task in our cross-251

pose prediction framework. Given a synthetic point cloud observation of both objects, the task is to252

predict a cross-pose that places the object at the specific semantic goal.253

We train two variants of our model, one goal-conditioned variant (TAX-Pose GC), and one task-254

specific variant (TAX-Pose): the only difference being that the TAX-Pose GC variant receives an255

encoding of the desired semantic goal position (‘top’, ‘left’, . . . ) for the task. The goal-conditioned256

variant is trained across all semantic goal positions, whereas the task-specific variant is trained257

separately on each semantic goal category (for a total of 4 models). Importantly, both variants are258

trained across all PartNet-Mobility object categories. We train entirely on simulated data, and259

transfer directly to real world with no finetuning. Details can be found in the appendix. We report260

rotation (ER) and translation (Et) error between our predicted transform and the ground truth as261

geodesic rotational distance [39, 40] and L2 distance, respectively.262

Baselines: We compare our method to the following baselines:263

E2E Behavioral Cloning: Generate motion-planned trajectories using OMPL that take the action264

object from start to goal. These serve as “expert” trajectories for Behavioral Cloning (BC), where265

we train a neural network to output a policy that, at each time step, outputs an incremental 6-DOF266

transformation that imitates the expert trajectory.267

E2E DAgger: Using the same BC dataset as above, we train a policy using DAgger [4].268

Trajectory Flow: Using the same BC dataset with DAgger, we train a policy to predict a dense per-269

point 3D flow vector at each time step instead of a single incremental 6-DOF transformation. Given270

this dense per-point flow, we can extract a rigid transformation using SVD yielding the next pose.271

Goal Flow: Instead of training a multi-step policy to reach the goal, train a network to output a272

single dense prediction which assigns a per-point 3D flow vector that points from each action object273

point directly to its corresponding goal location. We extract a rigid transformation from these flow274

vectors using SVD, yielding the goal pose.275

Note that in the PartNet-Mobility Placement experiments, the pose of the anchor object poses are276

randomly varied. As such, we omit comparison to methods that assume a static anchor, such as277

Neural Descriptor Field (NDF) [22] and Dense Object Nets (DON) [20], as both methods assume278

that the anchor objects are in a consistent position. Comparison to these baseline methods is reserved279

for Section 5.2.280
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AVG.
ER Et ER Et ER Et ER Et ER Et ER Et ER Et ER Et ER Et

Baselines E2E BC 42.26 0.73 37.82 0.82 37.15 0.65 44.84 0.68 30.69 1.06 40.38 0.69 45.09 0.76 45.00 0.79 45.65 0.64
E2E DAgger [4] 37.96 0.69 34.15 0.76 36.61 0.66 40.91 0.65 24.87 0.97 35.95 0.70 40.34 0.74 32.86 0.79 39.45 0.53

Ablations Traj. Flow [41] 35.95 0.67 31.24 0.82 39.21 0.72 34.35 0.66 28.48 0.75 37.14 0.59 29.49 0.70 39.60 0.76 39.69 0.48
Goal Flow [41] 26.64 0.17 25.88 0.15 25.05 0.15 30.62 0.15 27.61 0.10 28.01 0.18 20.96 0.24 29.02 0.23 22.13 0.20

Ours TAX-Pose 6.64 0.16 6.85 0.16 2.05 0.10 3.87 0.12 4.04 0.08 12.71 0.31 6.87 0.37 5.89 0.13 14.93 0.18
TAX-Pose GC 7.74 0.17 4.43 0.13 3.27 0.13 4.16 0.12 3.3 0.08 10.76 0.26 7.36 0.30 6.28 0.14 22.37 0.21

Table 1: Goal Inference Rotational and Translational Error Results (↓). Rotational errors (ER) are in degrees
(◦) and translational errors (Et) are in meters (m). The lower the better.

Anchor

Action

Franka 
Panda

Azure 
Kinect

Anchor 
Octomap

Figure 4: Real-world experiments illustration. Left: work-
space setup for physical experiments. Center: Octomap vi-
sualization of the perceived anchor object.

Goal Flow 0.18 0.38 0.37
TAX-Pose 0.95 0.95 0.85

Table 2: Real-world goal placement success
rate

281

Real-World Experiments: We design a set of of real world experiments to evaluate the performance282

of our cross-pose prediction model on real objects. We choose several real-world furniture objects283

similar to those found in the simulated training categories, annotate semantic goal locations for each,284

and choose several analogous action objects (bowl, block) to place at the goals. For each semantic285

goal, the task is to predict the appropriate cross-pose directly from point clouds recorded by a depth286

camera and have a Franka Emika Panda robot place the action object at the cross-pose (see Fig. 4287

for the workspace). We compare TAX-Pose and the Goal Flow baseline for pose estimation and288

use OMPL motion planning on top of an Octomap [42] scene reconstruction to plan placement289

trajectories. As ground-truth cross-pose is hard to define in the real-world, we qualitatively define290

a “goal region” for each anchor object. Success is defined as the inferred pose of the action object291

landing inside the goal region of the anchor object. Details can be found in the appendix.292

Results: In both our simulated experiments (Table 1) and our real-world experiments (Table 2),293

we find that TAX-Pose outperforms the baseline methods. In simulated experiments, while direct294

regression via goal-flow outperforms TAX-Pose in some rare cases of translation prediction, TAX-295

Pose performs substantially better than all other baselines in rotation prediction. Moreover, in real-296

world experiments, due to the provably translation-equivariant property of TAX-Pose, it generalizes297

to novel distributions of starting poses better than the Goal Flow regression baseline, successfully298

placing action objects into the goal regions.299

5.2 Mug Hanging300

Task Description. To successfully execute the manipulation task of hanging a mug on a rack by301

the mug’s handle requires the successful inference of two sequential task-specific cross-poses: 1)302

predict a successful grasp pose; 2) predict the hanging pose of mug relative to the rack. In the first303

stage, it requires our model to reason about the cross-pose between the gripper and the mug, while304

the second stage requires prediction of the cross-pose between the mug and the rack.305

Task Setup. To evaluate the performance of our method in simulation, we utilize Pybullet [43]306

and simulate a Franka Panda arm situated above a table with 4 depth cameras placed at each table307

corner. For training, the model is provided with 10 demonstrations in simulation, each on a different308

mug instances. At test time, we measure the task execution success on unseen mug instances, with309

randomly generated initial poses. To evaluate robustness to different initial poses, we evaluate on310

two sets of initial poses: 1) Upright Pose: where the mug is initialized to have an upright orientation,311
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and placed randomly on the surface of the table; 2) Arbitrary Pose: where the mug is initialized to312

have arbitrary orientation and position, irrespective of table surface is. We measure task success313

rates of, 1) Grasping, where success is achieved when the object is grasped stably; 2) Placing,314

where success is achieved when the mug is placed stably on the rack; 3) Overall, when the predicted315

transforms enable both grasp and place success. We compare our method to Neural Descriptor Field316

(NDF) [22] and Dense Object Nets (DON) [20]. Details of these methods can be found in [22].317

Grasp Place Overall Grasp Place Overall
Upright Pose Arbitrary Pose

DON [20] 0.91 0.50 0.45 0.35 0.45 0.17
NDF [22] 0.96 0.92 0.88 0.78 0.75 0.58

TAX-Pose (Ours) 0.99 0.97 0.96 0.75 0.84 0.63

Table 3: Mug on Rack Simulation Task Success Results

Results. We quantitatively evaluate our method in simulation on 100 trials on different initial con-318

figurations on unseen mug instances with randomly generated pose configurations for both Upright319

and Arbitrary poses and compare the performance of our method against DON [20] and NDF [22].320

See Table 3 for full simulation results.321

Model # Demos Used
1 5 10

DON [20] 0.32 0.36 0.45
NDF [22] 0.46 0.70 0.88

TAX-Pose (Ours) 0.77 0.90 0.96

Table 4: # Demos vs. Overall Success

Ablation Grasp Place Overall
No Res. Corresp. 0.97 0.96 0.93
Unweighted SVD 0.92 0.94 0.88

No Attention 0.90 0.82 0.76
TAX-Pose (Ours) 0.99 0.97 0.96

Table 5: Mug Hanging Ablations Results

322

Ablation Analysis. Number of Demonstrations. To study the effects of number of demonstrations323

used on the performance of our method, we report quantitative performance of our method along-324

side baseline methods trained on different numbers of demonstrations (10, 5, 1) for upright pose325

mug hanging task as seen in Table 4. Our method outperforms the baselines for all number of326

demonstrations; TAX-Pose can perform well even with just 5 demonstrations.327

Cross-Pose Estimation Design Choices. We analyze the effects of the different design choices made328

in our Cross-Pose estimation algorithm for the upright pose mug hanging task. Specifically, we329

analyze the effects of 1) computing residual correspondence; 2) the use of weighted Procrustes over330

the non-weighted in computing cross-pose; 3) using a transformer as the cross-object attention as in331

Figure 3 method, as opposed to simpler model such as a 3-layer MLP. We report results in Table 5.332

5.3 Limitations and Failure Cases333

While our method is able to accurately predict the requisite transform to achieve a given task, it334

does require an accurate segmentation of the objects of importance. Additionally, while our method335

is tested with some occlusions, it performs better with a mostly complete cloud of the object being336

manipulated. This means that multiple views of that object must be captured. This can be done with337

multiple cameras, or by lifting the object and capturing multiple views. Additionally, as our method338

is a function of correspondences, symmetries could cause potential problems. This could be caused339

by interacting with symmetric objects or multimodality in the task to be completed, such as objects340

with multiple valid placement surfaces, or racks with multiple usable hangers. These problems could341

be alleviated using a consensus-based method for mapping from multimodal soft correspondences342

to a single transform. We leave this for future work.343

6 Conclusion344

In this paper, we show that dense soft correspondence can be used to learn task specific object re-345

lationships that generalize to novel object instances. Correspondence residuals allow our method to346

estimate correspondences to virtual points, outside of the objects convex hull, drastically increas-347

ing the number of tasks this method can complete. We further show that this “cross-pose” can be348
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learned for a task, using a small number of demonstrations. Finally, we show that our method far349

outperforms the baselines on two challenging tasks in both real and simulated experiments.350
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TAX-Pose: Task-Specific Cross-Pose Estimation
for Robot Manipulation - Supplement
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1 Limitations of Other Definitions of Cross-Pose1

Relative placement tasks: In this paper, we are specifically interested in “relative placement tasks,”2

which we define here. Loosely speaking, a relative placement task is a task such that only the3

relationship between objects A and B is important for task success. Specifically, suppose that T∗A4

and T∗B are poses for objects A and B respectively (in some reference frame) for which a desired5

task is complete (lasagna is in the oven; mug is on the rack, etc). Then for a relative placement task,6

if objects A and B are in poses T ·T∗A and T ·T∗B (respectively) for any transform T, then the task7

will also be complete. In other words, if T∗B represents the pose of the oven and T∗A represents the8

pose of the lasagna in that oven (at task completion); then if we transform the lasagna pose by T9

and likewise transform the oven pose by T, then the lasagna will still be located inside the oven.10

Definition of Cross-Pose: In this section we will investigate the properties of different possible11

“cross-pose” formulations. Let us start by assuming that the “cross-pose” function for objects A12

and B takes the form f(PA,PB) ∈ SE(3), where PA and PB are the point clouds associated with13

objects A and B, respectively. For convenience of the below analysis, we overload the function f14

to also receive as input the poses TA, TB of objects A and B respectively (with respect to a global15

reference frame); in other words, we define cross-pose such that f(TA, TB) := f(PA,PB).16

We would like our definition of “cross-pose” to have the following properties:17

1) Goal Consistency: Suppose that T∗A and T∗B are the poses of objectsA and B in a desired relative18

configuration that achieves the relative placement task. Then if both objects are transformed by the19

same transform T, their cross-pose should be unchanged. Specifically, we define “goal consistency”20

as the following property:21

f(T∗A,T
∗
B) = f(T ·T∗A,T ·T∗B)

for any transform T ∈ SE(3). This definition is consistent with the notion of success for a rela-22

tive placement task defined above; if objects A and B are in a configuration such that the relative23

placement task is complete, then the cross-pose will be a constant value.24

Let us define the cross-pose for which the task is complete as f(T∗A,T
∗
B) = T∗AB ∈ SE(3). In our25

paper, we chose T∗AB = I where I is the identity. We explain below why the identity is a natural26

choice.27

Note that we do not require that this property holds true if the objects are not in the desired relative28

configuration; thus, if objectsA and B are in arbitrary poses TA and TB respectively (where TA 6=29

T∗A and TB 6= T∗B), then we do not require that f(TA,TB) = f(T ·TA,T ·TB).30

2) Usability: The purpose of estimating the cross-pose is to determine how to transform the objects31

into a configuration such that the relative placement task is successful; in other words, suppose32

that objects A and B have a cross-pose of f(TA,TB). Then we wish to use the “cross-pose”33

f(TA,TB) and the desired “cross-pose” f(T∗A,T
∗
B) = T∗AB to compute a transform T∆ such that34

we can transform object A by T∆ to achieve the desired configuration for the relative placement35

task. In other words, we wish to compute T∆ such that T∆ ·TA and TB are in a configuration that36

completes the task, i.e. objects A and B will be in poses T ·T∗A and T ·T∗B (respectively) for some37

transform T; by the definition of the relative placement task above, this configuration is considered38
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a task success. As we will see below, some potential definitions of cross-pose allow us to compute39

T∆ more easily than others.40

Option 1 (Ours): The definition of “cross-pose” used in our method is:41

f(TA,TB) := TA ·T−1
B . (1)

Using only this definition, we obtain the following properties:42

f(T ·TA,TB) = T ·TA ·T−1
B , f(TA,T ·TB) = TA ·T−1

B ·T
−1.

Without any extra assumptions, goal consistency does not hold for this definition of cross-pose;43

if both objects are transformed by the same transform, the resulting transform can differ from the44

original cross-pose:45

f(T ·T∗A,T ·T∗B) = T ·T∗A ·T∗−1
B ·T−1 6= T∗A ·T∗−1

B = f(T∗A,T
∗
B).

In order to achieve the property of goal consistency, we can add the assumption that46

f(T∗A,T
∗
B) = T∗AB = I (2)

in the goal configuration. This implies that47

f(T∗A,T
∗
B) = T∗A ·T∗−1

B = I.

Using this assumption, we then we obtain that48

f(T ·T∗A,T ·T∗B) = I,

which satisfies the definition of goal consistency, since we then have f(T∗A,T
∗
B) = f(T ·T∗A,T ·49

T∗B) = I for any transform T ∈ SE(3).50

Next we check the usability property: suppose that objects A and B have a desired “cross-pose” of51

f(T∗A,T
∗
B) := T∗AB = I. Let us assume that objects A and B have a current pose of TαT∗A and52

TβT∗B respectively, for arbitrary transforms Tα and Tβ ∈ SE(3). Then the current “cross-pose”53

of objects A and B is:54

f(TαT∗A,TβT∗B) := Tαβ = TαT∗ABT
−1
β = Tα ·T−1

β . (3)

Then we can compute a transform55

T∆ := T∗AB ·T−1
αβ = Tβ ·T−1

α ;

such that if we transform object A by T∆ then object A will be in the pose56

T∆ ·Tα ·T∗A = Tβ ·T−1
α ·Tα ·T∗A = Tβ ·T∗A.

Since object A will be in the pose Tβ · T∗A (after applying transformation T∆) and object B is57

already in the pose Tβ · T∗B, then the objects will now be in the desired relative configuration to58

complete the relative placement task. Note that, because of goal consistency, T∗AB is a constant, and59

above we have set it equal to the identity I, so in this case T∆ = T−1
αβ , which is the inverse of the60

cross-pose between objects A and B (see Equation 3). Thus we have shown the usability property:61

we can compute T∆ simply as the inverse of the cross-pose T−1
αβ ; by transforming objectA by T∆,62

we move the objects into the desired relative configuration, Tβ ·T∗A and Tβ ·T∗B that will complete63

the relative placement task.64

Option 2: Alternatively, suppose we first disregard the need to satisfy the usability property. And65

instead we go with another definition that fully satisfies the goal consistency property without the66

need to add additional constraint, such as the one we have added for Option 1, where the demo cross67

pose is set to be the identity, as per Equation 2. To do this, we assume that68

f(TA,TB) := T−1
A ·TB (4)

In this case, transforming both objects by any transform T leaves the cross-pose unchanged:69

f(T ·TA,T ·TB) = T−1
A ·T

−1 ·T ·TB = T−1
A ·TB = f(TA,TB)

2



so the goal consistency property holds.70

This unfortunately comes at the cost of usability. First we notice that the definition of cross pose71

as defined in Equation 4 doesn’t constitute a valid SE(3) transformation, if we follow the same left72

multiplication convention for transformation composition, as is used in Option 1.73

Next, we will show subsequently how this alternative option of cross pose definition violates the74

usability property. Suppose that objects A and B have a desired “cross-pose” of f(T∗A,T
∗
B) :=75

T∗−1
A ·T∗B = T∗AB and a current “cross-pose” of76

f(Tα ·T∗A,Tβ ·T∗B) := Tαβ = T∗−1
A T−1

α ·TβT∗B,

for arbitrary transforms Tα and Tβ ∈ SE(3).To move object A into the desired relative configura-77

tion, with respect to the current pose of objectB, TβT∗B, we need to transform it by T∆ := Tβ ·T−1
α ,78

such that T∆ ·Tα ·T∗A = Tβ ·T∗A. The only issue is that, in this case, the value for T∆ := Tβ ·T−1
α79

cannot be easily computed from the current cross-pose Tαβ := T∗−1
A ·T−1

α ·Tβ ·T∗B and the desired80

cross-pose, T∗AB := T∗−1
A ·T∗B.81

Alternative properties: The cross-pose function defined in option 1 has these properties:82

f(T ·TA,TB) = T · f(TA,TB), f(TA,T ·TB) = f(TA,TB) ·T−1 (5)

Now we ask whether we could instead define a cross-pose function that has the properties of83

f(T ·TA,TB) = T · f(TA,TB), f(TA,T ·TB) = T−1 · f(TA,TB). (6)

As it turns out, we cannot. Suppose that objects A and B initially have poses of TA and TB84

respectively, with a cross-pose of f(TA,TB). If you transform object A first by Tα and then85

transform object B first by Tβ , then the final “cross-pose” is computed as follows:86

f(Tα ·TA,TB) = Tα · f(TA,TB)

f(Tα ·TA,Tβ ·TB) = T−1
β ·Tα · f(TA,TB)

On the other hand, if you first transform B by Tβ and then transform object A first by Tα, then the87

cross-pose would be computed as88

f(TA,Tβ ·TB) = T−1
β · f(TA,TB)

f(Tα ·TA,Tβ ·TB) = Tα ·T−1
β · f(TA,TB)

Note that we now would have two definitions of f(Tα · TA,Tβ · TB) which are not equivalent,89

since T−1
β ·Tα 6= Tα ·T−1

β . Thus, we cannot define a cross-pose function to have the properties of90

Equation 6 and instead we define our cross-pose function to have the properties of Equation 5.91

2 Translational Equivariance92

One benefit of our method is that it is translationally equivariant by construction. This mean that if93

the object point clouds, PA and PB, are translated by random translation tα and tβ , respectively, i.e.94

PA′ = PA+ tα and PB′ = PB+ tβ , then the resulting corrected virtual correspondences, ṼB and95

ṼA, respectively, are transformed accordingly, i.e. ṼB + tβ and ṼA + tα, respectively, as we will96

show below. This results in an estimated cross-pose transformation that is also equivariant to trans-97

lation by construction. This is achieved because our learned features and correspondence residuals98

are invariant to translation, and our virtual correspondence points are equivariant to translation.99

First, our point features are a function of centered point clouds. That is, given point clouds PA and100

PB, the mean of each point cloud is computed as101

p̄k =
1

Nk

Nk∑
i=1

Pk.
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This mean is then subtracted from the clouds,102

P̄k = Pk − p̄k,
which centers the cloud at the origin. The features are then computed on the centered point clouds:103

Φk = gk(P̄k).

Since the point clouds are centered before features are computed, the features Φk are invariant to an104

arbitrary translation Pk′ = Pk + tκ.105

These translationally invariant features are then used, along with the original point clouds, to com-106

pute “corrected virtual points” as a combination of virtual correspondence points, vk
′

i and the corre-107

spondence residuals, rk
′

i . As we will see below, the “corrected virtual points” will be translationally108

equivariant by construction.109

The virtual correspondence points, vk
′

i , are computed using weights that are a function of only the110

translationally invariant features, Φk:111

wA
′→B′

i = softmax
(

Φ>B′φA
′

i

)
= softmax

(
Φ>Bφ

A
i

)
= wA→Bi ;

thus the weights are also translationally invariant. These translationally invariant weights are applied112

to the translated cloud113

vA
′→B′

i = PB′wA→Bi = (PB+ tβ)wA→Bi =
∑
j

pj,B ·wA→Bi,j + tβ
∑
j

wA→Bi,j = PBw
A→B
i + tβ ,

since
∑NB
j=1 w

A→B
ij = 1. Thus the virtual correspondence points vA

′→B′

i are equivalently trans-114

lated. The same logic follows for the virtual correspondence points vB
′→A′

i . This gives us a set of115

translationally equivaraint virtual correspondence points vA
′→B′

i and vA
′→B′

i .116

The correspondence residuals, rk
′

i , are a direct function of only the translationally invariant features117

Φk,118

rk
′

i = gR(φk
′

i ) = gR(φki ) = rki ,

therefore they are also translationally invariant.119

Since the virtual correspondence points are translationally equivariant, vA
′→B′

i = vA→Bi + tβ and120

the correspondence residuals are translationally invariant, rk
′

i = rki , the final corrected virtual cor-121

respondence points, ṽA
′→B′

i , are translationally equivariant, i.e. ṽA
′→B′

i = vA→Bi + rki + tβ .122

This also holds for ṽB
′→A′

i , giving us the final translationally equivariant correspondences be-123

tween the translated object clouds as
(
PA + tα, ṼB + tβ

)
and

(
PB + tβ , ṼA + tα

)
, where124

ṼB =
[
ṽA→B1 . . . ṽA→BNA

]>
.125

As a result, the final computed transformation will be automatically adjusted accordingly. Given126

that we use weighted SVD to compute the optimal transform, TAB, with rotational component127

RAB and translational component tAB, the optimal rotation remains unchanged if the point cloud is128

translated, RA′B′ = RAB, since the rotation is computed as a function of the centered point clouds.129

The optimal translation is defined as130

tAB := ¯̃vA→B −RAB · p̄A,
where ¯̃vA→B and p̄A are the means of the corrected virtual correspondence points, ṼB, and the ob-131

ject cloud PA, respectively, for object A. Therefore, the optimal translation between the translated132

point cloud PA′ and corrected virtual correspondence points ṼA
′→B′

is133

tA′B′ = ¯̃vA′→B′ −RAB · p̄A′

= ¯̃vA→B + tβ −RAB · (p̄A + tα)

= ¯̃vA→B + tβ −RAB · p̄A −RAB · tα
= tAB + tβ −RAB · tα

To simplify the analysis, if we assume that, for a given example, RAB = I, then we get134

tA′B′ = tAB + tβ − tα, demonstrating that the computed transformation is translation equivariant135

by construction.136
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3 Weighted SVD137

The objective function for computing the optimal rotation and translation given a set of correspon-138

dences, {pki → ṽki }
Nk
i and weights {αki }

Nk
i , is as follows:139

J (TAB) =

NA∑
i=1

αAi ||TAB pAi − ṽA→Bi ||22 +

NB∑
i=1

αBi ||T−1
AB p

B
i − ṽB→Ai ||22

First we center (denoted with ∗) the point clouds and virtual points independently, and stack them140

into frame-specific matrices (along with weights) retaining their relative position and correspon-141

dence:142

A =
[
P∗A Ṽ∗A

]>
, B =

[
Ṽ∗B P∗B

]>
, Γ = diag ([αA αB])

Then the minimizing rotation RAB is given by:143

UΣV> = svd(AΓB) (7a) RAB = UΣ∗V
> (7b)144

145

where Σ∗ = diag(
[
1, 1, ...det(UV>)

]
and svd is a differentiable SVD operation [1].146

The optimal translation can be computed as:147

tA = ¯̃vB −RABp̄A tB = p̄B −RAB¯̃vA
t =

NA
N

tA +
NB
N

tB (8a)148

149

with N = NA + NB. In the special translation-only case, the optimal translation and be computed150

by setting RAB to identity in above equations. The final transform can be assembled:151

TAB =

[
RAB t

0 1

]
(9)

4 Additional Experiments152

4.1 Further Ablations on Mug Hanging Task153

In order to examine the effects of different design choices in the training pipeline, we conduct154

ablation experiments with final task-success (grasp, place, overall ) as evaluation metrics for Mug155

Hanging task with upright pose initialization for the following components of our method, see Table156

S1 for full ablation results. For consistency, all ablated models are trained to 15K batch steps.157

1. Loss. In the full pipeline reported, we use a weighted sum of the three types of losses158

described in Section 4.2 of the paper. Specifically, the loss used Lnet is given by159

Lnet = Ldisp + λ1Lcons + λ2Lcorr (10)

where we chose λ1 = 0.1, λ2 = 1 after hyperparameter search.160

We ablate usage of all three types of losses, by reporting the final task performance in161

simulation for all experiments, specifically, we report task success on the following Lnet162

variants.163

(a) Remove the point displacement loss term, Ldisp, after which we are left with

L′net = (0.1)Lcons + Lcorr

(b) Remove the direct correspondence loss term, Lcorr, after which we are left with

L′net = Ldisp + (0.1)Lcons

(c) Remove the correspondence consistency loss term, Lcons, after which we are left with

L′net = Ldisp + Lcorr
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(d) From testing loss variants above, we found that the point displacement loss is a vital
contributing factor for task success, where removing this loss term results in no overall
task success, as shown in Table S1. However, in practice, we have found that adding
the correspondence consistency loss and direct correspondence loss generally help to
lower the rotational error of predicted placement pose compared to the ground truth of
collected demos. To further investigate the effects of the combination of these two loss
terms, we used a scaled weighted combination ofLcons andLcorr, such that the former
weight of the displacement loss term is transferred to consistency loss term, with the
new λ1 = 1.1, and with λ2 = 1 stays unchanged. Note that this is different from
variant (a) above, as now the consistency loss given a comparable weight with dense
correspondence loss term, which intuitively makes sense as the consistency loss is a
function of the predicted transform TAB to be used, while the dense correspondence
loss is instead a function of the ground truth transform, TGT

AB , which provides a less
direct supervision on the predicted transforms. Thus we are left with

L′net = (1.1)Lcons + Lcorr

2. Usage of Correspondence Residuals. After predicting a per-point soft correspondence164

between objects A and B, we adjust the location of the predicted corresponding points by165

further predicting a point-wise correspondence residual vector to displace each of the pre-166

dicted corresponding point. This allows the predicted corresponding point to get mapped167

to free space outside of the convex hulls of points in object A and B. This is a desirable168

adjustment for mug hanging task, as the desirable cross-pose usually require points on the169

mug handle to be placed somewhere near but not in contact with the mug rack, which can170

be outside of the convex hull of rack points. We ablate correspondence residuals by directly171

using the soft correspondence prediction to find the cross-pose transform through weighted172

SVD, without any correspondence adjustment via correspondence residual.173

3. Weighted SVD vs Non-weighted SVD. We leverage weighted SVD as described in Sec-174

tion 4.1 of the paper as we leverage predicted per-point weight to signify the importance of175

specific correspondence. We ablate the use of weighted SVD, and we use an un-weighted176

SVD, where instead of using the predicted weights, each correspondence is assign equal177

weights of 1
N , where N is the number of points in the point cloud P used.178

4. Pretraining. In our full pipeline, we pretrain the point cloud embedding network such179

that the embedding network is SE(3) invariant. Specifically, the mug-specific embedding180

network is pretrained on 200 ShapeNet mug objects, while the rack-specific and gripper181

specific embedding network is trained on the same rack and Franka gripper used at test182

time, respectively. We conduct ablation experiments where183

(a) We omit the pretraining phase of embedding network184

(b) We do not finetune the embedding network during downstream training with task-185

specific demonstrations.186

Note that in practice, we find that pretraining helps speed up the downstream training by187

about a factor of 3, while models with or without pretraining both reach a similar final188

performance in terms of task success after both models converge.189

5. Usage of Transformer as Cross-object Attention Module. In the full pipeline, we use190

transformer as the cross-object attention module, and we ablate this design choice by re-191

placing the transformer architecture with a simple 3-layer MLP with ReLU activation and192

hidden dimension of 256, and found that this leads to worse place and grasp success.193

6. Dimension of Embedding. In the full pipeline, the embedding is chosen to be of dimen-194

sion 512. We conduct experiment on much lower dimension of 16, and found that with195

dimension =16, the place success is much lower, dropped from 0.97 to 0.59.196
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Ablation Experiment Grasp Place Overall
No Ldisp 0.01 0 0
No Lcorr 0.89 0.91 0.84
No Lcons 0.99 0.95 0.94

Scaled Combination: 1.1Lcons + Lcorr 0.10 0.01 0.01
No Adjustment via Correspondence Residuals 0.97 0.96 0.93

Unweighted SVD 0.92 0.94 0.88
No Finetuning for Embedding Network 0.98 0.93 0.91
No Pretraining for Embedding Network 0.99 0.72 0.71
3-Layer MLP In Place of Transformer 0.90 0.82 0.76
Embedding Network Feature Dim = 16 0.98 0.59 0.57

TAX-Pose (Ours) 0.99 0.97 0.96

Table S1: Mug Hanging Ablations Results

4.2 Effects of Pretraining197

We explore the effects of pretraining on the final task performance, as well as training convergence198

speed. We have found that pretraining the point cloud embedding network as described in 5.1, is199

a helpful but not necessary component in our training pipeline. Specifically, we find that while200

utilizing pretraining reduces training time, allowing the model to reach similar task performance201

and train rotation/translation error with much fewer training steps, this component is not necessary202

if training time is not of concern. In fact, as see in Table S2, we find that for mug hanging tasks, by203

training the models from scratch without our pretraining, the models are able to reach similar level204

of task performance of 0.99 grasp, 0.92 for place and 0.92 for overall success rate. Furthermore, it is205

able to achieve similar level of train rotation error of 4.91◦ and translation error of 0.01m, compared206

to the models with pretraining. However, without pre-trainig, the model needs to be trained for about207

5 times longer (26K steps compared to 5K steps) to reach the similar level of performance. Thus we208

adopt our object-level pretraining in our overall pipeline to allow lower training time.209

Another benefit of pretraining is that the pretraining is done in a multi-task way, so the network can210

be more quickly adapted to new tasks after the pretraining is performed. For example, we use the211

same pre-trained mug embeddings for both the gripper-mug cross-pose estimation for grasping as212

well as the mug-rack cross-pose estimation for mug hanging213

Ablation Experiment Grasp Place Overall Train Rotation Error Train Translation Error
(◦) (m)

No Pre-Training for Embedding Network 0.99 0.92 0.92 4.91 0.01
(trained for 26K steps)

TAX-Pose (Ours) 0.99 0.97 0.96 4.33 0.01
(trained for 5K steps)

Table S2: Ablation Experiments on the Effects of Pre-Training. We report the task success rate for upright mug
hanging task over 100 trials each, as well as the grasping model’s training rotational error (◦) and translation
error (m).
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4.3 Additional Simulation Results on Bowl and Bottle214

Object Algorithm Grasp Place Overall Grasp Place Overall
Upright Pose Arbitrary Pose

Mug
DON [2] 0.91 0.50 0.45 0.35 0.45 0.17
NDF [3] 0.96 0.92 0.88 0.78 0.75 0.58

TAX-Pose (Ours) 0.99 0.97 0.96 0.75 0.84 0.63

Bowl
DON [2] 0.50 0.35 0.11 0.08 0.20 0
NDF [3] 0.91 1 0.91 0.79 0.97 0.78

TAX-Pose (Ours) 0.99 0.92 0.92 0.74 0.85 0.85

Bottle
DON [2] 0.79 0.24 0.24 0.05 0.02 0.01
NDF [3] 0.87 1 0.87 0.78 0.99 0.77

TAX-Pose (Ours) 0.55 0.99 0.55 0.61 0.55 0.52

Table S3: Unseen Object Instance Manipulation Task Success Rates in Simulation on Mug, Bowl and Bottle
for Upright and Arbitrary Initial Pose. Each result is the success rate over 100 trials.

Additional results on Grasp, Place and Overall success rate in simulation for Bowl and Bottle are215

shown in Table S3. For bottle and bowl experiment, we follow the same experimentation setup as216

in [3], where the successful grasp is considered if a stable grasp of the object is obtained, and a217

successful place is considered when the bottle or bowl is stably placed upright on the elevated flat218

slab over the table without falling on the table. Reported task success results in are for both Upright219

Pose and Arbitrary Pose run over 100 trials each.220

5 Additional Training Details221

5.1 Pretraining222

We utilize pretraining for the embedding network for the mug hanging task, and describe the details223

below.224

We pretrain embedding network for each object category (mug, rack, gripper), such that the em-225

bedding network is SE(3) invariant with respect to the point clouds of that specific object cate-226

gory. Specifically, the mug-specific embedding network is pretrained on 200 ShapeNet [4] mug227

instances, while the rack-specific and gripper-specific embedding network is trained on the same228

rack and Franka gripper used at test time, respectively. Note that before our pretraining, the network229

is randomly initialized with the Kaiming initialization scheme [5]; we don’t adopt any third-party230

pretrained models.231

For the network to be trained to be SE(3) invariant, we pre-train with InfoNCE loss [6] with a232

geometric distance weighting and random SE(3) transformations. Specifically, given a point cloud233

of an object instance, PA, of a specific object categoryA, and an embedding network gA, we define234

the point-wise embedding for as ΦA = gA(PA), where φAi ∈ ΦA is a d-dimensional vector for235

each point pAi ∈ PA. Given a random SE(3) transformation, T, we define ΨA = gA(TPA).236

The weighted contrastive loss used for pretraining, Lwc, is defined as237

Lwc : = −
∑

pAi ∈PA

log

[
exp(dij ·

(
φA>i · ψAj

)
)∑

pAk ∈PA
exp(dik ·

(
φA>i , ψAk

)
)

]
(11)

dij : =

{
µ tanh (λ‖pAi − pAj ‖2), if i 6= j

1, otherwise
(12)

µ : = max (tanh (λ‖pAi − pAj ‖2)) (13)
For this pretraining, we use λ := 10.238

6 PartNet-Mobility Objects Placement Task Details239

In this section, we describe the PartNet-Mobility Objects Placement experiments in details.240
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(a) Failure of ”In” prediction. Predicted
TAX-Pose violates the physical constraints by
penetrating the oven base too much.

(b) Failure of ”Left” prediction. Predicted
TAX-Pose violates the physical constraints by
being in collision with the leg of the drawer.

Figure S.1: An illustration of unsuccessful real-world TAX-Pose predictions. In both subfigures, red points
represent the anchor object, blue points represent action object’s starting pose, and green points represent
action object’s predicted pose.

6.1 Dataset Preparation241

Simulation Setup. We leverage the PartNet-Mobility dataset [7] to find common household ob-242

jects as the anchor object for TAX-Pose prediction. The selected subset of the dataset contains 8243

categories of objects. We split the objects into 54 seen and 14 unseen instances. During training, for244

a specific task of each of the seen objects, we generate an action-anchor objects pair by randomly245

sampling transformations from SE(3) as cross-poses. The action object is chosen from the Ravens246

simulator’s rigid body objects dataset [8]. We define a subset of four tasks (“In”, “On”, “Left” and247

“Right”) for each selected anchor object. Thus, there exists a ground-truth cross-pose (defined by248

human manually) associated with each defined specific task. We then use the ground-truth TAX-249

Poses to supervise each task’s TAX-Pose prediction model. For each observation action-anchor250

objects pair, we sample 100 times using the aforementioned procedure for the training and testing251

datasets.252

Real-World Setup. In real-world, we select a set of anchor objects: Drawer, Fridge, and Oven253

and a set of action objects: Block and Bowl. We test 3 (“In”, “On”, and “Left”) TAX-Pose models254

in real-world without retraining or finetuning. The point here is to show the method capability of255

generalizing to unseen real-world objects.256

6.2 Metrics257

Simulation Metrics. In simulation, with access to the object’s ground-truth pose, we are able to258

quantitatively calculate translational and rotation error of the TAX-Pose prediction models. Thus,259

we report the following metrics on a held-out set of anchor objects in simulation:260

Translational Error: The L2 distance between
the inferred cross-pose translation (tpred

AB ) and
the ground-truth pose translation (tGT

AB).

Rotational Error: The geodesic SO(3) dis-
tance [9, 10] between the predicted cross-pose
rotation (Rpred

AB ) and the ground-truth rotation
(RGT
AB).

Et = ||tpred
AB − tGT

AB||2 ER =
1

2
arccos

(
tr(Rpred>

AB RGT
AB)− 1

2

)261

Real-World Metrics. In real-world, due to the difficulty of defining ground-truth TAX-Pose, we262

instead manually, qualitatively define goal “regions” for each of the anchor-action pairs. The goal-263

region should have the following properties:264

• The predicted TAX-Pose of the action object should appear visually correct. For example,265

if the specified task is “In”, then the action object should be indeed contained within the266

anchor object after being transformed by predicted TAX-Pose.267

• The predicted TAX-Pose of the action object should not violate physical constraints of the268

workspace and of the relation between the action and anchor objects. Specifically, the ac-269

tion object should not interfere with/collide with the anchor object after being transformed270

by the predicted TAX-Pose. See Fig. S.1 for an illustration of TAX-Pose predictions that271

fail to meet this criterion.272
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6.3 Motion Planning273

In both simulated and real-world experiments, we use off-the-shelf motion-planning tools to find a274

path between the starting pose and goal pose of the action object.275

Simulation. To actuate the action object from its starting pose T0 to its goal pose transformed by276

the predicted TAX-Pose T̂ABT0, we plan a path free of collision. Learning-based methods such as277

[11] deal with collision checking with point clouds by training a collision classifier. A more data-278

efficient method is by leveraging computer graphics techniques, transforming the point clouds into279

marching cubes [12], which can then be used to efficiently reconstruct meshes. Once the triangular280

meshes are reconstructed, we can deploy off-the-shelf collision checking methods such as FCL [13]281

to detect collisions in the planned path. Thus, in our case, we use position control to plan a trajectory282

of the action object A to move it from its starting pose to the predicted goal pose. We use OMPL283

[14] as the motion planning tool and the constraint function passed into the motion planner is from284

the output of FCL after converting the point clouds to meshes via marching cubes.285

Real World. In real-world experiments, we need to resolve several practical issues to make TAX-286

Pose prediction model viable. First, we do not have access to a mask that labels action and anchor287

objects. Thus, we manually define a mask by using a threshold value of y-coordinate to automat-288

ically detect discontinuity in y-coordinates, representing the gap of spacing between action and289

anchor objects upon placement. Next, grasping action objects is a non-trivial task. Since, we are290

only using 2 action objects (a cube and a bowl), we manually define a grasping primitive for each291

action object. This is done by hand-picking an offset from the centroid of the action object before292

grasping, and an approach direction after the robot reaches the pre-grasp pose to make contacts293

with the object of interest. The offsets are chosen via kinesthetic teaching on the robot when the294

action object is under identity rotation (canonical pose). Finally, we need to make an estimation of295

the action’s starting pose for motion planning. This is done by first statistically cleaning the point296

cloud [15] of the action object, and then calculating the centroid of the action object point cloud as297

the starting position. For starting rotation, we make sure the range of the rotation is not too large for298

the pre-defined grasping primitive to handle. Another implementation choice here is to use ICP [16]299

calculate a transformation between the current point cloud to a pre-scanned point cloud in canonical300

(identity) pose. We use the estimated starting pose to guide the pre-defined grasp primitive. Once a301

successful grasp is made, the robot end-effector is rigidly attached to the action object, and we can302

then use the same predicted TAX-Pose to calculate the end pose of the robot end effector, and thus303

feed the two poses into MoveIt! to get a full trajectory in joint space. Note here that the collision304

function in motion planning is comprised of two parts: workspace and anchor object. That is, we305

first reconstruct the workspace using boxes to avoid collision with the table top and camera mount,306

and we then reconstruct the anchor object in RViz using Octomap [17] using the cleaned anchor307

object point cloud. In this way, the robot is able to avoid collision with the anchor object as well.308

6.4 Baselines Description309

In simulation, we compare our method to a variety of baseline methods.310

E2E Behavioral Cloning: Generate motion-planned trajectories using OMPL that take the action311

object from start to goal. These serve as “expert” trajectories for Behavioral Cloning (BC). We then312

use a PointNet++ network to output a sparse policy that, at each time step, takes as input the point313

cloud observation of the action and anchor objects and outputs an incremental 6-DOF transformation314

that imitates the expert trajectory. The 6-DoF transformation is expressed using Euclidean xyz315

translation and rotation quaternion. The “prediction” is the final achieved pose of the action object316

at the terminal state.317

E2E DAgger: Using the same BC dataset and the same PointNet++ architecture as above, we train a318

sparse policy that outputs the same transformation representation as in BC using DAgger [18]. The319

“prediction” is the final achieved pose of the action object at the terminal state.320

Trajectory Flow: Using the same BC dataset with DAgger, we train a dense policy using PointNet++321

to predict a dense per-point 3D flow vector at each time step instead of a single incremental 6-DOF322

transformation. Given this dense per-point flow, we add the per-point flow to each point of the323

current time-step’s point cloud, and we are able to extract a rigid transformation between the current324
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Figure S.2: A visualization of all categories of anchor objects and associated semantic tasks, with action objects
in ground-truth TAX-Poses used in simulation training.

point cloud and the point cloud transformed by adding per-point flow vectors using SVD, yielding325

the next pose. The “prediction” is the final achieved pose of the action object at the terminal state.326

Goal Flow: Instead of training a multi-step sparse/dense policy to reach the goal, train a PointNet++327

network to output a single dense flow prediction which assigns a per-point 3D flow vector that points328

from each action object point from its starting pose directly to its corresponding goal location. Given329

this dense per-point flow, we add the per-point flow to each point of the start point cloud, and we are330

able to extract a rigid transformation between the start point cloud and the point cloud transformed331

by adding per-point flow vectors using SVD, yielding goal pose. We pass the start and goal pose332

into a motion planner (OMPL) and execute the planned trajectory. The “prediction” is thus given by333

the SVD output.334

AVG.
ER Et ER Et ER Et ER Et ER Et ER Et ER Et ER Et ER Et

Baselines E2E BC 42.37 0.69 40.49 0.80 50.79 0.59 48.02 0.61 30.69 1.09 36.59 0.81 48.48 0.42 41.42 0.84 42.49 0.37
E2E DAgger [18] 36.06 0.67 38.57 0.68 43.99 0.63 42.34 0.57 24.87 0.96 30.87 0.90 42.96 0.46 29.79 0.83 35.08 0.33

Ablations Traj. Flow [15] 34.48 0.65 35.39 0.85 43.42 0.63 35.51 0.60 28.26 0.80 27.67 0.68 25.91 0.44 43.59 0.82 36.05 0.36
Goal Flow [15] 27.49 0.21 25.41 0.08 31.07 0.13 27.05 0.27 27.80 0.11 29.02 0.38 19.22 0.36 31.56 0.18 28.81 0.19

Ours TAX-Pose 11.74 0.23 5.81 0.11 1.82 0.08 5.92 0.11 3.67 0.07 19.54 0.41 7.96 0.63 5.96 0.12 43.27 0.33

Table S4: Goal Inference Rotational and Translational Error Results (↓) for the “In’’ Goal. Rotational errors
(ER) are in degrees (◦) and translational errors (Et) are in meters (m). The lower the better.

AVG.
ER Et ER Et ER Et ER Et ER Et ER Et ER Et

Baselines E2E BC 42.69 0.74 41.94 0.74 36.70 0.52 38.23 0.73 41.69 1.10 48.57 0.75 48.98 0.63
E2E DAgger [18] 37.68 0.70 39.24 0.69 31.63 0.54 41.06 0.68 37.72 1.03 35.94 0.75 40.47 0.51

Ablations Traj. Flow [15] 35.13 0.76 34.78 0.70 39.14 0.59 31.10 0.69 33.07 0.97 35.61 0.71 37.09 0.87
Goal Flow [15] 22.10 0.20 27.82 0.26 20.43 0.09 34.66 0.10 22.71 0.12 26.48 0.27 0.48 0.32

Ours TAX-Pose 4.45 0.12 4.21 0.12 2.29 0.10 2.73 0.09 5.77 0.10 5.81 0.13 5.89 0.19

Table S5: Goal Inference Rotational and Translational Error Results (↓) for the “On” Goal. Rotational errors
(ER) are in degrees (◦) and translational errors (Et) are in meters (m). The lower the better.
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AVG.
ER Et ER Et ER Et ER Et ER Et ER Et ER Et

Baselines E2E BC 44.87 0.74 30.95 0.89 36.86 0.72 56.86 0.52 34.35 1.03 31.69 0.77 46.86 0.78
E2E DAgger [18] 41.32 0.68 31.40 0.84 38.49 0.73 47.64 0.51 36.47 0.99 27.72 0.73 39.83 0.51

Ablations Traj. Flow [15] 38.85 0.58 31.87 1.07 39.48 0.44 39.48 0.44 28.71 0.69 41.06 0.73 40.70 0.31
Goal Flow [15] 29.64 0.10 28.51 0.10 26.33 0.08 32.96 0.07 27.42 0.10 22.04 0.09 27.42 0.15

Ours TAX-Pose 6.02 0.17 12.73 0.28 1.59 0.11 2.91 0.12 4.41 0.08 12.12 0.34 6.38 0.12

Table S6: Goal Inference Rotational and Translational Error Results (↓) for the “Left” Goal. Rotational errors
(ER) are in degrees (◦) and translational errors (Et) are in meters (m). The lower the better.

AVG.
ER Et ER Et ER Et ER Et ER Et ER Et

Baselines E2E BC 39.11 0.76 37.89 0.86 24.26 0.77 36.27 0.88 52.86 0.48 44.26 0.78
E2E DAgger [18] 36.80 0.73 27.40 0.84 32.31 0.74 32.61 0.82 49.27 0.46 42.40 0.78

Ablations Traj. Flow [15] 35.33 0.71 22.93 0.66 34.78 1.22 31.29 0.92 42.71 0.37 44.93 0.36
Goal Flow [15] 27.34 0.16 21.79 0.15 22.37 0.28 27.79 0.15 32.96 0.07 31.79 0.15

Ours TAX-Pose 4.33 0.13 4.64 0.14 2.48 0.11 3.91 0.15 6.47 0.17 4.17 0.08

Table S7: Goal Inference Rotational and Translational Error Results (↓) for the “Right” Goal. Rotational errors
(ER) are in degrees (◦) and translational errors (Et) are in meters (m). The lower the better.

6.5 Per-Task Results335

In the main body of the paper, we have shown the meta-results of the performance of each method by336

averaging the quantitative metrics for each sub-task (“In”, “On”, “Left”, and “Right” in simulation337

and “In”, “On” and “Left” in real-world). Here we show each sub-task’s results in Table S41, Table338

S5, Table S6, and Table S7 respectively.339

As mentioned above, not all anchor objects have all 4 tasks due to practical reasons. For example,340

the doors of safes might occlude the action object completely and it is impossible to show the action341

object in the captured image under “Left” and “Right” tasks (due to handedness of the door); a342

table’s height might be too tall for the camera to see the action object under the “Top” task. Under343

this circumstance, for sake of simplicity and consistency, we define a subset of the 4 goals for each344

object such that the anchor objects of the same category have consistent tasks definitions. We show345

a collection of visualizations of each task defined for each category in Fig.S.2.346

Moreover, we also show per-task success rate for real-world experiments in Table S8.347

In On Left

Goal Flow 0.00 0.10 0.30 0.05 N/A 0.20 0.50 0.65 0.60
TAX-Pose 1.00 1.00 0.85 1.00 N/A 1.00 0.85 0.90 0.70

Table S8: Combined per-task results for real-world goal placement success rate.

7 Mug Hanging Task Details348

In this section, we describe the Mug Hanging task and experiments in details. The Mug Hanging349

task is consisted of two sub tasks: grasp and place. A success in grasp is achieved when the mug is350

1Categories from left to right: microwave, dishwasher, oven, fridge, table, washing machine, safe, and
drawer.
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grasped stably by the gripper, while a success in place is achieved when the mug is hanged stably351

on the hanger of the rack. And the overall success mug hanging is considered when the predicted352

transforms enable both grasp and place success for the same trial. See Figure S.3 for a detailed353

breakdown of the mug hanging task in stages.354

Figure S.3: Visualization of Mug Hanging Task (Upright Pose). Mug hanging task is consisted of two stages,
given a mug that is randomly initialized on the table, the model first predicts a SE(3) transform from gripper
end effector to the mug rim Tg→m, then grasp it by the rim. Next, the model predicts another SE(3) transform
from the mug to the rack Tm→r such that the mug handle gets hanged on the the mug rack.

7.1 Baseline Description355

In simulation, we compare our method to the results described in [3].356

• Dense Object Nets (DON) [2]: Using manually labeled semantic keypoints on the demon-357

stration clouds, DON is used to compute sparse correspondences with the test objects.358

These correspondences are converted to a pose using SVD. A full description of usage of359

DON for the mug hanging task can be found in [3].360

• Neural Descriptor Field (NDF) [3]: Using the learned descriptor field for the mug, the361

positions of a constellation of task specific query points are optimized to best match the362

demonstration using gradient descent.363

7.2 Training Data364

To be directly comparable with the baselines we compared to, we use the exact same sets of demon-365

stration data used to train the network in NDF [3], where the data are generated via teleportation in366

PyBullet, collected on 10 mug instances with random pose initialization.367

7.3 Training and Inference368

Using the pretrained embedding network for mug and gripper, we train a grasping model for the369

grasping task to predict a transformation Tg→m in gripper’s frame from gripper to mug to complete370

the grasp stage of the task. Similarly, using the pretrained embedding network for rack and mug, we371

train a placement model for the placing task to predict a transformation Tm→r in mug’s frame from372

mug to rack to complete the place stage of the task. Both model are trained with the same combined373

loss Lnet as described in the main paper. During inference, we simply use grasping model to predict374

the Tg→m at test time, and placement model to predict Tm→r at test time.375

7.4 Motion Planning376

After the model predicts a transformation Tg→m and Tm→r, using the known gripper’s world frame377

pose, we calculate the desired gripper end effector pose at grasping and placement, and pass the end378

effector to IKFast to get the desired joint positions of Franka at grasping and placement. Next379

we pass the desired joint positions at gripper’s initial pose, and desired grasping joint positions to380

OpenRAVE motion planning library to solve for trajectory from gripper’s initial pose to grasp pose,381

and then grasp pose to placement pose for the gripper’s end effector.382

7.5 Failure Cases383

Some failure cases for TAX-Pose happens when the predicted gripper misses the rim of the mug by384

a xy-plane translation error, thus resulting in failure of grasp, as seen in Figure S.4a. And common385
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failure mode for the mug placement subtask is charactereized by erroneous transform prediction that386

results in the mug’s handle completely missing the rack hanger, thus resulting in placement failure,387

as seen in Figure S.4b.388

(a) Failure of grasp prediction. Predicted
TAX-Pose for the gripper misses the rim of mug.

(b) Failure of place prediction. Predicted
TAX-Pose for mug results in the mug handle
misses the rack hanger completely.

Figure S.4: An illustration of unsuccessful TAX-Pose predictions for mug hanging. In both subfigures, red
points represent the anchor object, blue points represent action object’s starting pose, and green points represent
action object’s predicted pose.
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