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ABSTRACT

This paper addresses the critical challenge of unlearning in Vertical Federated
Learning (VFL), an area that has received limited attention compared to horizon-
tal federated learning. We introduce the first approach specifically designed to
tackle label unlearning in VFL, focusing on scenarios where the active party aims
to mitigate the risk of label leakage. Our method leverages a limited amount of
labeled data, utilizing manifold mixup to augment the forward embedding of in-
sufficient data, followed by gradient ascent on the augmented embeddings to erase
label information from the models. This combination of augmentation and gra-
dient ascent enables high unlearning effectiveness while maintaining efficiency,
completing the unlearning procedure within seconds. Extensive experiments con-
ducted on diverse datasets, including MNIST, CIFAR10, CIFAR100, and Model-
Net, validate the efficacy and scalability of our approach. This work represents
a significant advancement in federated learning, addressing the unique challenges
of unlearning in VFL while preserving both privacy and computational efficiency.

1 INTRODUCTION

Vertical Federated Learning (VFL) (Yang et al.|
2019) allows multiple organizations to col- Unlearning Process
laboratively utilize their private datasets in a
privacy-preserving manner, even when they
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party, which possesses the labels. VFL has cat dog ship
seen widespread application, especially in sen-
sitive domains like banking, healthcare, and e- Active cat doa. shi
commerce, where organizations benefit from Party »40g, sp ®

joint modeling without exposing their raw data
(Yang et al., 2019; |Li et al., [2020).

A fundamental requirement in VFL is the ne- Figure 1: Illustration of risk of label leakage in
cessity for unlearning, which is driven by par- vertical federated unlearning.

ticipants’ “right to be forgotten” as mandated

by regulations such as the General Data Protection Regulation (GDPRﬂ and the California Con-
sumer Privacy Act (CCPA While unlearning has been explored in the context of Horizontal Feder-
ated Learning (HFL), there has been limited attention to its application in vertical settings. Existing
studies on vertical federated unlearning (Zhang et al., [2023a; Wang et al., [2024; |Deng et al.| 2023)
primarily focus on the unlearning process for individual clients, often addressing the removal of all
features from the passive party upon their exit. In contrast, this paper emphasizes the unlearning of
labels, which is a critical aspect in VFL, particularly in scenarios such as Credit Risk Assessment
where the determination of a loan applicant’s likelihood of default is essential. Moreover, the active
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party aims to eliminate label information not only from the active model but also from the passive
models, as the passive models may retain label information (Fu et al., [2022b)).

A significant challenge in directly applying traditional machine unlearning methods, such as re-
training (Bourtoule et al.| [2020; [Foster et al.| 2023)) or Boundary unlearning (Chen et al.| [2023), in
this context pose a risk of leaking unlearned labels during the unlearning process. Typically, the
active party, which retains the labels, must either inform the passive party about the samples that
require unlearning or transfer the gradients associated with the unlearned label. This practice may
inadvertently expose sensitive label information to the passive party (see Fig. [I]and Sect. [3.2).

To address this challenge, we propose a few-shot unlearning method that effectively erases labels
from both the active model and passive model in VFL by leveraging a limited amount of private data
(see Sect. ). Specifically, our method employs manifold mixup (Verma et al., 2019) to augment
the forward embeddings of each passive party. The active party then performs gradient ascent on
the mixed embeddings to unlearn the active model and subsequently transfers the inverse gradients
to the passive party to facilitate the unlearning of the passive model independently. This approach
offers three key advantages: first, it necessitates only labels from a small amount of private data,
significantly reducing the risk of label privacy leakage; second, by utilizing the manifold mixup
technique, it enhances unlearning effectiveness with minimal data; and third, it is highly efficient,
completing the unlearning process within seconds.

The primary contributions of this work are as follows:

1. To the best knowledge, this is the first work to address the unlearning of labels in VFL.

2. We systematically elucidate the label privacy leakage that may occur when directly apply-
ing traditional machine unlearning methods in Sect. [3.2]

3. We propose a few-shot label unlearning method that effectively erases labels from both the
active and passive models in VFL, utilizing a limited amount of private data. Moreover,
this approach leverages only a small number of data to mitigate the risk of label privacy
leakage while employing manifold mixup to enhance unlearning effectiveness.

4. We conduct extensive experiments on multiple benchmark datasets, including MNIST,
CIFAR-10, CIFAR-100, and ModelNet, demonstrating that our method rapidly and ef-
fectively unlearns target labels compared to other machine unlearning methods.

2 RELATED WORKS

Machine Unlearning & Horizontal Federated Unlearning. Machine unlearning (MU) was ini-
tially introduced by (Cao & Yang, 2015)) to selectively remove some data from model without retrain
the model from scratch (Garg et al., [2020; |Chen et al.| 2021). MU can be categorized into exact un-
learning and approximate unlearning. Exact unlearning methods such as SISA (Bourtoule et al.,
2020) and ARCANE (Yan et al., 2022) split data into sections and train sub-models for each data
section and merge all sub-models. During unlearning, retrain the affected data section and merge all
sub-models again. In approximate unlearning, techniques such as fine tuning (Golatkar et al.,[2020a}
Jia et al.| 2024) (fine tune with D,.), random label (Graves et al., [2020; |Chen et al.,|2023) (fine tune
with incorrect random label of D,,), noise introducing (Tarun et al.l 2024} |Huang et al.| 2021)), gra-
dient ascent (Goel et al.,[2023} /Choi & Nal|2023;|Abbasi et al., 2023;|Hoang et al.,|2023) (maximise
loss associate with D,,), knowledge distillation (Chundawat et al., 2023} |Zhang et al., [2023c} |[Kur-
manji et al.| [2023) (train a student model) and weights scrubbing (Golatkar et al.l [2020azbj 2021}
Guo et al., 2023; [Foster et al., [2023)) (discarding heavily influenced weights) are used.

Meanwhile, in federated unlearning, most of the existing works are focused in the horizontal envi-
ronment (Wu et al.l 2022 |Gu et al., 2024a; [Zhao et al.| 2024a; Romandini et al., [2024; Liu et al.,
2024} |[Zhang et al.,|2023b; |Su & Li, 2023} |Ye et al., 2023} |Gao et al., 2022} |Cao et al., 2022} |Yuan
et al., 2022} |Alam et al., [2023} L1 et al.l 2023; Halimi et al., 2023} Xia et al.l 2023; |Wang et al.,
2023; Dhasade et al., 2023 Liu et al., 2022} [Zhao et al.,2024b; |Wang et al., 2022} Gu et al., [2024b).
Only very limited research works focus in the vertical environment. For instance, (Zhang et al.,
2023a)) introduce vertical federated unlearning (VFU) in gradient boosting tree. (Wang et al., [2024)
introduce passive party unlearning on deep learning model with fast retraining on remaining parties,
and (Deng et al.,|2023)) introduce passive party unlearning on logistic regression model.
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Most if not all existing VFU work have been primarily focused on passive parties unlearning (Zhang
et al., [2023a; Wang et al., 2024} Deng et al., [2023)). Hence, a significant gap arise when an active
party seeks for a collaboration from passive parties for a single class unlearning while all parties
remaining engaged in VFL. Unfortunately, current VFU approaches do not address this specific sce-
nario, as they do not explore class unlearning within VFL setting. In contrast to prior works focusing
on class unlearning in centralise machine unlearning and horizontal federated unlearning settings,
this paper uniquely addresses class unlearning of classification model within the VFL paradigm.
This distinction arises because traditional class unlearning methods in centralised and horizontal
federated learning setting are impractical for VFL settings, where all parties have different features
of data and different computational power.

Vertical Federated Learning & Privacy Leakage. VFL is introduced to meet the needs of enter-
prises looking to utilize features distributed across multiple parties for improved model performance,
compared to models trained by a single entity, all while preserving data privacy (Yang et al.,[2019).
In VFL, privacy is of utmost importance because the participants are typically companies that handle
valuable and sensitive user information. Hence, privacy protection during VFU is also an important
criteria. We explain the risk of label leakage during VFU in Sect.

3 LABEL LEAKAGE DURING VERTICAL FEDERATED UNLEARNING
This section explains the risk of label leakage during label unlearning process as depicted in Fig.

3.1 GENERAL SETUP

VFL Training. We assume that a VFL setting consists of one active party P and K passive parties

{P1,- -+, Px} who collaboratively train a VFL model © = (6,w) to optimize:

1 n

min — U(F, o (Gg (x14),Go,(x2;),
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in which Party Pj, owns features xj, = (xj1,- - , %k n) and the passive model Gy, , the active party
owns the labels y = {y1, - , ¥ } and active model F,,. Each passive party k transfers its forward
embedding Hy, to the active party to compute the loss. The active model F}, and passive models
Gy, ,k € {1,..., K} are trained based on backward gradients. Note that, before training, all parties

leverage Private Set Intersection (PSI) protocols to align data records with the same IDs.

Unlearning Label in VFL. When the active party requests to unlearn some sensitive labels y*,
where the corresponding unlearn feature is {x}}/_; := {{z},}"* }&<,. The active party aims to

remove the influence of y* on both the active model F,, and K passive models {Gy, }%_,.

Label unlearning in VFL refers to the process of efficiently and securely removing label information
from a VFL system. Specifically, the unlearned passive model, denoted as #*, and the unlearned
active model, denoted as w", are obtained through the application of an unlearning mechanism U/,
as follows:

61—& :u(97gu)7 wu :u(w7yu)7

where 0 and w represent the passive and active models before unlearning, respectively, and g, are
the gradients associated with the unlearned label y,,.

Building upon the principles of machine unlearning presented in (Bourtoule et al., 2020), label un-
learning in VFL needs to satisfy the following three objectives: i) Selective Removal: The influence
of specific labels must be erased while preserving the integrity of other data. ii) Efficiency: The un-
learning process should achieve the above without requiring the computational cost of retraining
the model from scratch. iii) Privacy Preservation: The unlearning process must ensure that no
sensitive label information is leaked to the passive party.

Threat Model. We assume all participating parties are semi-honest and do not collude with each
other. An adversary (i.e., the passive party) faithfully executes the training protocol but may launch
privacy attacks to infer the private labels of the active party.
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Assumption. We assume that the passive party possesses corresponding labels for a limited number
of features, defined as D? = {(x},y")}i, = {{(«};,4:i)}i21}ie,, where n, << n,. This
assumption is reasonable, as the active party must convey some label information to the passive party
in order to effectively remove that information. Furthermore, this assumption is widely employed in

prior works (Fu et al.} 2022b} [Gu et al}, 2023}, [Zou et al}, 2022).

3.2 LABEL LEAKAGE DURING UNLEARNING

To remove the influence of the pas-

. K .
sive models {Go, };+_. there exists o0 100 o7 g

a risk of unlearning label leakage =1 Class

Vu = {fs- .y }) 1o the pas- _ | o

sive parties. During the unlearn- 72.41
ing process, the active party is re- S 63.55 62.45
quired to transfer information to the g . 55.79
passive party, e.g., gradients g, = §

{g¥,..., g5}, inorder to effectively g 40

unlearn the label associated with the .

passive model. Consequently, the 20

passive party may infer the label

based on this information. 0

MNIST CIFAR10 CIFAR100
In particular, when unlearning a sin- Datasets
gle class y,,.1, we consider two rep-
resentative unlearning methods: (i) Figure 2: Illustration of label leakage accuracy during
retraining (Foster et al, 2023) and Boundary unlearning in VFL using ResNet18 model with
(ii) Boundary unlearning (Chen etal different number of classes.
2023). For retraining methods, the
active party must inform the passive party regarding which features do not require training, thus,
the label is leaked. In the case of Boundary unlearning, the gradients transferred to the passive party

correspond to the features associated with the label y,, 1 may leak the label.

Furthermore, when multiple labels (m,,) are targeted for unlearning, the label leakage issue becomes
exacerbated. Lets consider the Boundary unlearning as an example. This method illustrates that the
passive party can infer label information from the gradients g,, transmitted by the active party during
the unlearning process. Specifically, the passive party employs clustering on g,, to derive m,, clusters
by optimizing the following objective function:

My
min Z Z |gu,7, - gu,j|7 (2)

gi€Cj j=1

where C; denotes the set of points assigned to cluster j, and g,, ; represents the centroid of cluster j.
Consequently, the passive party can deduce the labels of the features in X'. Fig. 2] exposes the label
leakage (in %) during unlearning in VFL for varying numbers of unlearning classes. For instance,
with four classes from CIFAR-100, the passive party achieves a clustering accuracy of 62.45%.

4 THE PROPOSED FEW-SHOT LABEL UNLEARNING METHOD

This section details the proposed few-shot label unlearning method as illustrated in Fig. [3]and Al-
gorithm [T} Our solution comprises two primary steps: first, augmenting the forward embedding
through manifold mixup to address the scarcity of labeled data for unlearning (see Sect. fi.T)). Sec-
ond, employing gradient ascent on the augmented embedding to influence both the passive and active
models, thereby facilitating the removal of the specified class, as elaborated in Sect. .2

4.1 VERTICAL MANIFOLD MIXUP

Due to the label privacy leakage issue (Sect. [3.2), directly applying traditional machine unlearning
methods will pose some challenges. We assume that the active party discloses a limited number of
labels to the passive party to facilitate the unlearning of a specific class. However, this small labeled
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Figure 3: Overview of our proposed few-shot unlearning framework in VFL setting.

dataset, denoted as D,, is insufficient for an effective unlearning (see Appendix). Consequently,
this scenario can be framed as a few-shot unlearning problem, wherein a minimal set of labels is

employed to unlearn all associated labels.

Drawing inspiration from the few-shot learning princi-
ples, we adopt the manifold mixup mechanism (Verma
et al, 2019) by interpolating hidden embeddings rather
than directly mixing the features. We propose a manifold
mixup framework for VFL by optimizing the following
loss function:

N .
nin, = > AR, o (Mixa(Go, (aF). Goy (2 ).

w,01 p
7,j=1
-+, Mixy (GQK (le)(,i)7 Gox (xll)(,j))7 Mix (yfﬂ yf))?

where

Mixy(a,b) =A-a+ (1 —X)-b. 3)
The mixed coefficient A ranges from O to 1. The advan-
tage of the manifold mixup approach lies in its ability to
flatten the state distributions (Verma et al.,|2019). Specif-
ically, for each passive party k, mixup is applied to the
forward embeddings {H} = Gp(z},;)} to generate nu-
merous mixed embeddings H,,. Subsequently, all passive
parties transfer their respective mixed embeddings Hj, to
the active party.

4.2 VERTICAL
LABEL UNLEARNING VIA GRADIENT ASCENT

Once the augmented embeddings {H1, ..., Hj } for the
representative unlearned data D, (label is known) are
generated, a straightforward yet effective strategy is to
implement gradient ascent for both the active and passive
models using these augmented embeddings. Specifically,
the active party concatenates all embeddings {Hj } <
into a single tensor H' = [H{, ..

min ((FL(H'),y/) = (FL([HY, - Hicl) o),

Algorithm 1 Our Method

8:
9:
10:
11:
12:

13:

14:
15:
16:

17:

AR A o e

Input: Bottom models parameters
0 of K passive parties, top model
parameters w , unlearn data D,
learning rate ), unlearn epoch V.
Output: Unlearned bottom models
parameters 0}, unlearned top model
parameters w"
for n in N do:
for (z},y¥) in D, do:
> Passive parties k:
Split ' to K parts.
for £ = 1to K do:
Hy = Gy, (z}; ;)
Generate H;, from Hj
according to equation

> Active party:

Y= E, H/)

L={(y,y")

w=w-+n ﬁ

Active party compute 8‘?{2

to transfer all passive parties.
> Passive parties k:

forkzlthdo:

_ o0 8H
9% = BHT " o
O =0c +1- g

Return 0} and w".

., H%], and optimizes it according to the following formulation:

“4)
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where 1/’ represents the mixture of the representative unlearned labels and 7 is the learning rate.

Unlearning for active model F,,. On one hand, the active model undergoes unlearning for active
model F, via gradient ascent as follows:

w=w+nVl(F,(H),y). (5)

Unlearning for passive model G, . Subsequently, the active party computes the gradients g;, =

6‘%, in accordance with equation 4|and transmits these gradients to the corresponding passive party

k. lginally, the passive party k updates the passive model Gy, using the following expression:
Hk :ek"i'an,LE(Fw(Hl)vy/)V@kHl/c (6)

It is important to note that gradient ascent may lead to significant degradation in model utility or even
result in vanishing gradients if the parameters are not appropriately tuned. Therefore, employing a
small learning rate n and a limited number of unlearning epochs can mitigate these issues while
achieving effective unlearning results (see experimental details in Appendix A).

5 EXPERIMENTAL RESULTS

This section presents the empirical analysis of the proposed method in terms of utility, unlearning
effectiveness, time efficiency and some ablation studies.

5.1 EXPERIMENT SETUP

Unlearning Scenarios Single-class unlearning: We forget a single class from all datasets. Two-
classes unlearning: We forget two classes from CIFAR10 and CIFAR100. Multi-classes unlearning:
We forget four classes from CIFAR100.

VFL Setting & Datasets & Models We stimulate a VFL scenario by splitting a neural network
into two bottom models and a top model and assigning the two bottom models to each two passive
parties and the top model to the active party. We conduct experiments on four datasets: MNIST
(Lecun et al.|[1998), CIFAR10, CIFAR100 (Krizhevsky et al.,[2009) and ModelNet (Wu et al., 2015)).
We adopt Resnet18 (He et al., 2015) on dataset MNIST, CIFAR10, CIFAR100 and ModelNet. We
do extend our experiments with Vggl6 (Simonyan & Zisserman, |2015) on dataset CIFAR10 and
CIFAR100. Experiments are repeated over five random trials, and results are reported as mean and
standard deviation. Further details are in Appendix

Evaluations Metrics We evaluate the utility of unlearning by measuring accuracy of D, before
and after unlearning. The higher accuracy on D, indicates stronger utility. To evaluate the unlearning
effectiveness, we construct a simple MIA from (Shokri et al., 2017) to test Attack Success Rate
(ASR) and measuring the accuracy of D,, before and after unlearning. MIA seeks to determine if a
specific data record was included in the training of a target machine learning model. Time efficiency
is evaluated by comparing the runtime of each baseline.

Baselines We compare our method with the following baselines: Retrain, Fine Tuning (Golatkar
et al., 2020a; [Jia et al., [2024), Fisher Forgetting (Golatkar et al.| [2020a)), Amnesiac Unlearning
(Graves et al., 2020), UNSIR (Tarun et al.l |2024) and Boundary Unlearning (Chen et al., |2023).
Additional details are available in Appendix [A.3]

5.2 EXPERIMENTAL RESULTS
5.2.1 UTILITY GUARANTEE

To assess the utility of our proposed unlearning method, we evaluate accuracy on D, before and
after unlearning (Tab. [B). An effective unlearning method should retain as much information
as possible from D,..

From Tab. [I] we observe that: i) Fine-tuning achieves good preservation on D,., but its un-
learning effectiveness is low (see Sect. [5.2.2). ii) Fisher forgetting badly preserves the information
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Model Datasets Metrics ‘ - . - Accuracy (%) . . ‘
‘ Baseline Retrain FT Fisher ‘ Amnesiac ‘ Unsir BU Ours ‘

D, 99.29 99.33£0.03 | 98.99 +0.05 | 12.16 £0.46 | 98.16 £0.92 | 84.92 £ 1.13 | 98.72 +0.02 | 98.89 + 0.00

MNIST Dy 99.39 0.00 £ 0.00 | 0.00 + 0.00 0.00 + 0.00 0.00 + 0.00 | 0.00 £0.00 | 58.83+1.79 | 0.00 & 0.00

ASR 90.61 1.03+0.24 | 292+ 1.08 0.11 +£0.07 0.00 £ 0.00 | 29.07 £7.95 | 0.47 £0.01 0.63 +0.01

D, 90.61 9126 £0.12 | 88.16 £ 0.15 | 54.4410.77 | 86.37 £0.20 | 75.02 £ 1.65 | 72.65+0.55 | 89.11 + 0.14

CIFARIO Dy 93.10 0.00 £+ 0.00 | 11.00 £0.10 | 0.00 + 0.00 0.00 +0.00 | 0.00 £0.00 | 3.25+0.15 | 0.00 & 0.00

Resnetl8 ASR 83.84 2598 +£1.27 | 15.854+2.33 | 50.67 + 12,51 | 1.624+0.54 | 76.78 £ 0.44 | 3490 + 1.16 | 16.21 +0.63

D, 71.43 71.03 £0.12 | 66.86 4+ 0.73 | 61.04 £8.61 | 60.05+0.03 | 59.32 +0.14 | 55.30 + 0.81 | 67.85 + 0.03

CIFAR100 Dy 83.00 0.00 4+ 0.00 | 12.25£225 | 0.00 & 0.00 0.00 + 0.00 | 0.00 +£0.00 | 3.50+0.50 | 0.00 =+ 0.00

ASR 88.40 25.53 £3.36 | 29.30+2.70 | 28.10£4.10 | 2.604 1.30 | 73.70 £ 1.70 | 6.00 £ 0.60 | 13.47 £0.19

D, 94.26 9390 £0.11 | 66.64 +1.53 | 28.10 £0.69 | 73.91 +1.83 | 13.51 £0.05 | 24.07 + 0.27 | 83.32 + 0.07

ModelNet Dy 100.00 | 0.00 £ 0.00 | 0.00 + 0.00 0.00 + 0.00 0.00 + 0.00 | 0.00 £0.00 | 0.00+0.00 | 2.00 =+ 0.00

ASR 98.40 0.65+0.05 | 0.79+0.16 | 2348 +£0.77 .11 £0.16 | 4920+ 1.25 | 21.16 £0.23 | 0.46 +0.07

D, 89.50 90.27 £0.19 | 88.69 £ 0.08 | 1593 £4.82 | 84.67+0.22 | 7474 £0.72 | 82.69£0.1 | 88.85 +0.24

CIFARI0 Dy 91.10 0.00+0.00 | 425+ 1.05 0.00 + 0.00 0.00 +0.00 | 0.00 £0.00 | 2.85=+0.05 1.60 + 0.16

Veal6 ASR 81.66 33.10 £ 1.86 | 21.84 £2.66 | 42.25+6.23 | 236+0.86 | 21.75+2.41 | 3453 £0.65 | 31.59 £ 0.34

D, 65.48 65.32+0.32 | 59.924+0.56 | 3542 +1.95 | 55.83+0.13 | 55.78 £0.59 | 52.21 +0.00 | 62.13 + 0.06

CIFAR100 Dy 77.00 0.00 +0.00 | 2.50+0.25 0.00 + 0.00 0.00 +0.00 | 0.00 +£0.00 | 3.00+0.00 | 4.30+0.94

ASR 8720 | 42.13+£2.73 | 3450 +4.30 | 40.70£3.50 | 3.10+0.15 | 42.70+0.70 | 1820+ 0.11 | 21.73 £ 0.84

Table 1: Accuracy of D,. and D,, for each unlearning method across Resnet18 and Vggl16 model in
single-class unlearning

Model Datasets Metrics Accuracy (%)
Baseline Retrain FT Fisher ‘ Amnesiac ‘ Unsir BU Ours
D, 91.48 91.74 £0.01 | 90.63 £0.57 | 31.25+2.23 | 86.16 +0.82 | 74.48 £ 0.06 | 81.64 +0.56 | 88.25 £ 0.09
CIFAR10 Dy 88.40 0.00 £0.00 | 41.15£1.55 | 49.55+£0.40 | 0.00 £0.00 | 0.00 +0.00 | 19.90 £0.85 | 0.63 +0.60
Resnetl8 ASR 79.61 21.66 +0.64 | 1322 +0.37 | 25.60 £0.08 | 1.84 £0.13 | 41.79 £ 1.35 | 3540 = 1.54 | 28.20 + 1.48
D, 71.56 | 71.21 £0.13 | 66.04 £0.58 | 53.56 +2.54 | 59.52 +0.03 | 58.02 4 0.37 | 56.37 +0.39 | 66.89 + 0.05
CIFAR100 Dy 71.00 0.00 4+ 0.00 | 38.00 +0.01 | 25.20+5.75 | 0.00 £0.00 | 0.00 +0.00 | 13.00 £0.01 | 6.50+0.71
ASR 88.60 | 21.60+0.85 | 19.20+ 1.20 | 48.90 £ 0.54 | 6.50 £0.40 | 54.83 £0.44 | 13.70 £0.90 | 6.50 £+ 0.33
D, 89.80 | 91.13+0.03 | 88.09 +0.35 | 47.53 £2.38 | 86.16 = 0.19 | 71.50 = 0.07 | 88.67 +0.22 | 88.21 & 0.02
CIFAR10 D, 89.10 0.00 4 0.00 | 28.55+0.33 | 13.10+0.28 | 0.00 =0.00 | 0.00 +0.00 | 19.08 =0.53 | 0.00 + 0.00
Veel6 ASR 82.64 | 2831+1.23 | 17.754+2.22 | 6843+ 1.14 | 1.67 +£0.01 | 46.21 £0.72 | 11.72 £ 0.07 | 28.37 + 0.86
- D, 65.75 65.59 £0.17 | 60.79 £ 0.37 | 3524 £2.21 | 57.86 £ 0.81 | 56.04 4+ 0.44 | 50.02 +0.18 | 62.49 £ 0.11
CIFAR100 Dy 58.50 0.00+0.00 | 11.75+1.25 | 11.00 £4.85 | 0.00 £0.00 | 0.00 £0.00 | 325+0.25 | 0.00 + 0.00
ASR 73.60 | 30.55+£0.05 | 22.75+£1.05 | 3260+ 1.17 | 3.45+0.65 | 52.40+0.80 | 27.90 &+ 1.20 | 30.60 £ 1.80

Table 2: Accuracy of D, and D,, for each unlearning method across Resnet18 and Vgg16 model in
two-classes unlearning

of D, resulting in a huge degradation on D, accuracy. iii) Random incorrect labeling of D,, from
Amnesiac Unlearning causes the decision boundaries of D, to shift unpredictably, resulting in a
drop in accuracy on D,.. This degradation is more pronounced in datasets with a large number of
classes, such as CIFAR100 and ModelNet. iv) The repair step from UNSIR fails to fully retain
the information in D,., leading to some performances degradation on D,.. v) Boundary unlearning
exhibits inconsistencies across different datasets, models, and scenarios. In some cases, they show
huge degradation on D,., while in other instances, they preserve D,. well. Contrary, vi) our solution
shows good unlearning utility in all experiment settings.

5.2.2 UNLEARNING EFFECTIVENESS

For unlearning effectiveness, we run MIA to evaluate if the unlearned model leaks any information
about the D,, and measure the accuracy of D,, before and after unlearning.

From Tab. [I] 2] Bl we observe that: i) Fine-tuning shows bad unlearning effectiveness on CI-
FAR10/100 datasets. The unlearning effectiveness of fine tuning is worse on two-classes (Tab.
and multi-classes unlearning scenarios (Tab. [3); ii) Fisher forgetting, Amnesiac Unlearning and
UNSIR show strong unlearning effectiveness, reducing accuracy of D,, to 0.00%; iii) Boundary un-
learning exhibits inconsistencies across different datasets, models, and scenarios. In some cases,
they show good unlearning effectiveness on D,,, while in other instances, they show bad unlearn-
ing effectiveness. In contrast, iv) our solution demonstrates strong effectiveness across all models,
datasets, and scenarios. It achieves successful unlearning of D,,.
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Accuracy (%) ‘
Baseline Retrain FT Fisher ‘ Amnesiac ‘ Unsir BU Ours ‘

‘ Model ‘ Datasets ‘Metrics}

D, 71.53 7191 +£0.12 | 67.16 £ 0.13 | 54.79 £ 1.04 | 59.09 £ 0.54 | 59.05 + 0.38 | 48.96 + 0.04 | 69.87 & 0.09
Resnetl8 | CIFAR100 Dy 72.00 0.00+£0.00 | 33.87 £0.88 | 4538 £ 1.13 | 0.00 £ 0.00 | 0.00 = 0.00 15.00 £0.25 | 4.83 £ 1.12
ASR 86.65 1695 £0.35 | 1823 £1.63 | 6278 £3.93 | 6.05+1.19 | 68.63 4+ 1.83 | 38.35+0.75 | 13.97 £ 0.45
D, 65.83 65.66 £ 0.08 | 60.92+0.08 | 36.55+ 1.07 | 57.26 + 0.18 | 56.86 4 0.26 | 47.04 +0.32 | 64.33 £ 0.16
Vggl6 | CIFARI00 Du 60.25 0.00 +£0.00 | 7.63,0.13 28.75+1.25 | 0.00 £0.00 | 0.00+£0.00 | 7.13+0.11 6.00 + 0.25
ASR | 75.80 2720 £0.75 | 2438 £3.13 | 5520+3.75 | 480+0.05 | 32.83 +£0.58 | 29.70 £ 0.03 | 27.50 £ 0.65

Table 3: Accuracy of D, and D,, for each unlearning method across Resnet18 and Vggl16 model in
multi-classes unlearning

Number of Passive Parties || Metrics ‘ . . - Aceuracy (%) - - ‘
‘ Baseline Retrain FT Fisher ‘ Amnesiac ‘ Unsir BU Ours ‘
D, 92.50 93.27+0.11 | 88.51 +£0.09 | 76.83 +3.02 | 88.95+0.58 | 77.89 £ 0.48 | 89.66 = 0.08 | 90.01 = 0.46

1 Du 93.60 0.00 £0.00 | 0.00 = 0.00 0.00 == 0.00 0.00 £ 0.00 | 0.00 +£0.00 | 23.60 4 1.60 | 0.00 & 0.00
ASR 89.34 | 24.54 +£1.38 | 40.27 £3.15 | 6640+ 198 | 0.36+0.14 | 15.83 +0.49 | 19.66 £ 0.56 | 16.13 £ 0.36

D, 90.61 91.26 £ 0.12 | 88.16 +0.15 | 54.40 +10.77 | 86.37 £0.20 | 75.02 £ 1.65 | 72.65 £ 0.55 | 89.11 £ 0.14

2 Dy 93.10 0.00+£0.00 | 11.00 £0.10 | 0.00 £ 0.00 0.00 +0.00 | 0.00 +0.00 | 3.25+0.15 | 0.00 + 0.00
ASR 83.84 2598 +1.27 | 15.854+2.33 | 50.67 £ 12.51 | 1.62+0.54 | 76.78 £0.44 | 34.90 £ 1.16 | 16.21 £0.63

D, 88.12 89.04 £0.02 | 7752+ 1.15 | 41.56 +0.49 | 81.77 £0.04 | 71.88 £0.39 | 73.85 £0.49 | 86.69 = 0.13

4 Dy 91.40 0.00 +0.00 | 0.00 + 0.00 0.90, 0.00 0.00 + 0.00 | 0.00 + 0.00 1.81+£0.03 | 0.00 & 0.00

ASR 79.58 25.86 +£2.04 | 63.44 +0.44 | 52.05+ 0.91 2904+ 0.38 | 76.52 £4.16 | 72.61 £0.97 | 21.51 £ 0.69

Table 4: Accuracy of D,. and D, for each unlearning method across Resnet18 model in single-class
unlearning on different number of passive parties.

Also, on the same tables (Tab. |I|-E[), we observe that: i) Fine tuning shows consistent ASR score.
ii) Fisher forgetting shows high ASR score in most of the cases. iii) Amnesiac unlearning shows
inconsistencies in ASR score across all experiments. iv) UNSIR shows high ASR score on almost
all experiments, v) Boundary unlearning shows relatively consistent ASR scores. Finally, all in all
vi) our solution shows a consistent ASR performance across all datasets, models and scenarios.

5.2.3 TIME EFFICIENCY

For the computational complexity,

Fig. [ presents an exceution time o |~

(in seconds) of single-class unlearn- I16711
ing with Resnet18 model in CIFAR10 T ’
dataset. It can be observed that: Fisher l254_51
i) The gold standard retrain model P
has the highest execution time. ii) 2 Amnesiac I122.79
. oqe @
Unlearning methods that utilises full =
dataset or D, such as Fine Tuning, Unsir |55-52
Amnesiac Unlearning and Fisher for- |
. . . BU [49.48
getting have relatively high execu-
tion time. iii) Unlearning methods Ours 2.94
that utilise only D,, such as Boundary
. . 0 1000 2000 3000 4000
Unlearning shows a lower execution Runtime

time. iv) Our solution has the lowest

execution time (16x - 1200x lower). Figure 4: The runtime(s) of each unlearning method.

5.3 ABLATION STUDY

In this section, we conduct an ablation study on the effectiveness of our method for different number
of passive parties and different privacy-preserving VFL mechanishm.

5.3.1 EVALUATION FOR DIFFERENT NUMBER OF PASSIVE PARTIES

Table[]shows the accuracy of D,., D,, and ASR score on one(1) passive party, two(2) passive parties
and four(4) passive parties respectively. The results indicate that our method can perform well in
unlearning effectiveness and utility.
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90.70

(b) ©

(d

Figure 6: Comparison of the utility and unlearning effectiveness for Differential Privacy and Gradi-
ent Compression privacy preserving VFL methods 2022D)). (a) and (b) show the accuracy
of D, and D,, between baseline and our solution on different level of Gaussian Noise model, re-
spectively. While (c¢) and (d) show the accuracy of D,. and D,, between baseline and our solution on
different level of gradient compression ratio model, respectively.

5.3.2 EVALUATION ON DIFFERENT SIZE OF D,

100 s D
We apply the gradient ascent with different size 86.87 89.29 89.11%== Du
D, to achieve unlearning in Fig. EL e.g, three 80
methods (GA-A using 5000 samples, GA-S us-
ing 40 samples and ours). It shows that i) 40 S 60
samples is not enough to unlearn since the un- )
learning result on D,, remains at 40.48% while g 40 40.48
GA-A with 5000 samples achieves 0%. Mean- £
while, ii) our method with only 40 samples able
to achieve 0% unlearning effectiveness on D,,. 20

0 0

5.3.3 EVALUATION FOR DIFFERENT 0 - o .
PRIVACY PRESERVING VFL METHODS & & o*

We evaluate our unlearning methods under two
privacy preserving VFL methods: (i) Differen-

tial Privacy 2022b)) and (ii) Gradient

Figure 5: Comparison of the utility and unlearn-
ing effectiveness on different size of D,,. The re-

Compression (Fu et al.,2022b). Fig. [6|presents

the effectiveness of our solution on both meth-
ods across different levels of variance Gaussian
noise and compression ratio, respectively. It
shows that even for a large compression ratio
and noise level, our proposed method still able
to unlearn effectively while the utility of the
vertical training decreases significantly.

sults indicate that when using a limited amount of
data (|D,| = 40), directly applying gradient as-
cent (GA-S) does not achieve satisfactory unlearn-
ing effectiveness, as the accuracy on the unlearned
data remains at 40.48%. In contrast, our method,
which incorporates manifold mixup, demonstrates
significantly better unlearning effectiveness. For
instance, with only 40 labeled data points, our ap-

proach reduces the unlearned accuracy to 0%.

6 CONCLUSIONS

In conclusion, this paper presents a pioneering

approach to label unlearning within VFL domain, addressing a critical gap in the existing literature.
By introducing a few-shot unlearning method that leverages manifold mixup, we effectively miti-
gate the risk of label privacy leakage while ensuring efficient unlearning from both active and passive
models. Our systematic exploration of potential label privacy risks and extensive experimental val-
idation on benchmark datasets underscores the proposed method’s efficacy and rapid performance.
Ultimately, this work not only advances the understanding of unlearning in VFL but also sets the
stage for further innovations in privacy-preserving collaborative machine learning practices.
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A APPENDIX

This section provides a detailed information on our experimental settings and additional experimen-
tal results.

A.1 PROOF OF THEOREM

Consider a scenario where the active party seeks to unlearn the label y’ with the corresponding
feature o’ and embedding H' = Gy(2’). The gradient ascent approach aims to remove the label
information ¢ from both the active model 6 and the passive model w.

1) Unlearning effectiveness for Gradient Ascent (GA). Using the first-order Taylor expansion of
{(w; H',y') around the initial parameter w;, we obtain:

Cwegr; H y') = lwe; H y') + Vil(we; H ) T (w1 — wy).

Substituting the gradient ascent update w1 = wy + NV, €(wi; H',y') (as defined in Eq. (5) of the
main text), this becomes:

Uwir; H'y') = Lwis H'y') + 0| Vo l(ws H )12

Since > 0, the loss ¢(w; H', y') increases with each gradient ascent step, effectively reducing the
contribution of the label 3/’ to the active model w. Similarly, for the passive model 6, we derive:

€(9t+1; ZC/, y/) ~ E(eh $/7 y/) + v0€(9t7 x/7 yl>T(9t+1 - et)
= L0, y) + nVel(0y 2",y (VulVeH)
= (02" ,y) + 1l Vel (6 2",/

where the first equation is due to the Eq. (6) of the main text and second equation is according to the
chain rule. Thus, the contribution of the label y' is effectively removed from the passive model 6.

2) If the loss function { is 3-smooth, we can further derive:

IVel(wr; H, y')|| < Bllwr — wol

T-1 T-1 7
=Y Vollws H y)[l < B0 Y IVul(ws H )|,
t=0 t=0

where the second equation follows from Eq. (5) in the main text. This result indicates that the
convergence of gradient ascent depends on the learning rate 7. For instance, when the learning
rate is small or includes a weight decay strategy(Patterson & Gibson, 2017), such as < 53—, the

25T
gradient norm ||V, ¢(wr; H',y')|| tends to zero.

It is important to note that gradient ascent may impact the model utility on the remained data. To
mitigate this, a small learning rate (smaller than e~% in Table [7| and [8) is adopted in this paper to
minimize any decline in model utility for the remained data D,.. The experimental results presented
in Section [5] validate this approach.

3) The gradient ascent strategy aims to increase the model’s loss corresponding to the un-
learned label ¢/, thereby eliminating the contribution of the unlearned label 3’ to the model, as
illustrated in 1).

A.2 TABLE OF NOTATION

Table [5] summarises all the notations used in this paper.

A.3 EXPERIMENTAL SETUP

Datasets MNIST(Lecun et al., [1998) datasets contain images of handwritten digits. MNIST
dataset comprises 60,000 training examples and 10,000 test examples. Each example is represented
as a single-channel image with dimensions of 28x28 pixels, categorised into one of 10 classes. CI-
FARI0 (Krizhevsky et al.,|2009) dataset comprises 60,000 images, each with dimensions of 32x32
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[ Notation | Meaning

E,, G, | Active model and k;j, passive model
K The number of passive party
A Mixed coefficient
n Learning rate
N Unlearning epochs
Xk Private features own by ky;, passive party
Y Private label own by active party
E The unlearn labels
{a} The unlearned feature for client £ corresponding to the y*
zh The known features for client k corresponding to the y*
Hy Forward embedding of passive party k
H;, Augmented forward embedding of passive party k
9 Gradient on the embedding H.

Table 5: Table of Notations

pixels and three colour channels, distributed across 10 classes. This dataset includes 6,000 images
per class and is partitioned into 50,000 training examples and 10,000 test examples. Within each
class, there are 5000 training images and 1000 test images. Similarly, the CIFAR100 (Krizhevsky
et al.}2009) dataset shares the same image dimensions and structure as CIFAR10 but extends to 100
classes, with each class containing 600 images. Within each class, there are 500 training images and
100 test images. ModelNet (Wu et al., |2015) dataset is a widely-used 3D shape classification and
shape retrieval benchmark, which currently contains 127,915 3D CAD models from 662 object cate-
gories. For the MNIST, CIFAR10, and CIFAR100 datasets, each image feature is divided among K
parties, where K represents the number of passive parties. For the ModelNet dataset, we generate K
2D multi-view images per 3D mesh model by placing two virtual cameras evenly distributed around
the centroid. Each passive party is assigned one of the K generated 2D multi-view images.

Baselines The baseline methods used in the paper includes:
Baseline: Th original model before unlearning.

Retrain: Retrain the model from scratch with D,. with the same hyper-parameters to baseline.

Fine Tuning(Golatkar et al., 2020a; Jia et al., 2024): The baseline model is fine-tuned using D,. for
5 epochs with 0.01 learning rate.

Fisher Forgetting(Golatkar et al., 2020a): We use fisher information matrix(FIM) to inject noise into
the parameters proportional to their relative importance to the Dy compared to the D,..

Amnesiac(Graves et al.,[2020): We retrain the model for 3 epochs with relabeled Dy with incorrect
random label and D,..

Unsir(Tarun et al.,|2024): We introduce noise matrix on D to impair the model with noise generated
and repair the model with D,..

Boundary Unlearning(Chen et al., 2023)): We create adversarial examples from Dy and assign new
nearest incorrect adversarial label to shrink the Dy to nearest incorrect decision boundary.

Gradient Ascent(Golatkar et al., 2020a): We maximise the loss of D on the model for small number
of epochs.

Model Architecture Table[6]summarised our VFL framework settings.

| Model name | Model of Passive Party | Model of Active Party |
| Resnetl8 | 20 Conv [ 1 FC |
[ Vggle | 13 Conv \ 3FC ]

Table 6: Models in experiments. FC: Fully-connected layer. Conv: convolutional layer
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Implementation Details Table [/| and [8| summarise the hyper-parameters for our unlearning
method.

ars . Single-class
Hyper-parameters } Resnet [8-MNIST | ResnetI8-CIFART0 | Resnet[8-CIFARI00 | Resnctl8-ModeINet | Vgg[6-CIFARTO0 | Vggl6-CIFARI00 }
Optimization Method SGD SGD SGD SGD SGD SGD
Unlearning Rate 2e-7 2e-7 Se-7 Se-7 2e-7 5e-7
Unlearning Epochs 10 15 7 4 15 7
Number of Data Samples 40 40 30 30 40 30
Batch Size 32 32 32 32 32 32
Weight Decay Se-4 Se-4 Se-4 Se-4 Se-4 Se-4
Momentum 0.9 0.9 0.9 0.9 0.9 0.9

Table 7: Hyper-parameters use for unlearning in our solution in Single-class unlearning.

Hyper- § I Two-classes I Multi-classes |
YPeIparameters " Resnet18-CIFARIO | ResnetI8-CIFARI00 | Vggl6-CIFARIO | Vggl6-Cifarl00 | ResnetI8-CIFARIO0 | VggI6-CIFARI00 |
Optimization Method SGD SGD SGD SGD SGD SGD
Unlearning Rate le-6 9e-7 le-6 9e-7 9e-7 9e-7
Unlearning Epochs 15 10 15 5 15 5
Number of Data Samples 40 20 40 20 15 15
Batch Size 32 32 32 32 32 32
Weight Decay Se-4 Se-4 Se-4 Se-4 Se-4 Se-4
Momentum 0.9 0.9 0.9 0.9 0.9 0.9

Table 8: Hyper-parameters use for unlearning in our solution in two-classes and multi-classes un-
learning.

Table @] summarises the model name, datasets and unlearn classes involve in each unlearning sce-
narios.

| Scenarios | Models | Datasets | Unlearn Classes |
Sinele-class Unlearnin Resnetl8 | MNIST, CIFAR10, CIFAR100, ModelNet 0
& & 1 vggl6 CIFAR10, CIFAR100 0
Two-classes Unlearnin Resnet18 CIFAR10, CIFAR100 0,2
g Vggl6 CIFAR10, CIFAR100 0,2
Multi-classes Unlearning Resnetl8 CIFAR100 0.2,5,7
Vggl6 CIFAR100 0,2,5,7

Table 9: Models and datasets involve in each unlearning scenarios.

For each dataset used in this paper, we augment the embeddings with two coefficients, i.e., A = 0.25
and A = 0.5. Additionally, we evaluate the impact of different A values in Table The results
indicate that variations in A have a minimal impact on the unlearning effectiveness.

[ ARate [ Metrics [ Accuracy (%) |

D, 88.69 = 0.19
02,051 | p 1.77 £ 0.57
D, 89.1T £ 0.14
025,051 5’ 0.00 =+ 0.00
D, 88.78 = 0.09
[0.33,0.5] D, 2.10 +0.42

Table 10: Different lambda rate on single-label unlearning scenarios on CIFAR10 dataset with
ResNet18 architecture. We unlearn label O in this experiment.

A.4 ADDITIONAL EXPERIMENTS RESULTS

We have incorporated one experiment using a healthcare dataset for classification task, specifically
the Brain Tumor MRI dataset (Wang et al., 2024), which is commonly used in healthcare scenarios.
The Brain Tumor MRI dataset consists of 7,023 human brain MRI images categorized into four
classes: glioma, meningioma, no tumor, and pituitary.

16



Under review as a conference paper at ICLR 2025

Table [TT] demonstrates that our method achieves strong unlearning effectiveness, with the accuracy
on unlearned data (D,,) dropping from 95.67% to 2.43%. Furthermore, the accuracy on the remained
data (D)) outperforms other unlearning methods, except for retraining. For instance, the Amnesiac
method results in an accuracy drop exceeding 20% while our method drops less than 10%. The
decrease in the remained data accuracy for our method is attributed to the similarity of features
among different labels. Removing one label can inadvertently impact the utility of other labels when
using the gradient ascent method. In contrast, the retraining method performs well in maintaining
the utility of other labels; however, it is significantly more time-consuming.

Metrics Accuracy (%)
" | Baselines | Retrain \ FT \ Fisher | Amnesiac | BU \ Ours
D, 97.92 98.81 +=0.34 | 81.89 +0.82 | 30.26 & 0.21 | 73.29 +0.09 | 45.30 == 0.91 | 89.05 £ 0.61
D 95.67 0.00 £0.00 | 4.334+0.49 | 0.00+0.00 | 0.00+0.00 | 3.67+0.14 | 2.434+0.04

Table 11: Single-label unlearning scenario with Brain MRI datasets on ResNet18 architecture. This
experiments have one active party and two passive parties. The image features is split to half and
each passive party own half of the image features. We unlearn label 0 (glioma) in this experiments.

Also, we have added experiments on Non-vision dataset (Yahoo Answers dataset (Fu et al.| [2022a))
for the classification task. Yahoo Answers is a dataset designed for text classification tasks, compris-
ing 10 classes (topics) such as ’Society & Culture,” ”Science & Mathematics,” "Health,” ”"Education
& Reference,” among others. Each class contains 140,000 training samples and 6,000 testing sam-
ples. For simplicity, we utilized 5,000 training samples and 2,000 testing samples from each class.

Table |12]illustrates that our method performs effectively on both the accuracy of the remained data
and the unlearned data. For instance, the unlearned data accuracy decreases from 41.63% to 5.14%,
while the accuracy drop on the remained data is less than 3%.

. Accuracy (%)
Metrics Baseline | Retrain [ Ours
D, 62.92 63.14 £ 0.45 | 60.72 & 0.98
D., 41.63 0.00 £+ 0.00 5.14 £ 1.04

Table 12: Single-label unlearning scenario on Yahoo Answer datasets with MixText architecture
((Chen et al., 2020), transformer-based models). This experiments have one active party and two
passive parties. Each sample (a single paragraph of text) is divided into two paragraphs, with each
passive party holding one of them. We unlearn label 6 (Business & Finance) in this experiments.

In addition, we conducted experiments with one active party and eight passive parties on the CIFAR-
10 dataset using the ResNet-18 architecture. The image features were split into eight parts, with each
passive party owning one-eighth of the image features. Table [[3] demonstrates that the proposed
method continues to perform well in terms of both unlearning effectiveness and the utility of the
remained data. For instance, the accuracy on the unlearned data drops to 0.17%, while the accuracy
on the remained data decreases by less than 3%.

Metrics Accuracy (%)
Baseline | Retrain \ Fisher | Amnesiac | Unsir \ BU \ Ours
D, 84.16 8498 +£0.11 | 18.01 £0.38 | 77.28 £0.93 | 67.95 £ 0.86 | 70.99 = 0.70 | 82.72 £+ 0.99
Dy 87.9 0.00 +£0.00 | 0.00+0.00 | 0.00+0.00 | 0.00+0.00 | 0.50+0.07 | 0.17 &+ 0.03

Table 13: Single-label unlearning scenario on CIFAR10 dataset with Resnet18 architecture on 8
passive parties. The image features is equally split into 8 parts and each passive party own one eight
of the image features. We unlearn label O in this experiment.

Figure [§] shows MIA graphs for various number of passive parties. Moreover, Figure [7] shows the
PMC attack (one strongest label privacy attack in (Fu et al.l 2022b)) before and after unlearning
methods. It demonstrates that our methods achieve beyond 40% drops for the model accuracy on
D,.
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Figure 7: PMC resnetl18 cifarl0 single class
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Figure 8: The following sub-figures show the MIA attack success rate on (a) Single-class Resnet18
Mnist, (b) Single-class Resnetl8 Cifarl0, (c) Single-class Resnet18 Cifar100, (d) Single-class
Resnet18 ModelNet, (e) Single-class Vggl6 Cifarl0, (f) Single-class Vggl6 Cifar100, (g) Two-
classes Resnet18 Cifarl0, (h) Two-classes Resnet18 Cifar100, (i) Two-classes Vggl6 CifarlO, (j)
Two-classes Vggl6 Cifar100, (k) Multi-classes Resnetl18 Cifar100, (1) Multi-classes Vggl6 Ci-
far100. The red line in graphs represent the ASR of retrained model.
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