
Under review as submission to TMLR

Stealthy Backdoor Attack via Confidence-driven Sampling

Anonymous authors
Paper under double-blind review

Abstract

Backdoor attacks facilitate unauthorized control in the testing stage by carefully injecting
harmful triggers during the training phase of deep neural networks. Previous works have
focused on improving the stealthiness of the trigger while randomly selecting samples to
attack. However, we find that random selection harms the stealthiness of the model. In
this paper, we identify significant pitfalls of random sampling, which make the attacks more
detectable and easier to defend against. To improve the stealthiness of existing attacks, we
introduce a method of strategically poisoning samples near the model’s decision boundary,
aiming to minimally alter the model’s behavior (decision boundary) before and after back-
dooring. Our main insight for detecting boundary samples is exploiting the confidence scores
as a metric for being near the decision boundary and selecting those to poison (inject) the
attack. The proposed approach makes it significantly harder for defenders to identify the
attacks. Our method is versatile and independent of any specific trigger design. We provide
theoretical insights and conduct extensive experiments to demonstrate the effectiveness of
the proposed method.

1 Introduction

While deep neural networks (DNNs) on large datasets and third-party collaborations demonstrate promising
performance in various applications, concerns have been raised about potential malicious triggers injected
into the models. These triggers lead to unauthorized manipulation of the model’s outputs during testing,
causing a “backdoor” attack (Li et al., 2022; Doan et al., 2021a). In particular, attackers can inject triggers
into a small portion of training data in a specific manner, then provide either the poisoned training data or
backdoored models trained on it to third-party users (Li et al., 2022). In the inference stage, the injected
backdoors are activated via triggers, causing triggered inputs to be misclassified as a target label. In the
existing literature, many backdoor attack methods have been developed and demonstrate strong attack
performance, e.g., BadNets (Gu et al., 2017), WaNet (Nguyen & Tran, 2021), and label-consistent (Turner
et al., 2019). These methods can achieve high attack success rates while maintaining a high accuracy on
clean data within mainstream DNNs.

An important research direction in backdoor attacks is to enhance the stealthiness of poisoned samples while
ensuring their effectiveness simultaneously. While trigger design (e.g., hidden triggers Saha et al., 2020, clean-
label (Turner et al., 2019)) has been a primary focus in existing research, recent studies have increasingly
explored sampling methods for selecting optimal data points for poisoning and trigger insertion. However,
for sampling methods, most existing works (Toneva et al., 2018; Han et al., 2023; Li et al., 2023; Xia et al.,
2023; Wu et al., 2023; Zhu et al., 2023) focus on the attacking effectiveness while ignoring the stealthiness
of backdoors. Our preliminary study (in Section 4.1) observes that the randomly selected poisoned samples
are highly likely to be detected by the defenders. This raises a natural question:

Is there a better sampling strategy to enhance the stealthiness of backdoors?

To investigate this question, we follow the common understanding to assume that the attackers can access
the training data while maybe only allowed to manipulate a part of the training data. This is a common and
practical scenario. For example, the attackers may contribute malicious data to publicly sourced datasets

1

Under review as submission to TMLR

via uploading their own data online (Li et al., 2022). Besides improving the trigger pattern, they also need
a sampling strategy to determine the data to update.

To better understand the behavior of the backdoor attacks, in Section 4.1, we investigate the latent space of
the backdoored model to take a closer look at the random sampling strategy. We draw two findings from the
visualizations in Figure 1. First, most randomly chosen samples are close to the center of their true classes
in the latent space. Second, the closer a sample is from its true class on the clean model, the farther it gets
from the target class on the backdoored model (Section 4.1). These two observations reveal an important
concern about the “stealthiness” of the random sampling strategy, where the randomly sampled data points
may be easily detected as outliers. To gain a deeper understanding, we further build a theoretical analysis of
SVM in the latent space (Section 4.3) to demonstrate the relation between the random sampling strategy and
attack stealthiness. Moreover, our observations suggest an alternative to random sampling—it is better to
select samples closer to the decision boundary. Our preliminary studies show that these boundary samples
can be manipulated to be closer to the clean samples from the target class, and can greatly enhance their
stealthiness under potential outlier detection (see Figure 1c and 1d).

Inspired by the above observations, we propose a novel method called confidence-driven boundary sam-
pling (CBS). Specifically, we identify boundary samples with low confidence scores based on a surrogate
model trained on the clean training set. Intuitively, samples with lower confidence scores are closer to the
boundary between their own class and the target class in the latent space Karimi et al. (2019) compared
to random samples. Therefore, this strategy makes it more challenging to detect attacks. Moreover, our
sampling strategy is independent from existing attack approaches, making it exceptionally versatile. It can
be easily integrated with various backdoor attacks, offering researchers and practitioners a powerful tool
to enhance the stealthiness of backdoor attacks without requiring extensive modifications to their existing
methods or frameworks. Extensive experiments combining proposed confidence-based boundary sampling
with various backdoor attacks illustrate the advantage of the proposed method over random sampling.

2 Related works

2.1 Backdoor attacks and defenses

As mentioned in the introduction, backdoor attacks are shown to be a serious threat to DNN. BadNet (Gu
et al., 2017) is the first exploration that attaches a small patch to samples to introduce backdoors into a
DNN model. Later, many efforts are put into developing advanced attacks to either boost the performance
or improve the resistance against potential defenses. Various trigger designs are proposed, including image
blending (Chen et al., 2017), image warpping (Nguyen & Tran, 2021), invisible triggers (Li et al., 2020; Saha
et al., 2020; Doan et al., 2021b), clean-label attacks (Turner et al., 2019; Saha et al., 2020), sample-specific
triggers (Li et al., 2021b; Souri et al., 2022), etc. These attacking methods have demonstrated strong attack
performance (Wu et al., 2022). In the meanwhile, the study of effective defenses against these attacks also
remains active. One popular type of defense detects outliers in the latent space (Tran et al., 2018; Chen
et al., 2018; Hayase et al., 2021; Gao et al., 2019; Chen et al., 2018). Other defenses incorporate neuron
pruning (Wang et al., 2019), detecting abnormal labels (Li et al., 2021a), model pruning (Liu et al., 2018),
fine-tuing (Sha et al., 2022), etc.

2.2 Samplings in backdoor attacks

Despite the development of triggers in backdoor attacks, the impact of poisoned sample selection is also at-
tracting more and more attention. Xia et al. (2022) proposed a filtering-and-updating strategy (FUS) to select
samples with higher contributions to the injection of backdoors by computing the forgetting event (Toneva
et al., 2018) of each sample. For each iteration, poison samples with low forgetting events will be removed
and new samples will be randomly sampled to fill up the poisoned training set. Han et al. (2023); Li et al.
(2023); Xia et al. (2023) followed this line and also adopted the forgetting score for sample selection. Wu
et al. (2023); Zhu et al. (2023) leverages masks and l2 distance in representation space respectively to improve
the effectiveness of the backdoor. Though these works can improve the success rate of backdoor attacks via
sample selection, they ignore the backdoor’s ability to resist defenses, known as the ’stealthiness’ of back-

2

Under review as submission to TMLR

doors. To the best of our knowledge, we are the first to study the stealthiness problem from the perspective
of sampling.

3 Definition and Notation

This section introduces preliminaries about backdoor attacks, including the threat model considered in this
paper and a general pipeline that is applicable to many attacks.

3.1 Threat model

We follow the commonly used threat model for the backdoor attacks (Gu et al., 2017; Doan et al., 2021b).
We assume that the attacker has access to the clean training set and can modify a proportion of the training
data. Then the victim trains his own models on this data and the attacker has no knowledge of this training
procedure. In a real-world situation, the attacker can access some clean datasets, and modify a proportion
of them by inserting triggers. Then they upload the poisoned data to the Internet and victims unknowingly
download and use it for training (Gu et al., 2017; Chen et al., 2017). Note that many existing backdoor
attacks (Nguyen & Tran, 2021; Turner et al., 2019; Saha et al., 2020) have already adopted this assumption
and our proposed method does not demand additional capabilities from attackers beyond what is already
assumed in the context of existing attack scenarios. Furthermore, our method, detailed in Section 4, addresses
practical scenarios where attackers are limited to poisoning samples from a specific subset, not the entire
dataset, with empirical results in Section 5.5. For example, an attacker might only control their own data
and not have access to alter public datasets.

3.2 A general pipeline for backdoor attacks

In the following, we introduce a general pipeline, which is applicable to a wide range of backdoor attacks.
The pipeline consists of two components.

(1) Poison sampling. Let Dtr = {(xi, yi)}n
i=1 denote the set of n clean training samples, where xi ∈ X is

each individual input sample with yi ∈ Y as the true class. The attacker selects a subset of data U ⊂ Dtr,
with p = |U |/|Dtr| as the poison rate, where the poison rate p is usually small.

(2) Trigger injection. Attackers design a strategy T to inject the trigger t into samples selected in the
first step. In specific, given a subset of data U , attackers generate a poisoned set T (U) as:

T (U) = {(x′, y′)|x′ = Gt(x), y′ = S(x, y), ∀(x, y) ∈ U} (1)
where Gt : X → X is the attacker-specified poisoned image generator with trigger pattern t, which satisfies
the following constraints: Gt(x) ̸= x and d(Gt(x), x) ≤ ϵ where d is some distance function such as l2/l∞
distance, and S indicates the attacker-specified target label generator. After training the backdoored model
f(·; θb), where θb denote parameters of the backdoored model, on the poisoned set, the injected backdoor
will be activated by trigger t. For any given clean test set Dte, the accuracy of f(·; θb) evaluated on trigger-
embedded dataset T (Dte) is referred to as success rate, and attackers also expect to see high accuracy on
any clean samples without triggers.

4 Method

In this section, we will first analyze the commonly used random samplings, and then introduce our proposed
method as well as some theoretical understandings.

4.1 Revisit random sampling

Visualization of Stealthiness. Random sampling selects samples to be poisoned from the clean training
set with the same probability and is commonly used in existing attacking methods. However, we suspect
that such unconstrained random sampling is easy to detect as outliers of the target class in the latent space.
To examine the sample distribution in the latent space, we first conduct TSNE (Van der Maaten & Hinton,
2008) visualizations for the backdoored model of (1) clean samples of the target class, and (2) the poisoned

3

Under review as submission to TMLR

(a) BadNet+Random (b) Blend+Random

(c) BadNet+Boundary (d) Blend+Boundary

Figure 1: Latent space visualization of BadNet and Blend via Random and Boundary sampling.

samples from other classes but labeled as the target class. We consider these poisoned samples are obtained
by two representative attack algorithms, BadNet (Gu et al., 2017) and Blend (Chen et al., 2017) both of
which apply random sampling, on CIFAR10 (Krizhevsky et al., 2009), in Figure 1a and 1b. In detail, the
visualizations show the latent representations of samples from the target class, and the colors red and blue
indicate poisoned and clean samples respectively. It is obvious that there exists a clear gap between poisoned
and clean samples. For both attacks, most of the poisoned samples form a distinct cluster outside the clean
samples. This indicates a separation in latent space which can be easily detected by potential defenses. For
example, Spectral Signature (Tran et al., 2018), SPECTRE (Hayase et al., 2021), SCAn (Tang et al., 2021)
are representative defenses relying on detecting outliers in the latent space and show great power defending
various backdoor attcks (Wu et al., 2022).

Relation between Stealthiness & Random Sampling. In our study, we also observe the potential
relation between random sampling and the stealthiness of backdoors 1. To elaborate, we further calculate
the distance from each selected sample (without trigger) to the center2 of their true classes computed on the
clean model, which is denoted as do. As seen in Figure 2a and 2b, random sampling is likely to select samples
that are close to the center of their true classes. However, we find do may have an obvious correlation with the
distance between the sample and the target class which we visualize in the previous Figure 1. Formally, we
define the distance between each selected sample (with trigger) and the center of the target class computed
on the backdoored model, as dt.

From Figure 2c and 2d, we observe a negative correlation between dt and do
3, indicating that samples

closer to the center of their true classes in the clean model tend to be farther from the target class after
poisoning and thus easier to detect. These findings imply that random sampling often results in the selection
of samples with weaker stealthiness. Our observations also suggest that samples closer to the boundary may
lead to better stealthiness, and motivate our proposed method.

4.2 Confidence-driven boundary sampling (CBS)

One key challenge for boundary sampling is how to determine which samples are around the boundaries.
Though we can directly compute the distance from each sample to the center of the target class in the

1We provide a detailed discussion of “stealthiness" in Appendix 7.5.
2A formal definition of do and dt is shown in Appendix 7.5
3We also include a discussion of the relationship between raw input space and latent space in Appendix 7.11.

4

Under review as submission to TMLR

2 0 2 4 6 8 10 12
do

0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y

All data
Random
Boundary

(a) BadNet

2 0 2 4 6 8 10 12
do

0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y

All data
Random
Boundary

(b) Blend

0 1 2 3 4 5 6 7 8
do

5

6

7

8

9

10

d t

(c) BadNet

0 2 4 6 8
do

1

2

3

4

5

6

7

8

d t
(d) Blend

Figure 2: The left two figures depict the distribution of do when samples are Randomly selected by BadNet and Blend. The
right two figures shows the relationship between do and dt for BadNet and Blend.

latent space and choose those with smaller distances, this approach can be time-consuming, as one needs to
compute the center of the target class first and then compute the distance for each sample. This problem
can be more severe when the dataset’s size and dimensionality grow. Consequently, a more efficient and
effective method is in pursuit.

To solve this issue, we consider the confidence score. To be more specific, we follow the notations from
Section 3.2 and further assume there exist K classes, i.e. Y = {1, ..., K}, for simplicity. Let f(·; θ) denote a
classifier with model parameter θ, and the output of its last layer is a vector z ∈ RK . Confidence score is
calculated by applying the softmax function on the vector z, i.e. sc(f(x; θ)) = σ(z) ∈ [0, 1]K , where σ(·)
is the softmax function.

This confidence score is considered the most accessible uncertainty estimate for deep neural network (Pearce
et al., 2021), and is shown to be closely related to the decision boundary (Li et al., 2018; Fawzi et al., 2018).
Since our primary goal is to identify samples that are closer to the decision boundary, we can find samples
with similar confidence for both the true class4 and the target class. Thus, we can define boundary samples:
Definition 4.1 (Confidence-based boundary samples). Given a data pair (x, y), model f(·; θ), a con-
fidence threshold ϵ and a target class y′, if

|sc(f(x; θ))y − sc(f(x; θ))y′ | ≤ ϵ, (2)
then (x, y) is noted as ϵ-boundary sample with target y′.

To explain Definition 4.1, since sc(f(x; θ))y represents the probability of classifying x as class y, then when
there exists another class y′, for which sc(f(x; θ))y′ ≈ sc(f(x; θ))y, it signifies that the model is uncertain
about whether to classify x as class y or class y′. This uncertainty suggests that the sample is positioned
near the boundary that separates class y from class y′ (Karimi et al., 2019).

The proposed Confidence-driven boundary sampling (CBS) method is based on Definition 4.1. In
general, CBS selects boundary samples in Definition 4.1 for a given threshold ϵ. Since we assume the attacker
has no knowledge of the victim’s model, we apply a surrogate model like what black-box adversarial attacks
often do (Chakraborty et al., 2018). In detail, a pre-trained surrogate model f(·; θ) is leveraged to estimate
confidence scores for each sample, and ϵ-boundary samples with pre-specified target yt are selected for

4For a correctly classified sample, the true class possesses the largest score.

5

Under review as submission to TMLR

poisoning. The detailed algorithm is shown in Algorithm 1 5. It is worth noting that the threshold ϵ is
closely related to poison rate p in Section 3.2, and we can determine ϵ so that |U(yt, ϵ)| = p×|Dtr|. Since we
claim that our sampling method can be easily adapted to various backdoor attacks, we provide an example
that adapts our sampling methods to Blend (Chen et al., 2017), where we first select samples to be poisoned
via Algorithm 1 and then blend these samples with the trigger pattern t to generate the poisoned training
set.

Algorithm 1 CBS
Input Clean training set Dtr = {(xi, yi)}N

i=1, model f(·; θ), pre-train epochs E, threshold ϵ, target class yt

Output Poisoned sample set U , poisoned label set Sp.
Pre-train the surrogate model f on Dtr for T epochs and obtain f(·; θ)
Initialize poisoned sample set U = {}
for i = 1, ..., N do

if |sc(f(xi; θ))yi − sc(f(xi; θ))yt | ≤ ϵ then
U = U ∪ {(xi, yi)}

end if
end for
Return poisoned sample set U

4.3 Theoretical understandings

To better understand CBS, we conduct theoretical analysis on a simple SVM model. As shown in Figure 3,
in a 2-dimensional space, we consider a binary classification task where two classes are uniformly distributed
in two balls centered at µ1(orange circle) and µ2(blue circle) with radius r respectively in latent space6:

C1 ∼ p1(x) = 1
πr2 1[∥x − µ1∥2 ≤ r], and

C2 ∼ p2(x) = 1
πr2 1[∥x − µ2∥2 ≤ r],

(3)

where let µ2 = 0 for simplicity. Assume that each class contains n samples. We consider a simple at-
tack that selects one single sample x from class C1, add a trigger to it to generate a poisoned x̃, and
assign a label as class C2 for it. Let C̃1, C̃2 denote the poisoned data, and we can obtain a new back-
doored decision boundary of SVM on the poisoned data. To study the backdoor effect of the trigger,
we assume x̃ = x + ϵt/∥t∥ where t/∥t∥, ϵ denote the direction and strength of the trigger, respectively.

Figure 3: Backdoor on SVM

To explain this design, we assume that the trigger introduces
a ’feature’ to the original samples (Khaddaj et al., 2023),
and this ’feature’ is closely related to the target class while
nearly orthogonal to the prediction features7. In addition,
we assume t is fixed for simplicity, which means this trigger
is universal and we argue that this is valid because existing
attacks such as BadNet (Gu et al., 2017) and Blend (Chen
et al., 2017) inject the same trigger to every sample.To en-
sure the backdoor effect, we further assume (µ2 − µ1)T t ≥ 0,
otherwise the poisoned sample will be even further from the
target class (shown as the direction of the green dashed ar-
row) and lead to subtle backdoor effects. We are interested in
two questions: (Q1) Are boundary samples harder to detect?
(Q2) How do samples affect the backdoor performance?

To investigate (Q1), we adopt the Mahalanobis dis-
tance (Mahalanobis, 2018) between the poisoned sample x̃

and the target class C̃2 as an indicator of outliers. A smaller distance means x̃ is less likely to be an outlier,
indicating better stealthiness. For (Q2), we estimate the success rate by estimating the volume (or area in

5Discussion of computation overhead is included in Appendix 7.4
6This analysis is suitable for any neural networks whose last layer is a fully connected layer.
7Prediction feature here is referred to features used for prediction when no triggers involved.

6

Under review as submission to TMLR

2D data) of the shifted class C1 to the right of the backdoored decision boundary. This is because when
triggers are added to every sample, the whole class will shift in the direction of t, shown as the orange dashed
circle in Figure 3. The following series of theorems and propositions answer the above two questions. We
begin with the Manahalnobis distance:
Theorem 4.2 (Mahalanobis distance). Assume x̃ = x + ϵt/∥t∥2 := x + a for some arbitrary x and some
trigger t and strength ϵ. Also assume µ2 = 0, (µ2 − µ1)T x̃ ≥ 0. Denote µ̃2 and S̃2 as the sample mean
and covariance matrix of the poisoned data with label C2. Then the Mahalanobis distance between x̃ and the
target class C̃2 is defined as

d2
M (x̃, C̃2) = (x̃ − µ̃2)T S̃−1

2 (x̃ − µ̃2).
There exists some large constant n0 so that when n ≥ n0, d2

M (x̃, C̃2) satisfies

P

(∣∣∣∣d2
M (x̃, C̃2) − 4∥x̃∥2

r2

∣∣∣∣ ≥ t

)
≤ c1 exp

(
−c2t2n

)
(4)

for some positive constants c1 and c2.

The proof of Theorem 4.2 can be found in Appendix 7.1. Since µ̃2 and S̃2 are sample mean and covariance,
we use concentration inequalities for vector average and matrix average to describe their behavior.

Theorem 4.2 show the Mahalanobis distance (d2
M (x̃, C̃2)) from the fixed x̃ to C̃2. When n increases, d2

M (x̃, C̃2)
converges to its limit 4∥x̃∥2/r2. In addition, to answer (Q1), the limit 4∥x̃∥2/r2 is determined by the distance
between x̃ and µ2(= 0): A larger ∥x̃∥ results in a larger Mahalanobis distance, leading to a higher chance of
x̃ being detected as an outlier (i.e., being identified by the defender). To compare CBS and random selecting,
if the attacker select the support vector to attack, then 4∥x̃∥2/r2 is minimized. Otherwise, 4∥x̃∥2/r2 will be
larger.

In the following, to answer (Q2), we first discuss the attack success rate assuming infinite training samples,
and then study how the finite sample affects the selection of the poisoned data and the margin of SVM.
Theorem 4.3 (Attack success rate, population). Under the same conditions as Theorem 4.2, assume n → ∞
and a hard margin exists, then the success rate for an arbitrary x̃ = x + a is an increasing function of

ϵ cos(a, x̃ − µ1) − ∥x̃ − µ1∥/2 − r/2.

The proof of Theorem 4.3 can be found in Appendix 7.1. To figure out the attack success rate, we directly
calculate the area of incorrect classification.
Remark 4.4 (Existence of hard margin). Theorem 4.3 describes how the attack on x affects the attack
success rate. However, the existence of a hard margin depends on the selected sample x and trigger t,
which in turn determines whether an attack is effective. We provide Figure 4 for a better illustration. For
the trigger t, we need tT (−µ1) > 0, which indicates that the trigger t moves the clean sample x (from
C1) towards the target cluster C2. To guarantee a hard margin, we require the poisoned sample x̃ to
fall into the shaded area, which is determined by f1, f2 and C1. f1, f2 are the common tangent lines to
C1, C2, and are two extreme hyperplane that separates two clusters. Formally, we can define the area as
x ∈ {x| ({∥x + a − µ1∥2 ≥ r} ∩ {f1(x + a) < 0} ∩ {f2(x + a) > 0}) ∪ {f1(x + a) > 0} ∪ {f2(x + a) < 0}}.
These conditions indicate that samples closer to the decision boundary are more likely to result in a hard
margin in the poisoned data and guarantee an effective attack.

On the other hand, different from random sampling, since CBS relies on the estimate of the confidence, we
provide the following results to illustrate the impact of a finite sample size to CBS and random sampling.
We first present Theorem 4.5 below to explain the change of the SVM margin under the finie-sample scenario
using clean data:
Theorem 4.5 (Finite-sample scenario). Under the same conditions as Theorem 4.2, consider the classifica-
tion with clean data. Assume there are n samples from C1 and n samples from C2. Take δn = (log n)/

√
n.

With probability at least

1 − 2
(

1 + 2
⌈

d1,f − d1,min

δn

⌉)(
1 − c log2 n

nπr2

)n

,

7

Under review as submission to TMLR

Figure 4: An illustrating figure for the existence of hard margin. The shaded area represents the region of
x̃ where a hard margin exists.

uniformly for all hyperplane which separates C1 and C2, the corresponding margin for the 2n samples is
O(

√
δn)-close to the margin for C1 and C2. The terms d1,f and d1,min are constant values, and their

definition can be found in (8) and (7) in Appendix 7.1.

The proof of Theorem 4.5 is in Appendix 7.1. The general idea is to construct some regions in C1 and C2
along their boundary, and demonstrate that with a high probability, there is at least one sample falls in each
of the regions. Then we use these regions to quantify the difference between the margin to the population
and the margin to the finite samples.

Based on Theorem 4.5, with a large enough n, the margin of SVM converges in probability. While Theorem
4.5 describes the margin using clean training data, the results can be further extended to discuss about the
sample selected by CBS, as well as the margin under poisoned data. In the following, Proposition 4.6 is for
CBS, and Proposition 4.7 is for random sampling.
Proposition 4.6 (CBS in finite-sample scenario). Under the conditions in Theorem 4.5, with the same
probability as in Theorem 4.5, the sample selected by CBS is O(

√
δn)-close to the support vector in the

population. If t and x are chosen such that the hard margin exists following Remark 4.4, the margin of the
decision boundary determined by the finite poisoned samples is O(

√
δn)-close to its population version.

Proposition 4.7 (Random poisoning in finite-sample scenario). Under the conditions in Theorem 4.5, with
the same probability as in Theorem 4.5, if t and x are chosen such that the hard margin exists following
Remark 4.4, then the margin of the decision boundary determined by the finite poisoned samples is O(

√
δn)-

close to its population version.

Proposition 4.6 and 4.7 shows the consistency of these methods: When n → ∞, the sample selected by CBS
is close to the support vector in the population version. In addition, the margin of both methods converges
to their population version repsectively.
Remark 4.8 (Effectiveness-stealthiness trade-off). Based on the theorem, a smaller ∥x̃∥2 results in a smaller
d2

M , reducing the likelihood of being detected as an outlier. Additionally, closer proximity between x̃ and µ1
corresponds to a higher success rate without defenses. These observations highlight the trade-off between
stealthiness and backdoor performance without defenses. Our experiments in Section 5 further demonstrate
that incorporating boundary samples significantly improves stealthiness with only a slight reduction in
success rate without defenses.8

Remark 4.9 (Hard margin does not exist). We also compare the case when the poisoned sample x is too
far from the target center µ2. When the poisoned sample is far enough from µ2 and the decision boundary,
e.g., the poisoned sample x̃ is still within the reach of its true class, a hard margin will not exist. In this
case, the misclassification of the single poisoned example will be ignored when n is large enough, and the
decision boundary of SVM (with soft margin) will be the same as the one from the clean SVM. Consequently,
the poisoning effect is significantly reduced. To achieve a better success rate, the attacker needs to poison
more samples which can cause inefficiency and worse stealthiness. Therefore, poisoning samples closer to the
boundary can even achieve better effectiveness while maintaining stealthiness.

8Code can be found in https://anonymous.4open.science/r/boundary-backdoor-83CC/

8

https://anonymous.4open.science/r/boundary-backdoor-83CC/

Under review as submission to TMLR

Table 1: Performance on Type I backdoor attacks (Cifar10).

Model ResNet18 ResNet18 → VGG16
Defense Attacks Random FUS CBS Random FUS CBS

No Defenses

BadNet 99.9±0.2 99.9±0.1 93.6±0.3 99.7±0.1 99.9±0.06 94.5±0.4
Blend 89.7±1.6 93.1±1.4 86.5±0.6 81.6±1.3 86.2±0.8 78.3±0.6

Adapt-blend 76.5±1.8 78.4±1.2 73.6±0.6 72.2±1.9 74.9±1.1 68.6±0.5
Adapt-patch 97.5±1.2 98.6±0.9 95.1±0.8 93.1±1.4 95.2±0.7 91.4±0.6

SS

BadNet 0.5±0.3 4.7±0.2 20.2±0.3 1.9±0.9 3.6±0.6 11.8±0.4
Blend 43.7±3.4 42.6±1.7 55.7±0.9 16.5±2.3 17.4±1.9 21.5±0.8

Adapt-blend 62±2.9 61.5±1.4 70.1±0.6 38.2±3.1 36.1±1.7 43.2±0.9
Adapt-patch 93.1±2.3 92.9±1.1 93.7±0.7 49.1±2.7 48.1±1.3 52.9±0.6

STRIP

BadNet 0.4±0.2 8.5±0.9 23.7±0.8 0.8±0.3 9.6±1.5 15.7±1.2
Blend 54.7±2.7 57.2±1.6 60.6±0.9 49.1±2.3 50.6±1.7 56.9±0.8

Adapt-blend 0.7±0.2 5.5±1.8 8.6±1.2 1.8±0.9 3.9±1.1 6.3±0.7
Adapt-patch 21.3±2.1 24.6±1.8 29.8±1.2 26.5±1.7 27.8±1.3 29.7±0.5

ABL

BadNet 16.8±3.1 17.3±2.3 31.3±1.9 14.2±2.3 15.7±2.0 23.6±1.7
Blend 57.2±3.8 55.1±2.7 65.7±2.1 55.1±1.9 53.8±1.3 56.2±1.1

Adapt-blend 4.5±2.7 5.1±2.3 6.9±1.7 25.4±2.6 24.7±2.1 28.3±1.7
Adapt-patch 5.2±2.3 7.4±1.5 8.7±1.3 10.8±2.7 11.1±1.5 13.9±1.3

NC

BadNet 1.1±0.7 13.5±0.4 24.6±0.3 2.5±0.9 14.4±1.3 17.5±0.8
Blend 82.5±1.7 83.7±1.1 81.7±0.6 79.7±1.5 77.6±1.6 78.5±0.9

Adapt-blend 72.4±2.3 71.5±1.8 74.2±1.2 59.8±1.7 59.2±1.2 62.1±0.6
Adapt-patch 2.2±0.7 6.6±0.5 14.3±0.3 10.9±2.3 13.4±1.4 16.2±0.9

5 Experiment

In this section, we conduct experiments to validate the effectiveness of CBS, and show its ability to boost
the stealthiness of various existing attacks. We evaluate CBS and baseline samplings under no-defense and
various representative defenses in Section 5.2 and 5.3. In particular, we select poisoned samples from the
whole training data in these three sections and provide results when only partial data is accessible in Section
5.5 to validate the effectiveness of our approach in a broad and practical scenario. In Section 5.6, we will
provide more empirical evidence to illustrate that CBS is harder to detect and mitigate. We also direct
readers to additional experiments regarding larger datasets and more defenses in the Supplementary for a
more comprehensive evaluation.

5.1 Experimental settings

To evaluate CBS and show its ability to be applied to various kinds of attacks, we consider 3 types 9 of
attacking methods that cover most of existing backdoor attacks.

In detail, Type I backdoor attacks allow attackers to inject triggers into a proportion of training data and
release the poisoned data to the public. Victims train models on them from scratch. The attack’s goal is
to misclassify samples with triggers as the pre-specified target class (also known as the all-to-one scenario).
Type II backdoor attacks share the same threat model with Type I attacks and the difference is that victims
finetune pre-trained models on poisoned data and the adversary’s goal is to misclassify samples from one
specific class with triggers as the pre-specified target class (also known as the one-to-one scenario). Distinct
from the preceding categories, Type III backdoor attacks necessitate an additional degree of control over
the training process of the victim’s model. This control affords attackers the ability to concurrently optimize
both the backdoor triggers and the model parameters, particularly in all-to-one attack scenarios.

Baselines for sampling. We compare CBS with two baselines—Random and FUS (Xia et al., 2022). The
former selects samples to be poisoned with a uniform distribution, and the latter selects samples that con-
tribute more to the backdoor injection via computing the forgetting events (Toneva et al., 2018) for each sam-

9We determine the types based on the threat models of attacking methods.

9

Under review as submission to TMLR

Table 2: Performance on Type II backdoor attacks.

Model ResNet18 ResNet18 → VGG16
Defense Attacks Random FUS CBS Random FUS CBS

CIFAR10

No Defenses Hidden-trigger 81.9±1.5 84.2±1.2 76.3±0.8 83.4±2.1 86.2±1.3 79.6±0.7
LC 90.3±1.2 92.1±0.8 87.2±0.5 91.7±1.4 93.7±0.9 87.1±0.8

NC Hidden-trigger 6.3±1.4 5.9±1.1 9.7±0.9 10.7±2.4 11.2±1.5 14.7±0.6
LC 8.9±2.1 8.1±1.6 12.6±1.1 11.3±2.6 9.8±1.1 12.9±0.9

FP Hidden-trigger 11.7±2.6 9.9±1.3 14.3±0.9 8.6±2.4 8.1±1.4 11.8±0.8
LC 10.3±2.1 13.5±1.2 20.4±0.7 7.9±1.7 8.2±1.1 10.6±0.7

ABL Hidden-trigger 1.7±0.8 5.6±1.6 10.5±1.1 3.6±1.1 8.8±0.8 10.4±0.6
LC 0.8±0.3 8.9±1.5 12.1±0.8 1.5±0.7 9.3±1.2 12.6±0.8

CIFAR100

No Defenses Hidden-trigger 80.6±2.1 84.1±1.8 78.9±1.3 78.2±2.3 81.4±1.6 75.8±1.2
LC 86.3±2.3 87.2±1.4 84.7±0.9 84.7±2.8 85.2±1.4 81.5±1.1

NC Hidden-trigger 3.8±1.4 4.2±0.9 7.6±0.7 4.4±1.1 5.1±1.2 6.8±0.9
LC 6.1±1.8 5.4±1.1 8.3±0.5 3.9±1.2 3.8±0.9 8.3±0.7

FP Hidden-trigger 15.3±3.1 16.7±0.9 23.2±0.7 8.9±1.3 9.3±1.1 12.3±0.7
LC 13.8±2.7 12.7±1.5 16.9±0.6 10.3±1.4 9.9±0.8 14.2±0.5

ABL Hidden-trigger 2.3±0.9 3.9±1.3 6.5±1.1 3.7±0.9 3.5±0.7 6.4±0.4
LC 0.9±0.2 2.7±0.8 6.2±0.6 2.5±0.8 2.1±0.7 6.7±0.5

ple. In our evaluation, we focus on image classification tasks on datasets Cifar10 and Cifar100 (Krizhevsky
et al., 2009)10, and model architectures ResNet18 (He et al., 2016), VGG16 (Simonyan & Zisserman, 2014).
We use ResNet18 as the surrogate model 11 for CBS and FUS if not specified. The surrogate model is trained
on the clean training set via SGD for 60 epochs, initial learning rate 0.01 and reduced by 0.1 after 30 and
50 epochs. We implement CBS according to Algorithm.1 and follow the original setting in (Xia et al., 2022)
to implement FUS, i.e., 10 overall iterations and 60 epochs for updating the surrogate model in each itera-
tion. After the generation of poisoned samples, we test the attacking performance on ResNet18 (the same
architecture as the surrogate model) as well as transferring to another model architecture VGG16 (denoted
as ResNet18 → VGG16 in tables 123).

5.2 Performance of CBS in Type I backdoor attacks

Attacks & Defenses. We consider 3 representative attacks in this category—BadNet (Gu et al., 2017)
which attaches a small patch pattern as the trigger to samples to inject backdoors into neural networks;
Blend (Chen et al., 2017) which applies the image blending to interpolate the trigger with samples; and
Adaptive backdoor12 (Qi et al., 2022) which introduces regularization samples to improve the stealthiness of
backdoors, as backbone attacks. We include 4 representative defenses: Spectral Signiture (SS) (Tran et al.,
2018) and STRIP (Gao et al., 2019) which are outlier-detection-based defenses, Anti-Backdoor Learning
(ABL) (Li et al., 2021a) and Neural Cleanser (NC) (Wang et al., 2019) which are not detection-based
defenses. We follow the default settings for backbone attacks and defenses. For CBS, we set ϵ = 0.2 and the
corresponding poison rate is 0.2% applied for Random and FUS, to guarantee that poisoning rates are the
same for all sampling methods. We retrain victim models on poisoned training data from scratch via SGD
for 200 epochs with an initial learning rate of 0.1 and decay by 0.1 at epochs 100 and 150. Then we compare
the success rate which is defined as the probability of classifying samples with triggers as the target class.
We repeat every experiment 5 times and report average success rates (ASR) as well as the standard error
if not specified 13. Results on Cifar10 are shown in Table 1 and results on Cifar100 and Tiny-ImageNet are
shown in the Appendix.

10Additional datasets are included in Appendix 7.7
11Discussion of surrogate models in Appendix 7.10
12Both Adaptive-Blend and Adaptive-Patch are included
13Accuracy on the clean samples are included in Appendix 7.7

10

Under review as submission to TMLR

Performance comparsion. Generally, CBS enhances the resilience of backbone attacks against various
defense mechanisms. It achieves notable improvement compared to Random and FUS without a significant
decrease in ASR when there are no defenses in place. This is consistent with our analysis in Section 4.3. We
notice that CBS has the lowest success rate when no defenses are active, which is consistent with our analysis
in Remark 4.814. Nonetheless, CBS still manages to achieve commendable performance, with success rates
exceeding 70% and even reaching 90% for certain attacks. It is important to note that the effectiveness of
CBS varies for different attacks and defenses. The improvements are more pronounced when dealing with
stronger defenses and more vulnerable attacks. For instance, when facing SS, which is a robust defense
strategy, CBS significantly enhances ASR for nearly all backbone attacks, especially for BadNet. In this
case, CBS can achieve more than a 20% increase compared to Random and a 15% increase compared to
FUS. Additionally, it’s worth mentioning that CBS consistently strengthens resistance against detection-
based (first two) and non-detection-based defenses (the other two). This further supports the notion that
boundary samples are inherently more challenging to detect and counteract. While the improvement of
CBS on VGG16 is slightly less pronounced than on ResNet18, it still outperforms Random and FUS in
nearly every experiment. This indicates that CBS can be effective even on unknown models.

5.3 Performance of CBS in Type II backdoor attacks

Attacks & Defenses. We consider 2 representative attacks in this category—Hidden-trigger (Saha et al.,
2020) which adds imperceptible perturbations to samples to inject backdoors, and Clean-label (LC) (Turner
et al., 2019) which leverages adversarial examples to train a backdoored model. We follow the default settings
in the original papers, and adapt l2-norm bounded perturbation (perturbation size 6/255) for LC. We test
all attacks against three representative defenses that are applicable to these attacks. We include NC, SS,
Fine Pruning (FP) (Liu et al., 2018), Anti-Backdoor Learning (ABL) (Li et al., 2021a). We set ϵ = 0.3
for CBS and p = 0.2% for Random and FUS correspondingly. For every experiment, a source class and
a target class are randomly chosen, and poisoned samples are selected from the source class. The success
rate is defined as the probability of misclassifying samples from the source class with triggers as the target
class. Results on dataset Cifar10 and Cifar100 are presented in Table 2. We include additional results on
Tiny-ImageNet in the Supplementary for a further illustration.

Performance comparison. As detailed in Table 2, CBS displays an enhanced capacity to withstand various
defense mechanisms, akin to Type I attacks, while sacrificing a marginal degree of success rate. Notably, in
the presence of defenses, CBS consistently surpasses both Random and FUS strategies in performance, which
demonstrate its adaptability across a range of challenging conditions. This is particularly evident when tack-
ling susceptible attack strategies like BadNet, where CBS not only achieves substantial gains—outperforming
Random by upwards of 10% and FUS by in excess of 5%—but also maintains smaller standard errors. These
smaller errors reflect CBS’s stability, which is critical in real-world applications where consistent performance
is crucial.

5.4 Performance of CBS in Type III backdoor attacks

Attacks & Defenses. We consider 3 Representative attacks in this category—Lira (Doan et al., 2021b)
which involves a stealthy backdoor transformation function and iteratively updates triggers and model pa-
rameters; WaNet (Nguyen & Tran, 2021) which applies the image warping technique to make triggers more
stealthy; Wasserstein Backdoor (WB) (Doan et al., 2021a) which directly minimizes the distance between
poisoned and clean representations. Note that Type III attacks allow the attackers to take control of the
training process. Though our threat model does not require this additional capability of attackers, we follow
this assumption when implementing these attacks. Therefore, we directly select samples based on ResNet18
and VGG16 rather than using ResNet18 as a surrogate model. We conduct 3 representative defenses that
are applicable for this type of attacks—NC, STRIP, FP. We follow the default settings to implement these
attacks and defenses. We set ϵ = 0.37 which matches the poison rate p = 0.1 in the original settings of
backbone attacks. Results on Cifar10 and Cifar100 are presented in Table 3.

14Additional discussion can be found in Appendix 7.8

11

Under review as submission to TMLR

Table 3: Performance on Type III backdoor attacks.

Model ResNet18 VGG16
Defense Attacks Random FUS CBS Random FUS CBS

CIFAR10

No Defenses
Lira 91.5±1.4 92.9±0.7 88.2±0.8 98.3±0.8 99.2±0.5 93.6±0.4

WaNet 90.3±1.6 91.4±1.3 87.9±0.7 96.7±1.4 97.3±0.9 94.5±0.5
WB 88.5±2.1 90.9±1.9 86.3±1.2 94.1±1.1 95.7±0.8 92.8±0.7

NC
Lira 10.3±1.6 12.5±1.1 16.1±0.7 14.9±1.5 18.3±1.1 19.6±0.8

WaNet 8.9±1.5 10.1±1.3 13.4±0.9 10.5±1.1 12.2±0.7 13.7±0.9
WB 20.7±2.1 19.6±1.2 27.2±0.6 23.1±1.3 24.9±0.8 28.7±0.5

STRIP
Lira 81.5±3.2 82.3±2.3 87.7±1.1 82.8±2.4 81.5±1.7 84.6±1.3

WaNet 80.2±3.4 79.7±2.5 86.5±1.4 77.6±3.1 79.3±2.2 78.2±1.5
WB 80.1±2.9 81.7±1.8 86.6±1.2 83.4±2.7 82.6±1.8 87.3±1.1

FP
Lira 6.7±1.7 6.2±1.2 12.5±0.7 10.4±1.1 9.8±0.8 13.3±0.6

WaNet 4.8±1.3 6.1±0.9 8.2±0.8 6.8±0.9 6.4±0.6 8.3±0.4
WB 20.8±2.3 21.9±1.7 28.3±1.1 25.7±1.3 26.2±1.2 29.1±0.7

CIFAR100

No Defenses
Lira 98.2±0.7 99.3±0.2 96.1±1.3 97.1±0.8 99.3±0.4 94.5±0.5

WaNet 97.7±0.9 99.1±0.4 94.3±1.2 96.3±1.2 98.7±0.9 94.1±0.7
WB 95.1±0.6 96.4±1.1 94.7±0.9 93.2±0.9 96.7±0.4 91.9±0.8

NC
Lira 0.2±0.1 1.7±1.2 5.8±0.9 3.4±0.7 3.9±1.0 7.2±0.9

WaNet 1.6±0.8 3.4±1.3 8.2±0.8 2.9±0.6 2.5±0.8 5.1±1.2
WB 7.7±1.5 7.5±0.9 15.7±0.7 8.5±1.3 7.6±0.9 14.9±0.7

STRIP
Lira 84.3±2.7 83.7±1.5 87.2±1.1 82.7±2.5 83.4±1.8 87.8±1.4

WaNet 82.5±2.4 82.0±1.6 83.9±0.9 81.4±2.7 84.5±1.7 82.6±0.8
WB 85.8±1.9 86.4±1.2 88.1±0.8 82.9±2.4 82.3±1.5 86.5±1.4

FP
Lira 7.4±1.9 8.9±1.1 15.2±0.9 8.5±3.2 11.8±2.4 14.7±1.1

WaNet 6.7±1.7 6.3±0.9 11.3±0.7 9.7±2.9 9.3±1.8 12.6±1.3
WB 19.2±1.5 19.7±0.7 26.1±0.5 17.6±2.4 18.3±1.7 24.9±0.8

Performance comparison. Except for the common findings in previous attacks, where CBS consistently
outperforms baseline methods in nearly all experiment, we observe that the impact of CBS varies when applied
to different backbone attacks. Specifically, CBS tends to yield the most significant improvements when applied
to WB, while its effect is less pronounced when applied to WaNet. For example, when confronting FP and
comparing CBS with both Random and FUS, we observed an increase in ASR of over 7% on WB, while the
increase on WaNet amounted to only 3%, with Lira showing intermediate results. This divergence may be
attributed to the distinct techniques employed by these attacks to enhance their resistance against defenses.
WB focuses on minimizing the distance between poisoned samples and clean samples from the target class
in the latent space. By selecting boundary samples that are closer to the target class, WB can reach a
smaller loss than that optimized on random samples, resulting in improved resistance. The utilization of the
fine-tuning process and additional information from victim models in Lira enable a more precise estimation
of decision boundaries and the identification of boundary samples. WaNet introduces Gaussian noise to some
randomly selected trigger samples throughout the poisoned dataset, which may destroy the impact of CBS if
some boundary samples move away from the boundary after adding noise. These observations suggest that
combining CBS with proper trigger designs can achieve even better performance, and it is an interesting
topic to optimize trigger designs and sampling methods at the same time for more stealthiness, which leaves
for future exploration.

5.5 CBS with Partial Backdoor

We investigate scenarios where attackers can only manipulate partial training data. Specifically, we conduct
experiments on the ResNet18 model using the Cifar10 dataset, employing the BadNet attack method with
various sampling strategies. We designate different subset rates (10%, 5%, 1%) of the training set as accessible
to the attacker, who can only poison this fraction of the data. From their accessible data, attackers insert
triggers into 10% of the samples. The effectiveness of these attacks, under different defense mechanisms,
is evaluated. Our findings, presented in Table 4, demonstrate that our method effectively enhances the

12

Under review as submission to TMLR

0.
1

0.
15 0.

2
0.

25 0.
3

0.
1

0.
15 0.

2
0.

25 0.
3

0.
1

0.
15 0.

2
0.

25 0.
3

0.
1

0.
15 0.

2
0.

25 0.
3

0.
1

0.
15 0.

2
0.

25 0.
3

0.
1

0.
15 0.

2
0.

25 0.
3

0

10

20

30
AS

R
un

de
r D

ef
en

se
s

SS
SPECTRE
STRIP
ABL
NC

0

20

40

60

80

100

AS
R

of
 N

o
De

fe
nc

e No Defense

Figure 5: An illustration on the influence of ϵ in CBS when applied to BadNet. The magenta bar represents
ASR without defenses while the left bars present ASR under defenses.

Table 4: Experiments for partially poisoned data. Conducted on model ResNet18 and dataset Cifar10,
attacking method BadNet is incorporated with different sampling methods.

Subset rate Random FUS CBS

No defenses
10% 99.9 99.9 93.7
5% 98.4 99.7 92.9
1% 97.2 99.7 92.3

SS
10% 1.2 6.8 15.7
5% 0.9 5.3 12.4
1% 0.6 2.8 8.5

NC
10% 2.7 8.2 14.4
5% 1.4 6.5 10.7
1% 2.2 5.3 8.4

Strip
10% 1.5 4.9 13.2
5% 0.9 3.1 9.5
1% 0.5 2.8 7.2

stealthiness of backdoor attacks, even with limited data access. This underscores the practical potential of
our approach in real-world situations where attackers cannot access the entire training dataset.

0

10

20

30

SS SPECTRE STRIP ABL NC

HighConfidence(99.9) LowConfidence(93.6)
Random(99.9)

Figure 6: Illustrating impacts of confidence.

5.6 Ablation study

Impact of ϵ. Threshold ϵ is one key hyperparameter in CBS to determine which samples are around the
boundary, and to study the impact of ϵ, we conduct experiments on different ϵ. Since the size of the poisoned
set generated by different ϵ is different, we fix the poison rate to be 0.1% (50 samples), and for large ϵ that
generates more samples, we randomly choose 50 samples from it to form the final poisoned set. We consider

13

Under review as submission to TMLR

ϵ = 0.1, 0.15, 0.2, 0.25, 0.3, and conduct experiments on model ResNet18 and dataset Cifar10 with BadNet
as the backbone. Results of ASR under no defense and 5 defenses are shown in Figure 5. It is obvious that
the ASR for no defenses is increasing when ϵ is increasing. We notice that large ϵ (0.25,0.3) has higher ASR
without defenses but relatively small ASR against defenses, indicating that the stealthiness of backdoors
is reduced for larger ϵ. For small ϵ (0.1), ASR decreases for either no defenses or against defenses. These
observations suggest that samples too close or too far from the boundary can hurt the effect of CBS, and a
proper ϵ is needed to balance between performance and stealthiness.

Impact of confidence. Since our core idea is to select samples with lower confidence, we conduct ex-
periments to compare the influence of high-confidence and low-confidence samples. In detail, we select
low-confidence samples with ϵ = 0.2 and high-confidence samples with ϵ = 0.915. We still conduct experi-
ments on ResNet18 and Cifar10 with BadNet, and the ASR is shown in Figure 6. Note that low-confidence
samples significantly outperform the other 2 types of samples, while high-confidence samples are even worse
than random samples. Therefore, these results further support our claim that low-confidence samples can
improve the stealthiness of backdoors.

We also conduct experiments to study the effect of poisoning rate, and due to the page limit, we include it
in Appendix 7.9.

6 Conclusion

In this paper, we highlight a crucial aspect of backdoor attacks that was previously overlooked. We find that
the choice of which samples to poison plays a significant role in a model’s ability to resist defense mechanisms.
To address this, we introduce a confidence-driven boundary sampling approach, which involves carefully
selecting samples near the decision boundary. This approach has proven highly effective in improving an
attacker’s resistance against defenses. It also holds promising potential for enhancing the robustness of all
backdoored models against defense mechanisms.

References
Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopadhyay, and Debdeep Mukhopadhyay.

Adversarial attacks and defences: A survey. arXiv preprint arXiv:1810.00069, 2018.

Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Edwards, Taesung Lee, Ian Mol-
loy, and Biplav Srivastava. Detecting backdoor attacks on deep neural networks by activation clustering.
arXiv preprint arXiv:1811.03728, 2018.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep learning
systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017.

Khoa Doan, Yingjie Lao, and Ping Li. Backdoor attack with imperceptible input and latent modification.
Advances in Neural Information Processing Systems, 34:18944–18957, 2021a.

Khoa Doan, Yingjie Lao, Weijie Zhao, and Ping Li. Lira: Learnable, imperceptible and robust backdoor
attacks. In Proceedings of the IEEE/CVF international conference on computer vision, pp. 11966–11976,
2021b.

Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, Pascal Frossard, and Stefano Soatto. Empirical study of
the topology and geometry of deep networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3762–3770, 2018.

Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C Ranasinghe, and Surya Nepal. Strip:
A defence against trojan attacks on deep neural networks. In Proceedings of the 35th Annual Computer
Security Applications Conference, pp. 113–125, 2019.

15Here we refer to the different direction of Eq.4.1, i.e. |sc(f(x; θ))y − sc(f(x; θ))y′ | ≥ ϵ

14

Under review as submission to TMLR

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the machine
learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.

Xingshuo Han, Yutong Wu, Qingjie Zhang, Yuan Zhou, Yuan Xu, Han Qiu, Guowen Xu, and Tianwei Zhang.
Backdooring multimodal learning. In 2024 IEEE Symposium on Security and Privacy (SP), pp. 31–31.
IEEE Computer Society, 2023.

Jonathan Hayase, Weihao Kong, Raghav Somani, and Sewoong Oh. Spectre: Defending against backdoor
attacks using robust statistics. In International Conference on Machine Learning, pp. 4129–4139. PMLR,
2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Ching-Kang Ing and Tze Leung Lai. A stepwise regression method and consistent model selection for high-
dimensional sparse linear models. Statistica Sinica, pp. 1473–1513, 2011.

Hamid Karimi, Tyler Derr, and Jiliang Tang. Characterizing the decision boundary of deep neural networks.
arXiv preprint arXiv:1912.11460, 2019.

Alaa Khaddaj, Guillaume Leclerc, Aleksandar Makelov, Kristian Georgiev, Hadi Salman, Andrew Ilyas, and
Aleksander Madry. Rethinking backdoor attacks. 2023.

Jonas Moritz Kohler and Aurelien Lucchi. Sub-sampled cubic regularization for non-convex optimization.
In International Conference on Machine Learning, pp. 1895–1904. PMLR, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Shaofeng Li, Minhui Xue, Benjamin Zi Hao Zhao, Haojin Zhu, and Xinpeng Zhang. Invisible backdoor
attacks on deep neural networks via steganography and regularization. IEEE Transactions on Dependable
and Secure Computing, 18(5):2088–2105, 2020.

Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Anti-backdoor learning:
Training clean models on poisoned data. Advances in Neural Information Processing Systems, 34:14900–
14912, 2021a.

Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Backdoor learning: A survey. IEEE Transactions on
Neural Networks and Learning Systems, 2022.

Yu Li, Lizhong Ding, and Xin Gao. On the decision boundary of deep neural networks. arXiv preprint
arXiv:1808.05385, 2018.

Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li, Ran He, and Siwei Lyu. Invisible backdoor attack with
sample-specific triggers. In Proceedings of the IEEE/CVF international conference on computer vision,
pp. 16463–16472, 2021b.

Ziqiang Li, Pengfei Xia, Hong Sun, Yueqi Zeng, Wei Zhang, and Bin Li. Explore the effect of data selection
on poison efficiency in backdoor attacks. arXiv preprint arXiv:2310.09744, 2023.

Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending against backdooring attacks
on deep neural networks. In International symposium on research in attacks, intrusions, and defenses, pp.
273–294. Springer, 2018.

Prasanta Chandra Mahalanobis. On the generalized distance in statistics. Sankhyā: The Indian Journal of
Statistics, Series A (2008-), 80:S1–S7, 2018.

Anh Nguyen and Anh Tran. Wanet–imperceptible warping-based backdoor attack. arXiv preprint
arXiv:2102.10369, 2021.

15

Under review as submission to TMLR

Tim Pearce, Alexandra Brintrup, and Jun Zhu. Understanding softmax confidence and uncertainty. arXiv
preprint arXiv:2106.04972, 2021.

Xiangyu Qi, Tinghao Xie, Yiming Li, Saeed Mahloujifar, and Prateek Mittal. Revisiting the assumption of
latent separability for backdoor defenses. In The eleventh international conference on learning represen-
tations, 2022.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale
Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.
doi: 10.1007/s11263-015-0816-y.

Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. Hidden trigger backdoor attacks. In
Proceedings of the AAAI conference on artificial intelligence, volume 34, pp. 11957–11965, 2020.

Zeyang Sha, Xinlei He, Pascal Berrang, Mathias Humbert, and Yang Zhang. Fine-tuning is all you need to
mitigate backdoor attacks. arXiv preprint arXiv:2212.09067, 2022.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

Hossein Souri, Liam Fowl, Rama Chellappa, Micah Goldblum, and Tom Goldstein. Sleeper agent: Scalable
hidden trigger backdoors for neural networks trained from scratch. Advances in Neural Information
Processing Systems, 35:19165–19178, 2022.

Di Tang, XiaoFeng Wang, Haixu Tang, and Kehuan Zhang. Demon in the variant: Statistical analysis of
{DNNs} for robust backdoor contamination detection. In 30th USENIX Security Symposium (USENIX
Security 21), pp. 1541–1558, 2021.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, and Ge-
offrey J Gordon. An empirical study of example forgetting during deep neural network learning. arXiv
preprint arXiv:1812.05159, 2018.

Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in backdoor attacks. Advances in neural
information processing systems, 31, 2018.

Joel A Tropp et al. An introduction to matrix concentration inequalities. Foundations and Trends® in
Machine Learning, 8(1-2):1–230, 2015.

Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Label-consistent backdoor attacks. arXiv
preprint arXiv:1912.02771, 2019.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning
research, 9(11), 2008.

Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and Ben Y Zhao.
Neural cleanse: Identifying and mitigating backdoor attacks in neural networks. In 2019 IEEE Symposium
on Security and Privacy (SP), pp. 707–723. IEEE, 2019.

Baoyuan Wu, Hongrui Chen, Mingda Zhang, Zihao Zhu, Shaokui Wei, Danni Yuan, and Chao Shen. Back-
doorbench: A comprehensive benchmark of backdoor learning. Advances in Neural Information Processing
Systems, 35:10546–10559, 2022.

Yutong Wu, Xingshuo Han, Han Qiu, and Tianwei Zhang. Computation and data efficient backdoor attacks.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4805–4814, 2023.

Pengfei Xia, Ziqiang Li, Wei Zhang, and Bin Li. Data-efficient backdoor attacks. arXiv preprint
arXiv:2204.12281, 2022.

16

Under review as submission to TMLR

Pengfei Xia, Yueqi Zeng, Ziqiang Li, Wei Zhang, and Bin Li. Efficient trojan injection: 90% attack success
rate using 0.04% poisoned samples. 2023.

Zihao Zhu, Mingda Zhang, Shaokui Wei, Li Shen, Yanbo Fan, and Baoyuan Wu. Boosting backdoor attack
with a learnable poisoning sample selection strategy. arXiv preprint arXiv:2307.07328, 2023.

17

Under review as submission to TMLR

7 Appendix

7.1 Proofs for Section 4.3

Recall the settings in Section 4.3 in the main paper. Suppose two classes C1, C2 form two uniform distribu-
tions of balls centered at µ1, µ2 with radius r in the latent space, i.e.

C1 ∼ p1(x) = 1
πr2 1[∥x − µ1∥2 ≤ r], and C2 ∼ p2(x) = 1

πr2 1[∥x − µ2∥2 ≤ r]

Both classes have n samples. Assume x ∈ C1, and a trigger is added to x such that x̃ = x + ϵt/∥t∥2 := x + a.
Then define the poisoned data as C̃1 = C1/{x} and C̃2 = C1 ∪ {x̃}. Then we train a backdoored SVM on
the poisoned data. The following theorem provides estimations for Mahalanobis distance which serves as the
indicator of outliers, and success rate.

Proof of Theorem 4.2. Given n samples x1, x2, . . . , xn from C2 together with the extra example x, the Ma-
halanobis distance becomes

d2
M (x̃, C̃2) = (x̃ − µ̃2)T S̃−1

2 (x̃ − µ̃2),

where µ̃2 is the sample mean of the n samples from C2 and the poisoned example x̃ = x + ϵt/∥t∥2. The
notation S̃2 denotes the sample covariance matrix.

To show (4), we need to study the behavior of µ̃2 and S̃−1
2 .

For µ̃2, following the vector Bernstein inequality in Kohler & Lucchi (2017), we have for some constants c1
and c2,

P

(∥∥∥∥∥ 1
n

n∑
i=1

xi − µ2

∥∥∥∥∥ ≥ t

)
≤ exp

(
−c1nt2 + c2

)
.

As a result,

P (∥µ̃2 − µ2∥ ≥ t)

≤ P

(
1

n + 1 ∥x̃ − µ2∥ +
∥∥∥∥∥ 1

n + 1

n∑
i=1

xi − n

n + 1µ2

∥∥∥∥∥ ≥ t

)

≤ 1
(

∥x̃ − µ2∥ ≥ t(n + 1)
2

)
+ P

(∥∥∥∥∥ 1
n

n∑
i=1

xi − µ2

∥∥∥∥∥ ≥ n + 1
n

t

)

≤ 1
(

∥x̃ − µ2∥ ≥ t(n + 1)
2

)
+ exp

(
−c1t2 (n + 1)2

n
+ c2

)
,

where 1(·) is the indicator function. In terms of S̃2, it can be decomposed as

S̃2 = 1
n + 1

n∑
i=1

(xi − µ̃2)(xi − µ̃2)T + 1
n + 1(x̃ − µ̃2)(x̃ − µ̃2)T

= 1
n + 1

n∑
i=1

(xi − µ2 + µ2 − µ̃2)(xi − µ2 + µ2 − µ̃2)T + 1
n + 1(x̃ − µ̃2)(x̃ − µ̃2)T

= 1
n + 1

n∑
i=1

(xi − µ2)(xi − µ2)T + 1
n + 1

n∑
i=1

(µ2 − µ̃2)(xi − µ2)T

+ 1
n + 1

n∑
i=1

(µ2 − µ̃2)(xi − µ2)T + n

n + 1(µ2 − µ̃2)(µ2 − µ̃2)T + 1
n + 1(x̃ − µ̃2)(x̃ − µ̃2)T .

18

Under review as submission to TMLR

Denote Σ2 as the population covariance matrix of the samples in C2, and xi ∈ Rd. Following matrix Bernstein
inequality in Tropp et al. (2015), we obtain that for some c3 and c4,

P

(∥∥∥∥∥ 1
n + 1

n∑
i=1

(xi − µ2)(xi − µ2)T − Σ2

∥∥∥∥∥ ≥ t

)
≤ 2d exp

(
− c3t2n

1 + c4t

)
.

Besides, we also have

P

(∥∥∥∥∥ 1
n + 1

n∑
i=1

(µ2 − µ̃2)(xi − µ2)T

∥∥∥∥∥ ≥ t

)

≤ P

(
∥µ2 − µ̃2∥

∥∥∥∥∥ 1
n + 1

n∑
i=1

(xi − µ2)
∥∥∥∥∥ ≥ t

)

≤ P (∥µ2 − µ̃2∥ ≥ t1) + P

(∥∥∥∥∥ 1
n + 1

n∑
i=1

(xi − µ2)
∥∥∥∥∥ ≥ t

t1

)
.

As a result,

P
(
∥S̃2 − Σ2∥ ≥ t

)
≤ P

(∥∥∥∥∥ 1
n + 1

n∑
i=1

(xi − µ2)(xi − µ2)T − Σ2

∥∥∥∥∥ ≥ t

5

)
+ 2P

(∥∥∥∥∥ 1
n + 1

n∑
i=1

(µ2 − µ̃2)(xi − µ2)T

∥∥∥∥∥ ≥ t

5

)

+P

(
∥µ2 − µ̃2∥2 >

n + 1
n

t

5

)
+ 1

(
∥x̃ − µ̃2∥2 ≥ (n + 1)t

5

)
≤ 2d exp

(
− c3t2n/25

1 + c4t/5

)
+ 2P (∥µ̃2 − µ2∥ ≥ t1) + 2P

(∥∥∥∥∥ 1
n + 1

n∑
i=1

(xi − µ2)
∥∥∥∥∥ ≥ t

5t1

)

+P

(
∥µ2 − µ̃2∥2 >

n + 1
n

t

5

)
+ 1

(
∥x̃ − µ̃2∥2 ≥ (n + 1)t

5

)
.

In terms of the inverse of S̃2, following similar steps for (A.6) in Ing & Lai (2011), we also have S̃−1
2 −Σ−1

2 =
Σ−1

2 (Σ2 − S̃2)S̃−1
2 , thus

P
(∥∥S̃−1

2 − Σ−1
2
∥∥ ≥ t

)
= P

(∥∥Σ−1
2 (Σ2 − S̃2)S̃−1

2
∥∥ ≥ t

)
≤ P

(∥∥Σ−1
2
∥∥∥∥Σ2 − S̃2

∥∥∥∥S̃−1
2
∥∥ ≥ t

)
= P

(∥∥Σ−1
2
∥∥∥∥Σ2 − S̃2

∥∥ ≥ t
∥∥S̃2

∥∥)
≤ P

(∥∥Σ−1
2
∥∥∥∥Σ2 − S̃2

∥∥ ≥ t(∥Σ2∥ −
∥∥Σ2 − S̃2

∥∥)
)

= P

(∥∥Σ2 − S̃2
∥∥ ≥ t∥Σ2∥

∥Σ−1
2 ∥ + t

)
.

Given the above probability bounds for µ̃2 and S̃−1
2 , we can further bound the Mahalanobis distance as

P

(∣∣∣∣(x̃ − µ̃2)T S̃−1
2 (x̃ − µ̃2) − 4∥x̃∥2

r2

∣∣∣∣ ≥ t

)
≤ P

(∣∣∣∣(x̃ − µ2 + µ2 − µ̃2)T (S̃−1
2 − Σ−1

2 + Σ−1
2)(x̃ − µ2 + µ2 + µ̃2) − 4∥x̃∥2

r2

∣∣∣∣ ≥ t

)
≤ P

(∣∣∣∣(x̃ − µ2)T Σ−1
2 (x̃ − µ2) − 4∥x̃∥2

r2

∣∣∣∣︸ ︷︷ ︸
=0

+|(x̃ − µ̃2)T (S̃−1
2 − Σ−1

2)(x̃ − µ̃2)|

+2|(x̃ − µ2)T Σ−1
2 (µ̃2 − µ2)| + |(µ̃2 − µ2)Σ−1

2 (µ̃2 − µ2)| ≥ t

)

19

Under review as submission to TMLR

≤ P

(
∥x̃ − µ̃2∥2∥S̃−1

2 − Σ−1
2 ∥ ≥ t

3

)
+ P

(
∥x̃ − µ2∥∥Σ−1

2 ∥∥µ̃2 − µ2∥ ≥ t

3

)
+P

(
∥µ̃2 − µ2∥2∥Σ−1

2 ∥ ≥ t

3

)
.

Since the poisoned sample x̃ is from C1, and both C1 and C2 are bounded, there exists some constant c5 so
that ∥x̃ − µ2∥ < c5 and ∥x̃ − µ̃2∥ < 5 uniformly for all possible choice of x̃ and uniformly for all choices of
{xi}i=1,...,n. As a result,

P

(∣∣∣∣(x̃ − µ̃2)T S̃−1
2 (x̃ − µ̃2) − 4∥x̃∥2

r2

∣∣∣∣ ≥ t

)
≤ P

(
∥S̃−1

2 − Σ−1
2 ∥ ≥ t

3c2
5

)
+ P

(
∥Σ−1

2 ∥∥µ̃2 − µ2∥ ≥ t

3c5

)
+ P

(
∥µ̃2 − µ2∥2∥Σ−1

2 ∥ ≥ t

3

)
= P

(
∥S̃−1

2 − Σ−1
2 ∥ ≥ t

3c2
5

)
+ P

(
∥µ̃2 − µ2∥ ≥ tr2

12c5

)
+ P

(
∥µ̃2 − µ2∥2 ≥ tr2

12

)
≤ 2d exp

(
− c3t2n∥Σ2∥2

25(3c2
5∥Σ−1

2 ∥ + t)2 + 5c4t∥σ2∥(3c2
5∥Σ−1

2 ∥ + t)

)
+ 2

[
1
(

∥x̃ − µ2∥ ≥ t1(n + 1)
2

)
+ exp

(
−c1t2

1
(n + 1)2

n
+ c2

)]
+ 2 exp

(
−c1

(n + 1)2

n
+ c2

)
+ 1

(
∥x̃ − µ2∥ ≥ n + 1

2

√
(n + 1)t

5n

)
+ exp

(
−c1

t

5
(n + 1)3

n2 + c2

)
+ 1

(
∥x̃ − µ2∥ ≥ n + 1

2
tr2

12c5

)
+ exp

(
−c1

t2r4

144c2
5

(n + 1)2

n
+ c2

)
+ 1

(
∥x̃ − µ2∥ ≥ n + 1

2

√
tr2

12

)
+ exp

(
−c1

tr2

12
(n + 1)2

n
+ c2

)
.

When t is small while tn is large enough, the indicator functions all become 0. To simplify the above result,
there exists some constants c6, c7 so that when n ≥ n0 for some large constant n0,

P

(∣∣∣∣(x̃ − µ̃2)T S̃−1
2 (x̃ − µ̃2) − 4∥x̃∥2

r2

∣∣∣∣ ≥ t

)
≤ c6 exp

(
−c7t2n

)
.

Proof of Theorem 4.3. To simplify the analysis, we first investigate the scenario of n → ∞, and then discuss
the impact of a finite n.

As shown in Fig.7a (for Random) and 7b (for CBS), for a given sample x (red point), x̃ = x + ϵ t
∥t∥2

:= x + a

(blue point), where µT
1 t ≥ 0. Since C2 is not changed, the backdoored decision boundary (the bold black line)

is determined by x̃ and C1. Specifically, the decision boundary is determined by x̃ and center µ1 Connect
the center of C1 with x̃ and we obtain an interaction point on C1, which is µ1 + r x̃−µ1

∥x̃−µ1∥2
and the center

between it and x̃ is

c̃1 =
µ1 + r x̃−µ1

∥x̃−µ1∥2
+ x̃

2 . (5)

Then we can derive the equation for the backdoored decision boundary:

(x − c̃1)T (x̃ − µ1) = 0 (6)

where we assume this decision boundary is not overlapped with C2. During the inference, triggers will be
added to samples in C1, which means that the circle of C1 will shift by ϵ t

∥t∥2
(denoted as C̄1) as shown in

Fig.7a and 7b, then the yellow area will be misclassified as C2. Thus the success rate without any defenses
is determined by the area of the yellow area. Since the circle of C1 is fixed, we only need to compare the

20

Under review as submission to TMLR

distance from the center of C̄1 to the backdoored decision boundary, which is the bold green line in Fig.7a
and 7b. Notice that µ1 − x̃ is orthogonal to the decision boundary defined in Eq.6, thus the length of the
green bold line is the length of ˜̃c1 − c̃1 in the direction of µ1 − x̃ where ˜̃c1 is the center of ˜̃C1, thus the distance
is computed as:

dD(x̃) = (˜̃c1 − c̃1)T (µ1 − x̃)
∥µ1 − x̃∥2

= 1
∥x̃ − µ1∥

(
µ1 + a −

µ1 + r x̃−µ1
∥x̃−µ1∥ + x̃

2

)T

(x̃ − µ1)

= aT (x̃ − µ1)
∥x̃ − µ1∥

− ∥x̃ − µ1∥
2 − r

2

= ∥a∥ cos(a, x̃ − µ1) − ∥x̃ − µ1∥
2 − r

2 .

The above formulation indicates that smaller ∥x̃−µ1∥ and cos(a, x̃−µ1) leads to larger dD(x̃). Therefore, the
closer the selected sample to the decision boundary, the smaller the area of the yellow area is, and the smaller
the success rate for the backdoored attack. Note that here we only consider the case that aT (x̃ − µ1) ≥ 0
otherwise the poisoned sample will remain in the original C1. These results reveal the trade-off between
stealthiness and performance.

(a) Random (b) CBS

Figure 7: Illustrating figures for SVM under Random and CBS. The red point is a sample x from C1, and the
blue one is the triggered sample x̃. The grey dashed line and black bold line represent the decision boundary
of clean and backdoored SVM respectively. We are interested in the Mahalanobis distance between x̃ and
the target class C̃2. The yellow area is in proportion to the success rate and the length of the green bold
line is positively correlated with the area of the yellow part. It is obvious that CBShas smaller Mahalanobis
distance and smaller area of yellow.

Proof of Theorem 4.5. Denote F as the set of all linear functions f which can separate C1 and C2, and define
x∗ as the point of tangency of the common tangent line to two clusters and x∗ ∈ C1, as shown in Figure 8.

Denote δn = (log n)/
√

n and
d1,min = min

x∈C1
µT

1 (x − µ1), (7)

d1,f = µT
1 (x∗ − µ1), (8)

d2,max = maxx∈C2 µT
1 (x−µ1). Then one can define the following regions for k = 1, . . . , ⌈(d1,f +∆−d1,min)/δn⌉

for some small positive constant ∆:

21

Under review as submission to TMLR

Figure 8: Illustration of impact of finite training samples.

• C1,0 = {x ∈ C1||µT
1 (x − µ1)| ∈ [d1,min, d1,min + δn)}.

• C1,k,1 = {x ∈ C1||µT
1 (x − µ1)| ∈ [d1,min + kδn, d1,min + (k + 1)δn), sin(x, µ1) >

supx′∈C1,k−1,1
sin(x′, µ1)}. C1,0,1 = C1,0,2 = C1,0.

• C1,k,2 = {x ∈ C1||µT
1 (x − µ1)| ∈ [d1,min + kδn, d1,min + (k + 1)δn), sin(x, µ1) ≤

infx′∈C1,k−1,2 sin(x′, µ1)}.

• C2,0 = {x ∈ C2||µT
1 (x − µ1)| ∈ (d2,max − δn, d2,max]}. C2,0,1 = C2,0,2 = C2,0.

• C2,k,1 = {x ∈ C2||µT
1 (x − µ1)| ∈ (d2,max − (k + 1)δn, d2,max − kδn], sin(x, µ1) >

supx′∈C2,k−1,2
sin(x′, µ1)}.

• C2,k,2 = {x ∈ C2||µT
1 (x − µ1)| ∈ (d2,max − (k + 1)δn, d2,max − kδn], sin(x, µ1) ≤

infx′∈C2,k−1,2 sin(x′, µ1)}.

Note that all the above sets have no overlap with each other, and Figure .

Denote |C| as the area of a region C, then it is easy to see that for all C ∈ {Ci,0, Ci,j,k}, |C| = Ω((log n)2/n).
Suppose there are n samples in C1, then since all examples are i.i.d. sampled uniformly from C1, we have
for some constant c, for all C ∈ {Ci,0, , Ci,j,k},

P (∀i, xi /∈ C) =
(

1 − |C|
πr2

)n

≤
(

1 − c log2 n

nπr2

)n

.

As a result, for both i = 1, 2,

P

(
There exists at least one sample in each Ci,0 and Ci,k,j for k = 1, . . . ,

⌈
d1,f − d1,min

δn

⌉
, j = 1, 2

)
≥ 1 −

(
1 + 2

⌈
d1,f − d1,min

δn

⌉)(
1 − c log2 n

nπr2

)n

.

Based on the above, when taking n → ∞, all the Ci,k,j and Ci,0 regions have at least one sample falls in
each of them.

Given the above result, now we look at the minimum distance from the samples in C1 and C2 to any f ∈ F .
For a region C, denote d(C) = supx1,x2∈C ∥x1 − x2∥. Then for Ci,0, one can calculate that

d(Ci,2) =
√

[r2 − (r − δn)2] + δ2
n =

√
2rδn.

For the other Ci,k,j , one can also see that d(Ci,k,j) = O(
√

δn).

22

Under review as submission to TMLR

As a result, if denote d(f, C) as the distance from f to a region C, and d(f, {xi}i∈I), then when all the Ci,k,j

and Ci,0 regions have at least one sample falls in each of them, we have uniformly for all f ∈ F ,

d(f, C1) = inf
k,j

d(f, C1,k,j) = d(f, {xi}xi∈∪C1,k,j
) + O(

√
δn) = d(f, {xi}i=1,...,n) + O(

√
δn),

which also implies that the sample selected by CBS is O(
√

δn)-close to the point in C1 which is closest to
C2. And when n → ∞, δn → 0.

7.2 Implementation details

In this section, we provide details of attacks and defenses used in experiments as well as implementation
details.

7.2.1 Implementations for samplings

We implement Random with a uniform distribution on Dtr. We implement CBS according to Algorithm 1
in the main paper, and the surrogate model is trained via SGD for 60 epochs with an initial learning rate
of 0.01 and decreases by 0.1 at epochs 30,50. We implement FUS according to its original settings, i.e. 10
overall iterations and 60 epochs for updating the surrogate model in each iteration, and the surrogate model
is pre-trained the same as in CBS.

7.2.2 Attacks

We will provide brief introduction and implementation details for all the backbone attacks implemented in
this work.

Type I attacks:

BadNet (Gu et al., 2017). BadNet is the first work exploring the backdoor attacks, and it attaches a
small patch to the sample to create the poisoned training set. Then this training set is used to train a
backdoor model. We implement it based on the code of work (Qi et al., 2022) and following the default
setting.

Blend (Chen et al., 2017). Blend incorporates the image blending technique, and blends the selected
image with a pre-specified trigger pattern that has the same size as the original image. We implement this
attack based on the code of work (Qi et al., 2022), and following the default setting, i.e. mixing ratio α = 0.2.

Adaptive backdoor (Qi et al., 2022). This method leverages regularization samples to weaken the rela-
tionship between triggers and the target label and achieve better stealthiness. We implement two versions of
the method: Adaptive-blend and Adaptive-patch. During the implementation, we consider the conservatism
ratio of η = 0.5 and mixing ratio α = 0.2 for adaptive-blend; conservatism ratio η = 2/3 and 4 patches for
Adaptive-patch.

Type II attacks:

Hidden-trigger (Saha et al., 2020). This attacking method first attaches the trigger to a sample and
then searches for an imperceptible perturbation that achieves a similar model output (measured by l2 norm)
as the triggered sample. We follow the original settings in work (Saha et al., 2020), i.e. placing the trigger
at the right corner of the image, setting the budget size as 16/255, optimizing the perturbation for 10000
iterations with a learning rate of 0.01 and decay by 0.95 for every 2000 iterations.

Label-consistent (LC) (Turner et al., 2019). This attacking method leverages GAN or adversarial
examples to create the poisoned image without changing the label. We implement the one with adversarial
examples bounded by l2 norm. We set the budget size as 600 to achieve a higher success rate.

Type III attacks:

Lira (Doan et al., 2021b). This method iteratively learns the model parameters and a trigger generator.
Once the trigger generator is trained, attackers will finetune the model on poisoned samples attached with

23

Under review as submission to TMLR

triggers generated by the generator, and release the backdoored model to the public. Our implementation
is based on the Benchmark (Wu et al., 2022).

WaNet (Nguyen & Tran, 2021). WaNet incorporates the image warping technique to inject invisible
triggers into the selected image. To improve the poisoning effect, they introduce a special training mode
that add Gaussian noise to the warping field to improve the success rate. Our implementation is based on
the Benchmark (Wu et al., 2022).

Wasserstein Backdoor (WB) (Doan et al., 2021a). This method directly minimizes the distance
between poisoned samples and clean samples in the latent space. We follow the original settings, i.e. training
50 epochs for Stage I and 450 epochs for Stage II, set the threshold of constraint as 0.01.

7.2.3 Defenses

Outlier detection defenses:

Spectral Signature (SS) (Tran et al., 2018). This defense detects poisoned samples with stronger
spectral signatures in the learned representations. We remove 1.5 ∗ p of samples in each class.

Activation Clustering (AC) (Chen et al., 2018). This defense is based on the clustering of activations
of the last hidden neural network layer, for which clean samples and poisoned samples form distinct clusters.
We remove clusters with sizes smaller than 35% for each class.

SCAn (Tang et al., 2021). This defense leverages an EM algorithm to decompose an image into its
identity part and variation part, and a detection score is constructed by analyzing the distribution of the
variation.

SPECTRE (Hayase et al., 2021). This method proposes a novel defense algorithm using robust covari-
ance estimation to amplify the spectral signature of corrupted data. We also remove 1.5 ∗ p of samples in
each class.

STRIP (Gao et al., 2019). STRIP is a sanitation-based method relying on the observation that poisoned
samples are easier to be perturbed, and detect poisoned samples through adversarial perturbations.

Other defenses:

Fine Pruning (FP) (Liu et al., 2018). This is a model-pruning-based backdoor defense that eliminates
a model’s backdoor by pruning these dormant neurons until a certain clean accuracy drops.

Neural Cleanse (NC) (Wang et al., 2019). This is a trigger-inversion method that restores triggers by
optimizing the input domain. It is based on the intuition that the norm of reversed triggers from poisoned
samples will be much smaller than clean samples.

Anti-Backdoor Learning (ABL) (Li et al., 2021a). This defense utilizes local gradient ascent to isolate
1% suspected training samples with the smallest losses and leverage unlearning techniques to train a cleansed
model on poisoned data.

7.3 Algorithms

In this section, we provide detailed algorithms for CBS and its application on Blend (Chen et al., 2017).

As shown in Algorithm 1 in the main paper, CBS first pretrain a surrogate model f(·; θ) on the clean training
set Dtr for E epochs; then f(·; θ) is used to estimate the confidence score for every sample; for a given target
yt, samples satisfying |sc(f(xi; θ))yi − sc(f(xi; θ))yt | ≤ ϵ are selected as the poison sample set U .

As shown in Algorithm 2, the poison sample set U is first selected via Algorithm 1; then for each sample in
U , a trigger is blended to this sample with a mixing ratio α via x′ = α ∗ t + (1 − α) ∗ x and generate the
poisoned training set Dp.

24

Under review as submission to TMLR

0 2 4 6 8 10 12
do

0

500

1000

1500

2000

Fr
eq

ue
nc

y

All data
Random
Boundary

(a) BadNet

0 2 4 6 8 10 12
do

0

500

1000

1500

2000

Fr
eq

ue
nc

y

All data
Random
Boundary

(b) Blend

Algorithm 2 Blend+CBS
Input Clean training set Dtr = {(xi, yi)}N

i=1, surrogate model f(·; θ), pre-train epochs E, threshold ϵ, target class
yt, mixing ratio α, trigger pattern t
Output Poisoned training set Dp

Initialize poisoned training set Dp

Select poison set U from Dtr via Algorithm.1
for x ∈ U do

Inject triggers to samples: x′ = α ∗ t + (1 − α) ∗ x
Dp = Dp ∪ {x′}

end for
Return poisoned training set Dp

7.4 Discussion of computation overhead of CBS

Since CBS selects samples based on confidence score of a clean model, it is necessary to analyze its computation
overhead compared with simple random selection. Suppose the sample size is N , poison rate is r. For the
random selection, we need to randomly select rN samples from the dataset and the time complexity is
O(rN). For the proposed method, we need to first compute the confidence score for each sample and then
select those smaller than ϵ. Suppose the average time for computing the confidence score for one sample is
t, and the time complexity for the proposed method is O(N(t + 1)). Therefore, both complexities are in the
linear order of sample size N . When the inference time is shorter, CBS is more efficient.

7.5 Details for the discussion in Section 4.1

We provide more details for the discussions in Section 4.1.

Additional figures. To supplement Figure 2, we present the distributions of distance do for different
selections of samples. In specific, in Figure 2, we present the kernel density curve of each category for a
clearer comparison, and this is why there are curves in the negative region. In the real data of distances, all
values are non-negative. The original histograms can be found in Figure 9a and Figure 9b.

Formal definition of do and dt. We also provide the formal definition of distances do and dt for
clearer understanding. Assume sample x comes from the class y and the target class is yt, model f
mapping from input space to the latent space, classifier g mapping from latent space to label space.
We then can define the center of samples in class y and yt in the latent space as: f(x)y,mean :=

1
|{(x′,y)∈Dtr}|

∑
(x′,y)∈Dtr

f(x′), f̃(x)yt,mean := 1
|{(x′,yt)∈Dp}|

∑
(x′,y)∈Dtr

f̃(x′), where f, f̃ denote the clean
model and backdoored model respectively. Then we can define do, dt as:

do(x) := ∥f(x) − f(x)y,mean∥2, dt(x) := ∥f̃(x + t) − f̃(x)yt,mean∥2

25

Under review as submission to TMLR

Additional discussion of stealthiness. In this work, we focus on the “stealthiness" that poisoned sam-
ples are separable in the latent space given the labels. Assume the backdoored model f mapping from input
space to the latent representation space, classifier g with label space Y , sample x and trigger t, and also
assume the true label for x as y, the triggered label is yt, i.e. g(f(x)) = y and g(f(x + t)) = yt where
x + t denote the combination of input x and trigger t. Then the stealthiness is measured by the distance
between poisoned sample x + t and the center of clean samples from the target class yt in the latent space,
i.e. d(f(x + t), f(x)y,mean) where f(x)y,mean := 1

|{(x′,y)∈Dtr}|
∑

(x′,y)∈Dtr
f(x′). A larger distance means the

poisoned sample is separated from the target class and therefore easy to detect, and vice versa.

In the proposed method, since we take the model output before the last linear layer as the latent representa-
tion (for example ResNet18), selection based on the confidence score is equivalent to that directly based on
the latent representation. To provide some more details, we visualize two classes in Cifar10. In the Figures
10a 10b, there are two clusters with different colors. The blue one is the target class, the green one is the
original class, and the red points are the poisoned samples. These verify our statements. In the random
selection case, since the poisoned samples are far away from the blue cluster, with the label as the blue class,
they are more likely to be identified by the defender. For boundary selection, the poisoned samples are less
likely to be detected.

Besides the formal definition above, we would like to clarify that from a more general perspective, the
“stealthiness" of an attack is to what extent the attack can be defended. Since defenses are based on
different insights, for instance, Spectral Signature (SS) is based on outlier-detection while anti-backdoor
(ABL) is based on the fact that poisoned sample is learned faster than clean data, it is hard to find a formal
definition for “stealthiness" accommodating all defenses. In our experiments, we test different defenses and
the reduction of success rate measure the “stealthiness" (smaller reduction means better resistance against
defenses thus more stealthiness).

(a) Random selection (b) Boundary selection

7.6 Type III Backdoor Attacks

Due to the page limit of the main text, we present details and comprehensive experimental results in this
section.

Attacks & Defenses. We consider 3 Representative attacks in this category—Lira (Doan et al., 2021b)
which involves a stealthy backdoor transformation function and iteratively updates triggers and model pa-
rameters; WaNet (Nguyen & Tran, 2021) which applies the image warping technique to make triggers more
stealthy; Wasserstein Backdoor (WB) (Doan et al., 2021a) which directly minimizes the distance between
poisoned and clean representations. Note that Type III attacks allow the attackers to take control of the
training process. Though our threat model does not require this additional capability of attackers, we follow
this assumption when implementing these attacks. Therefore, we directly select samples based on ResNet18
and VGG16 rather than using ResNet18 as a surrogate model. We conduct 5 representative defenses that

26

Under review as submission to TMLR

are applicable for this type of attacks—SS, NC, STRIP, FP, Activation Clustering (AC) (Chen et al., 2018),
including both detection-based (SS,STRIP, AC) and non-detection-based (NC, FP). We follow the default
settings to implement these attacks and defenses (details in Appendix 7.2). We set ϵ = 0.37 which matches
the poison rate p = 0.1 in the original settings of backbone attacks. Results on Cifar10 and Cifar100 are
presented in Table 5.

Performance comparison. Except for the common findings in previous attacks, where CBS consistently
outperforms baseline methods in nearly all experiments, we observe that the impact of CBS varies when
applied to different backbone attacks. Specifically, CBS tends to yield the most significant improvements when
applied to WB, while its effect is less pronounced when applied to WaNet. For example, when confronting FP
and comparing CBS with both Random and FUS, we observed an increase in ASR of over 7% on WB, while
the increase on WaNet amounted to only 3%, with Lira showing intermediate results. This divergence may be
attributed to the distinct techniques employed by these attacks to enhance their resistance against defenses.
WB focuses on minimizing the distance between poisoned samples and clean samples from the target class
in the latent space. By selecting boundary samples that are closer to the target class, WB can reach a
smaller loss than that optimized on random samples, resulting in improved resistance. The utilization of the
fine-tuning process and additional information from victim models in Lira enable a more precise estimation
of decision boundaries and the identification of boundary samples. WaNet introduces Gaussian noise to some
randomly selected trigger samples throughout the poisoned dataset, which may destroy the impact of CBS if
some boundary samples move away from the boundary after adding noise. These observations suggest that
combining CBS with proper trigger designs can achieve even better performance, and it is an interesting
topic to optimize trigger designs and sampling methods at the same time for more stealthiness, which leaves
for future exploration.

7.7 Additional experiments

In this section, we provide additional experimental results.

Type I attacks. We include additional defenses: Activation Clustering (AC) (Chen et al., 2018), SCAn
(Tang et al., 2021), SPECTRE (Hayase et al., 2021), Fine Pruning (FP) (Liu et al., 2018). We also conduct
experiments on Cifar100. Results of Type I attacks on Cifar10 and Cifar100 datasets are shown in Table 6
and 7 respectively. CBS has similar behavior on Cifar100—improve the resistance against various defenses
while slightly decrease ASR without defenses.

Type II attacks. We also include additional defenses: Spectral Signature (SS) (Tran et al., 2018). The
results of all defenses on model ResNet18, VGG16 and datasets Cifar10, Cifar100 are presented in Table 8.
Detailed analysis is shown in Section 5.3 in the main paper.

Clean accuracy. We also report the accuracy of clean samples (without triggers) on the backdoored
models of all three sampling methods. Results are shown in Table 9. It is clear that CBS can reach a
better clean accuracy than other selections, which makes it more stealthy. To intuitively explain this, since
the poisoned samples are around the original decision boundary, they do not severely change the decision
boundary, thus preserving a high clean accuracy when no attack is injected in the testing data.

Tiny-ImageNet dataset. Except for Cifar10 and Cifar100, we also conduct experiments on a larger
dataset Tiny-ImageNet (Le & Yang, 2015). We also train model ResNet18 for 60 epochs to select the
poisoned samples for each sampling method. Results are shown in Table 10. These results demonstrate that
CBS is applicable to larger datasets and consistently improves the stealthiness of different attacks.

ImageNet-1k dataset. We also consider a large-scale dataset, ImageNet-1k (Russakovsky et al., 2015),
which has 1000 object classes and more than 1,200,000 images. We test representative backbone attacks from
all three types and representative defenses. Since FUS is time-consuming and not eligible for large datasets,
we only compare CBS with the random baseline. Results are shown in Table 11. CBS is still effective even
on such a big dataset.

27

Under review as submission to TMLR

Table 5: Performance on Type III backdoor attacks.

Model ResNet18 VGG16
Defense Attacks Random FUS CBS Random FUS CBS

CIFAR10

No Defenses
Lira 91.5±1.4 92.9±0.7 88.2±0.8 98.3±0.8 99.2±0.5 93.6±0.4

WaNet 90.3±1.6 91.4±1.3 87.9±0.7 96.7±1.4 97.3±0.9 94.5±0.5
WB 88.5±2.1 90.9±1.9 86.3±1.2 94.1±1.1 95.7±0.8 92.8±0.7

AC
Lira 90.7±2.1 90.8±1.4 91.1±0.9 90.5±3.1 89.8±2.3 91.2±1.2

WaNet 90.5±1.3 89.6±0.9 89.9±0.6 90.8±3.5 91.5±2.1 90.4±1.4
WB 87.1±2.3 87.7±1.5 88.2±1.3 90.4±2.8 89.5±1.7 91.1±0.9

SS
Lira 86.5±2.7 89.6±1.6 90.1±1.3 90.5±2.5 91.3±1.6 90.1±1.1

WaNet 87.4±3.1 89.4±1.5 88.2±1.4 90.6±2.6 90.8±1.1 91.2±0.7
WB 86.4±2.8 86.1±2.3 88.1±1.7 87.6±3.2 88.2±2.5 89.9±1.3

NC
Lira 10.3±1.6 12.5±1.1 16.1±0.7 14.9±1.5 18.3±1.1 19.6±0.8

WaNet 8.9±1.5 10.1±1.3 13.4±0.9 10.5±1.1 12.2±0.7 13.7±0.9
WB 20.7±2.1 19.6±1.2 27.2±0.6 23.1±1.3 24.9±0.8 28.7±0.5

STRIP
Lira 81.5±3.2 82.3±2.3 87.7±1.1 82.8±2.4 81.5±1.7 84.6±1.3

WaNet 80.2±3.4 79.7±2.5 86.5±1.4 77.6±3.1 79.3±2.2 78.2±1.5
WB 80.1±2.9 81.7±1.8 86.6±1.2 83.4±2.7 82.6±1.8 87.3±1.1

FP
Lira 6.7±1.7 6.2±1.2 12.5±0.7 10.4±1.1 9.8±0.8 13.3±0.6

WaNet 4.8±1.3 6.1±0.9 8.2±0.8 6.8±0.9 6.4±0.6 8.3±0.4
WB 20.8±2.3 21.9±1.7 28.3±1.1 25.7±1.3 26.2±1.2 29.1±0.7

CIFAR100

No Defenses
Lira 98.2±0.7 99.3±0.2 96.1±1.3 97.1±0.8 99.3±0.4 94.5±0.5

WaNet 97.7±0.9 99.1±0.4 94.3±1.2 96.3±1.2 98.7±0.9 94.1±0.7
WB 95.1±0.6 96.4±1.1 94.7±0.9 93.2±0.9 96.7±0.4 91.9±0.8

AC
Lira 83.5±2.6 82.4±1.9 87.1±1.3 85.2±2.8 85.7±2.1 84.2±1.2

WaNet 82.7±2.8 82.1±2.1 86.3±0.9 83.8±3.1 84.2±1.8 85.1±0.9
WB 83.2±2.4 84.9±1.6 90.2±1.2 90.5±2.4 89.3±1.5 91.8±0.9

SS
Lira 93.2±1.7 94.6±1.3 92.8±0.8 91.8±1.9 90.7±1.3 92.1±0.7

WaNet 92.4±1.9 93.3±1.0 92.7±0.6 90.5±2.3 90.1±1.4 90.3±1.1
WB 92.9±1.3 92.7±0.8 94.1±0.9 90.1±2.1 90.4±1.6 92.5±0.8

NC
Lira 0.2±0.1 1.7±1.2 5.8±0.9 3.4±0.7 3.9±1.0 5.2±0.9

WaNet 1.6±0.8 3.4±1.3 5.2±0.8 2.9±0.6 2.5±0.8 4.1±1.2
WB 7.7±1.5 7.5±0.9 13.7±0.7 8.5±1.3 7.6±0.9 11.9±0.7

STRIP
Lira 84.3±2.7 83.7±1.5 87.2±1.1 82.7±2.5 83.4±1.8 83.8±1.4

WaNet 82.5±2.4 82±1.6 83.9±0.9 81.4±2.7 82.5±1.7 82.0±0.8
WB 85.8±1.9 86.4±1.2 88.1±0.8 82.9±2.4 82.3±1.5 84.5±1.4

FP
Lira 87.4±1.9 88.2±1.1 89.9±0.9 82.5±3.2 81.8±2.4 86.7±1.1

WaNet 86.7±1.7 86.3±0.9 89.3±0.7 81.7±2.9 82.1±1.8 85.6±1.3
WB 89.2±1.5 89.7±0.7 92.1±0.5 83.6±2.4 83.3±1.7 87.9±0.8

GTSRB dataset. GTSRB is a traffic sign recognition benchmark, consisting of traffic signs, and is a
different real-world scenario than the standard Cifar10 dataset. We also test representative backbone attacks
from all three types and representative defenses. Results are shown in Table 11.

7.8 Additional discussion on effectiveness-stealthiness tradeoff

As discussed in Theorem 4.2 and Remark 4.8, there exists an effectiveness-stealthiness tradeoff for attacks.
In general, when selecting samples closer to the decision boundary, it is harder to detect but will sacrifice
some poisoning effect when facing no defenses. This is also verified by our empirical results in Table 1, Table
2 and Table 3, where CBS has the worst performance when there is no defense.

28

Under review as submission to TMLR

Table 6: Full Performance on Type I backdoor attacks (Cifar10).

Model Attacks ResNet18 ResNet18 → VGG16
Defense Random FUS CBS Random FUS CBS

No Defenses

BadNet 99.9±0.2 99.9±0.1 93.6±0.3 99.7±0.1 99.9±0.06 94.5±0.4
Blend 89.7±1.6 93.1±1.4 86.5±0.6 81.6±1.3 86.2±0.8 78.3±0.6

Adapt-blend 76.5±1.8 78.4±1.2 73.6±0.6 72.2±1.9 74.9±1.1 68.6±0.5
Adapt-patch 97.5±1.2 98.6±0.9 95.1±0.8 93.1±1.4 95.2±0.7 91.4±0.6

SS

BadNet 0.5±0.3 4.7±0.2 23.2±0.3 1.9±0.9 3.6±0.6 11.8±0.4
Blend 43.7±3.4 42.6±1.7 55.7±0.9 16.5±2.3 17.4±1.9 21.5±0.8

Adapt-blend 62±2.9 61.5±1.4 70.1±0.6 38.2±3.1 36.1±1.7 43.2±0.9
Adapt-patch 93.1±2.3 92.9±1.1 93.7±0.7 49.1±2.7 48.1±1.3 52.9±0.6

AC

BadNet 0.6±0.3 14.2±0.9 20.5±0.7 5.7±1.2 5.3±1.3 10.5±1.5
Blend 77.1±2.8 79.6±2.6 77.8±1.4 83.1±3.5 83.2±2.4 81.4±2.1

Adapt-blend 76.8±2.1 76.1±1.4 79.3±1.6 69.9±2.8 70.6±1.5 73.1±1.2
Adapt-patch 97.5±2.6 94.2±1.7 96.6±0.9 92.4±2.7 93.2±1.4 91.3±1.3

SCAn

BadNet 0.7±0.4 10.7±1.2 23.5±0.8 12.4±1.5 10.7±1.2 26.4±1.1
Blend 84.4±3.4 83.6±2.5 78.3±2.6 80.6±3.2 82.1±2.4 78.2±0.9

Adapt-blend 78.2±2.6 77.5±2.1 81.5±1.4 71.9±2.5 71.1±2.1 74.4±1.3
Adapt-patch 97.5±0.9 94.1±0.8 96.9±0.4 93.1±1.1 93.8±0.9 91.5±0.5

STRIP

BadNet 0.4±0.2 8.5±0.9 26.2±0.8 0.8±0.3 9.6±1.5 15.7±1.2
Blend 54.7±2.7 57.2±1.6 60.6±0.9 49.1±2.3 50.6±1.7 56.9±0.8

Adapt-blend 0.7±0.2 5.5±1.8 8.6±1.2 1.8±0.9 3.9±1.1 6.3±0.7
Adapt-patch 21.3±2.1 24.6±1.8 29.8±1.2 26.5±1.7 27.8±1.3 29.7±0.5

SPECTRE

BadNet 0.9±0.5 10.1±1.4 19.6±1.3 0.7±0.3 8.7±1.2 14.9±0.8
Blend 9.2±2.4 16.7±2.1 24.2±1.7 8.7±2.6 12.8±1.9 18.6±0.9

Adapt-blend 69±3.5 66.8±2.7 70.3±1.8 67.9±3.2 65.2±1.8 69.4±0.9
Adapt-patch 91.4±1.4 89.4±1.2 93.1±0.7 92.5±2.4 91.8±1.4 92.1±1.2

ABL

BadNet 16.8±3.1 17.3±2.3 31.3±1.9 14.2±2.3 15.7±2.0 23.6±1.7
Blend 57.2±3.8 55.1±2.7 65.7±2.1 55.1±1.9 53.8±1.3 56.2±1.1

Adapt-blend 4.5±2.7 5.1±2.3 6.9±1.7 25.4±2.6 24.7±2.1 28.3±1.7
Adapt-patch 5.2±2.3 7.4±1.5 8.7±1.3 10.8±2.7 11.1±1.5 13.9±1.3

FP

BadNet 75.2±3.2 80.8±2.4 81.2±1.3 68.3±3.1 70.5±2.3 73.7±1.1
Blend 79.5±3.7 81.5±2.4 80.4±1.5 70.2±2.9 72.5±2.1 79.3±1.5

Adapt-blend 77.5±2.7 75.3±2.3 77.4±1.2 65.1±3.4 64.2±2.7 68.5±1.6
Adapt-patch 97.5±1.1 92.7±2.3 96.3±0.9 93.4±2.2 93.3±1.7 93.7±0.8

NC

BadNet 1.1±0.7 13.5±0.4 24.6±0.3 2.5±0.9 14.4±1.3 17.5±0.8
Blend 82.5±1.7 83.7±1.1 81.7±0.6 79.7±1.5 77.6±1.6 78.5±0.9

Adapt-blend 72.4±2.3 71.5±1.8 74.2±1.2 59.8±1.7 59.2±1.2 62.1±0.6
Adapt-patch 2.2±0.7 6.6±0.5 14.3±0.3 10.9±2.3 13.4±1.4 16.2±0.9

To mitigate this limitation, we design two strategies. The general idea is to balance the effectiveness-
stealthiness trade-off to control the performance change of different defense methods. In the first strategy,
we set a lower threshold for confidence score during selection, i.e. ϵ1 ≤ |sc(f(xi; θ))yi

− sc(f(xi; θ))yt
| ≤ ϵ2.

The second strategy is to mix the boundary samples with some random samples. We conduct experiments
to test if these strategies can improve the performance on undefended models. We test with ResNet18
model, Cifar10 dataset, and backbone attacks are BadNet and Blended. For the first strategy, we set the
threshold as [0.07, 0.25] (about 100 samples within this interval and a good balance between effectiveness and
stealthiness), and for the second strategy, we select 70% boundary samples and 30% random samples. The
poison rate is 0.2%, i.e. 100 poisoned samples. We report the results of both undefended and 4 representative
defenses in Table 12.

It is clear that both strategies can improve the attacking performance under no defenses and can achieve
comparable performance with random selections. The performance under defenses is slightly reduced because
the poisoned samples are easier to detect by defense methods. Nonetheless, the performance still significantly
outperforms the baselines.

29

Under review as submission to TMLR

Table 7: Full Performance on Type I backdoor attacks (Cifar100).

Model Attacks ResNet18 ResNet18 → VGG16
Defenses Radnom FUS Boundary Radnom FUS Boundary

No defense

BadNet 82.8±2.3 84.1±1.5 78.1±0.9 83.1±2.6 86.3±1.9 80.4±1.2
Blend 82.7±2.6 83.9±1.7 77.9±1.1 79.6±2.8 82.9±2.1 75.2±1.3

Adapt-blend 67.1±1.9 69.2±1.3 64.5±0.7 70.6±2.4 74.1±1.5 69.3±0.9
Adapt-patch 78.2±1.2 81.4±1.4 75.1±0.8 82.4±2.7 86.7±1.8 83.1±1.1

SS

BadNet 0.6±0.2 3.7±1.3 6.5±0.8 0.7±0.2 4.5±1.8 6.9±0.9
Blend 0.7±0.3 2.6±1.5 5.2±1.1 1.6±0.7 3.5±1.1 5.7±0.5

Adapt-blend 7.3±1.7 4.8±1.3 5.7±0.7 12.8±1.9 11.7±1.3 15.6±0.7
Adapt-patch 9.5±2.1 10.9±1.7 14.2±1.2 10.5±2.1 11.3±1.2 14.9±0.3

AC

BadNet 0.4±0.1 7.5±1.2 10.1±0.6 2.6±0.9 8.2±1.6 11.4±1.1
Blend 0.2±0.1 9.3±2.3 11.9±1.7 3.4±1.5 7.6±1.2 9.7±0.8

Adapt-blend 10.2±2.5 18.7±2.1 23.5±1.6 3.4±2.3 4.2±1.8 6.7±0.7
Adapt-patch 13.5±2.1 21.7±1.3 26.8±1.0 5.2±1.6 5.7±1.2 7.4±0.9

SCAn

BadNet 85.5±3.8 84.9±3.2 83.2±2.1 78.3±2.9 77.6±2.1 81.9±1.4
Blend 84.1±1.6 83.5±1.2 82.9±0.8 80.2±2.1 81.4±1.3 80.9±0.9

Adapt-blend 69.7±2.7 68.7±1.8 72.6±1.1 68.8±3.4 69.4±1.6 67.9±1.5
Adapt-patch 71.7±1.5 71.3±0.9 73.9±0.7 81.9±2.7 81.2±1.6 82.1±1.1

STRIP

BadNet 72.3±2.7 71.8±1.8 77.1±1.2 67.6±3.2 68.1±2.4 73.7±1.3
Blend 83.2±3.2 82.9±2.5 82.8±1.6 71.9±2.7 71.2±1.6 75.1±0.9

Adapt-blend 64.4±3.7 67.9±2.3 70.6±1.6 69.2±2.8 70.8±1.5 68.5±0.7
Adapt-patch 67.8±2.5 67.5±1.7 72.7±1.3 74.7±1.9 75.4±1.3 73.5±0.8

SPECTRE

BadNet 0.2±0.1 3.9±1.4 7.3±0.6 0.6±0.2 2.5±0.7 4.1±0.5
Blend 0.6±0.2 12.4±1.5 14.7±0.5 9.5±1.4 12.5±1.3 14.7±0.9

Adapt-blend 14.8±1.5 19.6±1.3 20.3±0.9 15.7±2.3 16.9±1.7 20.1±1.2
Adapt-patch 17.9±2.1 25.8±1.4 27.3±0.8 19.3±1.9 20.5±1.3 21.6±0.7

ABL

BadNet 9.3±2.4 13.9±1.7 17.4±0.7 5.7±1.3 9.6±1.5 10.2±1.1
Blend 20.8±2.7 22.7±1.3 25.7±1.1 59.1±2.7 58.3±2.1 62.6±1.4

Adapt-blend 23.7±2.5 23.2±1.5 25.8±0.8 43.3±3.2 44.8±2.7 46.4±1.6
Adapt-patch 19.8±1.8 20.4±1.2 21.9±1.0 45.8±2.8 45.2±1.7 47.9±1.3

FP

BadNet 29.4±2.7 30.1±1.4 35.3±0.9 61.8±3.5 63.7±2.1 64.1±1.6
Blend 67.2±2.8 68.1±2.3 71.1±1.1 73.1±2.9 72.7±1.8 74.2±1.3

Adapt-blend 60.7±1.5 57.3±1.1 62.6±0.8 69.7±3.1 70.3±2.5 73.4±1.4
Adapt-patch 66.3±2.4 64.1±1.9 69.7±1.2 70.1±2.5 69.7±1.8 69.5±1.5

NC

BadNet 35.6±3.4 42.1±2.9 52.4±1.4 43.7±3.2 44.8±2.5 49.5±0.8
Blend 78.1±2.5 79.4±1.8 77.2±1.3 68.4±2.4 69.2±1.6 72.3±1.1

Adapt-blend 66.9±1.7 64.2±1.3 70.3±0.9 66.2±2.7 65.4±1.4 67.8±0.6
Adapt-patch 18.3±1.3 19.5±0.9 23.6±0.4 2.7±0.7 4.1±1.2 4.6±0.8

7.9 Ablation study on poisoning rate

We conduct additional experiments on Cifar10 dataset, ResNet18 model and backbone attack BadNet to
test how different poisoning rate affect the proposed method. We report the success rate against undefended
models and three representative defenses in Table 13. According to the results, poisoning more samples
can increase the success rate against undefended models, and slightly increase the poisoning effect against
defenses. We notice that while the poisoning rate is increasing, the improvement of the poisoning effect
against defenses becomes minor. This can be because when the number of poisoned samples increases,
samples that are farther from the boundary are included. These samples can achieve better performance
when there is no defense but are easy to detect. This also highlights the importance of a proper sample
selection strategy in backdoor attacks.

7.10 Discussion on surrogate models

Our experiments in Table 1 shows that the poisoned samples generated from ResNet18 can be transferred
well to VGG16. We further check whether different surrogate models select very different samples. We

30

Under review as submission to TMLR

Table 8: Full Performance on Type II backdoor attacks.

Model ResNet18 ResNet18 → VGG16
Defense Attacks Random FUS CBS Random FUS CBS

CIFAR10

No Defenses Hidden-trigger 81.9±1.5 84.2±1.2 76.3±0.8 83.4±2.1 86.2±1.3 79.6±0.7
LC 90.3±1.2 92.1±0.8 87.2±0.5 91.7±1.4 93.7±0.9 87.1±0.8

NC Hidden-trigger 6.3±1.4 5.9±1.1 8.7±0.9 10.7±2.4 11.2±1.5 14.7±0.6
LC 8.9±2.1 8.1±1.6 12.6±1.1 11.3±2.6 9.8±1.1 12.9±0.9

SS Hidden-trigger 68.5±3.2 69.3±2.4 74.1±1.3 75.7±3.1 74.8±2.3 76.2±1.1
LC 87.2±1.3 86.6±0.8 86.9±0.5 85.4±2.7 85.5±1.8 84.2±1.2

FP Hidden-trigger 11.7±2.6 9.9±1.3 14.3±0.9 8.6±2.4 8.1±1.4 11.8±0.8
LC 10.3±2.1 13.5±1.2 20.4±0.7 7.9±1.7 8.2±1.1 10.6±0.7

ABL Hidden-trigger 1.7±0.8 5.6±1.6 10.5±1.1 3.6±1.1 8.8±0.8 10.4±0.6
LC 0.8±0.3 8.9±1.5 12.1±0.8 1.5±0.7 9.3±1.2 12.6±0.8

CIFAR100

No Defenses Hidden-trigger 80.6±2.1 84.1±1.8 78.9±1.3 78.2±2.3 81.4±1.6 75.8±1.2
LC 86.3±2.3 87.2±1.4 84.7±0.9 84.7±2.8 85.2±1.4 81.5±1.1

NC Hidden-trigger 3.8±1.4 4.2±0.9 7.6±0.7 4.4±1.1 5.1±1.2 6.8±0.9
LC 6.1±1.8 5.4±1.1 8.3±0.5 3.9±1.2 3.8±0.9 8.3±0.7

SS Hidden-trigger 72.5±2.6 71.9±1.7 74.7±1.2 75.3±3.1 74.8±2.1 73.1±1.3
LC 80.4±2.4 80.1±1.4 79.6±1.3 82.9±2.7 83.5±1.8 81.4±1.0

FP Hidden-trigger 15.3±3.1 16.7±0.9 18.2±0.7 8.9±1.3 9.3±1.1 10.3±0.7
LC 13.8±2.7 12.7±1.5 14.9±0.6 10.3±1.4 9.9±0.8 12.2±0.5

ABL Hidden-trigger 2.3±0.9 3.9±1.3 6.5±1.1 3.7±0.9 3.5±0.7 6.4±0.4
LC 0.9±0.2 2.7±0.8 6.2±1.2 2.5±0.8 2.1±0.7 6.7±0.5

Table 9: Accuracy on clean input of each backdoored model with all three sample selections.

Attack ResNet18 VGG16
Random FUS CBS Random FUS CBS

Cifar10

BadNet 92.5 93.2 95.1 90.1 90.4 91.3
Blend 93.7 93.6 94.8 91.6 91.8 92.5

Adapt-blend 93.2 93.7 94.5 91.8 91.4 92.2
Adapt-patch 92.7 92.9 93.8 91.4 91.5 92.3

Hidden-trigger 94.6 94.3 95.7 92.7 93.0 93.6
LC 93.5 94.2 94.9 92.8 92.5 93.4
Lira 94.2 94.1 95.1 92.6 92.8 93.3

WaNet 94.3 94.7 95.5 92.7 93.1 93.4
WB 93.9 94.2 94.9 92.6 92.7 93.2

Cifar100

BadNet 75.2 76.1 76.8 72.2 72.8 73.4
Blend 76.9 77.3 77.7 73.4 73.6 74.2

Adapt-blend 76.4 76.1 76.9 72.8 73.1 73.8
Adapt-patch 77.1 76.8 77.9 72.9 72.7 73.4

Hidden-trigger 77.6 77.6 78.2 73.7 73.8 74.2
LC 76.8 77.1 77.6 73.6 73.7 73.9
Lira 77.6 77.4 78.1 73.8 73.6 74.3

WaNet 77.7 78 78.3 73.8 73.5 74.1
WB 77.5 77.3 78.2 73.5 73.6 74.3

compare ResNet18 and VGG16, and these two models have similar clean accuracy on the Cifar10 dataset
(95.5% and 93.6% respectively). We fix class 1 as the target class and select 100 samples using CBS from
both models. We notice that 67% of selected samples are the same, which is quite a large proportion. This
can explain why our method can transfer well from ResNet18 to VGG16.

31

Under review as submission to TMLR

Table 10: Performance of three types of backdoor attacks on Tiny-ImageNet dataset.

Attacks Random FUS CBS

Type I

No defenses

BadNet 89.5+0.8 89.8+0.2 83.1+0.6
Blended 83.4+1.2 85.2+0.3 81.6+0.5

Adaptive-Blend 67.2+0.7 68.9+0.4 66.2+0.7
Adaptive-Patch 84.5+1.1 86.3+0.3 81.7+0.5

SS

BadNet 0.4+0.2 10.8+0.1 18.5+0.1
Blended 37.2+1.2 43.2+0.6 46.3+0.8

Adaptive-Blend 59.4+0.9 61.7+0.4 65.1+0.6
Adaptive-Patch 75.3+1.3 76.5+0.2 78.5+0.4

Strip

BadNet 0.6+0.3 5.1+0.1 12.2+0.2
Blended 46.2+1.7 50.9+0.3 54.6+0.6

Adaptive-Blend 58.4+1.2 61.4+0.5 63.3+0.4
Adaptive-Patch 69.5+1.1 71.2+0.4 72.8+0.5

Type II

No defenses Hidden-trigger 59.7+0.8 62.9+0.3 54.3+0.3
NC Hidden-trigger 5.3+0.7 8.5+0.3 11.5+0.2
FP Hidden-trigger 8.4+0.9 9.7+0.2 12.1+0.4

ABL Hidden-trigger 1.8+0.6 2.6+0.2 4.2+0.4

Type III

No defenses
WaNet 98.5+0.5 99.2+0.2 96.1+0.3
LiRA 99.3+0.6 99.7+0.1 96.4+0.4
WB 98.2+0.4 99.5+0.2 92.7+0.2

NC
WaNet 5.4+0.8 11.2+0.4 10.7+0.3
LiRA 6.3+1.1 9.7+0.3 10.2+0.5
WB 9.6+0.8 13.5+0.5 15.1+0.4

FP
WaNet 9.5+0.9 12.6+0.2 13.6+0.4
LiRA 8.7+1.2 10.7+0.3 13.8+0.3
WB 10.2+0.8 13.1+0.4 16.5+0.6

Table 11: Additional results on ImageNet-1k and GTSRB dataset.

Attack Defense ImageNet-1k GTSRB
Random CBS Random CBS

BadNet
No defense 92.5 90.2 90.6 89.4

NC 9.6 21.7 1.8 22.3
SS 6.9 19.3 1.2 18.4

Hidden trigger
No defense 83.2 80.5 78.5 75.3

NC 21.3 30.5 10.3 15.7
FP 32.6 39.1 19.8 24.7

WaNet
No defense 98.1 94.3 98.6 96.4

NC 15.9 25.2 17.4 23.8
SS 80.5 84.2 83.1 89.3

7.11 Discussion on the difference between raw input space and latent space

CBS is based on the observation that poisoned samples can be separate from the target class in the latent
space, which raises a question of whether detecting outliers in the raw space can defend against such an
attack. To investigate, we compare the distance between each sample and the center of its class in both

32

Under review as submission to TMLR

Table 12: Two strategies to improve the poisoning performance when no defenses. CBS+1 and CBS+2
denote two strategies respectively.

Attack Random FUS CBS CBS+1 CBS+2

No defense BadNet 99.9 99.9 93.6 96.3 98.5
Blend 89.7 93.1 86.5 87.3 88.9

SS BadNet 0.5 4.7 20.2 18.8 17.5
Blend 43.7 42.6 55.7 53.2 51.8

STRIP BadNet 0.5 8.5 23.7 22.3 20.9
Blend 54.7 57.2 60.6 59.1 58.4

ABL BadNet 16.8 17.3 31.3 29.6 27.7
Blend 57.2 55.1 65.7 63.5 61.8

SPECTRE BadNet 0.9 10.1 19.6 17.5 16.4
Blend 9.2 16.7 24.2 22.1 21.3

Table 13: Ablation study on poisoning rates. Test on ResNet18 model, Cifar10 dataset and BadNet attack.

Poison rate 0.1%(50) 0.2%(100) 0.5%(250) 1%(500)
No defense 91.8 93.6 96.7 98.4

SS 18.7 20.2 23.5 24.2
ABL 27.4 31.3 33.1 34.8
NC 23.7 24.6 28.4 30.6

raw input space and latent space, i.e. draw(x) = ∥x − xy,mean∥2 and dlatent(x) = ∥f(x) − f(x)y,mean∥2
where f(x) denote the latent representation w.r.t the model f . We use the backdoored ResNet18 model and
Cifar10 dataset. Then we plot two distances in the same figure to check their relationship, shown in Figure
11. Based on the result, there is no obvious relationship between them, and the outliers in the raw space
can have a very small distance to the center in the latent space. This indicates that when filtering out the
outliers based on distances in the raw space, the poisoned samples can still be preserved.

Figure 11: Relationship between the distance in the raw input space and latent space.

33

Under review as submission to TMLR

To further validate, we consider a naive defense: ignore data points (x, y) from the training set if ∥x −
xy,mean∥2 ≥ α where xy,mean := mean{x′|(x′, y) ∈ data}. We follow Table 1 and test on Cifar10 and
ResNet18. We remove samples with a l2 distance in the raw space larger than 18, which is about 12% of
total samples. Then we train the model on the filtered dataset and test the success rate. We also consider
BadNet and Blended as the backbone for illustration.

Table 14: Test on naive defenses that remove outliers in the raw input space.

Attack CBS

No defense BadNet 93.6
Blend 86.5

Naive defense BadNet 90.7
Blend 84.2

As shown in Table 14, the success rate after the naive defense does not drop much, which suggests that this
defense can not effectively defend the proposed attack. Due to the difference between the raw input space
and the latent space, the outliers in the raw input space may not be the actual poisoned samples.

34

	Introduction
	Related works
	Backdoor attacks and defenses
	Samplings in backdoor attacks

	Definition and Notation
	Threat model
	A general pipeline for backdoor attacks

	Method
	Revisit random sampling
	Confidence-driven boundary sampling (CBS)
	Theoretical understandings

	Experiment
	Experimental settings
	Performance of CBS in Type I backdoor attacks
	Performance of CBS in Type II backdoor attacks
	Performance of CBS in Type III backdoor attacks
	CBS with Partial Backdoor
	Ablation study

	Conclusion
	Appendix
	Proofs for Section 4.3
	Implementation details
	Implementations for samplings
	Attacks
	Defenses

	Algorithms
	Discussion of computation overhead of CBS
	Details for the discussion in Section 4.1
	Type III Backdoor Attacks
	Additional experiments
	Additional discussion on effectiveness-stealthiness tradeoff
	Ablation study on poisoning rate
	Discussion on surrogate models
	Discussion on the difference between raw input space and latent space

