
Reinforcement Learning in 20Q Game with Generic
Knowledge Bases

Chun Hei Lo, Luyang Lin
Department of Systems Engineering and Engineering Management

The Chinese University of Hong Kong
Shatin, Hong Kong

{chlo,lylin}@se.cuhk.edu.hk

Abstract

20Q, invented by Robin Burgener in 1988, is a computerized game of twenty
questions that began as a test in artificial intelligence. The game asks the player
to think of something and the system will then try to guess what they are thinking
of with twenty yes-or-no questions. Due to the highly flexible and volatile game
setting, designing a best questioning strategy for the system is not trivial. In the
proposal, we hope to provide possible research directions, particularly under the
formulation of the problem as reinforcement learning. We would also investigate
on methods and potential challenges of incorporating the use of a knowledge base
for the game. The presentation can be found at https://drive.google.com/
file/d/1lZ7tTvTFfspJ1P_TEpJvG5TPu0lFSVW6/view?us=sharing

1 Problem Definition

20Q consists of two players, a questioner and an answerer (4). The questioner needs to guess the
concept thought by the answerer by considering the answerer’s replies of the 20 questions asked,
where each reply is chosen from one of the three choices of “Yes", "No" or "Unknown”. The game
starts with the questioner asking a question. Then the two players take turn to answer and ask. The
game ends when the 20th question is answered by the answerer.

2 Related Work

The questioning strategy is first solved by using a object-question relevance table to rank questions
and objects (1). It is further improved by Wu et al. (7) with entropy-based metrics. These method
performs tabular computation with rules based on the observed data, which could make them less
robust against noisy answers. Zhao and Maxine (8) apply value-based Reinforcement Learning (RL)
model to Q20 game, nevertheless, experiments were only conducted on small toy data. Hu et al. (2)
proposed a policy-based RL model trained using the data collected from thousands of 20Q games ,
which shows robustness to noisy answers. Instead of relying on a knowledge base, they have collected
a frequency distribution for every person-question pair of 1000 famous people and 500 questions
from thousands of real users, which may serve the same purpose as a knowledge base.

3 Problem Formulation

The learning of the agent’s policy can be formulated into a finite Markov Decision Process, represented
by the tuple 〈S,A, P,R, γ〉, where γ ∈ [0, 1] is the reward discount factor for computing long-term
return. At time step t, the agent is at state st ∈ S. It transits to the next state st+1 ∈ S after
taking an action at ∈ A to ask a question according to the policy πθ(a|st) and receiving the answer
(Yes/No/Unknown) from the player. After the transition, the agent receives a reward scalar rt+1.

https://drive.google.com/file/d/1lZ7tTvTFfspJ1P_TEpJvG5TPu0lFSVW6/view?us=sharing
https://drive.google.com/file/d/1lZ7tTvTFfspJ1P_TEpJvG5TPu0lFSVW6/view?us=sharing

4 Environment and Data

The environment under which the reinforcement learning algorithm operates is mainly the player,
who decides on the concept and answers each of the questions asked by the agent. Rewards are also
given to the agent when it succeeds or fails to correctly guess the concept by asking no more than 20
questions.

The game requires data about the concepts to be guessed, otherwise the agent will have to be trained
from scratch, where it will be introduced about different concepts paired with the relevant questions
and answers. Previous works used either data acquired from thousands of gameplay or a small dataset
designed specifically for the game.

We hope to extend the game to a more general setting, where concepts and questions involved are
not pre-defined. Following this motivation, we would experiment with different generic knowledge
bases, including ConceptNet (3) and Microsoft Concept Graph (6). Both knowledge bases model the
hierarchy of and the relationships between millions of concepts collected from difference sources of
data.

One of the problems of applying knowledge bases into the game is that the reinforcement learning
model may not be learning well if the concept-relation information is sparse, i.e. there are inadequate
relations for a concept and/or each relation covers only a few concepts. The detailed implementation
of using the knowledge bases and the possible solutions to the knowledge sparsity problem are
discussed in the coming section.

5 Proposed Approach

The concepts O to be guessed are one of the concepts in the knowledge bases and the questions to
be asked by the questioner A are derived from the relations in the knowledge bases. For example,
Microsoft Concept Graph contains the relation triple 〈hamster, isA, small pet〉, which can be
transformed into hamster ∈ O and "is it a small pet?" ∈ A. In general, the game can be conducted
on top of any domains over any in the knowledge bases, provided that the concept-relation data is
dense enough to distinguish one concept from another using limited number of questions. In this
work, we extracted subsets of the knowledge bases’ information for our experiments.

We follow Hu et al.’s (2) work for the general implementation of the reinforcement learning framework,
with modifications made to extend the game’s generalizability. We briefly describe below the different
components of the RL framework. Please refer to (2) for the detailed description and implementation.

5.1 State Representation

Each state st contains the confidence of each concepts at time-step t, i.e. st ∈ R|O|, and
∑n
i=1 st,i =

1, where O = {o1, o2, . . . , on} represents the set of all concepts, and st,i is the probability that oi is
the user-chosen concept at time-step t. There are two choices for the assignment of the initial state s0.
It can be the priors of choosing the concept oi if we assume a prior probability for user choosing the
concept, or just a uniform distribution if such assumption is absent.

5.2 Transition Dynamics

Given the current state st and the answer xt from the answerer to the question at, the next state st+1

is computed by st+1 = st � α, where

α =

[R(1, at), . . . , R(|O|, at)] xt = Yes
[W (1, at), . . . ,W (|O|, at)] xt = No
[U(1, at), . . . , U(|O|, at)] xt = Unknown

R(i, at), W (i, at) and U(i, at) = 1−R(i, at)−W (i, at) are probabilities of answering "yes", "no"
and "unknown" to question qat concerning concept oi. Originally they were estimated from the
frequencies of the answers from thousands of users to each concept-question pair. Since, our aim is
to extend the framework to general question-answering based on a knowledge base, we modify such

2

probabilities estimation using the information in the knowledge bases, namely:

R(i, j) =

{
r 〈i, relationj , conceptj〉 ∈ K
w otherwise

W (i, j) =

{
w 〈i, relationj , conceptj〉 ∈ K
r otherwise

U(i, j) = 1−R(i, j)−W (i, j)

where K is set of relation triples in the knowledge base, r can be considered the reliability of the
knowledge base on the relation triple and w can be considered the chance that the relation triple is
incorrect as suggested by the knowledge base. This soft assignment of relation triple addresses the
problem of incorrect/incomplete information of knowledge bases.

5.3 Policy Network

In the policy network, the state st is mapped to a probability distribution over all available actions
through a neural network with parameter θ: πθ(a|st) = P [a|st; θ], where θ is upated to maximize
the expected return received. A masked softmax function is applied at the output layer to prevent the
model from asking the same question twice.

The long-term return Gt is given by

Gt =

T∑
k=0

γkrt+k+1

where rt+k+1 is estimated by fr, a MLP with sigmoid output:

rt+1 = fr(st, at)

fr is trained following loss function:

L1(σ) = (R(st, at;σ)− sigmoid(Gt))2

where σ is the network parameters.

The policy-based agent is trained using REINFORCE (5) with the loss function:

L2(θ) = Eπθ [log πθ(at|st)(Gt − bt)]

where bt = Vη(st) is the estimated expected future reward at state st. The value network Vη(st) is
modeled as a MLP and is trained with the objective of minimizing

L3(η) = (Vη(st)−Gt)2

6 Experimental Setup

6.1 Model Training with a User Simulator

To allow the model to be trained efficiently, a user simiulator is constructed, which is capable of
answering the questions accurately according to the knowledge base. In an episode, the user simulator
first selects a concept according to a distribution and it would answer sequentially the 20 questions
asked by the RL agent. It finally returns the correctness of the agent’s guess and a reward signal is
given. Through this interaction between the agent and the user simulator, the agent is trained to select
the most proper question to ask each time.

6.2 Experimental Results

We apply our approach into two knowledge bases and show our performances in Figure 1. According
to ConceptNet, we select two sets. In fig. 1(a), we find that the set with 128 concepts and 64 questions
performs much better than the set with 250 concepts and 125 questions. From our observation, the
concept-relation information is very sparse in the sampled ConceptNet instances, as the ConceptNet
contains several tens of relation between concepts, and some concepts have only a few relations

3

linked to them. This could pose challenges to the learning of the agent because the user simulator
receives inadequate information to many concept-relation instances. We created another data set by
sampling concepts and their relations from the Microsoft Concept Graph. Different from ConceptNet,
there is only one relation ’is-a’, so each concept contains more overlapping relations and each relation
are linked to more overlapping concepts. Under this setting with denser data, the win rate improves
to more than 0.9 for a test instance. The detailed numbers are shown in fig. 1(b).

(a) ConceptNet

(b) Microsoft Concept Graph

Figure 1: Win Rates with Respect to the Number of Training Steps

Knowledge Base Data Set Win Rate

ConceptNet 128C 64Q 0.68
250C 125Q 0.42

Microsoft Concept Graph
250C 125Q 0.92
499C 250Q 0.79
997C 500Q 0.32

Table 1: Highest Win Rates on Different Data Sets

Table 2 shows an example of a gameplay where the player chooses the concept otter. In this question
list, we can find that the questions are not only related to the classification of this animal, but also its
special meaning in the real world. For example, otter is also a name of a program. It may help the
questioner to guess the concept, and better fit the real game environment.

6.3 Conclusion and Future Work

In this work, we have implemented a reinforcement learning framework for the 20Q game under a
Markov Decision Process formulation. Much of the implementation follows the work by (2), but we

4

have extended the application to general question-answering when the relevant knowledge is supplied
by a knowledge base. Experiment results show that the questioner agent is indeed able to select the
appropriate questions for the final guess of concepts. Nevertheless, it is also important to note that
the effectiveness of the training, and thus the performance of the agent depends greatly on the quality
of the knowledge base and the denseness of the concept-relation information. Generally, the game is
better if more accurate and more dense knowledge is supplied.

There are also opportunities for further experiments on better game modeling. For instance, currently
we treat relations that are absent in the knowledge bases as false, i.e. the answers to the corresponding
questions are considered "No" with a high probability. One possible solution to that is applying
models from the natural language processing community. In particular, automatic hypernym detection
would provide the knowledge base with more information regarding the "is-a" relations between
concepts. With extra knowledge, a sparse concept-relation matrix should be turned denser and each
entry in the table can be estimated more accurately.

5

References
[1] R. Burgener. Artificial neural network guessing method and game, Oct. 12 2006. US Patent App. 11/102,105.
[2] H. Hu, X. Wu, B. Luo, C. Tao, C. Xu, W. Wu, and Z. Chen. Playing 20 question game with policy-

based reinforcement learning. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pages 3233–3242, Brussels, Belgium, Oct.-Nov. 2018. Association for Computational
Linguistics.

[3] R. Speer, J. Chin, and C. Havasi. Conceptnet 5.5: An open multilingual graph of general knowledge, 2016.
[4] S. R. Suresh. A bayesian strategy to the 20 question game with applications to recommender systems. PhD

thesis, Ph. D. dissertation, Duke University, 2017.
[5] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.

Mach. Learn., 8(3–4):229–256, May 1992.
[6] W. Wu, H. Li, H. Wang, and K. Q. Zhu. Probase: A probabilistic taxonomy for text understanding. In

Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, SIGMOD ’12,
page 481–492, New York, NY, USA, 2012. Association for Computing Machinery.

[7] X. Wu, H. Hu, M. Klyen, K. Tomita, and Z. Chen. Q20: Rinna riddles your mind by asking 20 questions.
Japan NLP, 2018.

[8] T. Zhao and M. Eskenazi. Towards end-to-end learning for dialog state tracking and management using
deep reinforcement learning. arXiv preprint arXiv:1606.02560, 2016.

6

No. Question (Is your concept a X?) Answer

1 character Yes
2 rare species Yes
3 case No
4 pattern Yes
5 top brand Yes
6 symbol No
7 exception No
8 area No
9 carnivore Yes

10 common species Yes
11 item Yes
12 mobile specie Yes
13 top predator Yes
14 local wildlife Yes
15 system No
16 form Yes
17 option No
18 wild creature No
19 exotic species No
20 program Yes

Table 2: The 20 questions and answers to guessing the concept otter

7

	Problem Definition
	Related Work
	Problem Formulation
	Environment and Data
	Proposed Approach
	State Representation
	Transition Dynamics
	Policy Network

	Experimental Setup
	Model Training with a User Simulator
	Experimental Results
	Conclusion and Future Work

