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ABSTRACT

How do we build a general and broad object detection system? We use all labels of
all concepts ever annotated. These labels span many diverse datasets with poten-
tially inconsistent semantic labels. In this paper, we show how to integrate these
datasets and their semantic taxonomies in a completely automated fashion. Once
integrated, we train an off-the-shelf object detector on the union of the datasets.
This unified recognition system performs as well as dataset-specific models on
each training domain, but generalizes much better to new unseen domains. En-
tries based on the presented methodology ranked first in the object detection and
instance segmentation tracks of the ECCV 2020 Robust Vision Challenge.
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Figure 1: Different datasets span diverse semantic and visual domains. We learn to unify the label
spaces of multiple datasets and train a single object detector that generalizes across datasets.
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1 INTRODUCTION

Computer vision aims to produce broad, general-purpose perception systems that work in the wild.
Yet object detection is fragmented into datasets (Lin et al, [2014; [Neuhold et all, 2017} [Shao et al.}
2019; [Kuznetsova et al.}[2020) and our models are locked into specific domains. This fragmentation
brought rapid progress in object detection and instance segmentation (He et al.
[2017), but comes with a drawback. Single datasets are limited and do not yield general-purpose
recognition systems. Can we alleviate these limitations by unifying diverse detection datasets?

In this paper, we make training an object detector on the union of disparate datasets as straight-
forward as training on a single one. The core challenge lies in integrating different datasets into a
common taxonomy and label space. A traditional approach is to create this taxonomy by hand
bert et all, [2020; [Zhao et al.} [2020), which is both time-consuming and error-prone. We present a
fully automatic way to unify the output space of a multi-dataset detection system using visual data
only. We use the fact that object detectors for similar concepts from different datasets fire on similar
novel objects. This allows us to define the cost of merging concepts across datasets, and optimize
for a common taxonomy fully automatically. Our optimization jointly finds a unified taxonomy, a
mapping from this taxonomy to each dataset, and a detector over the unified taxonomy using a novel
0-1 integer programming formulation. An object detector trained on this unified taxonomy has a
large, automatically constructed vocabulary of concepts from all training datasets.

We evaluate our unified object detector at an unprecedented scale. We train a unified detector on
4 large and diverse datasets: COCO (Lin et al., 2014), Objects365 2019), OpenIm-
ages (Kuznetsova et al.} [2020), and Mapillary (Neuhold et al.} [2017). Experiments show that our
learned taxonomy outperforms the best expert-annotated label spaces, as well as language-based
alternatives. For the first time, we show that a single detector performs as well as dataset-specific
models on each individual dataset. Crucially, we show that models trained on the diverse training
sets generalize zero-shot to new domains, and outperform single-dataset models. Our models ranked
first in the object detection and instance segmentation tracks of the ECCV 2020 Robust Vision Chal-
lenge across all evaluation datasets. Code and models will be released upon acceptance.
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2 RELATED WORK

Training on multiple datasets. In recent years, training on multiple diverse datasets has emerged
as an effective tool to improve model robustness for depth estimation (Ranftl et al.|[2020) and stereo
matching (Yang et al.l[2019). In these domains unifying the output space involves modeling different
camera models and depth ambiguities. In contrast, for recognition, the unification involves merging
different semantic concepts. MSeg (Lambert et al.,|2020) manually created a unified label taxonomy
of 7 semantic segmentation datasets and used Amazon Mechanical Turk to resolve the inconsistent
annotations between datasets. Different from MSeg, our solution does not require any manual effort
and unifies the label space directly from visual data in a fully automatic way.

Wang et al| (2019) train a universal object detector on multiple datasets, and gain robustness by
joining diverse sources of supervision. However, they produce a dataset-specific prediction for each
input image. When evaluated in-domain, they require knowledge of the test domain. When evaluated
out-of-domain, they produce multiple outputs for a single concept. This limits the generalization
ability of detection, as we show in experiments (Section. [5.2). Our approach, on the other hand,
merges visual concepts at training time and yields a single consistent model that does not require
knowledge of the test domain and can be deployed cleanly in new domains. Both [Wang et al.
(2019) and MSeg (Lambert et al.,[2020) observe a performance drop in a single unified model. With
our unified label space and a dedicated training framework, this is not the case: the unified model
performs as well as single-dataset models on the training datasets.

Zhao et al.| (2020) trains a universal detector on multiple datasets: COCO (Lin et al.| 2014), Pascal
VOC (Everingham et al.| 2010), and SUN-RGBD (Song et al.,[2015)), with under 100 classes in total.
They manually merge the taxonomies and then train with cross-dataset pseudo-labels generated by
dataset-specific models. The pseudo-label idea is complementary to our work. Our unified label
space learning removes the manual labor, and works on a much larger scale: we unify COCO,
Objects365, and Openlmages, with more complex label spaces and 900+ classes.

YOLO9000 (Redmon & Farhadi,[2017) combines detection and classification datasets to expand the
detection vocabulary. LVIS (Gupta et al.| 2019) extents COCO annotations to > 1000 classes in a
federated way. Our approach of fusing multiple readily annotated datasets is complementary and
can be operationalized with no manual effort to unify disparate object detection datasets.

Zero-shot classification and detection reason about novel object categories outside the training
set (Fu et al., 2018} Bansal et al.l [2018). This is often realized by representing a novel class by a
semantic embedding (Norouzi et al.| 2014) or auxiliary attribute annotations (Farhadi et al., [2009).
In zero-shot detection, Bansal et al.| (2018)) proposed a statically assigned background model to
avoid novel classes being detected as background. Rahman et al.| (2019)) included the novel class
word embedding in test-time training to progressively generate novel class labels. |Li et al.| (2019)
leveraged external text descriptions for novel objects. Our program is complementary: we aim to
build a sufficiently large label space by merging diverse detection datasets during training, such that
the trained detector transfers well across domains even without machinery such as word embeddings
or attributes. Such machinery can be added, if desired, to further expand the model’s vocabulary.

3 PRELIMINARIES

An object detector jointly predicts the locations b, € R* and classwise detection scores dj, € RIZ!
of all objects in a scene. The detection score describes the confidence that a bounding box belongs
to an object with label I € L, where L is the set of all classes. Figure 2a] provides an overview. On a
single dataset, the detector is trained to produce high scores only for the ground-truth class.

Consider multiple datasets, each with its own label space ﬁl, L2,.... A detector now needs to
learn a common label space L for all datasets, and define a mapping between this common label
space and dataset-specific labels L — L. In this work, we only consider direct mappings. Each
common label maps to at most one dataset-specific label per dataset, and each dataset-specific label
maps to exactly one common label. In particular, we do not hierarchically relate concepts across
datasets. When there are different label granularities between datasets, we keep them all in our label
space, and expect to predict all of them. Mathematically, the mapping from the joint output space
to a dataset-specific one is a Boolean linear transformation of the output of the recognition system



Under review as a conference paper at ICLR 2021

i
! T ﬁ @ &
by by by d 1 3 R »
IZE E 4 D? h
"m
: | u
detector T

. bject detecti s
input detector boun?'j\rzcboxes essgr:n ;;gzle mapping doﬂs:;;)ic;ﬂc training dataset
(a) Object detection pipeline (b) Our training framework

Figure 2: A standard object detection pipeline (a) fits bounding boxes to objects and predicts detec-
tion scores over a fixed set of output classes. In single-dataset training, class scores are supervised
directly from annotations in the dataset. In multi-dataset training (b), a detector learns its own output
space and links it to the label space of each dataset.

A?; = T'd;, with dAz e RILI Ti ¢ {0, 1}W‘X|L|, and constraints 71 = 1, 7°'1 < 1. The two
constraints ensure that only direct mappings are learned. For simplicity, let 7' = [T” TN T]
be the mapping to all dataset-specific output spaces. Figure 2b|provides an overview.

Prior work defined L and 7 by hand (Lambert et al., [2020; [Zhao et al., 2020) or used a trivial
mapping 7 = I with completely disjoint outputs (Wang et al.| | 2019). They then trained a detector
given the fixed label space and mapping. In the next section, we show how to jointly learn the label
space, the mapping to the individual datasets, and the detection scores in a globally optimal manner.

4 METHOD

We start with training a detector on the trivial disjoint label space | J,, L*. In this section, we show
how to automatically learn a unified label space by converting the disjoint label space into a unified
label space. Once the unified label space is learned, we retrain the detector end-to-end with the
unified label space. An overview of our workflow can be found in Appendix [G|

4.1 LEARNING A UNIFIED LABEL SPACE

We first consider only fine-tuning the last linear layer of the disjoint-label space detectpr. Specifi-
cally, let fi, fa, ... be the D-dimensional features f; € RP of the penultimate layer of the pretrained
model for object locations b1, b, . . . for all objects in a dataset. Our goal is to learn a new detection
score d, = WTfk with parameters W = [wl, Wa, . . . ,wm] and w; € RP, a label space L, and
dataset-specific transformations 7. The pretrained detector allows us to formulate this objective
over a fixed set of precomputed detections and their features F' = [f1, fa,...]:

minimizer, 7w Z&(ﬁwl—rF) + AL (1)
leL
subject to T1=1 and 7'71<1 Vie{1..N}-

Here /¢; is a general loss function that factorizes over the labels [ € L, and N is the number of
datasets. The weight w; controls the output of the detector for the joint label /, and 7; is a column of
the dataset-specific transformation that maps each joint label [ to all training datasets. The cardinality
penalty A|L| encourages a small and compact label set. A factorization of the loss ¢; over the output
space [ € L may seem restrictive. However, it does include the most common loss functions in
detection: sigmoid cross-entropy and mean average precision. Section 2] discusses the exact loss
functions used in our optimization.

For a fixed label set L and mapping 7, objective[I|reduces to a standard training objective of a detec-
tor. However, the joint optimization of L and T significantly complicates the optimization. It mixes
combinatorial optimization over L with continuous optimization of W, and a 0-1 integer program
over T . However, there is a simple reparametrization that lends itself to efficient optimization.

First, observe that the label set L simply corresponds to the number of columns in 7. Furthermore,
we merge at most one label per dataset T%T1 < 1. Hence, for each dataset i a column T,' € T* takes
one of |L;| + 1 values: T/ = {0, 1;,,14,,- - -}, where 1; € {0, 1}/%:l is an indicator vector. Each
column 7; € T then only chooses from a small set of potential values T = T! x T? x ..., where
x represents the Cartesian product. Instead of optimizing over the label set L and transformation 7~
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directly, we instead use combinatorial optimization over the potential column values of ¢ € T. Let
x4 € {0, 1} be the indicator of combination ¢ € T. In this combinatorial formulation, the constraint

71 = 1 translates to Ztemti:l 4 = 1 for all dataset-specific labels I. Furthermore, the objective
of the optimization simplifies to

Z& (Tiw]' F) + \|L| = Zﬂctf; tw, )—i—/\th. (2)
leL teT teT

Crucially, the weights w; of the detection score are now independent of the combinatorial optimiza-
tion, and can be precomputed for each column value ¢ € T in a merge cost:

¢ = min ly (tw] F). 3)
we
This leads to a compact integer linear programming formulation of objective [T}
minimize,, th (et +N)
teT
subject to Z z=1 Y (4)
teT|t;=1

For two datasets, the above objective is equivalent to a weighted bipartite matching. For a higher
number of datasets, it reduces to weighted graph matching and is NP-hard, but is practically solvable
with integer linear programming (Linderoth & Ralphs| 2005).

One of the most appealing properties of the above formulation is that it separates the integer opti-
mization over z from the continuous optimization of the last linear layer wy. Section[d.2] explores
this separation and shows how to precompute the merge cost ¢; for various loss functions.

One major drawback of the combinatorial reformulation is that the set of potential combinations T
grows exponentially in the number of datasets used: |T| = O(|L1||Lz||Ls|...). However, most
merges t € T are arbitrary combinations of labels and incur a large merge cost c;. Section
presents a linear-time greedy enumeration algorithm for low-cost merges.

Considering only low-cost matches, standard integer linear programming solvers find an optimal
solution within a second for all label spaces we tried, even for |L| > 600 and up to 6 datasets.

4.2 LOSS FUNCTIONS

The loss function in our constrained objective [I]is quite general and captures a wide range of com-
monly used losses. We highlight two: an unsupervised objective based on the distortion of the output
compared to the pretrained model, and mean Average Precision (mAP).

Distortion. A natural objective is to learn a joint label space that stays close to the pretrained model.
Let D = W T F be the detection scores of the pretrained model with weights W = [wy, W2, . . .] for
each dataset-specific label. Distortion then measures the difference between the joint and pretrained
models on all dataset-specific outputs:

2
st (o] F) Zt (wlTF —w] F) . )
This distortion has a closed-form solution wy = % The merge cost ¢ corresponds to the

variance in detector outputs between dataset-specific labels and can be computed efficiently from
pairwise differences. The main drawback of this distortion measure is that it does not take task
performance into consideration when optimizing the joint label space. Next, we show how to learn
a label space using annotations for dataset-specific predictions on the original datasets.

Mean Average Precision. Let mAP; be the mean Average Precision for each dataset-specific class
[ on the corresponding dataset-specific validation set. Let mAP; be the mAP of a merged output
over all dataset-specific outputs used in ¢. Our loss is then the difference in mAP:
(AT (tw] F) = (H;mAP; — mAPy). (6)
[
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It is hard to optimize w; for mAP directly, since it operates on a sorted set of detection scores. We
instead use the averaging solution of the distortion metric (5), and simply evaluate ¢;. The mAP
computation is computationally quite expensive, but we will provide an optimized joint evaluation
with our code.

4.3 COMPUTATION AND PRUNING

The size of our optimization problem scales linearly in the number of potential merges |T|, which
can grow exponentially in the number of datasets. To counteract this exponential growth, we only

consider sets of classes
Ct
T=<{teT|—— <7,.
{ ’ -1 - }

For an aggressive enough threshold 7, the number of potential merges |7”| remains manageable.
We greedily grow T by first enumerating all feasible two-class merges (|t| = 2), then three-class
merges, and so on. We use A = 0.1 and 7 = 0.2 in our experiments. The runtime of this greedy

algorithm is O(|7"| max; | L*|). In practice, the cost computation took a few seconds for the distor-
tion loss function and about 10 minutes for the mAP loss (due to the need to repeatedly recompute
mAP). The integer programming solver finds the optimal solution within one second in both cases.

5 EXPERIMENTS

Our goal aims to facilitate the training of models that perform well across datasets. Our main
training datasets are adopted from the ECCV 2020 Robust Vision Challenge (RVC). These are four
large object detection datasets: COCO (Lin et al., 2014), Openlmages (Kuznetsova et al.| |2020),
Objects365 (Shao et al., 2019), and Mapillary (Neuhold et al., 2017). To evaluate zero-shot cross-
dataset generalization, we use the RVC instance segmentation datasets (all of which have bounding
box annotations): VIPER (Richter et al.,2017), CityScapes (Cordsts et al.,[2016), ScanNet (Dai et al.,
2017), WildDash (Zendel et al.| 2018)), and KITTI (Geiger et al.,2012). In addition, we test zero-shot
on two object detection datasets: Pascal VOC (Everingham et al., |2010) and CrowdHuman (Shao
et al., [2018)). The datasets are described in more detail in Appendix [A]

In our implementation, we first train a unified detector on the large and general datasets: COCO,
Objects365, and Openlmages. As Mapillary is small and domain-specific, we add it in a subsequent
fine-tuning stage. See Appendix [B]for details.

Evaluation metric. We evaluate a detector both on its training dataset(s) and new datasets that may
contain objects out of the training label space. On the training datasets, we use the official metrics
of each datasets: for COCO, Objects365, and Mapillary, we use the mAP at IoU thresholds 0.5 to
0.95. For Openlmages, we use the official modified mAP@0.5 that excludes unlabeled classes and
enforces hierarchical labels (Kuznetsova et al., [2020).

For evaluating on new test datasets, standard mAP evaluation requires an expert-annotated test-to-
train class correspondence. This is unavailable in our setting. We initially invited 5 volunteer anno-
tators to link the classes between each test dataset and the unified label space. However, we observe
considerable disagreement between annotators. For example, “rider” in CityScapes is linked to ‘bi-
cyclist” or ‘motorcyclist” by different human annotators. For reproducible and scalable evaluation,
we instead define a new metric, mean Expected AP (mEAP). We use a word embedding (Penning-
ton et al.,2014) to find a set of correspondences between each test class and the unified label space.
Each test class can have multiple correspondences. We calculate the expected AP (EAP) of a test
class as the average AP of all corresponding unified classes. The summary metric per test dataset
over all classes is mean EAP (mEAP). In most cases, a test class corresponds to only one joint label,
and the EAP and AP are equivalent. Appendix [C]specifies the evaluation protocol in more detail.

5.1 IMPLEMENTATION

We use the CascadeRCNN detector (Cai & Vasconcelos| 2019). A single region proposal network
(RPN) is shared by all datasets. Each proposed bounding box from RPN is classified by a cascaded
classifier. For a disjoint label-space baseline, the last classification layer of each cascade stage is
split between datasets. We only apply a training loss to the source classifier, following Wang et al.
(2019). Our unified detector uses CascadeRCNN as is.
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VOC VIPER CityScapes ScanNet WildDash CrowdH. KITTI mean

COCO 80.0 139 39.6 17.4 259 73.9 30.5 402
Objects365 719 20.7 434 249 27.6 71.8 322 418
Openlmages 644 104 29.8 242 20.3 66.7 21.8 339
Mapillary 114 152 44.7 0.0 234 493 37.8  26.0
Disjoint label-space 80.5 195 44.7 324 30.0 65.3 359 440
Unified (ours) 82.5 209 49.1 30.8 31.6 70.7 379 46.2
Unified (expert human) 82.5 20.9 50.3 314 319 71.3 37.1 46.5
Dataset-specific 80.3 318 54.6 44.7 - 80.0 - -

Table 1: Zero-shot cross-dataset object detection performance on the validation sets of datasets that
were not seen during training. The metric is mEAP@0.5 (see the text for a definition). We compare
to models trained on each single training dataset (top 4 rows), a unified detector with dataset-specific
output classifier (5th row), a unified detector with our learned unified label space (6th row), and a
unified detector with the human expert label space (7th row). For reference, we show an “oracle”
model that is trained on the training set of each test dataset on the bottom row. The columns refer to
test datasets.

Training loss. The standard CascadeRCNN uses softmax cross-entropy as the classification
loss (Ren et al., [2015)). This is infeasible in our case. Softmax assumes one object has at most
one class label, while Openlmages (Kuznetsova et al.l [2020) requires predicting a label hierarchy
(e.g., it requires predicting “vehicle” and “car” for all cars) and may have overlapping labels for the
same object (e.g., both “toy” and “car” for a toy car). In our implementation, we use the sigmoid
cross-entropy loss for all multi-dataset models and baselines, but use the best dataset-specific loss
when training a baseline on just one dataset. For Openlmages, we use a hierarchy-aware sigmoid
cross-entropy loss that sets parent classes as positives and ignores the losses over descendant classes.
When training on multiple datasets, we also ignore labels outside the training dataset for each image.
Appendix [D]reports ablation experiments on the hierarchy-aware and multi-dataset losses.

Data sampling. There is significant spread in the sizes of the training datasets (see Appendix[A)). In
our experiments, we found that sampling images evenly from all training datasets works best. Fol-
lowing the current best practice (Peng et al., [2020), we use class-aware sampling (Shen et al., [2016))
for Openlmages and Objects365 to tackle the long-tail class distribution. A controlled evaluation of
the different sampling strategies can be found in Appendix [E]

Training details. Our implementation is based on detectron2 (Wu et al., [2019) and we adopt most
of the default hyperparameters for training. We use the standard object detection data augmentation,
including random flip and random scaling of the short edge in the range [640, 800]. We use SGD
with a base learning rate 0.01 and batch size 16 over 8§ GPUs. We use ResNet50 (He et al.,[2016)) as
the backbone in our controlled experiments unless specified otherwise.

For our label space evaluation experiments, we use a standard 2x schedule (180k iterations with
learning rate dropped at the 120k and 160k iterations) (Wu et al.l|2019) to save computation. This
results in 8 epochs on COCO, 0.5 epochs on OpenImages, and 1.6 epochs on Objects365. When
comparing models trained on different datasets (Section[5.2]and Section[5.4), we use an 8 x schedule
(720k iterations with learning rate dropped at the last 60k and 20k iterations) (Wu et al.,|2019; |Goyal
et al.|[2017) or until the model converges (for small datasets). A comparison of training schedules is
provided in Appendix [F

5.2 ZERO-SHOT CROSS-DATASET EVALUATION

For our main evaluation, we train a detector on all four RVC training datasets and evaluate it on
new datasets that were not seen during training. We train a strong disjoint label-space detector
using a ResNeSt101 (Zhang et al., 2020) backbone with the same training procedure as described
in Section[5.1] We obtain the predicted bounding boxes in the validation sets to run our label space
optimization algorithm. We compare our unified detector to the disjoint label-space baseline fine-
tuned with the same schedule, hyperparameters, and detection models. For reference, we also show
the performance of detectors trained on the training set of each test dataset. This serves as an oracle
“upper bound” that has seen the test domain and label space. Note that KITTI (RVC version) and
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Figure 3: Example differences between an expert designed label space provided as part of the ECCV
2020 Robust Vision Challenge (top of each row, blue) and our learned label space (bottom of each
row, pink). Best viewed on the screen.

WildDash are small and do not have a validation set. We thus directly evaluate on the training set
and do not provide the oracle model.

Table |I| shows the results under the mEAP@0.5 (IoU threshold 0.5) metric. The COCO model al-
ready exhibits reasonable performance of some test datasets, such as Pascal VOC and CrowdHuman.
However, its performance is less than satisfactory on datasets such as ScanNet, whose label space
differs significantly from COCO. Training on the more diverse Objects365 dataset yields higher ac-
curacy in the indoor domain, but loses ground on VOC and CrowdHuman, which are more similar to
COCO. Training on all datasets, either with a disjoint label space for each dataset or with a unified
label space yields generally good performance on all test datasets. The individual test datasets are
closer to the span of all training datasets than to any individual dataset. Note that on Pascal VOC,
our unified model outperforms the VOC oracle model without seeing VOC training images.

Our unified model consistently produces high-quality detections for all classes, while the quality
of the outputs of the disjoint baseline depends on the respective dataset-specific label space. For
example, a Mapillary person detector generalizes much more poorly than a COCO one. In addition,
a disjoint baseline yields redundant detections per object.

5.3 EVALUATION OF THE UNIFIED LABEL SPACE

Next, we analyze our unified label space on COCO, Objects365, and Openlmages. We compare to a
human expert label space officially provided as part of the ECCV Robust Vision Challenge, derived
by the challenge organizerq'| Our optimization gives 701 classes in the unified label space, which
is more than the 659 classes in the human expert label space. This is because some semantically
similar concepts between datasets have different visual expressions.

Figure 3] shows some examples of differences between our learned unified label space and a human
expert label space. The learning algorithm can separate visually different categories with similar
words (“American football” and “football”), and merge the same concept expressed in different
words (“Cow” and “Cattle”). Interestingly, the learned label space splits COCO, Objects365 and
Openlmages oven, even though they share exactly the same word. However, they are visually dis-
similar: COCO ovens include the cooktop, Openlmages only the control panel, and Objects365 oven
focuses just on the front door. This signal is only present in the visual data.

To quantitatively evaluate the label spaces in practice, we train a unified detector on each label space
using the same training procedure (ResNet-50 and the 2x schedule), and compare their detection
performance. Table [2] shows the results. We additionally compare to a language-based baseline
(Glove embedding). Specifically, we replace the cost measurement defined in Section [4.2] with the
cosine distance between the Glove word embeddings (Pennington et al., [2014)), and run the same
integer linear program. The three label spaces obtained are similar in most classes, hence the overall
mAP does not change much. However, our label space consistently outperforms the human expert,

1https ://github.com/ozendelait/rvc_devkit/blob/master/objdet/obj_det_mapping.csv
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COCO Objects365 Openlmages mean

Glove embedding 41.6 20.3 62.3 414
Learned, distortion 41.5 20.7 62.6 41.6
Learned, mAP (ours) 42.0 20.9 62.8 41.9
Expert human 41.5 20.6 62.6 41.6

Table 2: Evaluation of unified label spaces. We measure mAP on the validation sets of the training
datasets. We compare to a language-based baseline and a manual unification by a human expert.

COCO Objects365 Openlmages Mapillary mean

Unified 44.9 239 65.7 14.8 37.3
Disjoint label-space oracle  45.1 24.0 65.1 14.9 373
Dataset-specific oracle 42.5 24.9 65.7 15.5 37.2

Table 3: Detection mAP on the validation sets of the training datasets. We show the performance
of our unified model, the disjoint label-space detector with the oracle head at test time, and dataset-
specific models (the last row, where each column is from a different model).

with a healthy 0.3 mAP margin in average. The relative improvement of our model over the expert
is larger than the experts’ improvement over the language-based baseline.

5.4 PERFORMANCE ON TRAINING DATASETS

Table[3|compares the unified detector, the disjoint label-space detector, and dataset-specific detectors
on the four training domains. Our unified detector is competitive with the disjoint label-space detec-
tor without knowing the image domain at test time. On COCO, our unified detector outperforms the
COCO-specific detector by 2.4 mAP, likely because it benefits from 20x more data provided by the
other training datasets. On the other three datasets, the unified model matches the dataset-specific
models within 1 mAP. Our work shows that training on multiple datasets can increase the model’s
generality across domains without compromising accuracy within domains.

5.5 ECCV ROBUST VISION CHALLENGE

We submitted a model trained with the presented approach to the ECCV 2020 Robust Vision Chal-
lenge (RVC). We used a heavy ResNeSt200 backbone (Zhang et al., 2020) and followed the same
training procedure as in Section[5.4]to train the model using an 8 x schedule. We used a unified label
space of 682 classes learned with the distortion loss. The training took ~16 days on a server with 8
Quadro RTX 6000 GPUs. Table [d] summarizes the results of the challenge. Our model outperforms
all other RVC entries on all datasets by a large margin. Notably, WiseDet_RVC used a stronger
detector (Qiao et al.,2020), but without our learned label space or multi-dataset training setup (Sec-
tion[5.1)). The bottom rows of Table 4] show the state-of-the-art results reported on each individual
dataset. On COCO, our result is comparable with DetectoRS (Qiao et al.,[2020), which is by default
2.4 mAP higher than our ResNeSt200 backbone (50.9 mAP) (Zhang et al., 2020). On Openlmages,
our result matches the best single-model performance of the Openlmages 2019 Challenge winner,
TSD (Song et al.,2020), with a comparable backbone (SENet154 (Hu et al.| 2018) with deformable

COCO Openlmages Mapillary Objects365

Ours 529 60.6/56.8 25.3 33.7
WiseDet_RVC 40.0 56.1/53.3 22.5 -
FRCNN_R50_GN_RVC 34.0 21.4/19.9 8.1 -
DetectoRS (Qiao et al.,[2020) 53.3 - - -
TSD (Song et al., [2020) - 60.5/- - -
CACascade RCNN (Gao et al.[|2019) - - - 31.6

Table 4: Test set performance on RVC datasets: COCO test-challenge set, Openlmages challenge
2019 test sets (shown in public test set/ private test set), Mapillary test set, and Objects365 validation
set. Top: results of RVC challenge participants. Bottom: the published state-of-the-art performance
on each specific dataset (without model ensembles or test-time augmentation). Objects365 was
initially part of the challenge but was removed in the final evaluation.

8
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COCO CityScapes Mapillary VIPER ScanNet Openlmages KITTI WildDash

COCoO 35.6 19.6 3.2 8.5 52 7.2 15.7 8.4
CityScapes 0.0 21.5 0.8 2.3 0.0 0.0 13.0 24
Mapillary 0.6 11.7 10.6 9.0 1.2 0.0 13.4 54
VIPER 0.1 2.8 1.1 17.8 0.0 0.0 6.5 1.4
ScanNet 0.4 0.0 0.0 0.0 35.6 0.0 0.0 0.0
Openlmages  12.9 9.5 1.1 35 1.7 52.8 7.2 4.9
Unified (ours) 24.0 28.3 8.1 16.5 28.7 41.8 16.9 11.3

Table 5: Instance segmentation performance on six training datasets and two new datasets (KITTI
and WildDash). We show mask mAP when the test dataset is included in training, and show mask
mEAP when the testing on new datasets.

COCO CityS. Mapillary VIPER ScanNet Openlmages KITTI WildDash

Ours 33.0 298 13.0 18.9 20.5 35.0 232 21.0
seamseg_rvcsubset - 221 - - - - - 20.9
EffPS_blbs4 RVC - 21.3 - - - - - -

Table 6: Leaderboard of RVC instance segmentation challenge. We show results on the test set for
each datasets (test-challenge for COCO and private test set for Openlmages).

convolution (Zhu et al.| |2019)). On Objects365, we outperform the 2019 challenge winner by 2
mAP.

6 INSTANCE SEGMENTATION

We further evaluate our label space learning algorithm and unified training framework on instance
segmentation. We follow the ECCV Robust vision challenge set up to use 8 datasets: COCO,
Openlmages, Mapillary, ScanNet, VIPER, CityScapes, WildDash and KITTI (the same as Table
except Openlmages segmentation set has 300 instead of 500 classes.). Again, we leave WildDash
and KITTTI as testing only as they are small and similar to CityScapes and Mapillary. We run our
label space learning algorithm (Section. .T)) on the remaining six datasets, resulting a unified label
space of 358 classes. We use CascadeRCNN (Cai & Vasconcelos} 2019) with a standard mask head
as the detector, and train a 2x schedule with ResNet50. The dataset-specific models are trained with
1x or 2x schedule depending on their size.

Table. [5| compares the unified detector (with instance segmentation) to dataset specific models. As
expected, no single dataset-specific model performs well on all test domains. Our unified model
performs consistently good on all training datasets. More importantly, it generalizes the best to
the new test datasets (KITTI and WildDash) than any single dataset model. Table. [] compares our
method with others on the test sets of RVC instance segmentation challenge. We outperform other
entries on all datasets that have a valid submission.

7 CONCLUSIONS

We presented an automated way to unify the label spaces of multiple datasets. This enables training
a single detection model that works across the training domains and beyond. We showed that the
resulting detector is robust in zero-shot cross-dataset testing. Our current implementation unifies
matching concepts, but does not yet merge hierarchical concepts. Neither do we adapt our model to
unseen data using unsupervised objectives. These are exciting avenues for future work.
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Dataset name Domain # Categories # Images Note
Train & Validation
COCO Internet images 80 118k -
Objects365 Internet images 365 600k Long-tail
Openlmages Internet images 500 1.8M  Federated/ Hierarchical label
Mapillary Traffic 38 18k High-resolution
Test
ScanNet Indoor 20 25k -
VIPER Virtual 10 13k -
CityScapes Traffic 8 12k High-resolution
WildDash Traffic 13 4k Extreme driving scenes
KITTI Traffic 8 200 -
Pascal VOC Internet images 20 16k -
CrowdHuman Internet images 1 15k Crowded

Table 7: Summarize of datasets we used. Top: datasets we used in training, which are from ECCV
2020 RVC challenge; Bottom: datasets we used for zero-shot cross dataset testing. We list the
features of each dataset in the last column.

A DATASET DETAILS

Tablelists the datasets we used in our object detection experiments. For ScanNet (Dai et al.|[2017)),
as there is no standard train/ validation split, we use the first 80% scenes (sorted by scene ID) as
training and the last 20% scene as validation. For KITTI (Geiger et al., 2012), we used the RVC
challenge that has instance-segmentation version, which contains 200 images. For WildDash (Zen-
del et al.,|2018)), we use the public version for evaluation, and report standard mAP performance. We
don’t consider the negative label metric in the official website. For CrowdHuman (Shao et al.,|2018),
we use the visible bounding box annotation, and report the standard mAP instead of the missing rate
as the official metric.

B LABEL SPACE EXPANSION ALGORITHM

While we tend to keep the training domains and label space large and comprehensive, it is inevitable
in practice that more fine-grained labels or specific testing domains are needed. Given a learned
a unified label space on an existing set of training datasets, we propose a label space expansion
algorithm to allow adding more datasets and labels after the unified detector is trained.

Similar to our unified label space learning algorithm, we run the unified detector on the new training
data. We evaluate the mAP between each class in the new dataset annotation and each class in the
unified label space. We merge the new class into the existing class that gives the lowest merge cost
(Section. [4.2)), if the cost is lower than a threshold (mAP change < 5 mAP in our implementation).
Otherwise, we append the new class to the unified label space as a single class.

C MEAP DETAILS

For each test label, we first find training labels with closet Glove embedding distance. The same
word has the Glove distance 0. For a joint class in a unified label space, it may has different names
from different datasets. We set the embedding distance as the minimal embedding distance among
its composing classes. In the case that there is no training label close to a test label (i.e., minimal
Glove distance > 6 = 0.6) due to limited label space, we collect all labels that contain or being
contained the test class as the corresponding labels.

There can be more than one training label corresponds to a test label, when the class in the same
name from two different training datasets are not merged or there is finer label granularity in the
training label space. In this case, a human user can pick any training class within the corresponding
set for the test class during real-world application. To mimic this in evaluation, we define a new
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COCO Objects365 Openlmages mean

sigmoid cross entropy loss 41.5 20.1 58.4 40.0
+multi-dataset loss 42.0 20.8 61.4 41.4
+hierarhical-aware loss (ours)  42.0 20.9 62.8 41.9

Table 8: Ablation experiments on training losses. We start with a sigmoid cross entropy loss, and add
our multi-dataset loss and hierarchical-aware loss (for Openlmages only) one by one. Experiments
are conducted on ResNet-50 with 2x schedule.

COCO Objects365 Openlmages mean

w.o. class-aware sampling 414 16.8 49.4 35.9
w.o. evenly sampling between datasets ~ 35.3 18.5 65.1 39.6
Ours 42.0 20.9 62.8 41.9

Table 9: Ablation experiments on data sampling. We compare sampling by the original size of each
dataset (first row) to evenly sampling across datasets, and validate the effectiveness of class-aware
sampling for Objects365 and Openlmages (second row).

metric, expected AP (EAP), that calculates the class-specific AP as the average (expectation if a
user chooses the corresponding class randomly) AP of all the corresponding training class for a test
class. The overall expected mAP (mEAP) on a dataset is the average E-AP overall classes as the
conventional mAP.

D ABLATION STUDIES ON TRAINING LOSS

Multi-dataset loss When training a unified label space, the annotations in each dataset becomes
incomplete. For example, there is no “fish” class in COCO, but a COCO image may contain a fish
as background. As the unified label space has a fish class (from Openlmages), a naive softmax
cross-entropy loss will mistakenly train the COCO fish bounding box as a negative sample for the
unified fish classifier. To facilitate this issue, we use a modified sigmoid cross-entropy loss to ignore
the output from out-of-source-dataset classes. I.e., when training COCO images, only the 80 COCO
classes are applied a loss.

Table 8| ablates different losses for training on multi-dataset. We start with a sigmoid cross-entropy
loss for classification. This is ~ 0.5 mAP worse than softmax cross-entropy on single dataset
training (results not shown). The advantage of sigmoid cross-entropy is it breaks the inter-class
dependency and makes ignoring classes easier. We add the multi-dataset loss that ignores labels
outside the source dataset. This gives in average 1.4 mAP improvements to the three datasets.
Further, to facilitate the hierarchical-aware evaluation on Openlmages, we use a hierarchy-aware
sigmoid cross-entropy for Openlmages samples that sets parent classes as positives, and ignores
child classes. This gives 1.4 mAP improvement on Openlmages, and is compatible with other
datasets.

E ABLATION STUDIES ON DATA SAMPLING

We apply class-aware sampling (Shen et al.l 2016) to Objects365 and Openlmages, and sample
COCO images uniformly. As is shown in Table. 9] removing class-aware sampling drops 6 mAP in

2% 6x 8x
COCO Objects365 Oimg. COCO Objects365 Oimg. COCO Objects365 Oimg.
Unified 42.0 20.9 62.8 44.6 233 64.5 454 244 66.0
COCO 41.5 - - 42.5 - - 42.5 - -
Objects365 - 23.8 - - 25.0 - - 249 -
Openlmages - - 64.6 - - 65.4 - - 65.7

Table 10: Ablation studies on trianing schedule. We train the unified detector on and each dataset-
specific models for different training schedules and show mAP on each training datasets.
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notation definition dimension range
N number of datasets scalar integer
1 dataset index scalar 1-N
Li set of labels of dataset i |Li 1-|L;]
L set of labels in the disjoint label space L=, |Li  1-]|L]
L set of labels in the unified label space |L 1-|L]
K number of objects in dataset i scalar integer
ii labels of all objects in dataset i K [1, ﬁz|]
b; ground truth bounding boxes of all objects in dataset i K x4 R
iz(»j ) predicted labels in head j of all objects in dataset i K (1, |L il
1; labels of all objects in dataset i in the unified label space K [1, L]
T transform function from label space i to the unified label space | L;| x |L| {0,1}
t potential merges (a set of class indexes) <N [1, |]ii|]

Table 11: Table of notations used in the algorithms. For each notation, we also list their dimension
and the value range.

average for the three datasets. The Openlmage training set is 3x as Objects365, and 15x as COCO.
An alternative sampling strategy is to sample by this ratio. The outcome is it trades-off the small
dataset performance for large dataset performance, and gives an overall lower average mAP.

F ANALYSIS ON TRAINING SCHEDULES

Table. |10] shows how the performance evolves when training goes longer. In a 2x schedule (180k
iterations), all dataset-specific models converge within a 1.2 mAP gap comparing to the 8 x schedule.
The unified model is not fully converged, as each dataset is only trained for a % x schedule. From a
2x schedule to a 6x schedule, the gaps between the unified model and the dataset-specific models
are narrowed. In the final 8x schedule, the unified model surpasses the single dataset-model on
COCO and Openlmages, and closely matches the Objects365 model.

G ALGORITHM DIAGRAMS

Algorithm [T|outlines the workflow for training our unified object detector. Algorithm [2]summarizes
the algorithm we used for learning a unified label space (Section [4.T). We list the notation definitions
of both algorithm in Table. [T}
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Algorithm 1: Training a unified detector

Input : {x;, bi,ii}}ilz labeled training datasets
Output: L: a unified label space of all datasets
M an object detector on the unified label space L
1 M < train_detector({x;, b, li}%il) // train an initial object detector with a disjoint label
space L on all datasets
2 fori <~ 1to N do
3 {BZ(J ), iEJ ) }C1 4= M(x;) // run the disjoint label space detector on each dataset, and get
boudning boxes and label predictions from each detection head.
4 end
s L, T « learning_unified_label_space({b;, 1;}Y |, {{BZ(J) , L(-]) 3L /1 Algorithm 2
¢ fori < 1t0o N do
7 ‘ 1; < T;(1;) // transform labels form its original label space to the unified label space
s end
9 M < train_detector({x;, l;, bi}%il) // train an unified detector with labels in the unified label
space
10 Return: L, M

Algorithm 2: Learning a unified label space

Input : {b;, L}f\;l ground truth bounding boxes and labels for each training dataset
{{bgj ), 11(_3 ) } ;Ll IV | ¢ predicted bounding boxes with predicted classes in all datasets
for each training dataset
Output: L: unified label space
T the transformation from each individual label space to the unified label space
1 // Compute potential merges and merge cost

2 L= U, L; /1 Short-hand used to simplify notation
3 Ty < {(I)|l € L} // Set of single labels

4 Compute ¢, for all single labels t € T. // 0 for most metrics
sforn=2...Ndo

6 T, «+ {}

7 fort € T,,_; do

8 for [ € L do

9 if [ and all labels in t are from different datasets then
10 compute Cyry-

1 if % < 7 then

12 | AddtU {i} to T,.
13 end

14 end

15 end

16 end
17 end

i T+ U, T,

19 // Solve the ILP.

20 x < ILP_solver(c, T, \) // Solve equation (4).
21 Compute L, T from x

2 Return: L, 7T
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