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ABSTRACT

In federated learning (FL), incentivizing contributions of training resources (e.g.,
data, compute) from potentially competitive clients is crucial. Existing incentive
mechanisms often distribute post-training monetary rewards, which suffer from
practical challenges of timeliness and feasibility of the rewards. Rewarding the
clients after the completion of training may incentivize them to abort the collab-
oration, and monetizing the contribution is challenging in practice. To address
these problems, we propose an incentive-aware algorithm that offers differentiated
training-time model rewards for each client at each FL iteration. We theoretically
prove that such a local design ensures the global objective of client incentivization.
Through theoretical analyses, we further identify the issue of error propagation in
model rewards and thus propose a stochastic reference-model recovery strategy to
ensure theoretically that all the clients eventually obtain the optimal model in the
limit. We perform extensive experiments to demonstrate the superior incentivizing
performance of our method compared to existing baselines.

1 INTRODUCTION

Federated learning (FL) is a popular framework that fosters collaboration among distributed clients
while keeping the raw data on their local devices (McMahan et al., 2017). The clients perform local
optimization on local data, while the server performs centralized parameter updates by aggregating
these local model updates (Li et al., 2020a). It is essential to motivate potentially competing clients
to contribute their training resources since they incur nontrivial costs for data collection (Sim et al.,
2020), local computation (Sarikaya & Ercetin, 2020), and federated communication (Lim et al., 2020).
Moreover, self-interested clients may refrain from contributing to the best of their abilities or drop out
of the FL due to insufficient rewards (Zhan et al., 2022), which can delay model training and worsen
model performance (Tu et al., 2022). To address these issues, a number of incentive mechanisms
have been proposed (Tu et al., 2022; Khan et al., 2020; Zhang et al., 2021; Liu et al., 2023).

Most existing incentive mechanisms distribute external resources (e.g., money) post-training (Zhan
et al., 2022; Tu et al., 2022), which poses practical challenges regarding the timeliness and feasibility
of the incentives. Firstly, rewarding clients only after the completion of the FL process can discourage
their participation as they usually anticipate timely rewards due to the continuous contribution of
costly resources throughout the process (IMDA, 2019). It is also impractical to withhold compensation
for clients until the end of the FL process as they have the freedom to exit the collaboration in the
middle of the process. Secondly, monetary incentives are often infeasible in situations where the
source of revenue is unclear, the budget is limited (Sim et al., 2020), and the contribution-to-dollar
value denomination is difficult to determine (Xu et al., 2021). To tackle these challenges, it is vital
to design training-time model rewards at each iteration of the FL process to achieve the overall
incentivization goal. However, few work have explored this direction (Xu et al., 2021; Kong et al.,
2022), and their heuristic methods overlook the important theoretical implications of local design
choices on the performance of rewarded models and thus client incentivization.

A central issue is the global-to-local design: How should each client be rewarded locally in each
FL iteration, given the global incentivization objective? Inspired by the game-theoretic insights,
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we propose that the proportion of local model updates, which a client can aggregate as a local
reward, should be commensurate with his contribution in each FL iteration. Therefore, clients receive
different models (each aggregated using a specific proportion of local model updates) such that
higher-contributing clients receive models aggregated from a larger proportion of local model updates.
We prove this local reward scheme ensures that a higher-contributing client gets a final model with a
better performance guarantee. However, we observe an undesirable phenomenon of error propagation
from the performance bound: Low-contributing clients can worsen every client model as aggregating
low-quality model updates can adversely influence the high-quality models (Deng et al., 2022).

This phenomenon implies that achieving the incentivization goal prevents the client models from
reaching optimality. Ideally, our algorithm should allow clients to eventually get the globally optimal
model. How to adjust our local reward scheme if we want every client to obtain the best model in the
limit yet without hurting their incentives? To address this challenge, we propose a reference-model
recovery strategy that stochastically provides every client with the same reference model at each
FL iteration. This approach mitigates the error propagation, and we further prove that all the client
models asymptotically converge to the global optimum as long as their contributions do not diminish
“too quickly” with the FL iterations. Consequently, every client is better off and is expected to
eventually receive the best model while still being incentivized to contribute in finite FL iterations.

In summary, we propose an incentive-aware federated learning (IAFL) algorithm with training-time
model rewards commensurate with client contributions, while being agnostic to any contribution
measures (Section 4). Then, we theoretically justify our design choices through convergence anal-
yses (Section 5). Finally, we demonstrate through extensive experiments that our method enjoys
superior incentivizing performance compared to other baselines (Section 6).

2 RELATED WORKS

Mechanism design for FL incentives. Popular tools to model the behaviors of the server and clients
include Stackelberg games (Khan et al., 2020; Zhan et al., 2020), auctions (Zhang et al., 2021; Cong
et al., 2020) and contract theory (Liu et al., 2023; Kang et al., 2019), which all utilize post-training
monetary incentive schemes to motivate client contributions (Zhan et al., 2022; Tu et al., 2022).
Karimireddy et al. (2022) suggested post-training model rewards of various utilities achieved through
noisy model perturbation. However, this method may not be effective in FL since clients have already
obtained the best global model during the model broadcasting of the FL process. Our paper instead
directly integrates the incentive mechanism into the FL algorithm using training-time model rewards.

Heterogeneity and personalized FL. Data heterogeneity among distributed clients is a common
challenge in FL (Wang et al., 2020a; Chen et al., 2022). Methods like FedProx (Li et al., 2020b) and
FedNova (Wang et al., 2020a) train a single shared model that aligns clients’ potentially mismatched
objectives caused by heterogeneous local data distributions. Personalization in FL yields a personal-
ized model for each client and focuses on improving performances on local test sets (Tan et al., 2022).
Personalized models are achieved by personalizing layers or structures of the shared model (Liang
et al., 2020; Collins et al., 2021; Li et al., 2021; Pillutla et al., 2022). In contrast, we focus on tailored
client model rewards trained by optimizing a shared global objective with data heterogeneity (e.g., a
client with only MNIST digits from class 0-2 is still interested in a model that classifies all digits).

Training-time model incentives for FL. CGSV (Xu et al., 2021) and Rank (Kong et al., 2022)
have explored training-time model incentives during FL. However, their heuristic approaches lack
theoretical convergence analyses. Additionally, Rank impractically assumes access to a validation set
to rank local model performances for aggregation. CGSV presents a contrasting perspective to ours:
CGSV zeroes out partial model update parameter values for all clients, while our IAFL effectively
zeroes out partial client model updates for all parameter values. Our aggregation approach is more
aligned with the partial client participation setting in FL (Li et al., 2020d). CGSV’s local performance
guarantee cannot be generalized to the global incentivization objective for the entire FL training.

3 NOTATIONS AND BACKGROUNDS

We consider N federated clients collaboratively learning a predictive model θ ∈ Rd. Client i has a lo-
cal dataset Di of size Bi such that the grand dataset D = ∪N

i=1Di has size B :=
∑N

i=1 Bi. The global

2



Published as a conference paper at ICLR 2024

loss F (θ) =
∑N

i=1 wiFi(θ) is a weighted sum of local loss functions Fi(θ) =
1
Bi

∑
d∈Di

fi(θ, d)

where fi(·, ·) is an empirical loss function. Let θt denote the global model at FL iteration t. FL
conducts two steps for T iterations: (1) Clients download the global model θ1

i,t = θt where θj
i,t

denotes the model at client i before the j-th step of the local update; (2) Clients perform τ steps of
local updates according to θj+1

i,t = θj
i,t − ηt∇Fi(θ

j
i,t, ξ

j
i,t) where ηt is the learning rate and ξji,t is

the local batch randomly chosen for the stochastic gradient descent step. Then, each client i uploads
the model update gi,t = θτ+1

i,t − θ1
i,t = −ηt

∑τ
j=1 ∇Fi(θ

j
i,t, ξ

j
i,t) to the server.

Game-theoretic formulation for incentivization. Instead of assuming benevolent clients as in the
standard FL, we consider a more practical setting where a client i has the freedom to strategically
decide his resource contribution pi ∈ R≥0. Let p−i = [p1, p2, . . . , pi−1, pi+1, . . . , pN ] ∈ RN−1

≥0 ,
we define P−i ∈ R≥0 as the aggregate contribution of clients other than i. We define a rewarding
function ν(pi, P−i) that is continuous, non-decreasing and concave on both arguments, reflecting
the diminishing marginal return of contribution. It is usually observed in machine learning that the
marginal increase in model accuracy diminishes with the increase in training dataset size (Wang et al.,
2021; De & Chakrabarti, 2022). Furthermore, a client i incurs a non-trivial constant cost ci > 0 for
offering some marginal contribution (Sim et al., 2020) and the cost is essential for the clients to decide
an optimal amount of contribution that yields the highest utility (i.e., benefit minus cost). Practically,
ci could account for the cost associated with collecting an additional data sample, computing the
gradients for a larger dataset, or increasing the rate of partial federated participation.

4 INCENTIVE-AWARE FEDERATED LEARNING

Standard FL focuses on training a globally shared model and neglects the incentives for clients to join
the FL procedure. We rethink the server-centric objective of FL and aim to develop a client-centric
procedure to incentivize participation. The main idea is to offer training-time model rewards that are
commensurate with client contributions through our proposed mechanism implementation.

4.1 INCENTIVE MECHANISM

When multiple clients are free to decide their contributions, clients’ behaviors depend on the rewarding
strategy formalized as a mechanism Mν(p) : RN

≥0 → [0, 1]N . The rewarding mechanism Mν(p) =

ν(pi, P−i) maps the contribution vector p to the corresponding reward values using the rewarding
function ν. In standard FL, the global model is synced with all the clients at each FL iteration.
Clients lose their incentives to increase pi since they receive the best aggregate model regardless of
contributions. Therefore, we have P−i = h(p−i) where the aggregate function h only depends on
p−i. Our idea is to make P−i dependent on pi by defining a new aggregate function h̃(pi,p−i).

Proposition 1. If h̃ satisfies dh̃(pi,p−i)
dpi

> 0 and ∂ν(pi,h̃(pi,p−i))

∂h̃(pi,p−i)
> 0, then a mechanism [Mν(p)]i =

ν(pi, h̃(pi,p−i)) incentivizes a client to contribute more than that in the standard FL mechanism.

The proof is in Appendix B.1. Specifically, dh̃(pi,p−i)/dpi > 0 implies that a client i should benefit
more from other clients if his contribution pi is larger, and ∂ν(pi, h̃(pi,p−i))/∂h̃(pi,p−i) > 0
indicates the feasibility of improving the reward from increasing the aggregate contribution of other
clients. Proposition 1 reveals possible better designs of the mechanism that incentivize clients to
contribute more resources. This result aligns with Karimireddy et al. (2022), which showed that the
standard FL mechanism leads to catastrophic free-riding where only the lowest cost client contributes.

Mechanism design. Following Proposition 1, we propose to design a function h̃ and a mechanism
to reward clients based on contributions. Intuitively, we allow clients with higher contribution pi
to be rewarded based on a larger proportion of the aggregate contribution of other clients h(p−i).
We first propose [Mν(p)]i = ν (pi, (pi/maxj pj)h(p−i)). However, this mechanism with a relative
rewarding strategy may result in an undesirable equilibrium. It is possible that clients converge to an
equilibrium where all clients give similar but little contributions. Such equilibria are undesirable as
little contribution may translate to a bad model. The proof for the existence of undesirable equilibria
is provided in Proposition 3 in Appendix B.2. To circumvent this problem, we propose to replace
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maxj pj with a pre-defined contribution ceiling pceil and a tunable sharing coefficient κ ∈ [0, 1],

[Mν(p)]i = ν
(
pi, (min {pi/pceil, 1})1−κ

h(p−i)
)
. (1)

Here, pceil can be viewed as a hypothetical upper limit for a client’s contribution imposed by the
mechanism. For example, pceil = 1 implies full client participation in all FL iterations if pi measures
the rate of client participation. As for the sharing coefficient, κ determines the extent of sharing
enforced by the server. A larger κ makes the rewards more equitable across clients. One limitation of
this design is that the clients lose incentive for pi > pceil. The server can mitigate this by setting a
high pceil upper limit (to keep incentivizing high contributors) while setting a larger κ (to even out the
fractions (pi/pceil)

1−κ towards 1 to motivate low contributors).

To interpret, h(p−i) can be seen as local model updates from other clients (i.e., other than client i) in
FL and a client with higher contribution pi is rewarded a model trained with a broader range of local
model updates. If an averaging aggregation strategy is adopted, the model of a higher-contributing is
updated using an aggregated average from a larger proportion of local model updates.
Definition 1 (Individual Rationality (IR) in FL). A mechanism Mν(p) satisfies individual rationality
if [Mν(p)]i ≥ ν(pi, h(0)) for any i and p. That is, any client will receive a reward at least as good
as what they can achieve on their own.
Remark 1. Our mechanism (1) satisfies IR (Definition 1), an established concept for player incen-
tivization now adapted to FL. In our FL process, a client i always utilizes the resource pi that he
contributes. This essential property of our mechanism ensures the participation of all rational agents.

4.2 IMPLEMENTATION OF THE MECHANISM IN FL

We present an implementation of mechanism (1) in the FL algorithm. We extend the setting in Sec-
tion 4.1 to allow a client i to vary its contribution pi,t across iterations t (instead of a fixed pi).
Aligning with the conditions in Proposition 1, we propose the idea that, instead of sharing the global
model in each iteration, the server shares updates of varying qualities with the clients. Accordingly,
a client with a higher contribution receives a higher quality model. This can be achieved by first
computing a client reward rate γi,t = (min{pi,t/pceil, 1})1−κ = min{(pi,t/pceil)

1−κ, 1} and then
using it to vary the proportion of local model updates {gi,t}Ni=1 that a client can average from in
iteration t. To ensure convergence to the global optimum, we additionally introduce a stochastic
recovery (with probability q) of client models using a flexible user-defined reference model θref,t
trained with custom induced reward rates γ′

ref,t. We defer the justification and details of the stochastic
recovery technique to Section 5.1. The details of the incentive-aware federated learning (IAFL)
algorithm are in Algorithm 1, where [N ] := {1, 2, ..., N} and ⌈·⌉ denotes the ceiling.

Algorithm 1: Incentive-Aware Federated Learning
1 Initialize θi,0 = θref,0 = θ0 and gi,0 = 0;
2 for t = 1 to T do
3 Perform Procedure 2 such that

{∆θi,t−1}Ni=1,θref,t−1 = ServerAgg(t− 1);
4 foreach client i do
5 with probability q do
6 Server shares θref,t−1 with client i;
7 θi,t = θref,t−1;
8 else
9 Server shares ∆θi,t−1 with client i;

10 θi,t = θi,t−1 +∆θi,t−1;

11 θτ+1
i,t = θi,t − ηt

∑τ
j=1 ∇Fi(θ

j
i,t, ξ

j
i,t);

12 Upload the local update gi,t = θτ+1
i,t −θi,t;

Procedure 2: ServerAgg(t)
1 foreach client i do
2 Compute

γi,t = min
{
(pi,t/pceil)

1−κ
, 1
}

;

3 Sample S ′
i,t ⊆ {j : j ∈ [N ], j ̸= i}

randomly s.t.
|S ′

i,t| = ⌈γi,t(N − 1)⌉;
4 Include client i’s update

Si,t = {i} ∪ S ′
i,t;

5 ∆θi,t =
1

|Si,t|
∑

j∈Si,t
gj,t;

6 Sample Sref,t ⊆ [N ] randomly such that
|Sref,t| = ⌈γ′

ref,tN⌉;
7 θref,t = θref,t−1+

1
|Sref,t|

∑
j∈Sref,t

gj,t;
8 return {∆θi,t}Ni=1,θref,t

An intuition for the connection between the mechanism in (1) and the IAFL algorithm is provided
in Appendix C. Overall, clients keep different versions of the model and update their respective models
using the partially averaged model updates rewarded to them over the FL iterations. The models have
varying qualities as the updates rewarded to the clients are crafted to match their contributions. This
approach incentivizes clients to increase their contributions to the learning process.
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Contribution measurement. Our IAFL is agnostic to contribution measures and distributes training-
time model rewards that are commensurate with client contribution pi,t. This is beneficial because
clients have the option to define a custom contribution measure collaboratively. Besides the con-
ventional measures depending on dataset size or participation rate, it is possible to utilize external
knowledge to value contributions. For example, meta attributes such as the timeliness of the data,
reliability of the client network and closeness of clients’ relationships are all possible considerations
of the contribution measure. Importantly, our method also gives the flexibility to vary pi with FL itera-
tion t through pi,t. Our IAFL is also plug-and-play with existing FL contribution evaluation methods
capturing the quality of local model updates, such as FedSV (Wang et al., 2020b), ComFedSV (Fan
et al., 2022), CGSV (Xu et al., 2021), FedFAIM (Shi et al., 2022), R-RCCE (Zhao et al., 2021), etc.

5 THEORETICAL ANALYSIS

This section provides theoretical justification for IAFL via convergence analysis. Our training-time
local reward scheme ensures that a higher-contributing client receives a final model with a better
performance guarantee. We further propose a stochastic reference-model recovery strategy to mitigate
the theoretically observed error propagation problem and ensure the asymptotic convergence of client
models to the global optimum as T → ∞. For ease of analysis, we consider full client participation,
where the results can be extended to partial client participation following Li et al. (2020d). We define
an induced reward rate γ′

i,t = γi,t − (γi,t − 1)/N , which represents the fraction of the local model
updates used by client i at FL iteration t.

5.1 PERFORMANCE GUARANTEE

Formalized in Assumptions 1-4 (Appendix D), we assume that the loss functions Fi(·) are L-smooth
and µ-strongly convex. The average expected variance of stochastic gradients is Σ̃2, and the squared
l2-norm of stochastic gradients is bounded by G. We let each client i have the equal weight
wi = 1/N in the global objective F and further use Γ = F ∗ −

∑N
i=1 wiF

∗
i to denote the extent of

data heterogeneity where F ∗ and F ∗
i are the optimum values of F and Fi, respectively.

Theorem 1 (Performance bound). With full clients participation and a decreasing learning rate
ηt = 1

µτ(t+α) where α ≥ 4L(τ+1)
µτ , define B = 2Lτ(2τ + 3)Γ + 2τ3G2 + τ2Σ̃2 + (α +

1)µ2τ2E[∥θ1 − θ∗∥2] and HT = (2 − 2µηT )τ
3G2, then the performance of the client model

θi,T trained over T FL iterations using IAFL is bounded by

E [F (θi,T )]− F ∗ ≤ L

2µ2τ2
B + CT

α+ T
where CT =

HT

N

N∑
m=1

T∑
t=1

(
T + α

t+ α

)2
(

1

γ′
m,t

+
1

γ′
i,t

− 2

)
.

The proof is given in Appendix D.1. Here, B is constant w.r.t T and the client contributions only affect
γ′
i,t and thus CT . To interpret, our IAFL ensures that a higher-contributing client (i.e., larger γ′

i,t)
receives a model with a better performance guarantee measured in terms of the expected performance
gap to the global optimum. This aligns with our goal of rewarding higher-contributing clients more
and hence incentivizing client participation and contributions. However, we observe that CT grows
with FL iterations T and causes non-convergence of client model θi,T . This undesirable behavior is
caused by the lack of model synchronization and we next propose a remedy to the problem.

Error propagation and non-convergence. The non-convergence is seen in Theorem 1 as T → ∞.
Asymptotically, we require CT /T → 0 for the algorithm to converge to F ∗. Since we already have
(HT /T )

∑T
t=1 T

2/t2 = O(T ), we need 1/γ′
i,T = o(1/T ) for the convergence to hold, where the

big-O and small-o notations are defined in Definition D.1 and Definition D.2. However, this cannot
be achieved as γ′

i,t ≤ 1,∀t. Consequently, we instead require that γ′
i,t = 1 for all i ∈ [N ], t ∈ [T ],

which corresponds to the situation where all the clients contribute at their maximum capacity.

Corollary 1. When all the clients contribute at their maximum capacity, i.e., pi,t = pceil for all i ∈
[N ], t ∈ [T ], we have CT = 0 and achieve asymptotic convergence limT→∞ E [F (θi,T )]− F ∗ = 0.

Corollary 1 states a very strong assumption that recovers the FedAvg algorithm: Even when only one
client fails to contribute at the maximum, all client models cannot be guaranteed to converge to the
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optimum, including for the highest-contributing client. We call this phenomenon error propagation
because low-quality model updates from low-contributing clients deteriorate the high-quality models.

Stochastic recovery strategy. To ensure convergence to the global optimum, we propose a stochastic
recovery strategy, which shares the current reference model with a client at probability q. The
reference model is allowed to have a custom induced reference reward rate γ′

ref,t. Specifically, the
reference model is trained by aggregating local model updates {gi,t}i∈Sref,t

where Sref,t is randomly
sampled from [N ] such that |Sref,t| = ⌈γ′

ref,tN⌉. Therefore, every participating client at each FL
iteration has an equal chance q of receiving the current reference model. With probability 1− q, the
client still receives from the server an update that is aggregated with the corresponding proportion
of local model updates. Algorithm 1 outlines the implementations. As we present in the following
theorem, this method prevents persistent error propagation and enables the convergence of the model.

Theorem 2 (Improved bound). Let ηt = β
t+α and B,HT be defined in Theorem 1. With a stochastic

recovery rate of q, the performance of client model θi,T trained over T FL iterations is bounded by

E [F (θi,T )]− F ∗ ≤L

2

(
T∏

t=1

(1− 2µηtτ)

)
∥θ1 − θ∗∥2 + L

2

T∑
t=1

η2t (Q+Dt + Et)

T∏
l=t+1

(1− 2µηtτ)

where DT =
HT

N

N∑
m=1

T∑
t=1

(
T + α

t+ α

)2
(

1

γ′
m,t

+
1

γ′
ref,t

− 2

)
(1− q)T−t+1

ET = HT

T∑
t=1

(
T + α

t+ α

)2
(

1

γ′
i,t

+
1

γ′
ref,t

− 2

)
(1− q)T−t+1 .

Proposition 2 (Asymptotic convergence). If 1
γ′
i,t

= o
(

t2

log t

)
for all i ∈ [N ] and 1

γ′
ref,t

= o
(

t2

log t

)
,

lim
T→∞

E [F (θi,T )]− F ∗ = 0 .

The proofs are in Appendix D.3 and Appendix D.4. Asymptotically, all clients are expected to achieve
the optimal model regardless of their contributions. To interpret the conditions for convergence, the
contributions of all clients i ∈ [N ] and the induced reference reward rate do not decrease too quickly
over time. The first condition is satisfied as 1/γ′

i,t ≤ N by definition whereas the second is user-
defined. While offering the same model in the limit may seem to work against client incentives at first
glance, clients who exit the collaboration early will not obtain the global optimal model. Theorem 2
shows that the impact of contribution γ′

i,t is reflected on ET , where ET decreases with γ′
i,t. Therefore,

a client that contributes more receives a better model with a smaller performance gap to the global
optimum. This improvement is more highlighted for limited FL iterations T (see Section 6.2).

6 EXPERIMENTS

In this section, we show the effectiveness of IAFL and the impacts of its hyperparameters. We also
show that IAFL is suited for custom contribution measure definitions and partial client participation.

Datasets & partition strategies. We use the datasets and heterogeneous data partition pipelines in
the non-IID FL Benchmark (Li et al., 2022). We simulate 50 clients for all experiments. We perform
extensive experiments on various vision datasets like MNIST (LeCun et al., 1989), FMNIST (Xiao
et al., 2017), SVHN (Netzer et al., 2011), CIFAR-10/100 (Krizhevsky, 2009), Tiny-ImageNet (Deng
et al., 2009) and language datasets Stanford Sentiment Treebank (SST) (Socher et al., 2013), Senti-
ment140 (Go et al., 2009). The datasets are partitioned among the clients following five partitioning
strategies: (1) Distribution-based label distribution skew simulates label imbalance by sampling
proportions πk from a Dirichlet distribution Dir(β) where β is the concentration parameter. For
each label class k, we sample πk and allocate πk,i of label-k samples to client i; (2) Quantity-based
label distribution skew, denoted by #C = k, creates another type of label imbalance by sampling k
label classes for each client and then randomly and equally distributing samples from class k among
eligible clients; (3) Noise-based feature distribution skew only applies to vision datasets and adds
noises with distribution N (σ · i/N) to the data of client i; (4) Quantity skew allocates πi proportion
of total data randomly to client i from a Dirichlet sample π ∼ Dir(β); (5) Homogeneous partition,
denoted by IID, partitions the samples from each class randomly and equally among the clients.
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Table 1: Comparison of IPRaccu among IAFL and baselines using different dataset partitions. Each
value reports the mean and the standard error of 10 independent evaluations and partition seedings.

Category Dataset Partitioning FedAvg Finetune LG-FedAvg CGSV Rank IAFL

Label
Distribution
Skew

MNIST Dir(0.5) 0.85±0.01 0.96±0.01 0.95±0.01 0.79±0.08 1.00±0.00
#C = 3 0.73±0.06 1.00±0.00 1.00±0.00 0.84±0.02 1.00±0.00

FMNIST Dir(0.5) 0.65±0.03 0.89±0.01 0.95±0.01 0.80±0.02 0.99±0.01
#C = 3 0.41±0.04 0.99±0.01 0.99±0.01 0.71±0.02 1.00±0.00

SVHN Dir(0.5) 0.99±0.00 1.00±0.00 0.90±0.02 0.92±0.02 1.00±0.00
#C = 3 0.35±0.05 0.97±0.01 0.56±0.09 0.46±0.02 0.82±0.02

CIFAR-10 Dir(0.5) 0.26±0.09 0.45±0.09 0.12±0.06 0.33±0.10 0.67±0.05
#C = 3 0.00±0.00 0.01±0.01 0.01±0.00 0.02±0.01 0.46±0.03

CIFAR-100 Dir(0.5) 0.37±0.05 0.96±0.02 0.00±0.00 0.83±0.02 1.00±0.00
#C = 30 0.02±0.01 0.14±0.03 0.00±0.00 0.40±0.05 0.64±0.06

SST Dir(0.5) 0.47±0.04 0.65±0.02 0.47±0.03 0.75±0.03 0.79±0.03
#C = 3 0.96±0.01 0.58±0.02 0.51±0.05 0.85±0.01 0.89±0.01

Feature
Distribution
Skew

MNIST

N (0.1)

0.19±0.03 0.70±0.04 0.98±0.01 0.21±0.04 0.71±0.09
FMNIST 0.66±0.03 0.16±0.05 0.02±0.01 0.68±0.03 1.00±0.00
SVHN 1.00±0.00 1.00±0.00 1.00±0.00 0.97±0.01 1.00±0.00

CIFAR-10 1.00±0.00 1.00±0.00 0.16±0.07 1.00±0.00 1.00±0.00
CIFAR-100 1.00±0.00 1.00±0.00 0.46±0.10 0.98±0.01 1.00±0.00

Quantity
Skew

MNIST

Dir(0.5)

0.75±0.02 0.89±0.01 0.95±0.01 0.97±0.01 0.99±0.01
FMNIST 0.88±0.02 0.80±0.03 0.52±0.02 0.90±0.02 1.00±0.00
SVHN 1.00±0.00 1.00±0.00 0.99±0.01 0.63±0.06 1.00±0.00

CIFAR-10 0.91±0.01 0.96±0.01 0.65±0.02 0.54±0.04 0.96±0.00
CIFAR-100 0.98±0.01 0.99±0.00 0.68±0.01 0.68±0.04 0.98±0.01

SST 1.00±0.00 0.57±0.05 1.00±0.00 0.94±0.01 1.00±0.00

Homogeneous
Partition

MNIST

IID

0.23±0.02 0.58±0.04 0.99±0.01 0.25±0.06 0.71±0.07
FMNIST 0.60±0.05 0.37±0.03 0.01±0.01 0.68±0.04 1.00±0.00
SVHN 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

CIFAR-10 1.00±0.00 1.00±0.00 0.26±0.09 0.99±0.00 1.00±0.00
CIFAR-100 1.00±0.00 1.00±0.00 0.64±0.08 1.00±0.00 1.00±0.00

SST 1.00±0.00 0.51±0.07 1.00±0.00 0.96±0.01 1.00±0.00
Number of times that performs the best 10 11 7 3 24

Baselines. We compare to a FedAvg (McMahan et al., 2017) baseline with local finetuning, a
personalization method LG-FedAvg (Liang et al., 2020) and two FL training-time model incentives
methods, CGSV (Xu et al., 2021) and Rank (Kong et al., 2022). In particular, CGSV has demonstrated
empirical superiority over other popular techniques such as q-FFL (Li et al., 2020c), CFFL (Lyu et al.,
2020) and ECI (Song et al., 2019). We refer to Appendix E.1 for the implementation details.

6.1 INCENTIVIZATION PERFORMANCE

Incentivized participation rate (IPR). Cho et al. (2022) proposed using IPR to measure the
incentivization performance of an FL algorithm. We let IPRloss be the percentage of clients receiving
a model not worse than his standalone model in terms of the test loss. Likewise, We define IPRaccu
but in terms of the test accuracy. Here, a standalone model refers to the model trained only with
the client’s local dataset. IPR therefore indicates IR (Definition 1). Table 1 summarizes the IPRaccu
for different methods, datasets and partitions. Notably, our IAFL achieves the highest IPRaccu 24
times out of the 29 experimental settings, out of which 17 of them have a 100% IPRaccu. Although
FedAvg Finetune and LF-FedAvg achieve comparable performance as IAFL, they are significantly
worse than IAFL under the heterogeneous learning setting with label distribution skew, which may
be the most challenging regime and the regime of interest for FL. Therefore, we have demonstrated
IAFL’s ability to facilitate effective collaboration to achieve better learning performance for federated
clients. Additionally, we attribute the imperfect IR (Remark 1) to the violation of non-decreasing and
concave assumptions for the rewarding function ν in practice, which is defined as the test accuracy in
this experiment. Alternatively choosing ν as the test loss, IAFL achieves perfect IR for almost all
settings. We show the results for IPRloss in Table 4 of Appendix E.2. Additional results on complex
large-scale datasets, Tiny-ImageNet and Sent140, are in Appendix E.9.

Correlation to contribution. Another way to quantify the incentivization performance is by mea-
suring the Pearson correlation coefficient ρ between the client model accuracies achieved by the
algorithm after T FL iterations and their standalone accuracies (Xu et al., 2021). We use standalone
accuracies as a surrogate for the client contributions in FL, hence a good incentivizing method should
produce client models with accuracies highly correlated to the respective client contributions. Table 2
presents the effectiveness of various methods under different types of heterogeneity. Most methods,
including LG-FedAvg, CGSV and Rank, could only perform well when the quality of client datasets
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Table 2: The incentivization performance under different dataset partitions, measured using the
Pearson correlation coefficient ρ between the final client model accuracies and standalone accuracies.
Each value reports the mean and the standard error over 10 independent evaluations.

Category Dataset Partitioning FedAvg Finetune LG-FedAvg CGSV Rank IAFL

Label
Distribution
Skew

MNIST Dir(0.5) 0.74±0.03 0.66±0.06 -0.80±0.02 0.71±0.08 0.81±0.02
#C = 3 0.27±0.06 0.12±0.03 -0.01±0.11 0.56±0.03 0.59±0.02

FMNIST Dir(0.5) 0.85±0.01 0.82±0.02 0.23±0.14 0.92±0.01 0.84±0.02
#C = 3 -0.05±0.09 0.35±0.05 0.28±0.04 0.65±0.01 0.86±0.02

SVHN Dir(0.5) 0.87±0.01 0.75±0.01 0.57±0.03 0.85±0.01 0.81±0.01
#C = 3 1.00±0.00 0.81±0.02 0.49±0.05 0.79±0.02 0.84±0.01

CIFAR-10 Dir(0.5) 0.76±0.04 0.84±0.03 0.46±0.04 0.79±0.03 0.79±0.02
#C = 3 0.83±0.01 0.88±0.01 0.31±0.05 0.56±0.06 0.63±0.02

CIFAR-100 Dir(0.5) 0.58±0.04 0.43±0.04 0.20±0.07 0.60±0.03 0.89±0.01
#C = 30 0.70±0.02 0.55±0.03 0.01±0.07 0.53±0.03 0.87±0.02

SST Dir(0.5) 0.83±0.01 0.97±0.00 0.73±0.04 0.89±0.02 0.72±0.02
#C = 3 0.86±0.01 0.93±0.01 0.53±0.09 0.84±0.01 0.66±0.02

Feature
Distribution
Skew

MNIST

N (0.1)

0.01±0.03 0.09±0.04 -0.02±0.04 0.03±0.04 0.39±0.09
FMNIST 0.04±0.03 0.06±0.04 0.01±0.05 0.03±0.04 0.39±0.05
SVHN 0.00±0.05 0.14±0.03 -0.01±0.07 0.13±0.05 0.41±0.07

CIFAR-10 0.08±0.05 0.08±0.04 -0.02±0.04 0.20±0.04 0.57±0.03
CIFAR-100 0.12±0.04 0.16±0.04 -0.05±0.05 0.20±0.03 0.72±0.02

Quantity
Skew

MNIST

Dir(0.5)

-0.56±0.03 0.82±0.04 0.37±0.16 0.88±0.03 0.77±0.03
FMNIST -0.37±0.03 0.90±0.01 0.86±0.04 0.94±0.01 0.78±0.02
SVHN -0.20±0.03 0.83±0.02 0.75±0.04 0.94±0.01 0.77±0.03

CIFAR-10 0.25±0.06 0.95±0.00 0.73±0.04 0.95±0.01 0.80±0.01
CIFAR-100 -0.24±0.04 0.80±0.01 0.66±0.04 0.93±0.01 0.83±0.01

SST 0.20±0.06 0.81±0.01 0.49±0.05 0.70±0.02 0.47±0.06

Homogeneous
Partition

MNIST

IID

-0.03±0.05 0.02±0.05 0.08±0.04 0.01±0.04 0.39±0.12
FMNIST 0.04±0.05 -0.06±0.05 0.01±0.03 0.12±0.04 0.39±0.05
SVHN 0.04±0.03 0.20±0.07 -0.04±0.04 0.11±0.08 0.40±0.06

CIFAR-10 0.00±0.05 0.08±0.04 -0.03±0.05 0.09±0.03 0.59±0.05
CIFAR-100 -0.02±0.03 0.08±0.04 0.05±0.07 0.18±0.04 0.71±0.02

SST 0.27±0.04 0.69±0.02 0.22±0.04 0.56±0.02 0.44±0.02

Number of times that performs the best 2 7 0 5 15

exhibits distinct differences under severe label and quantity skew. They cannot handle the more chal-
lenging scenarios under feature skew or homogeneous partition, where client data only present minor
differences in standalone accuracies. In particular, Rank further assumes access to a good global
validation set to rank local models during training, which could be infeasible in practice. FedAvg
Finetune fails the quantity skew data partition, showing even negative correlations. In contrast, IAFL
shows superior incentivization performance across extensive settings. It can achieve relatively high
ρ for all settings and perform the best for 16 out of 29 experimental settings. Therefore, IAFL has
demonstrated its ability to distribute model rewards that are commensurate with client contributions.

Predictive performance. We compare the average and highest client model test accuracies achieved
by IAFL and the baseline methods. Presented in Table 5 of Appendix E.3 and Table 10 of Ap-
pendix E.9, our IAFL outperforms other baselines in nearly all the settings. The high average client
model performance illustrates the effectiveness of collaboration following IAFL. Additionally, IAFL
is able to maintain the model performance of high-contributing clients by updating their local models
using data from a larger proportion of clients, which is important in a collaborative training setting.
Additional results showing the average increase in test accuracies are in Table 6 of Appendix E.4.

6.2 EFFECT OF HYPERPARAMETERS ON EMPIRICAL CONVERGENCE

Sharing coefficient κ. As introduced in (1), κ ∈ [0, 1] determines the extent of sharing in IAFL
and reflects an essential practical trade-off between model performance and client incentivization
(more in Appendix E.7). A larger κ results in more equitable and better client models, but this can
hurt the incentives of high-contributing clients as they receive models similar to those received by
low-contributing clients. This is reflected in Figure 1 where we plot the model performance of 6
clients with different λ′

i (see Section 5). A larger κ better utilizes local model updates and achieves
higher accuracies. However, it results in models with more similar model performance and thus worse
client incentivization measured by ρ. For convergence, Figure 1 confirms the results in Theorem 1
that less contributing clients converge to worse models, further away from the global optimum.

Stochastic recovery rate q. Stochastic recovery is introduced in IAFL to ensure asymptotic conver-
gence to the global optimum for all client models. In a stochastic manner, each client has an equal
probability q to be recovered with a reference model in each FL iteration. In practice, we recommend
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Figure 1: Effects of sharing coefficient κ with a fixed stochastic
recovery rate. We use CIFAR-100 with quantity skew and N = 50.
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Figure 2: Effects of stochastic recovery rate q with a fixed sharing
coefficient. We use CIFAR-100 with quantity skew and N = 50.

Table 3: Performance compari-
son to baselines when pi corre-
sponds to the participation rate.

Method ρ IPRaccu Acc. (highest)
FedAvg
Finetune 0.06 0.28 0.12 (0.16)

LG-FedAvg -0.25 0.60 0.13 (0.15)
CGSV 0.90 0.00 0.06 (0.07)
Rank -0.74 0.94 0.24 (0.31)
IAFL 0.94 1.00 0.44 (0.53)
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Figure 3: Visualization of corre-
lation ρ when pi corresponds to
the participation rate.

the reference model to be updated with the best reward (largest λ′
i,t) in each FL iteration, whereas

another choice of the “median” reference model is discussed in Appendix E.5. As shown in Figure 2,
stochastic recovery presents a trade-off between incentivization performance measured by ρ and the
test accuracies of client models. A small q is sufficient as q = 0.01 results in higher test accuracies
while maintaining a relatively high incentivization performance of ρ = 0.61 in finite FL iterations.
The empirical convergence observed in Figure 2 corroborates the theoretical guarantee in Theorem 2.

Free riders behavior. With differentiated training-time model rewards, IAFL can offer worsened
or delayed rewards to free riders. In Figures 1 and 2, we identify client 6 with λ′

6 = 0.09 as the
free rider as it contributes very little compared to other clients. With q = 0, the free rider only
achieves 4.6% accuracy when κ = 0 and 19.2% accuracy when the κ = 0.8. After the stochastic
recovery is incorporated, we observe the free rider receives a good recovered reward at a delayed time
stochastically and continues to worsen due to the poor model updates received in each FL iteration.

6.3 ALTERNATIVE CONTRIBUTION MEASURES

IAFL is flexible to plug-and-play with various contribution evaluation techniques out of the box (i.e.,
no modification is needed). To demonstrate the effectiveness with partial client participation, we let
the client participation rate be the measure. Specifically, we define pi = 0.5× (1+ i/N) as illustrated
in Figure 3. There is a high correlation of 0.94 between the test accuracies of client models and client
contributions measured by the participation rate pi. In Table 3, IAFL also achieves the best average
(highest) client model accuracy of 44% (53%) and IPRaccu across all methods. In Appendix E.8, we
further show IAFL’s superior effectiveness when using the established CGSV contribution measure.

7 CONCLUSION & DISCUSSION

In this paper, we have introduced the IAFL, a novel algorithm that distributes training-time model
rewards to incentive client contributions for FL. In particular, we propose a proportional aggregation
scheme for local training-time rewards that achieves the global incentivization objective. By analyzing
the theoretical guarantees of the method, we observe the error propagation phenomenon that creates
tension between client incentives and achieving optimality on client models. We then mitigate the
problem with a stochastic reference-model recovery strategy, which enables us to distribute globally
optimal models in the limit while preserving client incentives. Our method is highly versatile and can
be applied to a wider range of domains (e.g., financial, biomedical, etc.) as it allows novel definitions
of the contribution measure according to the specific resources that are valuable in the domain.

Our work also opens up several directions for future investigation. It is important to study the roles of
the server and clients in determining the contribution measure and rewarding strategy. Additionally,
there can be tensions and mismatches between the contribution measure and the model rewards
because clients can continuously contribute, while model performance cannot grow infinitely and
suffers from diminishing returns. We further elaborate on the broader societal impacts in Appendix A.
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REPRODUCIBILITY STATEMENT

We have carefully discussed all the assumptions for the theoretical results and included the complete
proofs for all theorems, lemmas and propositions in Appendix B. To further improve the repro-
ducibility of our work, we elaborate in Appendix E.1 the details for dataset preprocessing, models
architectures, hyperparameters for training using IAFL as well as training using all the baseline
methods that we compare to. The code has been submitted as supplementary material.
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A BROADER IMPACTS AND ETHICS

Designed to promote client contribution among potentially competitive clients in FL, our incentive-
aware federated learning algorithm with training-time model reward offers versatile applications in
various fields such as finance, healthcare, the Internet of things, etc. While our proposed method is
capable of shaping the pipeline of collaboration between the server and clients in distributed learning,
we also see potential societal impacts associated with the development of such incentive methods.

Firstly, the use of highly customizable contribution measures presents both advantages and challenges.
While it is technically feasible to employ any contribution measure, ethical considerations arise
when certain choices of the contribution measure do not align well with the training-time model
reward. For instance, the rewards based on model performance (e.g., using the test performance
as a utility measure), cannot infinitely improve and should exhibit diminishing returns with respect
to the contribution of learning resources. This raises questions about the ethical implications of
incentivizing client contributions in these later stages of model training, especially when the marginal
utility is minimal. Is it ethical to continue incentivizing client contributions at later FL iterations
(e.g., near convergence), knowing that the marginal utility of contribution is small? Is it reasonable to
reward a client less at a later FL iteration, even though the client contributes more in this FL iteration
as compared to some earlier iterations? These concerns need to be addressed with specific application
scenarios, taking into account the characteristics of the server and clients. In order to mitigate these
ethical concerns, it may be necessary to enforce regulations on the protocol to ensure the adoption of
an accumulative contribution measure.

Secondly, the ethical considerations regarding the distribution of rewards require closer examination.
In this paper, we adopt the perspective of collaborative fairness (Xu & Lyu, 2021), where our
incentive-aware algorithm encourages client contributions by providing rewards commensurate with
their level of contribution. However, some may argue that this approach violates equitable fairness (Li
et al., 2020c) among clients. Interestingly, our stochastic reference-model recovery with a tunable
probability q ensures equitable fairness in the long run (i.e., as the number of FL iterations approaches
infinity). By adjusting the value of q, a balance can be struck between collaborative fairness and
equitable fairness. Smaller q values prioritize collaborative fairness, while larger q values emphasize
equitable fairness. Therefore, guidelines should be established to assist the server and clients in
collaboratively determining the algorithm’s hyperparameters, thereby minimizing potential ethical
concerns.

Thirdly, reward distribution within the broader spectrum of collaborative learning may require careful
ethical considerations. In this paper, we give out training-time model rewards due to the difficulties
of timeliness and feasibility (discussed in Section 1) associated with post-training monetary rewards.
We believe future investigations could potentially open up new opportunities if we can incorporate
both monetary and non-monetary (e.g., model) rewards when considering client incentives in FL
training. However, the challenge lies in determining the denomination between monetary incentives
and model incentives both technically and ethically. Nguyen et al. (2022) offer some insights on
dealing with the following scenario: How can one rectify a situation where a client’s contribution
does not correspond to a good model reward, but the client desires to obtain a better model by offering
additional monetary payments? Addressing these interesting questions could bring us a more holistic
view of incentivization and collaboration in learning. At the same time, apart from the technical
perspective, more in-depth ethical studies may be necessary to regulate such denominations between
monetary and non-monetary rewards for client incentivization in practice.

B PROOFS

B.1 PROOF OF PROPOSITION 1

Proposition 1. If h̃ satisfies dh̃(pi,p−i)
dpi

> 0 and ∂ν(pi,h̃(pi,p−i))

∂h̃(pi,p−i)
> 0, then a mechanism [Mν(p)]i =

ν(pi, h̃(pi,p−i)) incentivizes a client to contribute more than that in the standard FL mechanism.
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Proof. The utility of client i with pi contribution can be written as

ui = [Mν(p)]i − cipi

= ν(pi, h̃(pi,p−i))− cipi .

Thus, taking the derivative with respect to pi, we have

u′
i =

∂ν

∂pi

dpi
dpi

+
∂ν

∂h̃(pi,p−i)

dh̃(pi,p−i)

dpi
− ci

=
∂ν

∂pi
+

∂ν

∂h̃(pi,p−i)

dh̃(pi,p−i)

dpi
− ci .

(2)

In the standard FL mechanism, we have h̃(pi,p−i) = h(p−i) where h(p−i) is independent of pi.
This implies dh̃(pi,p−i)

dpi
= 0. The derivative of the utility is

u
′(FL)
i =

∂ν

∂pi
− ci .

If the following conditions are satified: 1 ∂ν
∂h̃(pi,p−i)

> 0 and 2 dh̃(pi,p−i)
dpi

> 0, according to (2)

we will have u′
i > u

′(FL)
i for any pi.

To maximize the utility, a rational client i will contribute p∗i such that u′
i = 0. Since ui is in general a

concave function and u′
i > u

′(FL)
i for any pi with 1 ∂ν

∂h̃(pi,p−i)
> 0 and 2 dh̃(pi,p−i)

dpi
> 0, we have

p∗i > p
∗(FL)
i . That is, the mechanism with such a h̃ incentivizes a client to contribute more than that

in the standard FL mechanism.

B.2 PROOF OF PROPOSITION 3

Proposition 3. There exists an undesirable equilibrium in the relative reward mechanism [Mν(p)]i =

ν
(
pi,

pi

maxj pj
h(p−i)

)
. Specifically, the equilibrium elicits contributions from all client that sums to

what a single client would contribute without the federation.

Proof. This is a constructive proof for existence.

We consider N identical clients each with a common cost ci = c,∀i ∈ {1, . . . , N}. Let the rewarding
function ν be a composition function such that ν(pi, P−i) = g(f(pi, P−i)) where g is a continuous
non-decreasing concave function and f(pi, P−i) = pi + P−i. Furthermore, we define the aggregate
function as h(p−i) =

∑
j:j∈[N ]∧j ̸=i pj .

Define an optimal contribution p∗ for an individual client, such that ν′(p∗, P−i) = g′(p∗) = c. This
is because P−i = h(p−i) = 0 when there is only an individual client.

Now, if every client contributes p∗/N (i.e., p = [p∗/N, . . . , p∗/N ]), we have pi

maxj pj
= 1 for all i

and thus
[Mν(p)]i = ν(p∗/N, h([p∗/N, . . . , p∗/N ]︸ ︷︷ ︸

N−1 terms

))

= g(f(p∗/N,
∑

j:j∈[N ]∧j ̸=i

pj))

= g

(
p∗

N
+ (N − 1)

p∗

N

)
= g(p∗) .

In this case, clients reach a bad Nash equilibrium as the total contribution from all the federated
clients is the same as a single client’s contribution in the non-federated environment. Here, in the
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Nash equilibrium, each client is assumed to know the equilibrium strategies of the other participating
clients, and no client can increase one’s own utility by deviating to other strategies. In other words,
the mechanism does not incentivize clients to contribute more.

C CONNECTION BETWEEN THE MECHANISM AND THE IAFL ALGORITHM

We draw the connections between the IAFL algorithm in Algorithm 1 and the mechanism in (1)
through a simplifying scenario. Consider N homogeneous clients producing updates {gi,t}Ni=1 that
follow a population with the same mean µ. The update ∆θi,t follows the sampling distribution
of the mean with Var(∆θi,t) = σ2

t /|Si,t| where σt is the population variance. Note that step 4 of
Procedure 2 aggregates the contribution of client i, ∆θi,t, with the sampled contributions of other
clients. Taking the reciprocal of the variance as the quality of the training-time model update reward,
then

1

Var(∆θi,t)
=

1

σ2
t

+

(
min

{
pi,t
pceil

, 1

})1−κ
N − 1

σ2
t

,

which matches the mechanism in (1).

D PROOF OF THE CONVERGENCE

Denote the optimal solution of F (θ) by θ∗ such that F ∗ = F (θ∗). Similarly, we denote F ∗
i = Fi(θ

∗
i )

where θ∗
i is the optimal solution of Fi(θ). We define the data bias as Γ ≜ F ∗ − 1

N

∑N
i=1 F

∗
m. We set

the learning rate for client i at FL iteration t to common rate ηt = ηi,t,∀i. Recall that the j-th step of
stochastic gradient decent at client i is θj+1

i,t = θj
i,t − ηt∇Fi(θ

j
i,t, ξ

j
i,t) where ξji,t is the local batch

randomly chosen for the SGD step. Note that θ1
i,t = θi,t is the model at client i at the beginning of a

FL iteration t. At the end of each FL iteration, a client i updates its model to

θi,t+1 = θi,t − ηt
1

|Si,t|
∑

m∈Si,t

τ∑
j=1

∇Fm(θj
m,t, ξ

j
m,t)

where Si,t is defined in Algorithm 1 as the set of indices that a client i can aggregate from in a given
FL iteration t. Without loss of generality, we assume that γ′

i,tN is an integer. In practice, the ceilling
⌈γ′

i,tN⌉ can be used. Note that |Si,t| = γ′
i,tN .

For simplicity, we denote the update for client i in iteration t as

Ri,t = −ηt
1

|Si,t|
∑

m∈Si,t

τ∑
j=1

∇Fm(θj
m,t, ξ

j
m,t) .

Since Ri,t essentially computes the i.i.d. sample mean from the population {gm,t}Nm=1 =

{−ηt∇Fm(θj
m,t, ξ

j
m,t)}Nm=1 for each FL iteration t, we have E[Ri,t] = E[Rj,t] for all i, j ∈

{1, . . . , N}.

For the analysis in this section, we make the following assumptions on the functions F1, . . . , FN :
Assumption 1 (L-smoothness). The loss function Fm is L-smooth, then for all u,v ∈ Rd,

2(Fm(u)− Fm(v)) ≤ 2⟨u− v,∇Fm(v)⟩+ L ∥u− v∥2 , ∀m ∈ [N ] .

Assumption 2 (µ-strong convexity). The loss functions F1, . . . , FN for all N clients are µ-strongly
convex, then for all u,v ∈ Rd,

2(Fm(u)− Fm(v)) ≥ 2⟨u− v,∇Fm(v)⟩+ µ ∥u− v∥2 , ∀m ∈ [N ] .

Assumption 3 (Expected stochastic gradient variance). The variance of stochastic gradients in a
client is bounded,

E
[∥∥∥∇Fm(θj

m,t, ξ
j
m,t)−∇Fm(θj

m,t)
∥∥∥2] ≤ σ̃2

m, ∀m ∈ [N ],∀j ∈ [τ ],∀t ∈ [T ] .

We further define Σ̃2 = 1
N

∑N
i=1 σ̃

2
m as the average expected stochastic gradient variance among

clients.
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Assumption 4 (Expected squared l2-norm). The expected squared l2-norm of the stochastic gradients
is uniformly bounded,

E
[∥∥∥∇Fm(θj

m,t, ξ
j
m,t)

∥∥∥2] ≤ G2, ∀m ∈ [N ],∀j ∈ [τ ],∀t ∈ [T ] .

D.1 PROOF OF THEOREM 1

Theorem 1 (Performance bound). With full clients participation and a decreasing learning rate
ηt = 1

µτ(t+α) where α ≥ 4L(τ+1)
µτ , define B = 2Lτ(2τ + 3)Γ + 2τ3G2 + τ2Σ̃2 + (α +

1)µ2τ2E[∥θ1 − θ∗∥2] and HT = (2 − 2µηT )τ
3G2, then the performance of the client model

θi,T trained over T FL iterations using IAFL is bounded by

E [F (θi,T )]− F ∗ ≤ L

2µ2τ2
· B + CT

α+ T

where CT =
HT

N

N∑
m=1

T∑
t=1

(
T + α

t+ α

)2
(

1

γ′
m,t

+
1

γ′
i,t

− 2

)
.

Proof. Define a decreasing learning rate ηt =
β

t+α for some β > 1
2µτ and α ≥ 4L(τ+1)

µτ .

From Lemma D.1, we have the following for any client i after we train for T FL iterations,

E
[
∥θi,T+1 − θ∗∥2

]
≤ (1− 2µηT τ)E

[
∥θi,T − θ∗∥2

]
+ 2Lτ(2τ + 3)η2TΓ

+ (2− 2µηT )
1

N

N∑
m=1

τ∑
j=1

E
[∥∥∥θj

m,T − θi,T

∥∥∥2]+ η2T τ
2Σ̃2 .

(3)

From Lemma D.2, we have the following for any pair of clients w and v after we train for T FL
iterations,

E
[∥∥∥θj

w,T − θ1
v,T

∥∥∥2] ≤ τ2G2
T∑

t=1

η2t

(
1

γ′
w,t

+
1

γ′
v,t

− 2

)
+ η2T (j − 1)2G2 . (4)

Then,

E
[
∥θi,T+1 − θ∗∥2

]
≤ (1− 2µηT τ)E

[
∥θi,T − θ∗∥2

]
+ 2Lτ(2τ + 3)η2TΓ + η2T τ

2Σ̃2

+ (2− 2µηT )
1

N

N∑
m=1

τ∑
j=1

(
τ2G2

T∑
t=1

η2t

(
1

γ′
m,t

+
1

γ′
i,t

− 2

)
+ η2T (j − 1)2G2

)

= (1− 2µηT τ)E
[
∥θi,T − θ∗∥2

]
+ η2T

2Lτ(2τ + 3)Γ + (2− 2µηT )G
2

τ∑
j=1

(j − 1)2 + τ2Σ̃2


+ (2− 2µηT )

1

N

N∑
m=1

τ∑
j=1

(
τ2G2

T∑
t=1

η2t

(
1

γ′
m,t

+
1

γ′
i,t

− 2

))

≤ (1− 2µηT τ)E
[
∥θi,T − θ∗∥2

]
+ η2T

(
2Lτ(2τ + 3)Γ + 2τ3G2 + τ2Σ̃2

)
+ η2T (2− 2µηT )τ

3G2 1

N

N∑
m=1

T∑
t=1

(
T + α

t+ α

)2
(

1

γ′
m,t

+
1

γ′
i,t

− 2

)
= (1− 2µηT τ)E

[
∥θi,T − θ∗∥2

]
+ η2T (Q+ CT )

(5)
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where for simplicity we define shorthands Q = 2Lτ(2τ + 3)Γ + 2τ3G2 + τ2Σ̃2, HT = (2 −
2µηT )τ

3G2 and CT = HT

N

∑N
m=1

∑T
t=1

(
T+α
t+α

)2 (
1

γ′
m,t

+ 1
γ′
i,t

− 2
)

. Note that Q is a constant
whereas CT is dependent on T .

Let ∆t = E
[
∥θi,t − θ∗∥2

]
. We now aim to prove ∆t ≤ vt

α+t by induction where vt =

max
{

β2(Q+Ct)
2βµτ−1 , (α+ 1)∆1

}
. When t = 1, we have ∆1 ≤ v1

α+1 by definition. Now assume
∆t ≤ vt

α+t for some t, then from (5) we have

∆t+1 ≤
(
1− 2βµτ

t+ α

)
vt

t+ α
+

β2(Q+ Ct)

(t+ α)2

≤
(
1− 2βµτ

t+ α

)
vt

t+ α
+

2βµτ − 1

(t+ α)2
vt

=
vt

t+ α
− vt

(t+ α)2

≤ vt
t+ α

− vt
(t+ α)(t+ α+ 1)

=
vt

t+ α+ 1
(a)
≤ vt+1

t+ α+ 1

(6)

where (a) follows from Ct ≤ Ct+1 and Ht ≤ Ht+1.

From the L-smoothness of F ,

E [F (θi,T )]− F ∗ ≤ L

2
∆T ≤ L

2
· vT
α+ T

. (7)

Specifically, we let β = 1
µτ and train for t = T iterations, then

vT = max

{
β2(Q+ CT )

2βµτ − 1
, (α+ 1)∆1

}
≤ β2(Q+ CT )

2βµτ − 1
+ (α+ 1)∆1

=
Q+ CT

µ2τ2
+ (α+ 1)∆1 .

(8)

Finally, substituting (8) into (7), we get

E [F (θi,T )]− F ∗ ≤ L

2(α+ T )

(
Q+ CT

µ2τ2
+ (α+ 1)∆1

)
. (9)

Define B = Q+ (α+ 1)µ2τ2E
[
∥θ1 − θ∗∥2

]
, we simplify the inequality to

E [F (θi,T )]− F ∗ ≤ L

2µ2τ2(α+ T )

(
Q+ CT + (α+ 1)µ2τ2∆1

)
=

L

2µ2τ2
· B + CT

α+ T
.

(10)
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D.2 DEFERRED PROOFS OF LEMMAS

Lemma D.1. Given ηt ≤ 1
4L(τ+1) and Assumptions 1-3,

E
[
∥θi,t+1 − θ∗∥2

]
≤ (1− 2µηtτ)E

[
∥θi,t − θ∗∥2

]
+ 2Lτ(2τ + 3)η2tΓ

+ (2− 2µηt)
1

N

N∑
m=1

τ∑
j=1

E
[∥∥∥θj

m,t − θi,t

∥∥∥2]+ η2t τ
2Σ̃2 .

(11)

Proof. In this proof, we define

R̄i,t = −ηt
1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

∇Fm(θj
m,t) . (12)

To simplify the notation in this proof, we use θi,t interchangeably with θ1
i,t to denote the model of

client i at FL iteration t without performing any local updates.

We write

∥θi,t+1 − θ∗∥2

=
∥∥θi,t +Ri,t − θ∗ − R̄i,t + R̄i,t

∥∥2
=
∥∥θi,t − θ∗ + R̄i,t

∥∥2 + ∥∥Ri,t − R̄i,t

∥∥2 + 2⟨θi,t − θ∗ + R̄i,t, Ri,t − R̄i,t⟩ .

(13)

Step 1: Bounding the second and third term in (13)

Bound the second term in (13) in expectation with respect to ξjm,t and Si,t,

ES,ξ

[∥∥Ri,t − R̄i,t

∥∥2]
= ES,ξ


∥∥∥∥∥∥−ηt

1

γ′
i,tN

N∑
m∈Si,t

τ∑
j=1

(∇Fm(θj
m,t, ξ

j
m,t)−∇Fm(θj

m,t))

∥∥∥∥∥∥
2


≤ η2t τES

 1

γ′
i,tN

N∑
m∈Si,t

τ∑
j=1

Eξ

[∥∥∥∇Fm(θj
m,t, ξ

j
m,t)−∇Fm(θj

m,t))
∥∥∥2]


(a)
≤ η2t τ

2ES

 1

γ′
i,tN

N∑
m∈Si,t

σ̃2
m


(b)
= η2t τ

2Σ̃2

(14)

where (a) and (b) both follow from Assumption 3.

The expectation of the third term in (13) is zero. That is,

E
[
2⟨θi,t − θ∗ + R̄i,t, Ri,t − R̄i,t⟩

]
= 0 (15)

because E [Ri,t] = R̄i,t.

Step 2: Bounding the first term in (13)

We write ∥∥θi,t − θ∗ + R̄i,t

∥∥2 = ∥θi,t − θ∗∥2 +
∥∥R̄i,t

∥∥2 + 2⟨θi,t − θ∗, R̄i,t⟩ . (16)

We will next bound
∥∥R̄i,t

∥∥2 and 2⟨θi,t − θ∗, R̄i,t⟩, respectively.
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Step 2.1: Bounding
∥∥R̄i,t

∥∥2
From the Assumption 1 of L-smoothness for Fm, due to Lemma 4 of (Zhou, 2018), we have∥∥∥∇Fm(θj

m,t)
∥∥∥2 ≤ 2L(Fm(θj

m,t))− F ∗
m) . (17)

Bounding the second term in the RHS of (16), we have

∥∥R̄i,t

∥∥2 = η2t

∥∥∥∥∥∥ 1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

∇Fm(θj
m,t)

∥∥∥∥∥∥
2

≤ η2t
1

γ′
i,tN

∑
m∈Si,t

∥∥∥∥∥∥
τ∑

j=1

∇Fm(θj
m,t)

∥∥∥∥∥∥
2

≤ η2t τ
1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

∥∥∥∇Fm(θj
m,t)

∥∥∥2
≤ 2Lη2t τ

1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

(Fm(θj
m,t)− F ∗

m) .

(18)

Step 2.2: Bounding 2⟨θi,t − θ∗, R̄i,t⟩

Bounding the last term in the RHS of (16), we rewrite

2⟨θi,t − θ∗, R̄i,t⟩ = 2⟨θi,t − θ∗,−ηt
1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

∇Fm(θj
m,t)⟩

= 2ηt
1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

⟨θ∗ − θi,t,∇Fm(θj
m,t)⟩

= 2ηt
1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

⟨θj
m,t − θi,t,∇Fm(θj

m,t)⟩

+ 2ηt
1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

⟨θ∗ − θj
m,t,∇Fm(θj

m,t)⟩ .

(19)

Consider the first term in (19),

2ηt
1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

⟨θj
m,t − θi,t,∇Fm(θj

m,t)⟩

≤ ηt
1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

[
1

ηt

∥∥∥θj
m,t − θi,t

∥∥∥2 + ηt

∥∥∥∇Fm(θj
m,t)

∥∥∥2]

=
1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

∥∥∥θj
m,t − θi,t

∥∥∥2 + η2t
1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

∥∥∥∇Fm(θj
m,t)

∥∥∥2 .

(20)

Consider the second term in (19),

2ηt
1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

⟨θ∗ − θj
m,t,∇Fm(θj

m,t)⟩

(a)
≤ 2ηt

1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

[
Fm(θ∗)− Fm(θj

m,t)−
µ

2

∥∥∥θj
m,t − θ∗

∥∥∥2] (21)
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where (a) follows from Assumption 2.

Step 3: Putting the results together

In the previous step, we want to bound (16). Applying (18), (20) and (21), we have

∥∥θi,t − θ∗ + R̄i,t

∥∥2
= ∥θi,t − θ∗∥2 +

∥∥R̄i,t

∥∥2 + 2⟨θi,t − θ∗, R̄i,t⟩

≤ ∥θi,t − θ∗∥2 + 2Lη2t τ
1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

(Fm(θj
m,t)− F ∗

m)

+
1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

∥∥∥θj
m,t − θi,t

∥∥∥2 + η2t
1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

∥∥∥∇Fm(θj
m,t)

∥∥∥2
+ 2η(t)

1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

[
Fm(θ∗)− Fm(θj

m,t)−
µ

2

∥∥∥θj
m,t − θ∗

∥∥∥2]
(a)
= ∥θi,t − θ∗∥2 − µηt

1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

∥∥∥θj
m,t − θ∗

∥∥∥2 + 1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

∥∥∥θj
m,t − θi,t

∥∥∥2
+ 2L(τ + 1)η2t

1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

(Fm(θj
m,t)− F ∗

m) + 2ηt
1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

(
Fm(θ∗)− Fm(θj

m,t)
)

︸ ︷︷ ︸
At

(b)
≤ ∥θi,t − θ∗∥2 − 2µηt

1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

∥θi,t − θ∗∥2

+ (1− 2µηt)
1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

∥∥∥θj
m,t − θi,t

∥∥∥2 +At

= (1− 2µηtτ) ∥θi,t − θ∗∥2 + (1− 2µηt)
1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

∥∥∥θj
m,t − θi,t

∥∥∥2 +At (22)

where (a) follows from L-smoothness in (17) and rearranging and (b) follows from
∥∥∥θj

m,t − θ∗
∥∥∥2 ≤

2
∥∥∥θj

m,t − θi,t

∥∥∥2 + 2 ∥θi,t − θ∗∥2.

We next bound At in expectation. Define Wt = 2ηt(1− 2L(τ + 1)ηt). Note that we define ηt such
that ηt ≤ 1

4L(τ+1) . Hence, Wt > 0.
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From the definition of A above, we have

At = 2L(τ + 1)η2t
1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

(Fm(θj
m,t)− F ∗

m)

+ 2ηt
1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

(
Fm(θ∗)− F ∗

m + F ∗
m − Fm(θj

m,t)
)

= −2ηt(1− 2L(τ + 1)ηt)
1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

(Fm(θj
m,t)− F ∗

m)

+ 2ηt
1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

(Fm(θ∗)− F ∗
m)

= −Wt
1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

(Fm(θj
m,t)− F ∗)−Wtτ

1

γ′
i,tN

∑
m∈Si,t

(F ∗ − F ∗
m)

+ 2ηtτ
1

γ′
i,tN

∑
m∈Si,t

(Fm(θ∗)− F ∗
m) .

(23)

Therefore,

E [At] = E

−Wt
1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

(Fm(θj
m,t)− F ∗)

+

−Wtτ
1

γ′
i,tN

E

 ∑
m∈Si,t

(F ∗ − F ∗
m)

+ 2ηtτ
1

γ′
i,tN

E

 ∑
m∈Si,t

(Fm(θ∗)− F ∗
m)


(a)
= E

−Wt
1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

(Fm(θj
m,t)− F ∗)

+ 4Lτ(τ + 1)η2tΓ

(24)

where (a) follows from E
[

1
γ′
i,tN

∑
m∈Si,t

(F ∗ − F ∗
m)
]
= 1

N

∑N
m=1(F

∗ − F ∗
m) = Γ.

Note that in the equation above, we have

1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

(Fm(θj
m,t)− F ∗)

=
1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

(Fm(θj
m,t)− Fm(θi,t)) +

1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

(Fm(θi,t)− F ∗)

(a)
≥ 1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

⟨∇Fm(θi,t),θ
j
m,t − θi,t⟩+

1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

(Fm(θi,t)− F ∗)

≥ − 1

2γ′
i,tN

∑
m∈Si,t

τ∑
j=1

[
ηt ∥∇Fm(θi,t)∥2 +

1

ηt

∥∥∥θj
m,t − θi,t

∥∥∥2]

+
1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

(Fm(θi,t)− F ∗)

(b)
≥ − 1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

[
ηtL(Fm(θi,t)− F ∗

m) +
1

2ηt

∥∥∥θj
m,t − θi,t

∥∥∥2]

+
1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

(Fm(θi,t)− F ∗) (25)
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where (a) follows from Assumption 2 and (b) follows from (17). Therefore,

−Wt
1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

(Fm(θj
m,t)− F ∗)

≤ Wt
1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

[
ηtL(Fm(θi,t)− F ∗

m) +
1

2ηt

∥∥∥θj
m,t − θi,t

∥∥∥2]

−Wt
1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

(Fm(θi,t)− F ∗)

= Wt(ηtL− 1)
1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

(Fm(θi,t)− F ∗)

+WtηtL
1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

(F ∗ − F ∗
m) +

Wt

2ηt

1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

∥∥∥θj
m,t − θi,t

∥∥∥2
(a)
≤ WtηtL

1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

(F ∗ − F ∗
m) +

1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

∥∥∥θj
m,t − θi,t

∥∥∥2

(26)

where (a) follows from ηtL− 1 ≤ 0 and 1
γ′
i,tN

∑
m∈Si,t

∑τ
j=1(Fm(θi,t)− F ∗) ≥ 0, and also from

the fact that ηt ≤ Wt ≤ 2ηt given that ηt ≤ 1
4L(τ+1) .

Then, substituting (26) into (24),

E [At] ≤ WtηtLτ
1

γ′
i,tN

E

 ∑
m∈Si,t

(F ∗ − F ∗
m)


+ E

 1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

∥∥∥θj
m,t − θi,t

∥∥∥2
+ 4Lτ(τ + 1)η2tΓ

(a)
≤ 2Lτη2t (2τ + 3)Γ + E

 1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

∥∥∥θj
m,t − θi,t

∥∥∥2


(27)

where (a) again follows from E
[

1
γ′
i,tN

∑
m∈Si,t

(F ∗ − F ∗
m)
]
= 1

N

∑N
m=1(F

∗ − F ∗
m) = Γ.

Finally, taking expectation of (22) and then substituting (27), we have

E
[∥∥θi,t − θ∗ + R̄i,t

∥∥2]
≤ (1− 2µηtτ)E

[
∥θi,t − θ∗∥2

]
+ (1− 2µηt)E

 1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

∥∥∥θj
m,t − θi,t

∥∥∥2


+ 2Lτ(2τ + 3)η2tΓ + E

 1

γ′
i,tN

∑
m∈Si,t

τ∑
j=1

∥∥∥θj
m,t − θi,t

∥∥∥2


= (1− 2µηtτ)E
[
∥θi,t − θ∗∥2

]
+ 2Lτ(2τ + 3)η2tΓ

+ (2− 2µηt)
1

N

N∑
m=1

τ∑
j=1

E
[∥∥∥θj

m,t − θi,t

∥∥∥2] .

(28)

Step 4: Concluding the proof
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Lastly, we take expectation of (13) and substitute (28), (14), (15),

E
[
∥θi,t+1 − θ∗∥2

]
= E

[∥∥θi,t − θ∗ + R̄i,t

∥∥2]+ E
[∥∥Ri,t − R̄i,t

∥∥2]
(a)
≤ (1− 2µηtτ)E

[
∥θi,t − θ∗∥2

]
+ 2Lτ(2τ + 3)η2tΓ

+ (2− 2µηt)
1

N

N∑
m=1

τ∑
j=1

E
[∥∥∥θj

m,t − θi,t

∥∥∥2]+ η2t τ
2Σ̃2 .

(29)

Note that we have two sources of uncertainties above. They are 1) the random selection of updates
from Si,t in Ri,t and 2) the stochastic gradients ξjm,t. We have taken expectation with respect to both
of them above.

Lemma D.2. Given Assumption 4,

E
[∥∥∥θj

w,t − θ1
v,t

∥∥∥2] ≤ τ2G2
t∑

z=1

η2z

(
1

γ′
w,z

+
1

γ′
v,z

− 2

)
+ η2t (j − 1)2G2 . (30)

Proof. Using the Cauchy-Schwarz inequality, we first bound

E
[∥∥θ1

w,t − θ1
v,t

∥∥2]
= E

∥∥∥∥∥
t∑

z=1

(Rw,z −Rv,z)

∥∥∥∥∥
2


(a)
=

t∑
z=1

E
[
∥Rw,z −Rv,z∥2

]

=

t∑
z=1

E

η2z
∥∥∥∥∥∥ 1

|Sw,z|
∑

m∈Sw,z

τ∑
j=1

∇Fm(θj
m,z, ξ

j
m,z)−

1

|Sv,z|
∑

m∈Sv,z

τ∑
j=1

∇Fm(θj
m,z, ξ

j
m,z)

∥∥∥∥∥∥
2


(b)
=

t∑
z=1

η2zE


∥∥∥∥∥∥∥∥
(

1

γ′
w,zN

− 1

γ′
v,zN

) ∑
m∈Sw,z

∧m∈Sv,z

τ∑
j=1

∇Fm(θj
m,z, ξ

j
m,z)

+
1

γ′
w,zN

∑
m∈Sw,z

∧m/∈Sv,z

τ∑
j=1

∇Fm(θj
m,z, ξ

j
m,z)−

1

γ′
v,zN

∑
m∈Sv,z

∧m/∈Sw,z

τ∑
j=1

∇Fm(θj
m,z, ξ

j
m,z)

∥∥∥∥∥∥∥∥
2

(c)
≤

t∑
z=1

η2z

[
γ′
w,zγ

′
v,zN

(
1

γ′
w,zN

− 1

γ′
v,zN

)2

+ γ′
w,z(1− γ′

v,z)N

(
1

γ′
w,zN

)2

+γ′
v,z(1− γ′

w,z)N

(
1

γ′
v,zN

)2
]
E

 N∑
m=1

∥∥∥∥∥∥
τ∑

j=1

∇Fm(θj
m,z, ξ

j
m,z)

∥∥∥∥∥∥
2


=

t∑
z=1

η2z

(
1

γ′
w,z

+
1

γ′
v,z

− 2

)
1

N

 N∑
m=1

E


∥∥∥∥∥∥

τ∑
j=1

∇Fm(θj
m,z, ξ

j
m,z)

∥∥∥∥∥∥
2
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(d)
≤ τ2G2

t∑
z=1

η2z

(
1

γ′
w,z

+
1

γ′
v,z

− 2

)
(31)

where (a) follows from the independent nature of Ri,z’s at different z, ∀i and E [Rw,z −Rs,z] = 0,
(b) follows from the algorithm such that |Si,z| = γi,z(N−1)+1 = γ′

i,zN for all i ∈ [N ], (c) follows
from expected number of party indices in Sw,z,Sv,z and (d) follows from Assumption 4. Note that
here we assume γ′

i,zN is a positive integer w.l.o.g.

Then, we bound the model that has performed j − 1 local gradient steps,

E
[∥∥∥θj

w,t − θ1
v,t

∥∥∥2] (32)

= E

∥∥∥∥∥θ1
w,t − ηt

j−1∑
b=1

∇Fw(θ
b
w,t, ξ

b
w,t)− θ1

v,t

∥∥∥∥∥
2
 (33)

= E
[∥∥θ1

w,t − θ1
v,t

∥∥2]+ E

∥∥∥∥∥−ηt

j−1∑
b=1

∇Fw(θ
b
w,t, ξ

b
w,t)

∥∥∥∥∥
2
 (34)

+ E

[
2⟨θ1

w,t − θ1
v,t,−ηt

j−1∑
b=1

∇Fw(θ
b
w,t, ξ

b
w,t)⟩

]
(35)

(a)
= E

[∥∥θ1
w,t − θ1

v,t

∥∥2]+ E

∥∥∥∥∥−ηt

j−1∑
b=1

∇Fw(θ
b
w,t, ξ

b
w,t)

∥∥∥∥∥
2
 (36)

≤ E
[∥∥θ1

w,t − θ1
v,t

∥∥2]+ η2t (j − 1)

j−1∑
b=1

E
[∥∥∇Fi(θ

b
i,t, ξ

b
i,t)
∥∥2] (37)

(b)
≤ E

[∥∥θ1
w,t − θ1

v,t

∥∥2]+ η2t (j − 1)2G2 (38)

(c)
≤ τ2G2

t∑
z=1

η2z

(
1

γ′
w,z

+
1

γ′
v,z

− 2

)
+ η2t (j − 1)2G2 (39)

where (a) follows from E
[
θ1
w,t − θ1

v,t

]
=
∑t−1

z=0 E [Rw,z −Rv,z] = 0, (b) follows from Assump-
tion 4 and (c) follows from (31).

D.3 PROOF OF THEOREM 2

Theorem 2 (Improved bound). Let ηt = β
t+α and B,HT be defined in Theorem 1. With a stochastic

recovery rate of q, the performance of client model θi,T trained over T FL iterations is bounded by

E [F (θi,T )]− F ∗ ≤L

2

(
T∏

t=1

(1− 2µηtτ)

)
∥θ1 − θ∗∥2 + L

2

T∑
t=1

η2t (Q+Dt + Et)

T∏
l=t+1

(1− 2µηtτ)

where DT =
HT

N

N∑
m=1

T∑
t=1

(
T + α

t+ α

)2
(

1

γ′
m,t

+
1

γ′
ref,t

− 2

)
(1− q)T−t+1

ET = HT

T∑
t=1

(
T + α

t+ α

)2
(

1

γ′
i,t

+
1

γ′
ref,t

− 2

)
(1− q)T−t+1 .

Proof. Let 0 ≤ q ≤ 1 be the probability of stochastic recovery. During stochastic recovery, a client
recovers a reference model. We denote θref as the reference model parameter and Rref,t as the reward
for the reference model at iteration t, which is determined by the induced reference reward rate γ′

ref,t.
Let h be the number of iterations the client has not synchronized for.
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With the introduction of the reference model, the difference ∥θm,t − θi,t∥2 between two models at
an iteration t can be broken down into ∥θm,t − θref,t∥2 and ∥θref,t − θi,t∥2, which can be better
bounded using the stochastic recovery rate 0 ≤ q ≤ 1.

We now derive a new bound for the expected difference between a client model θw,T and the reference
model θref,T at an iteration T ,

E
[∥∥θ1

w,T − θ1
ref,T

∥∥2]
=

T∑
h=1

q(1− q)hE

∥∥∥∥∥
T∑

z=T+1−h

(Rw,z −Rref,z)

∥∥∥∥∥
2


(a)
=

T∑
h=1

q(1− q)h

[
T∑

z=T+1−h

E
[
∥(Rw,z −Rref,z)∥2

]]

= q

[[
T∑

h=1

(1− q)h

]
E
[
∥Rw,T −Rref,T ∥2

]
+ . . .+

[
T∑

h=T

(1− q)h

]
E
[
∥Rw,1 −Rref,1∥2

]]

= q

T∑
l=1

[[
T∑

h=l

(1− q)h

]
E
[
∥Rw,T+1−l −Rref,T+1−l∥2

]]
(b)
≤ qτ2G2

T∑
l=1

(
1

γ′
w,T+1−l

+
1

γ′
ref,T+1−l

− 2

)
η2T+1−l

[
T∑

h=l

(1− q)h

]
(c)
= τ2G2

T∑
l=1

(
1

γ′
w,T+1−l

+
1

γ′
ref,T+1−l

− 2

)
η2T+1−l

(
(1− q)l − (1− q)T+1

)
(d)
= τ2G2

T∑
t=1

(
1

γ′
w,t

+
1

γ′
ref,t

− 2

)
η2t
(
(1− q)T−t+1 − (1− q)T+1

)
≤ τ2G2

T∑
t=1

(
1

γ′
w,t

+
1

γ′
ref,t

− 2

)
η2t (1− q)T−t+1 (40)

where (a) follows from the independent nature of Ri,t’s at different t, ∀i and E [Rw,z −Rs,z] =

0, (b) follows from (31), (c) follows from the closed form of the summation
∑T

h=l(1 − q)h =
(1−q)l−(1−q)T+1

q and (d) follows from replacing l with t such that t = T + 1− l.

From Lemma D.1, we have

E
[
∥θi,T+1 − θ∗∥2

]
≤ (1− 2µηT τ)E

[
∥θi,T − θ∗∥2

]
+ 2Lτ(2τ + 3)η2TΓ + η2t τ

2Σ̃2

+ (2− 2µηt)
1

N

N∑
m=1

τ∑
j=1

E
[∥∥∥θj

m,T − θi,T

∥∥∥2]
(a)
≤ (1− 2µηT τ)E

[
∥θi,T − θ∗∥2

]
+ 2Lτ(2τ + 3)η2TΓ + η2T τ

2Σ̃2

+ (2− 2µηT )
1

N

N∑
m=1

τ∑
j=1

(
E
[∥∥θ1

m,T − θ1
i,T

∥∥2]+ η2t (j − 1)2G2
)

(b)
≤ (1− 2µηT τ)E

[
∥θi,T − θ∗∥2

]
+ 2Lτ(2τ + 3)η2TΓ + 2η2T τ

3G2 + η2T τ
2Σ̃2

+ (2− 2µηT )τ
1

N

N∑
m=1

E
[∥∥θ1

m,T − θ1
ref,T

∥∥2]+ (2− 2µηT )τE
[∥∥θ1

ref,T − θ1
i,T

∥∥2]

(41)

where (a) follows from (38) and (b) follows from E
[
θ1
i,T

]
= E

[
θ1
ref,T

]
.
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Then, we substitute (40),

E
[
∥θi,T+1 − θ∗∥2

]
≤ (1− 2µηT τ)E

[
∥θi,T − θ∗∥2

]
+ 2Lτ(2τ + 3)η2TΓ + 2η2T τ

3G2 + η2T τ
2Σ̃2

+ η2T (2− 2µηT )τ
3G2 1

N

N∑
m=1

T∑
t=1

(
T + α

t+ α

)2
(

1

γ′
m,t

+
1

γ′
ref,t

− 2

)
(1− q)T−t+1

+ η2T (2− 2µηT )τ
3G2

T∑
t=1

(
T + α

t+ α

)2
(

1

γ′
i,t

+
1

γ′
ref,t

− 2

)
(1− q)T−t+1

= (1− 2µηT τ)E
[
∥θi,T − θ∗∥2

]
+ η2T (Q+DT + ET ) .

(42)

Note that in the above, we have defined Q = 2Lτ(2τ+3)Γ+2τ3G2+τ2Σ̃2, HT = (2−2µηT )τ
3G2

in Theorem 1 and we further define

DT =
HT

N

N∑
m=1

T∑
t=1

(
T + α

t+ α

)2
(

1

γ′
m,t

+
1

γ′
ref,t

− 2

)
(1− q)T−t+1

ET = HT

T∑
t=1

(
T + α

t+ α

)2
(

1

γ′
i,t

+
1

γ′
ref,t

− 2

)
(1− q)T−t+1 .

(43)

From the L-smoothness of F ,

E [F (θi,T )]− F ∗

≤ L

2
E
[
∥θi,T − θ∗∥2

]
≤ L

2

(
T∏

t=1

(1− 2µηtτ)

)
∥θ1 − θ∗∥2 + L

2

T∑
t=1

η2t (Q+Dt + Et)

T∏
l=t+1

(1− 2µηtτ) .

(44)

D.4 PROOF OF PROPOSITION 2

Definition D.1. We write
f(x) = o(g(x)) as x → ∞

if for all positive real number M , there exist a real number x0 such that

|f(x)| < Mg(x) ∀x ≥ x0 .

Or equivalently,

lim
x→∞

f(x)

g(x)
= 0 .

Definition D.2. We write
f(x) = O(g(x)) as x → ∞

if there exists positive real numbers M and δ such that for all defined x with 0 < |x− a| < δ,

|f(x)| ≤ Mg(x) ∀x ≥ x0 .

Or equivalently,

lim sup
x→∞

|f(x)|
g(x)

< ∞ .

Proposition 2 (Asymptotic convergence). If 1
γ′
i,t

= o
(

t2

log t

)
for all i ∈ [N ] and 1

γ′
ref,t

= o
(

t2

log t

)
,

we achieve
lim

T→∞
E [F (θi,T )]− F ∗ = 0 .
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Proof. Firstly, we define new functions ai(t) = 1
γ′
i,t

for all i ∈ [N ] such that t ∈ Z+. Define a

non-decreasing function āi(t) such that āi(t) ≥ ai(t) for all t, specifically,

āi(t) = max
x∈[t]

ai(x) . (45)

Note that āi(t) = o
(

t2

log t

)
and āref(t) = o

(
t2

log t

)
still hold.

Consider the term ET in (42),

ET = HT

T∑
t=1

(
T + α

t+ α

)2
(

1

γ′
i,t

+
1

γ′
ref,t

− 2

)
(1− q)T−t+1

≤ 2τ3G2
T∑

t=1

(ai(t) + aref(t))

(
T + α

t+ α

)2

(1− q)T−t+1

(a)
≤ 2τ3G2

T−1∑
l=0

(ai(T − l) + aref(T − l))

(
T + α

T − l + α

)2

(1− q)l+1

(b))
≤ 2τ3G2

T−1∑
l=0

(āi(T ) + āref(T ))

(
T + α

T − l + α

)2

(1− q)l+1

≤ 2τ3G2(āi(T ) + āref(T ))

T−1∑
l=0

(l + 1 + α)2(1− q)l+1

︸ ︷︷ ︸
ST

(46)

where (a) follows from t = T − l, (b) follows from the definition of āi(t) and the non-decreasing
nature of it.

Notice in (46), ST is non-decreasing in T , we can then use the limit of ST to bound it. The limit has
a closed form,

lim
T→∞

ST =
(q − 1)(−α2q2 − 2αq + q − 2)

q3
. (47)

Therefore, we bound the term ET ,

ET ≤ MAi,ref(T ) (48)

where M is a constant

M = 2τ3G2 (q − 1)(−α2q2 − 2αq + q − 2)

q3
(49)

and

Ai,ref(T ) = āi(T ) + āref(T ) . (50)

Similarly, we bound the term DT in (42),

DT ≤ M
1

N

N∑
m=1

(ām(T ) + āref(T ))

=
M

N

N∑
m=1

Am,ref(T ) .

(51)

Notice that we have Ai,ref(T ) = o
(

T 2

log T

)
for all i ∈ [N ].
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Now, we define ∆t = E
[
∥θi,t − θ∗∥2

]
, Yt = β2(Q +MAi,ref(t) +

M
N

∑N
m=1 Am,ref(t)) and let

β = 1
2µτ . From (42), we can write

∆t+1 ≤ (1− 2µηtτ)∆t + η2T (Q+Dt + Et)

∆t+1 ≤
(
1− 1

α+ t

)
∆t +

Yt

(α+ t)2

(α+ t)∆t+1 ≤ (α+ t− 1)∆t +
Yt

α+ t
.

(52)

Let ∆̃t = (α+ t− 1)∆t where ∆̃1 = α∆1, we have

∆̃t+1 ≤ ∆̃t +
Yt

α+ t
. (53)

Therefore,

∆̃T ≤ α∆1 + YT

T−1∑
l=1

1

α+ l
(54)

due to the non-decreasing nature of Ai,ref(t) with t.

Now,

lim
T→∞

∆T = lim
T→∞

∆̃T

T + α− 1

≤ lim
T→∞

α∆1 + β2(Q+MAi,ref(T ) +
M
N

∑N
m=1 Am,ref(T ))

∑T−1
l=1

1
α+l

T

= lim
T→∞

Ai,ref(T ) +
1
N

∑N
m=1 Am,ref(T )

T
lim

T→∞

∑T−1
l=1

1
α+l

T

= lim
T→∞

Ai,ref(T ) +
1
N

∑N
m=1 Am,ref(T )

T 2

log T

lim
T→∞

∑T−1
l=1

1
α+l

log T
.

(55)

Note that Ai,ref(T ) = o
(

T 2

log T

)
,∀i ∈ [N ], hence by definition

lim
T→∞

Ai,ref(T ) +
1
N

∑N
m=1 Am,ref(T )

T 2

log T

= 0 . (56)

Also, since
∑T−1

l=1
1

α+l = O(log T ),

lim
T→∞

∑T−1
l=1

1
α+l

log T
= Z (57)

where Z is a constant.

Therefore, substituting (56) and (57) into (55) to obtain limT→∞ ∆T ≤ 0, and further considering
that ∆T ≥ 0,

lim
T→∞

∆T = 0 . (58)

From the L-smoothness of F , we conclude that

lim
T→∞

E [F (θi,T )]− F ∗ ≤ lim
T→∞

L

2
∆T = 0 . (59)
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E ADDITIONAL EXPERIMENTS

E.1 DATASETS AND IMPLEMENTATION DETAILS

We provide a comprehensive comparison between our method and the existing baselines using
widely-used benchmark datasets, following a heterogeneous data partitioning benchmark (Li et al.,
2022). All experiments were carried out on a server with Intel(R) Xeon(R)@2.70GHz processors and
1.5TB RAM. We utilized one Tesla V100 GPU for the experiments.

Dataset preprocessing. For all vision datasets, we standardized the pixel values of the images.
We additionally applied data augmentation techniques of random cropping and random horizontal
flipping to the CIFAR-10 and CIFAR-100 datasets. For natural language datasets, we performed
standard tokenization and vocabulary building. We simulated the federated environment with 50
clients for all experiments. We employed five different heterogeneous partitioning strategies, namely:
1) Distribution-based label distribution skew, 2) quantity-based label distribution skew, 3) noise-based
feature distribution skew, 4) quantity skew and 5) homogeneous partition. More detailed information
on the implementation of these partitioning strategies can be found in Section 6.

FL models. To ensure the reproducibility of the experiments carried out in this paper, we used
common and well-established model architectures. Specifically, we utilized the following model
architectures:

1. Convolutional neural networks (CNN) following that of (Li et al., 2022). The CNN consists
of 2 convolutional layers followed by 3 fully connected layers.

2. ResNet18 (He et al., 2016). We replaced the batch normalization layers in ResNet18 with
group normalization to ensure stable training with highly heterogeneous clients (Wu & He,
2018; Hsieh et al., 2020; Wang et al., 2022). The number of groups used for the four layers
of ResNet18 were 4, 8, 16 and 32, respectively.

3. Long short-term memory networks (LSTM). The network comprises an embedding layer of
a dimension 300, an LSTM layer and 3 fully connected layers.

In Section 6.1, Appendix E.2, Appendix E.3 and Appendix E.4, we conducted fair evaluations using
architectures 1 and 3. In Section 6.2, we utilized the more complex architecture 2 to demonstrate the
ability of IAFL to achieve high accuracies on the challenging CIFAR-100 dataset. Architecture 2 was
also employed in experiments conducted in Section 6.3 and Appendix E.5.

Hyperparameters and options for training. We used a default initial learning rate of η0 = 0.001,
unless otherwise specified. We used an exponential learning rate decay with a rate of 0.977, causing
the learning rate to decrease by 10 folds in 100 iterations. For MNIST, we used η0 = 0.01. For
CIFAR-100 with ResNet18, we used η0 = 0.005 with a decay rate of 0.988. The total number of FL
training iterations used was 50 for MNIST, FMNIST, SVHN and 100 for CIFAR-10, CIFAR-100 and
SST. Each FL iteration involved a client training for 1 local epoch. For all classification tasks, we
employed the cross-entropy loss.

FedAvg finetune. Standard FedAvg returns the same model to all clients in each FL iteration. In
this case, the correlation metric ρ in Section 6.1 is undefined and uncomputable. To address this and
create a personalized model for each client, we consider a simple modification that allows clients to
train for an additional epoch at the end of the FL algorithm. Therefore, this variation, named FedAvg
finetune, serves as a straightforward FL personalization baseline.

LG-FedAvg (Liang et al., 2020). Local global federated averaging (LG-FedAvg) achieves personal-
ized models by personalizing the layers or structures of the shared model. Specifically, each client
learns a personalized local feature extractor and the local representations of client data are federated
to train shared global layers. To achieve this, the model updates averaged by the server are exclusively
used to update the shared global layers. In our experiments, we specify the last 3 fully connected
layers of the model architecture as the shared global layers.

CGSV (Xu et al., 2021). Cosine gradient Shapley value (CGSV) evaluates client contributions based
on the cosine similarity between a client’s gradients and the average of all clients’ gradients. During
the rewarding phase (i.e., when the server sends respective updates), CGSV masks out (i.e., zeroes
out) portions of the gradient update aggregate according to the client contributions. This masking is
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Table 4: Comparison of IPRloss among IAFL and baselines using differents datasets and partitions.
Each value reports the mean and standard error of 10 independent evaluations and partition seedings.

Category Dataset Partitioning FedAvg Finetune LG-FedAvg CGSV Rank IAFL

Label
Distribution
Skew

MNIST Dir(0.5) 0.97±0.01 0.93±0.02 1.00±0.00 0.80±0.02 1.00±0.00
#C = 3 0.89±0.01 0.90±0.02 1.00±0.00 0.68±0.02 1.00±0.00

FMNIST Dir(0.5) 1.00±0.00 0.98±0.01 1.00±0.00 0.85±0.01 1.00±0.00
#C = 3 0.92±0.01 0.95±0.01 1.00±0.00 0.81±0.02 1.00±0.00

SVHN Dir(0.5) 1.00±0.00 1.00±0.00 1.00±0.00 0.95±0.01 1.00±0.00
#C = 3 1.00±0.00 1.00±0.00 1.00±0.00 0.94±0.01 1.00±0.00

CIFAR-10 Dir(0.5) 0.99±0.01 1.00±0.00 1.00±0.00 0.92±0.01 1.00±0.00
#C = 3 0.91±0.01 1.00±0.00 1.00±0.00 0.85±0.02 1.00±0.00

CIFAR-100 Dir(0.5) 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
#C = 30 1.00±0.00 1.00±0.00 1.00±0.00 0.92±0.01 1.00±0.00

SST Dir(0.5) 1.00±0.00 0.00±0.00 0.99±0.01 0.74±0.01 1.00±0.00
#C = 3 1.00±0.00 0.00±0.00 1.00±0.00 0.78±0.02 1.00±0.00

Feature
Distribution
Skew

MNIST

N (0.1)

0.66±0.02 0.24±0.01 1.00±0.00 0.76±0.04 1.00±0.00
FMNIST 1.00±0.00 0.92±0.02 1.00±0.00 0.96±0.01 1.00±0.00
SVHN 1.00±0.00 1.00±0.00 1.00±0.00 0.97±0.00 1.00±0.00

CIFAR-10 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
CIFAR-100 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

Quantity
Skew

MNIST

Dir(0.5)

0.96±0.01 0.56±0.02 1.00±0.00 0.92±0.02 1.00±0.00
FMNIST 1.00±0.00 0.74±0.02 1.00±0.00 0.99±0.00 1.00±0.00
SVHN 1.00±0.00 1.00±0.00 1.00±0.00 0.99±0.00 1.00±0.00

CIFAR-10 0.96±0.01 0.98±0.00 0.85±0.01 0.90±0.02 0.98±0.01
CIFAR-100 1.00±0.00 1.00±0.00 0.99±0.00 0.99±0.00 1.00±0.00

SST 1.00±0.00 0.00±0.00 1.00±0.00 0.77±0.02 1.00±0.00

Homogeneous
Partition

MNIST

IID

0.81±0.02 0.41±0.03 1.00±0.00 0.76±0.04 1.00±0.00
FMNIST 1.00±0.00 0.98±0.01 1.00±0.00 1.00±0.00 1.00±0.00
SVHN 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

CIFAR-10 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
CIFAR-100 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

SST 1.00±0.00 0.00±0.00 1.00±0.00 0.67±0.02 1.00±0.00

performed layer-wise, where the contribution determines the proportion of parameter values being
masked out in each model layer’s gradient updates. For our experiments, we utilized the original
implementation of Xu et al. (2021).

Rank (Kong et al., 2022). Rank rewards clients in each iteration based on the accuracy of their
respective models on a validation dataset. The method ranks the clients by their validation accuracies
before rewarding them. Client i can aggregate model updates from other clients that have a lower
validation accuracy than that of client i. Since no code has been released for this work, we followed
the original paper for our own implementation.

IAFL. The implementation follows that of Algorithm 1. For baseline comparisons in Section 4.1,
we set the sharing parameter κ = 0 and stochastic recovery probability q = 0. Subsequently, we
investigated the effects of these hyperparameters in Section 6.2. In all experiments except Section 6.3,
we used the standalone accuracies of clients as their contributions pi,t, which remain fixed across
iterations. In Section 6.3, we instead used the participation rates of clients as the contribution measure.

E.2 INCENTIVIZED PARTICIPATION RATE USING TEST LOSS

We expect IAFL to satisfy individual rationality (IR) if the mechanism strictly follows [Mν(p)]i =

ν
(
pi, (min {pi/pceil, 1})1−κ

h(p−i)
)

and the rewarding function ν(pi, P−i) is continuous, non-
decreasing, concave and exchangeable with respect to both arguments. However, the assumptions on
ν are often violated, as shown by the results of Table 1 in Section 6.1. Here we show that using the
test loss as the rewarding function ν better fulfills the assumptions needed for ν. The comparison
of IPRloss (i.e., using the test loss) among IAFL and baselines is shown in Table 4. Our IAFL has
excellent incentivization performance as it achieves the highest IPRloss in all settings and perfect IR
in all but one setting.
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Table 5: The average (highest) accuracies achieved by the client models. The values show the top-1
test accuracy measured in percentage (i.e., %). Each value reports the mean of 10 independent
evaluations and partition seedings.

Category Dataset Partitioning FedAvg
Finetune LG-FedAvg CGSV Rank IAFL

Label
Distribution
Skew

MNIST Dir(0.5) 79 (95) 86 (94) 89 (93) 71 (94) 90 (96)
#C = 3 32 (46) 47 (63) 64 (72) 38 (66) 93 (96)

FMNIST Dir(0.5) 60 (77) 64 (75) 71 (73) 62 (80) 74 (83)
#C = 3 30 (46) 35 (46) 47 (54) 32 (47) 71 (78)

SVHN Dir(0.5) 57 (75) 70 (77) 59 (68) 56 (75) 67 (79)
#C = 3 26 (41) 35 (52) 30 (44) 25 (41) 38 (69)

CIFAR-10 Dir(0.5) 28 (39) 30 (39) 24 (30) 29 (40) 32 (45)
#C = 3 21 (24) 22 (26) 16 (23) 22 (25) 24 (36)

CIFAR-100 Dir(0.5) 8 (11) 11 (13) 6 (6) 10 (12) 13 (17)
#C = 30 7 (9) 8 (10) 4 (5) 8 (9) 9 (13)

SST Dir(0.5) 23 (33) 23 (30) 23 (29) 24 (31) 26 (34)
#C = 3 29 (37) 25 (30) 24 (30) 27 (34) 30 (37)

Feature
Distribution
Skew

MNIST

N (0.1)

92 (96) 95 (97) 96 (96) 91 (96) 95 (96)
FMNIST 79 (82) 76 (79) 75 (75) 79 (83) 84 (84)
SVHN 83 (85) 79 (81) 83 (83) 82 (85) 86 (86)

CIFAR-10 52 (54) 49 (51) 42 (42) 51 (54) 56 (56)
CIFAR-100 17 (18) 16 (17) 9 (9) 15 (18) 19 (20)

Quantity
Skew

MNIST

Dir(0.5)

95 (98) 93 (97) 96 (96) 91 (97) 97 (97)
FMNIST 82 (85) 76 (83) 75 (76) 75 (83) 85 (86)
SVHN 84 (86) 77 (85) 79 (84) 60 (81) 84 (86)

CIFAR-10 53 (55) 46 (57) 41 (44) 37 (50) 52 (56)
CIFAR-100 18 (20) 15 (20) 8 (9) 8 (15) 15 (20)

SST 35 (38) 25 (29) 33 (35) 29 (35) 37 (38)

Homogeneous
Partition

MNIST

IID

93 (96) 94 (96) 96 (96) 91 (96) 95 (96)
FMNIST 79 (82) 78 (80) 75 (75) 79 (83) 84 (84)
SVHN 84 (85) 82 (83) 83 (83) 83 (85) 86 (86)

CIFAR-10 53 (55) 51 (53) 43 (43) 52 (54) 55 (56)
CIFAR-100 17 (18) 18 (18) 9 (9) 16 (18) 19 (20)

SST 36 (38) 25 (28) 35 (36) 30 (35) 37 (38)

E.3 AVERAGE AND HIGHEST TEST ACCURACY

It is important to achieve high overall performance for client models as obtaining good models serves
as a strong motivation for clients to actively participate in the federated learning process. To assess
the effectiveness of IAFL and baseline methods in this regard, we compare the average and highest
client model test accuracies. As presented in Table 5, our IAFL consistently outperforms the other
baselines in almost all settings. These results indicate that IAFL successfully incentivizes clients to
actively contribute and enables them to benefit from the collaborative process. The higher highest
accuracies achieved by IAFL further demonstrated its ability to effectively leverage the decentralized
data of clients to achieve superior predictive performance. We further note that the low accuracies
obtained for CIFAR-100 can be attributed to the CNN model architecture used in this experiment.
Further results in Section 6.2 show that IAFL achieves competitive accuracies on CIFAR-100 using a
more complex ResNet18 model.

E.4 AVERAGE INCREASE IN ACCURACIES

Following (Pillutla et al., 2022), we compare the average increase in client model performance
measured by test accuracy. Table 6 demonstrates that IAFL generally yields the most significant
improvements in test accuracies across all clients. Intuitively speaking, such significant increases
in test accuracies before and after the adoption of federated collaboration via IAFL serve as strong
incentives for clients to actively participate and use the IAFL algorithm. These findings further
complement the earlier experiments on IPRaccu and IPRloss, which only provided a percentage for
binary outcomes (i.e., whether a client model improved after collaboration or not). Through this
additional experiment, we have clearly shown the extent of client model improvements on the
individual standalone models that our IAFL brings.
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Table 6: Average accuracy increase of clients. The unit for this table is %, and we report the mean of
10 independent evaluations.

Category Dataset Partitioning FedAvg
Finetune LG-FedAvg CGSV Rank IAFL

Label
Distribution
Skew

MNIST Dir(0.5) 8.6±0.5 15.0±0.7 18.2±0.6 0.9±4.5 19.1±0.7
#C = 3 2.7±0.5 17.2±0.9 34.0±2.4 8.4±0.3 63.2±0.4

FMNIST Dir(0.5) 3.0±0.5 7.2±0.3 14.2±0.5 5.5±0.4 17.5±0.4
#C = 3 1.9±0.3 6.8±0.4 18.3±1.5 3.5±0.4 42.7±1.1

SVHN Dir(0.5) 9.2±0.5 21.5±0.6 10.8±0.7 7.8±0.6 18.6±0.5
#C = 3 -0.3±0.1 7.9±0.5 3.0±2.8 -1.2±0.2 11.1±0.9

CIFAR-10 Dir(0.5) -1.7±0.9 0.1±0.9 -5.7±0.9 -1.0±1.0 2.5±0.9
#C = 3 -3.3±0.1 -2.0±0.1 -8.0±0.3 -2.1±0.1 -0.4±0.4

CIFAR-100 Dir(0.5) -0.2±0.1 2.8±0.3 -2.6±0.1 1.0±0.1 4.5±0.2
#C = 30 -1.3±0.1 -0.9±0.1 -4.2±0.2 -0.2±0.1 0.7±0.3

SST Dir(0.5) -0.0±0.3 0.3±0.0 -0.0±0.3 1.1±0.1 3.3±0.3
#C = 3 4.6±0.2 0.2±0.0 -1.0±0.4 2.0±0.2 5.1±0.3

Feature
Distribution
Skew

MNIST

N (0.1)

-1.9±0.5 1.0±0.5 2.2±0.4 -3.3±0.6 1.4±0.4
FMNIST 0.6±0.2 -2.6±0.4 -3.6±0.3 1.1±0.2 5.9±0.1
SVHN 10.8±0.3 6.8±0.4 10.7±0.5 9.1±0.5 13.1±0.5

CIFAR-10 8.9±0.3 5.4±0.3 -1.6±0.4 7.8±0.2 12.3±0.2
CIFAR-100 8.6±0.2 7.3±0.2 -0.1±0.2 6.1±0.1 10.2±0.2

Quantity
Skew

MNIST

Dir(0.5)

10.1±0.8 7.7±0.5 10.8±0.6 6.3±0.4 11.3±0.6
FMNIST 10.6±0.6 5.2±0.4 4.1±0.6 3.7±0.4 13.5±0.5
SVHN 26.9±1.0 19.3±0.8 21.6±0.9 2.9±1.0 27.1±0.9

CIFAR-10 15.8±0.3 8.7±0.3 4.1±0.3 -0.0±0.4 15.6±0.3
CIFAR-100 10.7±0.1 7.8±0.1 0.8±0.1 0.4±0.2 7.5±0.2

SST 10.7±0.1 0.2±0.2 8.6±0.2 4.2±0.2 11.8±0.2

Homogeneous
Partition

MNIST

IID

-1.2±0.4 0.5±0.4 2.3±0.4 -2.9±0.5 1.5±0.4
FMNIST 0.3±0.2 -0.7±0.1 -3.6±0.2 0.9±0.2 5.2±0.2
SVHN 10.9±0.5 9.2±0.5 10.2±0.4 10.2±0.5 13.3±0.3

CIFAR-10 9.1±0.3 7.4±0.4 -1.3±0.4 7.8±0.5 11.4±0.4
CIFAR-100 8.3±0.2 8.5±0.1 0.3±0.2 7.2±0.2 10.0±0.1

SST 10.3±0.2 -0.1±0.2 9.6±0.3 4.4±0.2 11.6±0.2

E.5 CHANGING THE REFERENCE MODEL

IAFL is flexible with the reference model definition, as long as the reference model at the server is
also updated using a portion of the client model updates in each FL iteration, similar to any other
federated client. The reference model, of course, does not contribute any learning resources (e.g.,
data). The proportion of client model updates used by the reference model is determined by the
user-defined custom induced reference reward rate γ′

ref,t.

In the experiments of Section 6.2, we set the induced reference reward rate as γ′
ref,t = maxi∈[N ] γ

′
i,t.

In other words, the induced reference reward rate is equal to the highest induced reward rate
among all clients in a given iteration t. In this section, we explore the possibility of changing
the reference model to a median reward, i.e., γ′

ref,t = mediani∈[N ]γ
′
i,t. Intuitively, the clients are now

stochastically recovered with a “roughly median” model among all clients in any given iteration. The
results are shown in Figure 4 and should be viewed in comparison to Figure 1, where the highest
induced reference reward rates are used to update the reference models. Overall, the incentivization
performances are comparable under the two reference model definitions. We observe that lower
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Figure 4: Effects of the stochastic recovery rate q with a fixed sharing coefficient and a reference
model trained with median induced reward rates. The dataset is CIFAR-100 with quantity skew and
50 clients. The figures should be viewed in comparison to Figure 2.
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Figure 5: Comparing IAFL and FedAvg for the speed of convergence. Generally, clients with different
levels of contribution induce different reward rates γ′

i and result in different speeds for convergence.
Notably, the stochastic reference model recovery is vital to the convergence to the global optimum.

induced reference reward rates γ′
ref,t may hinder convergence to the global optimum and affect the

overall average accuracy. However, lower γ′
ref,t values have the advantage of better incentivizing

top-contributors because it becomes more difficult for the lower-contributing clients to obtain the
highest-performing models within a limited number of iterations. Therefore, the choice of the
reference model definition becomes an important hyperparameter of IAFL, as it determines the extent
of sharing and collaboration among clients. In practical settings where clients are more altruistic
in their contributions (e.g., collaboration among non-profit organizations or government agencies),
having a high γ′

ref,t value is recommended.

E.6 EMPIRICAL CONVERGENCE

In this section, we investigate the effect of IAFL on the empirical convergence speed of different
clients contributing at different levels. Figure 5 illustrates the empirical convergence curves of
selected representative clients. Based on Figure 5(a), when q = 0 (i.e., the stochastic reference model
recovery is deactivated), even the client with the highest induced reward rate γ′

i experiences slowed
convergence, eventually to a suboptimal model. Therefore, the proposed stochastic reference model
recovery strategy is essential to the convergence to the global optimum. Upon the activation of the
stochastic recovery at q = 0.01, as shown in Figure 5(b), we observe that the convergence rates of
client models trained using IAFL are comparable to FedAvg. In Figure 5(c) and (d), we observe
a similar behavior to that in Figure 5(a) using different datasets and data partitions: The empirical
convergence is slower than FedAvg as expected when stochastic recovery is deactivated.

E.7 PRACTICAL TRADE-OFF BETWEEN PERFORMANCE AND INCENTIVIZATION

In Section 6.2, we discuss the controllable hyperparameters of the IAFL algorithm and their effects on
the practical trade-off between model performance and our goal of client incentivization. Generally,
larger values of κ, q and setting γ′

ref, t closer to maxi∈[N ] γ
′
i,t favor overall client model performances

(at the same time promoting equality among clients) while trading-off client incentivization (i.e.,
compromising collaborative fairness and distributing less distinctive client models). In this paper, we
have presented recommended values for easy usage that strike a good balance between these goals.
The following set of values

• κ = 0.5 ,
• q = 0.01 ,
• γ′

ref, t = maxi∈[N ] γ
′
i,t ,

generally worked well in our experiments. Consequently, we recommend using them as the default
configuration.

If practitioners wish to achieve a different degree of trade-off with our IAFL framework, they could
calibrate these hyperparameters to favor either client incentivization or model performance, from
different perspectives depending on the hyperparameter. Our proposed IAFL algorithm provides a
high degree of flexibility for the server and clients (e.g., users, practitioners) to adjust the hyperpa-
rameters such that they align with users’ perceptions and preferences. However, we highlight that this
flexibility is not without constraint: It must trade off between fairness and equality, implying that there
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are certain scenarios infeasible for accommodation. For example, the ‘winner takes all’ perspective
falls outside the spectrum of our trade-off as it violates both fairness and equality. Similarly, it is also
unrealistic to expect to achieve both fairness and equality together in the IAFL’s training-time model
rewards distributed to the clients.

E.8 ALTERNATIVE CHOICES OF THE CONTRIBUTION MEASURE

As discussed in Section 4.2, IAFL as an incentive mechanism can be applied to a vast range of
contribution measures. In this section, we adopt the cosine gradient Shapley value (CGSV) discussed
in Section 2 as the contribution measure to determine pi,t and conduct IAFL training. We denote this
specific method as CGSV-IAFL and compare it with the original CGSV implementation with gradient
masking (Xu et al., 2021). Table 7 shows the superior incentivization performance of CGSV-IAFL
across various data partitioning strategies on CIFAR-10. Therefore, IAFL works with alternative
choices of contribution measures. Additionally, we demonstrate through this experiment that our
rewarding scheme detailed in Procedure 2 is more effective than the gradient masking technique of
the original CGSV.

Table 7: Comparison of the incentivization performance between CGSV and IAFL after adopting
a common contribution measure defined by CGSV. The incentivization performance is measured
using the Pearson correlation coefficient ρ between the final client model accuracies and standalone
accuracies. Each value reports the mean and the standard error over 10 independent evaluations.

Category Partitioning CGSV CGSV-IAFL

Label
Distribution Skew

Dir(0.5) 0.46±0.04 0.69±0.03
#C = 3 0.31±0.05 0.62±0.03

Feature Distribution Skew N (0.1) -0.02±0.04 0.06±0.05
Quantity Skew Dir(0.5) 0.73±0.04 0.81±0.01
Homogeneous Partition IID -0.03±0.05 -0.03±0.04

E.9 EXPERIMENTS ON COMPLEX LARGE-SCALE DATASETS

We additionally conduct experiments on complex large-scale datasets: Tiny-ImageNet for vision
tasks and Sent140 for language tasks. The results are shown in Table 8.

Table 8: The incentivization performance under different dataset partitions, measured using the
Pearson correlation coefficient ρ between the final client model accuracies and standalone accuracies.
Each value reports the mean and the standard error over 3 independent evaluations.

Category Dataset Partitioning FedAvg Finetune LG-FedAvg CGSV Rank IAFL

Label
Distribution
Skew

Tiny-ImageNet Dir(0.5) 0.27±0.06 0.10±0.07 -0.02±0.00 0.34±0.11 0.81±0.07
#C = 60 0.38±0.06 0.37±0.11 0.10±0.08 0.22±0.10 0.82±0.01

Sent140 Dir(0.5) 0.93±0.01 0.99±0.00 0.23±0.32 0.98±0.00 0.84±0.03
#C = 1 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.07±0.07

Feature
Distribution Skew Tiny-ImageNet N (0.1) undefined -0.04±0.07 -0.04±0.10 0.04±0.10 0.77±0.06

Quantity
Skew

Tiny-ImageNet
Dir(0.5)

undefined 0.95±0.00 0.38±0.11 0.85±0.02 0.83±0.02
Sent140 -0.74±0.04 1.00±0.00 0.80±0.02 0.99±0.00 0.90±0.01

Homogeneous
Partition

Tiny-ImageNet IID undefined -0.02±0.06 0.07±0.10 0.02±0.01 0.78±0.08
Sent140 0.08±0.03 0.27±0.02 -0.20±0.08 0.06±0.04 -0.06±0.11

Number of times that performs the best 1 5 1 1 4

For the complex Tiny-ImageNet dataset, IAFL achieves the best incentivization performance in the
majority of the data partition settings. The correlations ρ between the final client model accuracies
and standalone accuracies are generally above 0.75. Note that finetuning the network trained by
FedAvg with the local client dataset for a small number of epochs may not affect the performance
of the networks. Therefore, in some cases, the final models received by the clients have the same
accuracy (as the global FedAvg model) and thus the correlation ρ is undefined.

For the Sent140 dataset, we notice that other methods such as FedAvg Finetune and LG-FedAvg
outperform IAFL in terms of incentivization performance measured by the correlation ρ in many
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cases. Further investigation reveals that using ρ alone to assess the effectiveness of collaborative
learning is insufficient. Comparing the IPRloss in Table 9, the high ρ of baselines on Sent140 #C = 1
corresponds to 0% client incentivization measured by IPRloss. This is because collaboration through
baseline methods does not result in any improvement of the client’s model. We further provide the
results of the average (and highest) accuracies achieved by clients on Sent140 in Table 10. The results
illustrate that IAFL rewards better models to clients as compared to other baselines. Overall, IAFL
achieves the best incentivization performance considering both metrics ρ and IPRloss while outputting
client models with the highest model accuracies.

Table 9: Comparison of IPRloss among IAFL and baselines on Sent140. Each value reports the mean
and standard error of 3 independent evaluations and partition seedings.

Category Partitioning FedAvg Finetune LG-FedAvg CGSV Rank IAFL

Label
Distribution Skew

Dir(0.5) 0.84±0.02 0.01±0.01 0.93±0.07 0.62±0.00 0.87±0.02
#C = 1 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.83±0.04

Quantity Skew Dir(0.5) 1.00±0.00 0.00±0.00 1.00±0.00 0.91±0.01 1.00±0.00
Homogeneous Partition IID 1.00±0.00 0.00±0.00 1.00±0.00 0.71±0.01 1.00±0.00

Table 10: The average (highest) accuracies achieved by the client models on Sent140. The values
show the top-1 test accuracy measured in percentage (i.e., %). Each value reports the mean of 3
independent evaluations and partition seedings.

Category Partitioning FedAvg Finetune LG-FedAvg CGSV Rank IAFL

Label
Distribution Skew

Dir(0.5) 68 (83) 61 (77) 61 (72) 66 (83) 71 (84)
#C = 1 50 (50) 50 (50) 50 (50) 50 (50) 56 (70)

Quantity Skew Dir(0.5) 85 (85) 72 (80) 79 (81) 76 (85) 85 (85)
Homogeneous Partition IID 84 (85) 75 (76) 81 (81) 81 (83) 85 (85)

F FREQUENTLY ASKED QUESTIONS AND DISCUSSIONS

Question 1: Is it more natural to incentivize the clients to contribute using their full capacity?

Answer: While having clients contribute to their full capacities for the best learning outcome is
the ideal scenario, this goal is unrealistic because every client incurs non-trivial costs to contribute.
Importantly, the actual contribution of clients depends on the interplay between rewards and costs for
different contribution levels.

In our work, we propose the next achievable alternative: To incorporate the goal of “incentivizing
clients to contribute as much as possible” on top of satisfying individual rationality. To this end, we
designed IAFL such that Theorem 1 and 2 are fulfilled. These theorems suggest that clients will be
rewarded with better models if they contribute more. This will incentivize clients to further contribute
to their full capacity for improved model performance received, of course, subject to their marginal
utility increment in the presence of a cost ci. Clients will contribute up till the marginal increment in
reward still surpasses the associated cost.

Question 2: What if a client does not faithfully compute and upload the full local model updates?

Answer: Our framework does not place any assumption on what kind of local model updates are
computed and uploaded by a client. Instead, the client can freely decide whether he or she wants to
make “full” or “zero” contribution. The contribution measures (in Section 4.2) capture the quality
of the local model updates as contributions, e.g., FedSV (Wang et al., 2020b), ComFedSV (Fan
et al., 2022), CGSV (Xu et al., 2021), FedFAIM (Shi et al., 2022) are examples of such contribution
measures. We summarise the whole process here: The client’s behavior model decides the quality of
the local model updates being computed (e.g., using different portions of its local data). Then, the
quality of the local model updates affects the client contribution level (as assessed by the contribution
evaluation measures mentioned above), which in turn affects the reward rate in IAFL. Subsequently,
the reward rates of clients affect their model convergence.

Question 3: Does convergence speed become faster as the number of agents N grows?
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Answer: The simple answer is, adding clients that “help than hurt” is going to improve the conver-
gence speed.

To elaborate, the effect depends on the contribution levels of the clients. We can look at the term

CT = HT

N

∑N
m=1

∑T
t=1

(
T+α
t+α

)2 (
1

γ′
m,t

+ 1
γ′
i,t

− 2
)

, when N increases, the denominator becomes
bigger but at the same time there are additional terms in the summation.

We can consider a case where we increase N = n to N = n + 1. Abstracting away the constants
HT , T and α for simplicity, we can make a comparison for CT = 1

n

∑n
m=1

(
1

γ′
m,t

+ 1
γ′
i,t

− 2
)

when

N = n against the case for CT = 1
n+1

∑n+1
m=1

(
1

γ′
m,t

+ 1
γ′
i,t

− 2
)

when N = n+ 1. Note that γ′
i,t

can also be treated as a constant here. Informally speaking, we observe that when N increases,
the term CT generally decreases in its scale if the added client has contribution γ′

m,t at least the
“average contribution” of the existing clients 1

n

∑n
m=1 γ

′
m,t. Therefore, the decrease in CT tightens

the performance bound in Theorem 1 and makes the convergence faster.

An exception that we can derive from the above is that when the added clients contribute badly with
a very low γ′

m,t, it could slow down the convergence despite the increase in N . In practice, this
implies that the model update provided by the added client is bad, harmful, or even adversarial, and is
detected by the contribution evaluation measure. Theoretically, the convergence is adversely affected
if we add “harmful” clients. However, we could easily implement client selection methods based on
this insight on contribution evaluation to filter such clients during the training process to ensure faster
convergence when N grows.

Question 4: Is it fair that for small clients, even if they contribute to their best, they still cannot
receive a high-quality model? Yet the large clients only need to contribute above some threshold to
receive the best model?

Answer: There are two prevalent concepts of fairness in literature: (a) collaborative fairness (Lyu
et al., 2020) (i.e., contribute more get back more), and (b) equality (Li et al., 2020c). To be fair,
people from one of the camps will not view the other as fair.

In our paper, we have demonstrated results for the collaborative fairness view. Specifically, the
contributions of clients are fairly evaluated by a contribution evaluation measure, e.g., CGSV (Xu et al.,
2021), and then used to fairly reward the clients with a model that has performance commensurate
with their contributions.

If the designer of the FL process views fairness more towards equality such that “if everyone puts in
their best efforts, they should be treated equally”, it is possible to use “individual efforts percentage”
(e.g., how many percentages a client contributes to his/her best effort) as a contribution evaluation
measure (assuming that individual efforts of clients can be measured). This measure can be seamlessly
combined with the IAFL framework, too. However, we would like to clarify that “individual efforts
percentage” is not commonly used as a contribution measure in literature.
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