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ABSTRACT

The human brain possesses remarkable abilities in processing sensory signals that
exhibit complex temporal dynamics. However, brain-inspired Spiking Neural Net-
works (SNNs) encounter challenges when dealing with sensory signals that have
a high temporal complexity. These challenges primarily arise from the utilization
of simplified spiking neuron models, such as the widely adopted Leaky Integrate-
and-Fire (LIF) model, which has limited capability to process temporal informa-
tion across multiple time scales. Additionally, these spiking neuron models can
only be updated sequentially in time, resulting in slow training processes that
pose particular difficulties when dealing with long sequences. To address these
issues, we propose a novel Parallel Multi-compartment Spiking Neuron (PMSN),
inspired by the multi-compartment models that simulate the temporal dynamics of
biological neurons involved in sensory processing and memory. The PMSN model
captures the intricate interactions among various neuronal compartments, allow-
ing multi-scale temporal information to be preserved and integrated for effective
sequential modeling. Furthermore, the PMSN model is meticulously designed to
facilitate parallel training on GPU-accelerated machine learning frameworks. Our
experimental results across numerous sequential modeling tasks demonstrate the
superior performance of the proposed PMSN model compared with other spiking
neuron models. Specifically, it exhibits enhanced accuracy, accelerated simula-
tion, and favorable trade-offs between accuracy and computation cost.

1 INTRODUCTION

The human brain, recognized as one of the most sophisticated computational systems on the planet,
exhibits remarkable performance in processing a wide range of sensory signals. Spiking Neural
Networks (SNNs), designed to emulate the fundamental structure and operational principles of the
human brain, hold great potential to replicate the exceptional sequential modeling capacity observed
in the human brain. Recent advancements in training algorithms (Wu et al., 2018; Guo et al., 2022;
Meng et al., 2022; Zhang et al., 2022) and neural architectures (Jeffares et al., 2022; Yao et al., 2022;
Sengupta et al., 2019; Fang et al., 2021a) have substantially enhanced the capabilities of SNNs. No-
tably, for tasks that require limited temporal context, such as image classification, SNNs demonstrate
competitive performance while achieving substantial energy savings compared to traditional Artifi-
cial Neural Networks (ANNs) (Bu et al., 2022; Yang et al., 2022; Wu et al., 2021a;b).

However, due to the inherent memory constraints, the simplified spiking neurons employed in previ-
ous research encounter significant challenges when confronted with tasks involving complex tempo-
ral dynamics. For instance, the speech recognition task requires the model to preserve and integrate
information across multiple time scales, spanning from phonemes, words, to sentences, a capacity
we call multi-scale sequential modeling. To address this issue, recent studies have introduced novel
neuron models that incorporate adaptive variables (Bellec et al., 2018; Yin et al., 2021; Fang et al.,
2021b) to establish temporal dependency across distinct time scales. Similarly, the gating mecha-
nism (Yao et al., 2022) has been proposed as a means to modulate information storage and retrieval.
Furthermore, researchers introduce a self-attention mechanism that allows temporal dependencies
to be flexibly established (Yao et al., 2021; Qin et al., 2023). Nevertheless, these approaches ei-
ther demonstrate limited efficacy in establishing long-term temporal dependencies (Bellec et al.,
2018; Yin et al., 2021; Fang et al., 2021b; Yao et al., 2022) or they encounter challenges in terms of
computational cost and hardware implementation (Yao et al., 2021; Qin et al., 2023).

1



Under review as a conference paper at ICLR 2024

𝑆Spike
𝑣௦

𝜏

𝑣ଶ

𝐼ଵ 𝐼ଶ 𝐼௧

𝑉ଵ 𝑉ଶ

…

𝑉௧

𝑆ଵ 𝑆ଶ 𝑆௧

…

𝐼ଵ 𝐼ଶ 𝐼௧

𝑣ଵଵ 𝑣ଶଵ

…

𝑣௧ଵ

𝑆ଵ 𝑆ଶ 𝑆௧

…

𝑣ଵିଵ 𝑣ଶିଵ 𝑣௧ିଵ

𝑣ଵୱ 𝑣ଶ௦ 𝑣௧௦…

…

… … …

(b) Leaky Integrate-and-Fire 
Model

(d) Parallel Multi-compartment          
aa Spiking Neuron Model (Ours) 

(c) Streamlined Cable Model of
Hippocampus Neuron

𝑣ଵ 𝜏ଵ

𝜏ଶ

Ionic Current

𝑆

…

Charging Firing Resetting

…

𝐼

Spike

𝐼ଶ

𝐼ଵ
Compartment 1

Compartment 2

Compartment n

𝑣
𝜏

𝐼

(a) Single-Compartment 
Neuron Model

Figure 1: Comparison of structure and neuronal dynamics between simplified single-compartment
neuron and bio-inspired multi-compartment neuron models. (a, b) The widely used Leaky Integrate-
and-Fire model simplifies the biological neurons into a single compartment, resulting in deficiencies
in multi-scale sequential modeling. (c) In comparison, the biological neuron involved in sensory pro-
cessing and memory comprises multiple membrane regions with distinct characteristics, which can
be faithfully represented as a multi-compartment cable model (Traub et al., 1991). (d) Our proposed
Parallel Multi-compartment Neuron model adheres to the multi-compartment structure observed in
(c), offering extended neuronal dynamics that are crucial for effective sequential modeling.

Multi-compartment neuron models have attracted significant attention due to their exceptional abil-
ity to capture the complex dynamics of biological neurons involved in spatiotemporal sensory signal
processing and memory formation (Hines, 1984; Spruston, 2008; Markram, 2006). These mod-
els, with their rich temporal dynamics, can facilitate the representation and process of temporal
information across distinct time scales (Burgess et al., 2002; Yu et al., 2021). Additionally, multi-
compartment models are also compatible with emerging neuromorphic computing infrastructures
(Yang et al., 2019). Despite their established significance in computational neuroscience, the ap-
plication of these models in deep SNNs and pattern recognition tasks remains largely unexplored.
Recent research has led to the development of two-compartment spiking neuron models, showing
promise in sequential modeling (Shaban et al., 2021; Zhang et al., 2023). Nonetheless, it remains un-
explored how to effectively scale these handcrafted two-compartment models to include additional
neuronal compartments, while concurrently enhancing their sequential modeling capacity. More-
over, these models can only be updated sequentially in time, posing difficulties in training speed,
especially when dealing with long sequences.

In this work, we propose a Parallel Multi-compartment Spiking Neuron (PMSN) model, a solution
designed to unleash the potential of multi-compartment neurons in SNNs to solve sequential model-
ing. The proposed PMSN model, illustrated in Figure 1, exhibits diverse neuronal dynamics, which
are essential for effective multi-scale sequential modeling. Furthermore, we introduce a parallel
implementation strategy for the proposed model, which effectively decouples the non-linear depen-
dencies among different time steps. This parallel implementation offers significant improvements
in training speed, particularly on GPU-accelerated machine learning (ML) frameworks. The main
contributions of this work are summarized as follows:

• We introduce a novel generalized multi-compartment spiking neuron model for SNNs. This model
is specifically designed to encapsulate the intricate dynamics that exist among different neuronal
compartments and demonstrates a remarkable capacity for multi-scale sequential modeling.

• We propose a parallel implementation for the proposed multi-compartment spiking neuron to en-
able efficient training on GPU-accelerated ML frameworks. Notably, our implementation takes
into account the vital reset mechanism of spiking neurons, which has been disregarded in previ-
ous parallel spiking neuron models. The theoretical analysis on the gradient flow of the proposed
model illuminates its efficacy in establishing temporal dependency across varying time scales.

• We conduct comprehensive experiments to validate the efficacy of the proposed PMSN model
across diverse sequential modeling tasks related to perception. The results demonstrate superior
accuracy, substantial acceleration in simulation speed, and favorable trade-off between compu-
tational cost and accuracy. Further visualization of multi-compartment dynamics validates its
capacity to preserve and integrate multi-scale temporal information.
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2 RELATED WORKS

Memory-Enhanced Spiking Neuron Models. Recent studies have introduced novel spiking neu-
ron models that exhibit an enhanced capacity for sequential modeling. These models can be cate-
gorized into single- or multi-compartment models. For single-compartment models, recent studies
have explored the incorporation of adaptively decaying variables to enhance the memory capacity of
spiking neurons. For instance, Bellec et al. (2018) and Yin et al. (2021) propose the usage of adap-
tive firing thresholds, which function as long-term memory to enhance sequential modeling. Fang
et al. (2021b) suggests the utilization of a learnable time constant for spiking neurons, resulting
in a heterogeneous neuronal population capable of representing multi-scale temporal information.
Additionally, Yao et al. (2022) introduces a gating mechanism into spiking neurons to explicitly con-
trol memory storage and retrieval processes. For multi-compartment models, Shaban et al. (2021)
propose a two-compartment model where the thresholds undergo a double-exponential decay, fa-
cilitating the storage of both short-term and long-term information. Zhang et al. (2023) propose a
two-compartment model that simulates the interactive dynamics between the soma and dendrites.
Despite their enhanced capacity, their inherent restrictions to effective scaling and training speed
still remain to be explored.

Parallel Training Methods for SNNs. Recently, researchers have become increasingly concerned
about the slow training speed of SNNs. This issue arises due to the non-linear state-dependent
nature of SNNs, which hinders parallel computation in the temporal dimension. Consequently,
the full potential of GPU acceleration remains underutilized. To tackle this challenge, Fang et al.
(2023) introduced a series of parallel spiking neural (PSN) models. These models transform the
charge dynamics of the membrane potential into a learnable decay matrix and bypass the neuron’s
reset mechanism to enable parallel computation. However, these models require to access inputs
beyond just the preceding time step, which is both biologically implausible and unsupported by cur-
rent neuromorphic chips. While these models demonstrate superior performance in tasks involving
short-term dependency, their single-compartment structure limits their capacity to model long-term
dependency. Furthermore, the crucial neuronal reset mechanism has been ignored in this work.

State Space Model. The state space model (SSM), originally developed to formulate the dynamic of
linear time-invariant (LTI) systems, has demonstrated exceptional performance in sequential model-
ing and presents a solution for parallel training of stateful recurrent models (Gu et al., 2022; Smith
et al., 2023). While SSMs can be used to capture the membrane potential charging process of
spiking neurons, the dynamics associated with non-linear spike generation and membrane potential
reset, which are inherent to spiking neurons, necessitate special treatment. Notably, these aspects
have been specifically addressed in the proposed PMSN model.

3 PRELIMINARIES

Single-Compartment Spiking Neuron Models. Inspired by the rich temporal dynamics of bio-
logical neurons, a number of single-compartment spiking neuron models have been proposed for
large-scale brain simulation and neuromorphic computing (Gerstner et al., 2014). Among these
models, the Leaky Integrate-and-Fire (LIF) model (Burkitt, 2006) has been the most frequently used
one, which provides a well-balanced trade-off between biological plausibility and computational
efficiency. The dynamics of its membrane potential v can be formulated as follows:

dv(t)

dt
= − 1

τm
(v(t)− vreset) + I(t), if v(t) ≥ θ, v(t) → vreset, (1)

The temporal dynamics of the above LIF model consist of three distinct phases: charging, firing,
and resetting. During the charging phase, the information contained in the input current I is in-
tegrated into membrane potential v at a decay rate governed by τm. Once v exceeds the firing
threshold θ, an output spike will be generated and transmitted to subsequent neurons. Following
the spike generation, the membrane potential will be reset to its initial value vreset. In practice, the
above continuous-time formulation is typically discretized using the Euler method as:{

V [t] = αV [t− 1] + I[t]− θS[t− 1],
S[t] = H (V [t], θ) ,

(2)

where H(·) is the Heaviside function and α = e−
dt
τm is the decaying rate. Despite its promising

results in tasks involving limited temporal context, the LIF model encounters the following two
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challenges when dealing with long sequences. Firstly, this single-compartment model struggles to
maintain information over an extended time scale. Thus, it fails to establish long-term dependencies.
Secondly, the required simulation time grows substantially with the sequence length, which is due to
the non-linear state-dependent nature of the neuronal update. Specifically, the membrane potential
update of V [t] depends on the output spike S[t−1] of the preceding time step, which is only available
after t − 1, as S[t − 1] has a non-linear dependency on V [t − 1]. This time-coupled relationship
prevents the membrane state from unfolding in time, leading to challenges in parallelization.

4 METHODS

In this section, we first present a generalized multi-compartment spiking neuron model for SNNs
that abstracts the electrophysical properties of biological neurons. Based on that, we further develop
the PMSN model which can effectively process multi-scale temporal information. In addition, to
address the training speed concern of the multi-compartment model, we enhance this model to sup-
port parallel training on GPU-accelerated ML frameworks. Finally, we analyze how error gradients
are effectively propagated in our proposed model to achieve temporal credit assignment.

4.1 A GENERALIZED MULTI-COMPARTMENT SPIKING NEURON MODEL

Biological neurons, with their sophisticated neural activities, excel in processing sequential sensory
information across different time scales. For instance, neural oscillations have been shown to be cru-
cial for memory formation in hippocampal pyramidal neurons (Jensen & Colgin, 2007). Similarly,
cortical pyramidal neurons use oscillatory activities to synchronize and integrate sensory signals
(Buzsáki & Wang, 2012). To accurately capture the electrophysical properties of these neurons, a
variety of multi-compartment cable models has been extensively studied (Traub et al., 1991; Pinsky
& Rinzel, 1994; Spruston, 2008). These models divide the membrane regions of single neurons
into different neuronal compartments and allow current to flow through the neighboring ones. The
interaction among these compartments facilitates the generation of varied and intricate neuronal
activities. To enrich the temporal dynamics of deep SNN and explore its potential in sequential
modeling, we abstract a generalized multi-compartment spiking neuron model from these numerical
models. Notably, our model can be flexibly extended to incorporate any desired number of compart-
ments, thereby accommodating the temporal complexity of different sequential modeling tasks. The
neuronal dynamics, depicted in Figure 1(d), can be formulated as follows:

dv(1)(t)
dt = − 1

τ1
v(1)(t) + β2,1v

(2)(t) + γ1I(t),
dv(2)(t)

dt = − 1
τ2
v(2)(t) + β3,2v

(3)(t) + β1,2v
(1)(t) + γ2I(t),

...
dv(n)(t)

dt = − 1
τn
v(n)(t) + βn−1,nv

(n−1)(t) + γnI(t),

if v(n)(t) ≥ θ, s(t) = 1,
v(n)(t) → v(n)(t)− θ,

(3)
where vi represents the membrane potential of the compartment i, θ is the firing threshold, and
I(t) denotes the synaptic current transduced from the input spikes from the previous layer, mathe-
matically expressed as I l(t) = W lSl−1(t). Here, W is the synaptic strength between layer l − 1
and l. Once the membrane potential of the final compartment v(n) exceeds the firing threshold θ,
an output spike will emit. Subsequently, the membrane potential will be reset following the reset-
by-subtraction mechanism. The neuronal dynamic parameters, namely τi, γi, and βi,j , signify the
membrane capacitance, current gain of the compartment i, and coupling strength between nearby
compartments i and j, respectively. These parameters are learned jointly with synaptic parameters
W l during training. It’s important to note that, the compartments are only allowed to interact with
their neighboring ones so as to reduce the overall model complexity. We could also rewrite these
first-order differential equations into a n-order state space function as:

V̇(t) =


− 1

τ1
β2,1 0 · · · 0

β1,2 − 1
τ2

β3,2 · · · 0
...

...
...

. . .
...

0 0 · · · − 1
τn−1

βn,n−1

0 0 · · · βn−1,n − 1
τn

V(t) +


γ1
γ2
...

γn−1

γn

 I(t)−


0
0
...
0
1

 θS(t), (4)
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where V = [v(1), v(2), , · · · , v(n)]T , and S(t) = H(v(n)(t), θ).

4.2 PMSN: A PARALLEL MULTI-COMPARTMENT SPIKING NEURON

It is worth noting that the model described above, when trained serially with BPTT, consumes signif-
icantly more simulation time than existing single-compartment spiking neuron models. Therefore, it
becomes crucial to adapt this model to support parallel training, whose primary limitation lies in the
utilization of a non-linear spike generation function, denoted as H(·). After incorporating the reset
mechanism, this function introduces a non-linear temporal dependency between V(t+dt) and V(t).
To surmount this limitation, we propose a Parallel Multi-compartment Spiking Neuron (PMSN)
model based on Eq. 4, which allows such non-linear temporal dependency to be decoupled. We
achieve this by setting βn,n−1 to 0 and decoupling n compartments into n − 1 hidden compart-
ments Vh with linear recurrence, and one output compartment v(n) = vs with nonlinear reset. The
resulting neuronal dynamics of PMSN can be represented as follows:

V̇h(t) =


− 1

τ1
β2,1 0 · · · 0

β1,2 − 1
τ2

β3,2 · · · 0
...

...
...

. . .
...

0 0 · · · βn−2,n−1 − 1
τn−1

Vh(t) +


γ1
γ2
...

γn−1

 I(t), (5)

v̇s(t) =
[
0 0 · · · βn−1,n

]
Vh(t)−

1

τn
vs(t) + γnI(t)− θS(t), S(t) = H(vs(t), θ), (6)

where the hidden compartments are designated to form a (n−1)-order cable model, while the output
compartment is charged by the last hidden compartment but resets independently. In the following,
we first explain how the linear recurrent states Vh can be computed in parallel, and the non-linear
temporal dependency issue associated with vs will be addressed subsequently.

Parallel Implementation for Hidden Compartments. The multi-compartment spiking neuron
model presented above forms a non-linear continuous system, we first apply the zero-order hold
(ZOH) method (DeCarlo, 1989) to temporally discretize the continuous-time formulations as stated
in Eqs. 5 and 6. Specifically, we utilize a full-rank state transition matrix T ∈ Rn−1×n−1 to
represent the first matrix in Eq. 5, which could be diagonalized using eigenvalue decomposition
T = PΛP−1, where Λ is the diagonal eigenvalue matrix, and P ∈ Cn−1×n−1 denotes eigenvector
matrix. Consequently, we can obtain the following discrete-time formulation:

Vh[t] = T̄ Vh[t− 1] + ΦcI[t], (7)

Ih[t] = ΦsVh[t] + γnI[t], (8)

vs[t] = αvs[t− 1] + Ih[t]− θS[t− 1], S[t] = H(vs[t], θ), (9)

where Vh = P−1Vh, T̄ = exp(Λdt), Φc = Λ−1(exp(Λdt)− I)ϕc, ϕc = P−1[γ1, .., γn−1]
T . Ih[t]

signifies the total input current to the output compartment, Φs = [0, .., βn−1,n]P , α = exp(− dt
τn
).

The values of Λdt, ϕc, γn, and Φs, which are derived from the neuronal dynamic parameters, are
all learnable. The model in Eq. 7 is an LTI system, which could be considered to own a linear
recurrence. Alternatively, we could unfold it as:

Vh[t] =

t∑
i=0

T̄ t−iΦcI[i]. (10)

We further define a kernel K = [ΦsT̄ t−1Φc, ..., ΦsT̄ 0Φc]. In this way, the Eq. 8 can be simplified
to perform matrix multiplication with input set It = {I[0], I[1], ...I[t]} as:

Ih[t] = K · It + γnI[t]. (11)

Notably, the above computation can be parallelized over time by applying the convolution operation
to the first term as:

Ih[0 : t] = K ∗ It + γnIt = F−1(F(K) · F(It)) + γnIt, (12)

where F , F−1 signifies forward and inverse Fourier Transform respectively. In this way, we could
efficiently compute the membrane potential for the first n−1 hidden compartments Vh and the input
for the output compartment Ih across all timesteps in parallel. However, how to obtain the output
spike train in parallel remains to be addressed.
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Parallel Implementation for Output Compartment with Reset. The output compartment vs is
responsible for spike generation and reset. However, this compartment could not apply the parallel
implementation due to the existence of the non-linear reset. To be specific, as given in Eq. 9, we
must apply the non-linear function H(·) on vs[t−1] to obtain spike output S[t−1] before computing
the membrane potentials vs[t]. This non-linearity prevents the unfolding of iterative functions into
linear mathematical expressions over time, thus restricting the temporal parallelization of the model.
To resolve this issue, we try to circumvent computing the non-linear dependency between timesteps.
Specifically, we approach this problem by focusing on obtaining the cumulative inputs and resets.
To this end, we further refine the step-by-step dynamics of the output compartment in Eq. 9 as:

vs[t] = αvs[t− 1] + Ih[t]− vr[t− 1], S[t] = H(vs[t], θ), (13)

vr[t] = θS[t] · ⌊vs[t]⌋θ, (14)

where vr[t] denotes the membrane potential that has been subtracted during reset. ⌊·⌋θ signifies the
floor division by θ. Compared with the original reset-by-subtraction mechanism described in Eqs.
6 and 9, we force vs to reset to a level below threshold θ, which bears closer resemblance with the
repolarization process of biological neurons. The parallel computation of the output compartment
is achieved by setting the decay constant α = 1 and clamping the input Ih to non-negative before
aggregating it over time. The detailed derivations are provided in the Appendix. Thus, we could
unfold the iterative dynamics in Eq.13 and eliminate the dependency between vs[t] and S[t− 1] as:

t−1∑
i=0

vr[i] = θ⌊
t−1∑
i=0

Ih[i]⌋θ, vs[t] =

t∑
i=0

Ih[i]− θ⌊
t−1∑
i=0

Ih[i]⌋θ. (15)

The cumulative sum of input current set Ih,t = {
∑0:t

i=0 Ih[i]}, can be efficiently computed using
the parallel prefix sum (Scan) algorithm (Harris et al., 2007). Therefore, we could derive the output
spike train set St = {S[0], S[1], ...S[t]} based on the obtained membrane potential as:

St = H (Ih,t − θ⌊Ih,t−1⌋θ) . (16)

Notably, this reset mechanism can also be seamlessly generalized to the non-leaky single-
compartment models, thereby enabling parallelizable training. The generalization is straightforward,
and only requires replacing the input Ih with the input current of the single-compartment model.

4.3 EFFECTIVE TEMPORAL GRADIENT PROPAGATION

Here, we provide a theoretical analysis to explain how gradients can effectively propagate to ear-
lier times in our PMSN model to facilitate multi-scale sequential modeling. The detailed derivation
process can refer to the Appendix. To overcome the discontinuity that happened during spike gen-
eration and reset, we employ surrogate gradients (Deng et al., 2022; Bengio et al., 2013) and result
in a unique gradient flow for the PMSN parameter update as:

∆W l ∝ ∂L
∂W l

=

T∑
t=1

∂L
∂Il[t]

Sl−1[t], ∆bl ∝ ∂L
∂bl

=

T∑
t=1

∂L
∂Il[t]

,

∂L
∂Il[t]

=

T∑
i=t

∂L
∂Sl[i]

∂Sl[i]

∂vls[i]

∂vls[i]

∂Ilh[i]

∂Ilh[i]

∂Il[t]
=

∂L
∂Sl[t]

g′[t]γn︸ ︷︷ ︸
Spatial

+

T∑
i=t

∂L
∂Sl[i]

g′[i]ΦsT̄ i−tΦc︸ ︷︷ ︸
Temporal

,
(17)

where g′[t] = ∂Sl[i]
∂vl

s[i]
is the surrogate gradient function, L is the loss function. W l and bl refer

to weight and bias terms of layer l, respectively. The first term of the final gradient represents
the gradient spatial propagation, while the second term signifies the gradient propagation in the
temporal domain. Note that the proposed PMSN model possesses multiple neuronal compartments
with varying decay rates, denoted as T̄ = diag(λ1, ...λn−1). This can effectively establish temporal
dependencies across varying time scales with a proper set of values for T̄ . Furthermore, the gradient
update remains unaffected by the neuronal reset. In contrast, the vanilla spiking neurons, when
utilizing the BPTT method for temporal credit assignment, encounter challenges in learning long-
term dependency. This is attributed to the vanishing gradient problem caused by recursive membrane
potential decay and reset.
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Table 1: Comparison of classification accuracy of different models on long-term sequential tasks.

Dataset Timesteps Approach Parallel
Training Architecture Parameters Accuracy

S-MNIST
&

PS-MNIST
784

LIF (Zhang et al., 2023) N Feedforward 85.1k 72.06% / 10.00%
PLIF (Zhang et al., 2023) N Feedforward 85.1k 87.92% / N.A.
GLIF (Zhang et al., 2023) N Feedforward 87.5k 95.27% / N.A.

DEXAT (Shaban et al., 2021) N Recurrent N.A. 96.40% / N.A.
ALIF (Yin et al., 2021) N Recurrent 156.3k 98.70% / 94.30%

TC-LIF (Zhang et al., 2023) N Recurrent 155.1k 99.20% / 95.36%
SPSN (Fang et al., 2023)* Y Feedforward 52.4k 97.20% / 82.84%

masked PSN (Fang et al., 2023)* Y Feedforward 153.7k 97.76% / 97.53%
PSN (Fang et al., 2023)* Y Feedforward 2.51M 97.90% / 97.76%

Ours Y Feedforward 66.3k 99.40% / 97.16%
156.4k 99.53% / 97.78%

SHD 250

Adaptive axonal delay (Sun et al., 2023) N Feedforward 109.1k 92.45%
TA-SNN (Yao et al., 2021) N Feedforward 121.7k 91.08%

ALIF (Yin et al., 2021) N Recurrent 141.3k 84.40%
TC-LIF(Zhang et al., 2023) N Recurrent 141.8k 88.91%
LIF (Zenke & Vogels, 2021) N Recurrent 249k 84.00%
ASGL (Wang et al., 2023) N Feedforward 230.4k 87.90%

RadLIF (Bittar & Garner, 2022) N Feedforward 3.9M 94.62%
SPSN (Fang et al., 2023)* Y Feedforward 107.1k 82.51%

masked PSN (Fang et al., 2023)* Y Feedforward 122.5k 86.00%
PSN (Fang et al., 2023)* Y Feedforward 232.5k 89.75%

Ours Y Feedforward 120.3k 94.25%
199.3k 95.10%

* Our reproduced results based on publicly available codebases N.A. These results are not publicly available

5 EXPERIMENTS

In this section, we evaluate the proposed PMSN model, focusing on its multi-scale sequential mod-
eling capacity, simulation acceleration, and computational cost efficiency. Unless otherwise stated,
all tested PMSNs have n = 5 compartments to ensure a comparable computational cost to the state-
of-the-art (SOTA) parallel spiking neuron models (i.e., 32-receptive-field sliding parallel spiking
neuron (SPSN) (Fang et al., 2023)). Detailed configurations are provided in the Appendix, and we
will make our code publicly available after the review process.

5.1 ESTABLISHING TEMPORAL DEPENDENCIES ACROSS DISTINCT TIME SCALES

In Table 1, we first compare our PMSN model against other SOTA models on sequential mod-
eling tasks involving long-term dependencies. Our experiments are conducted on three widely
used benchmarks, including Sequential MNIST (S-MNIST) and Permuted Sequential MNIST (PS-
MNNIST) datasets with 784 time steps (Le et al., 2015), and Spiking Heidelberg Digits (SHD) spo-
ken digit classification dataset with 250 time steps. Notably, our PMSN models achieve the highest
accuracies across all these tasks, with fewer or comparable amounts of parameters, demonstrating
a superior capacity to establish long-term dependency. Furthermore, the single-compartment mod-
els, due to their limited memory capacity, generally perform worse than the multiple-compartment
ones, including DEXAT (Shaban et al., 2021) and TC-LIF (Zhang et al., 2023). Additionally, our
model performs substantially better than the recently introduced parallel spiking neuron models
PSN, masked PSN, and SPSN (Fang et al., 2023) that are constrained with a single compartment.

We further evaluate our model on establishing spatiotemporal and extended long-term temporal
dependencies through more challenging tasks: Sequential CIFAR10 and CIFAR100. For Sequen-
tial CIFAR10, we explore two configurations: column-by-column scanning as per Fang et al. (2023)
(T = 32), which evaluates the model’s capacity in integrating both spatial and temporal information,
and pixel-by-pixel scanning (T = 1024), which poses a greater challenge for learning long-term de-
pendency. For Sequential CIFAR100, we use the column configuration. To ensure a fair comparison,
we employ the same network architecture for each individual task. As shown in Table 2, our PMSN
model surpasses the SOTA models by at least 2% accuracy, showcasing its superiority in multi-scale
sequential modeling. As provided in Figure 2, the learning curves of the PMSN model exhibit faster
and more stable training convergence for the reasons that have been explained in Section 4.3.

Furthermore, we would like to stress the importance of the neuronal reset mechanism that has been
neglected in (Fang et al., 2023). As presented in Table 2, the accuracy consistently improves for
both PMSN and LIF models after incorporating the reset mechanism. By preventing the membrane
potential from becoming excessively high, the reset mechanism yields a smoother distribution of
membrane potentials across time, thereby facilitating a more stable information flow and training.
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(b) Sequential CIFAR100
Figure 2: Learning curves of different neurons on column-level tasks from three independent runs.

Table 2: Comparing distinct neurons to learn spatiotemporal and extended long-term dependencies.
Tasks Timesteps PMSN PMSN (w/o reset) PSN masked PSN SPSN LIF LIF (w/o reset)

Sequential CIFAR10
32

90.97% 89.27% 88.45% 85.81% 86.70% 81.50% 79.50%
Sequential CIFAR100 66.08% 60.82% 62.21% 60.69% 62.11% 55.45% 53.33%

Parameters 0.54M 0.54M 0.52M 0.52M 0.51M 0.51M 0.51M
Sequential CIFAR10 1024 82.14% 79.63% 55.24% 57.83% 70.23% 45.07% 43.30%

Parameters 206.9k 206.9k 6.47M 376.7k 177.1k 176.9k 176.9k

5.2 VISUALIZATION OF MULTI-COMPARTMENT DYNAMICS

Despite the superior performance of the PMSN model, it remains unclear how it integrates multi-
scale temporal information through the intertwined dynamics of neuronal compartments. To address
this concern, we first perform a single-neuron analysis and visualize the dynamics of each compart-
ment in Figure 3. Specifically, we input an impulse at T = 0 and record the trajectory of the mem-
brane potential across compartments. The Left figure shows the interaction of hidden compartments
results in damped oscillations of membrane potentials, each with a distinct oscillation frequency
and decaying speed characterized by its dynamic coefficient λi = eα+βi. These oscillations, whose
duration is proportional to e−α, allow the input signals to be preserved across different time scales.
Moreover, the variance in oscillation frequency and decay among different compartments suggests
the PMSN model can effectively integrate information across different frequency domains and time
spans, thereby enabling multi-scale sequential modeling. Moving beyond single-neuron analysis,
we also plot the distribution of oscillation frequency and damping coefficients across neuron pop-
ulations within one layer. The results provided in the Middle and Right figures reveal diverse
compartmental temporal characteristics across the neuron population, which enhances the network
capacity in multi-scale sequential modeling. See the comprehensive analysis in the Appendix.

5.3 SIMULATION ACCELERATION

To quantify the simulation acceleration of the proposed parallel implementation, we record its actual
inference and training times using the GPU-enabled Pytorch library and compare them against a se-
rial implementation that achieves identical neuronal dynamics. Figure 4 illustrates the acceleration
ratios across various model sizes and sequence lengths. Our parallel implementation significantly
advances the serial one, achieving speed-up ratios ranging from 5.4 to 217 and 6.2 to 302 for for-
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Figure 3: Left: The impulse response of different compartments within the same neuron. The
transient response time (i.e., the time interval from the input start to the cease of oscillation) of the
hidden membrane potential indicates how fast the information decays in each compartment. Middle:
The distribution of oscillation frequencies β/2π, and Right: damping coefficients α for different
hidden compartments of neurons in the selected layer. These two figures suggest the PMSN model
can effectively integrate temporal information across different frequency domains and time scales.
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Figure 4: The simulation speed-up ratios tserial/tPMSN achieved by the proposed parallel imple-
mentation, compared to a serially updated identical model, where N denotes the total neuron count.
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Figure 5: Comparison among LIF and different parallel spiking neuron models. Calculation pro-
cesses of the energy cost are provided in the Appendix.

ward (inference) and backward (training) propagation, respectively. Moreover, we notice a positive
correlation between the speed-up ratio and sequence length, favorable for long sequences.

5.4 COMPUTATIONAL COST

The computational cost during inference remains a key concern for the practical use of the proposed
PMSN model. To address this concern, we conduct a comparative study to assess the computational
cost of the PMSN model, the PSN families (Fang et al., 2023), and the LIF model. The experi-
ments are conducted on the pixel-by-pixel Sequential CIFAR10 task, employing the same network
structure for all models. It is important to note that the total computational cost is affected by both
neuronal and synaptic updates. In the case of our PMSN model, scaling up the total number of com-
partments n leads to a nearly linear increase in the cost of neuronal updates. Similarly, enlarging
the temporal receptive field, denoted as “k”, in the k-order masked PSN and SPSN models has the
same effect. In contrast, the cost of synaptic updates primarily depends on the sparsity of output
spikes. Notably, as illustrated in Figure 5(a), our proposed PMSN model achieves the lowest spike
density, which can potentially be attributed to the inhibitory effect resulting from the coupling com-
partments. We further plot the accuracy-energy curves for different spiking neuron models in Figure
5(b). Each point on these curves corresponds to a specific model from Figure 5(a). The PSN model,
which has a considerably high cost of 5541 nJ , is omitted from this figure. Our PMSN model
consistently outperforms other models in terms of accuracy when provided with the same amount
of energy. Notably, the accuracy of the PMSN model exhibits rapid improvement as the number of
compartments increases from 2 to 5, while the improvement plateaus beyond that point. Therefore,
it offers users the flexibility to strike a favorable balance between computational cost and accuracy.

6 CONCLUSION

This paper presents a novel multi-compartment neuron model with enhanced capacity in multi-scale
sequential modeling. Additionally, a parallel implementation is provided for the proposed multi-
compartment neuron model, which enables parallel training on GPU-accelerated ML frameworks.
Our experimental results demonstrate its superior performance in establishing temporal dependen-
cies across distinct time scales, acceleration, and accuracy-energy trade-offs. It, therefore, opens up
a bountiful of opportunities for solving sequential modeling tasks with neuromorphic solutions.
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