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ABSTRACT

Large Language Models (LLMs) have shown promise in accelerating the scien-
tific research pipeline. A key capability for this process is the ability to gener-
ate novel research ideas, and prior studies have found settings in which LLM-
generated research ideas were judged as more novel than human-expert ideas.
However, a good idea should not simply appear to be novel, it should also re-
sult in better research after being executed. To test whether AI-generated ideas
lead to better research outcomes, we conduct an execution study by recruiting
43 expert researchers to execute randomly-assigned ideas, either written by ex-
perts or generated by an LLM. Each expert spent over 100 hours implementing
the idea and wrote a 4-page short paper to document the experiments. All the
executed projects are then reviewed blindly by expert NLP researchers. Compar-
ing the review scores of the same ideas before and after execution, the scores of
the LLM-generated ideas decrease significantly more than expert-written ideas on
all evaluation metrics (novelty, excitement, effectiveness, and overall; p < 0.05),
closing the gap between LLM and human ideas observed at the ideation stage.
When comparing the aggregated review scores from the execution study, we even
observe that for many metrics there is a flip in rankings where human ideas score
higher than LLM ideas. This ideation-execution gap highlights the limitations
of current LLMs in generating truly effective research ideas and the challenge of
evaluating research ideas in the absence of execution outcomes. 1

1 INTRODUCTION

LLMs have shown promise in various tasks in the scientific research pipeline, and most recently, they
have been envisioned to power AI scientists that can autonomously make novel scientific discover-
ies. Recent efforts have built LLM-powered agentic systems to propose novel drug repurposing and
treatment targets Gottweis et al. (2025); Ghareeb et al. (2025), develop new efficient matrix multi-
plication algorithms and optimal constructs for open mathematical problems (Novikov et al., 2025),
and end-to-end produce full research papers on AI topics (Lu et al., 2024; Yamada et al., 2025).

Generating high-quality research ideas is the first step in these automated research pipelines, and
the quality of LLM-generated ideas can decide the upper-bound of the final execution outcomes.
Despite the importance of this ideation step, measuring the quality of LLM-generated research ideas
is difficult, as it not only requires extensive domain expertise but also involves subjective taste. Prior
attempts of evaluating LLM-generated research ideas mostly focus on the ideas themselves without
considering the execution outcomes, with most evaluations relying on either LLM judges (Lu et al.,
2024; Li et al., 2025; Feng et al., 2025) or small-scale human evaluation Baek et al. (2025); Wang
et al. (2024a).

A recent large-scale human study examined AI-generated ideas in a randomized, blinded comparison
to human experts (Si et al., 2025) and found that LLM ideas are judged as significantly more novel
than human ideas with higher average scores across novelty, excitement, and expected effectiveness.

1All of our data are released at: https://github.com/NoviScl/AI-Researcher.
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Figure 1: Study overview: we recruit N = 43 expert researchers to execute randomly assigned ideas
from either the Human condition or the AI condition. Expert reviewers then blindly review all the
executed projects. Despite the AI ideas being scored higher than human ideas before execution (e.g.,
their predicted effectiveness score of the ideas), their scores drop significantly more than human
ideas after execution (e.g., their effectiveness score based on the experiment results).
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Figure 2: Average scores of AI ideas drop significantly more than Human ideas in the execution
study across all the evaluation metrics. AI ideas score higher than Human ideas in the ideation
evaluation (Study 1), and this difference in drops narrows their difference in the execution evaluation
(Study 2). In fact, AI ideas score even lower than Human ideas in the execution evaluation, although
this difference is not statistically significant (Table 4).

However, evaluating research ideas is difficult even for experts (Simsek et al., 2024), leaving open
the question of whether these ideas would translate into better research outcomes.

There are several reasons why evaluation results on the ideas might not hold true when we execute
them into actual projects. During execution, every single step has to be grounded in realistic ex-
ecution constraints, which impose higher feasibility standards than the ideation stage. Moreover,
objective metrics like feasibility and effectiveness are best judged via the actual execution outcomes
rather than speculative judgment based on the ideas. However, execution is both resource- and time-
consuming for many research domains. As a compromise, prior works are constrained to verify only
one or two AI-generated ideas through execution experiments (Ghareeb et al., 2025; Gottweis et al.,
2025), which makes it impossible to draw any statistically significant conclusions about LLMs’
ideation capabilities.

Our work provides the first quantitative, large-scale study of AI ideas after execution by performing a
large-scale execution study with a sufficient sample size to draw statistically significant conclusions
about the post-execution quality of AI-generated ideas. We recruit N = 43 qualified participants
and randomly assign each of them an NLP research idea from either a human researcher or an LLM
agent based on Claude-3.5-Sonnet, a frontier LLM at the time when we started the study. Our
execution study builds upon Si et al. (2025), and which enables us to use the collected ideas and
their pre-execution ideation evaluation. Our execution participants spend an average of 103 hours
executing the assigned idea and then submit the codebase and paper to document their experiments.
All projects are then reviewed blindly by our recruited expert reviewers (Figure 1).

Comparing the review scores of these ideas from the previous ideation evaluation and our new execu-
tion evaluation, we observe the ideation-execution gap of LLM-generated ideas: LLM ideas score
much lower in the execution evaluation as compared to the ideation evaluation. In contrast, human
expert ideas only incur small drops from the ideation evaluation to the execution evaluation, signif-
icantly smaller than the ideation-execution gap of LLM-generated ideas (p < 0.05; Figure 2). De-
spite the significantly higher pre-execution ideation scores from LLMs, the huge ideation-execution
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gap leads to a flip in the rankings between LLMs and humans. Our analysis further shows that
reviewers consider more comprehensive factors in the execution evaluation, uncovering previously
overlooked weaknesses of LLM ideas. These results add nuances to previous claims on LLMs gen-
erating better ideas than human experts, and perhaps more importantly, highlight the difficulty of
evaluating research ideas in the absence of execution outcomes.

2 EXECUTION STUDY SETUP

In this section, we go over the high-level study design and lay out some specific rules for our execu-
tion process to ensure a controlled comparison between the Human and AI conditions.

2.1 HIGH-LEVEL STUDY DESIGN

Topic Human AI
Bias 3 4
Coding 3 3
Safety 2 4
Multilingual 3 4
Factuality 5 5
Math 1 1
Uncertainty 2 3
Total 19 24

Table 1: Topic distribution of the executed
projects.

Our goal is to compare the execution outcomes of
LLM-generated research ideas and human experts’ re-
search ideas (Figure 1). We design a blinded, Ran-
domized Controlled Trial (RCT) study: each of the
N = 43 participants is randomly assigned to execute
an anonymized idea originating from either the LLM
or a human expert under identical instructions, with re-
viewers also blinded to the idea source. Each execution
participant is given a three-month window to execute
the assigned idea into a full project, including imple-
menting and running all the proposed experiments and
writing a 4-page paper in the specified format. By stan-
dardizing the execution and reviewing procedures, our
RCT design ensures that statistically significant differ-
ences in execution outcomes can be causally attributed to whether the idea came from the AI or from
a human. Our study design and hypotheses were pre-registered. 2

The LLM and human ideas used in our execution study are taken from a previous ideation study,
spanning 7 different NLP topics (Table 1). These ideas were intentionally scoped to be feasible to
execute within three months when they were collected in the ideation study. For the pre-execution
evaluation, we use the ideation evaluation scores from the previous ideation study; for the post-
execution evaluation, we recruit N = 58 expert reviewers to score the executed projects. These
reviewers are drawn from a similar population as the ideation study, using review guidelines that
closely match the ideation study wherever possible.

2.2 MINIMIZING CONFOUNDERS IN THE STUDY DESIGN

We establish some ground rules for the execution task. Our guiding principle is to minimize any
changes to the assigned idea while maintaining blinding and random assignment across the two
conditions.

Random Idea Assignment When assigning ideas, we want execution participants to be able to
work on ideas within their expertise, but at the same time, we want to avoid potential self-selection
bias where participants only choose higher-quality ideas to work on. To balance this tension, we
first ask for their preferred topics among our 7 candidate topics, and then we randomly assign either
an LLM-generated idea or a human-written idea to them from their selected topics. This random
assignment avoids potential selection biases and also helps randomize the participants’ expertise
levels across the two experiment conditions.

Minimize Changes to Ideas Our goal is to evaluate the execution outcomes of the original ideas,
and thus, we want to preserve the ideas as much as possible during execution. At the same time, we
recognize cases where certain changes are necessary to make the ideas executable. To balance these,
our policy is to disallow any substantial changes to the proposed methods from the original ideas,

2https://osf.io/ckxtp
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Human Idea Executor (N = 19) AI Idea Executor (N = 24) Reviewer (N = 58)
Metric Mean Median Mean Median Mean Median
No. of Papers 15.3 5 14.3 11 13.6 11
No. of Citations 233.5 36 288.7 118 596.8 287
Topic Familiarity (1-5) 2.9 3 3.4 3 3.2 3
Time 112.6 hr 120 hr 93.7 hr 104 hr 52.5 min 45 min

Table 2: Research profiles of the execution and review participants and their efforts spent.

while allowing changes to the experimental details. We enforce this rule by asking all execution
participants to explicitly note down all the changes they want to make. We manually review these
proposed changes to ensure that they are focused on refining the experiment details, such as dataset
choice and baseline selection, and we verified that these changes do not change the core method
proposed in the assigned ideas (discussed in full detail in Section 5.1). Of all the assigned ideas,
there is only one exception where the participant found the idea to be too vague, and they had to
instantiate the method details with their own ideas to make the project feasible. We thus terminated
that project and excluded it from the remaining study.

Deliverables and Reviews At the end of the execution, we ask all participants to submit the
full codebase for reproducing all the experiments, adhering to our guidelines on writing detailed
README instructions to reproduce the experiments, as well as a short paper of at least 4 pages
in a standardized format. After the execution stage, we recruit a pool of qualified reviewers to do
blind review of the executed projects, where both the codebase and the paper will be shown to our
reviewers for their blind review. The review form is largely similar to conventional conference re-
view forms and matches the style of the review form used in the previous ideation study, including
metrics on novelty, excitement, soundness, effectiveness, and overall quality. Additionally, we also
collect review scores on how faithful the execution is to the original idea and the codebase quality
as control metrics. The full review form can be found in Appendix A.

3 EXECUTION AND REVIEWING PARTICIPANTS

A core premise of our study is to rely on highly qualified participants to execute the given ideas
into the corresponding experiments, and to rely on blind reviewing from expert reviewers for a fair
evaluation of all the executed outcomes. In this section, we describe the profiles of recruited experts
and their efforts in this study.

3.1 EXPERT RECRUITMENT

We recruit our participants by posting recruitment messages on various social media platforms (e.g.,
Twitter/X and Slack), directly reaching out to qualified candidates, and advertising during in-person
conferences. After basic profile screening, we onboarded a total of 66 participants for the execution
task, among whom 43 completed the task in the end. Among the participants who did not complete
the execution task, only one of them was because of the assigned idea was too vague and infeasi-
ble, while all the other cases were due to various personal reasons. Our 43 execution participants
came from 7 different countries, including the US, Australia, India, the UK, Nepal, Singapore, and
Canada.

For the execution task, we give each participant a three-month window to complete the task and
compensate them for the total number of hours spent on the task ($20/h) as well as a completion
bonus ($600). Moreover, we reimburse all the compute costs incurred during the execution, such
as inference API credits. Apart from the compensation, we also allow all execution participants to
take ownership of the executed projects so that they can further develop the project after the study as
potential paper submissions if they wish. This serves as an additional incentive for the participants,
and in fact, multiple of them developed the executed projects into paper submissions after the study.
For the review task, we recruited 58 highly qualified reviewers who collectively wrote 181 reviews,
ensuring each project is reviewed by 4-5 different reviewers. Each reviewer is assigned 2-5 projects
based on their preferred topics and is compensated $50 for each review they write.
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Human Ideas (N=85) AI Ideas (N=96)
Metric Mean SD Mean SD p-value
Novelty (1–10) 4.93 1.61 4.73 1.75 0.21
Excitement (1–10) 4.52 1.84 3.90 1.75 0.01*
Effectiveness (1–10) 4.84 2.11 4.12 1.94 0.01*
Soundness (1–10) 5.38 1.72 4.73 1.82 0.01*
Overall (1–10) 4.00 1.59 3.41 1.46 0.01*
Faithfulness (1–10) 6.48 2.03 6.42 1.56 0.41
Codebase Quality (1–5) 3.58 0.94 3.58 0.89 0.52

Table 3: Results aggregated over all reviews for Human and AI conditions in the execution evalua-
tion by treating each review as an independent data point. We perform two-sample one-sided t-tests
to test whether the mean of the AI condition is smaller than the mean of the Human condition. We
report the p-values with FDR correction to account for multiple hypothesis testing for the five main
evaluation metrics in the first block, and report the raw p-values for the control metrics in the second
block.

3.2 EXPERT QUALIFICATIONS AND EFFORTS

Finding qualified execution participants is crucial to avoid cases where the execution outcomes do
not faithfully reflect the original idea’s effectiveness due to poor execution. We took measures such
as collecting candidates’ profiles and conducting screening interviews to find participants who are
both qualified and highly motivated and committed to the task. All of our execution participants
have substantial prior research background, with an average of 15.3 and 14.3 papers on their Google
Scholar profiles for the Human and AI conditions, respectively (first block of Table 2). We also
collected their self-reported familiarity with the assigned topic, for which they indicated moderately
high familiarity (2.9 and 3.4 on a 1-5 scale for Human and AI conditions; Table 2). Apart from being
highly qualified, our execution participants spent an average of 112.6 and 93.7 hours executing
human and AI ideas, indicating substantial effort. This level of variation in expertise and time
spent between the human and AI conditions is expected, given our relatively small sample size.
Similarly, our expert reviewers have extensive research experience (596.8 average citations) and are
generally familiar with the reviewed topics (3.2 out of 5); and spent an average of 52.5 minutes on
each review (last two columns of Table 2). Our pool of participants is diverse and comes from 40
different institutions across the world. We present the institutions that our execution and reviewing
participants come from in Appendix B.

4 QUANTITATIVE RESULTS

In this section, we summarize our main quantitative results from the execution study. Our main goal
is to compare AI ideas and human ideas, and we will compare them both in terms of the scores from
the execution study, as well as the differences compared to the ideation evaluation.

4.1 COMPARING HUMAN AND AI IDEAS IN THE EXECUTION STUDY

A natural outcome measure is the review scores from the execution study. We compare the scores
of human and AI ideas in the execution evaluation in Table 3, where we treat each review as an
independent data point and aggregate the scores from all reviews. Human ideas and AI ideas score
similarly on our control metrics – faithfulness and codebase quality, indicating similar execution
quality and that ideas from both conditions are executed faithfully. When treating each review as an
independent data point (sample size N = 181) and performing one-sided t-tests, human ideas score
significantly higher than AI ideas on excitement, effectiveness, soundness, and the overall score,
but not novelty. However, when we compare human and AI ideas by treating the average score of
each idea as an independent data point (sample size N = 43), the difference between human and
AI ideas’ execution score is not significant on any metric (second block of Table 4). Given this
mixed evidence, we do not have sufficient statistical power to directly confirm our pre-registered
hypothesis that human ideas differ significantly from AI ideas in the execution scores. Additionally,
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Novelty Excitement Effectiveness Overall
Human Condition Ideation Score 4.912 4.404 4.833 4.596
AI Condition Ideation Score 5.778 5.653 6.003 5.382
p-value (FDR) 0.035* 0.004** 0.001** 0.035*
Human Condition Execution Score 4.903 4.482 4.782 3.968
AI Condition Execution Score 4.729 3.896 4.125 3.406
p-value (FDR) 0.586 0.175 0.266 0.175

Table 4: Comparison of mean ideation vs. execution scores for human and AI conditions. We treat
the average score of each idea as an independent data point, so the sample size is N = 19 for the
human condition and N = 24 for the AI condition. For the p-values, we perform two-sided t-tests
with FDR correction. ∗ means p < 0.05, ∗∗ means p < 0.01.

Novelty Excitement Effectiveness Overall

Human Ideas Gap −0.010 0.078 −0.052 −0.628
AI Ideas Gap −1.049 −1.760 −1.879 −1.976

∆ (Human–AI) 1.039 1.835 1.827 1.348
p-value (FDR) 0.025* 0.001** 0.003** 0.004**

Table 5: Comparison of the gaps between the execution evaluation and the ideation evaluation scores
for human and AI ideas. Negative gaps indicate a score decrease after execution. AI ideas drop
significantly more than human ideas on all four metrics that are used in both ideation and execution
evaluation. ∗ means p < 0.05, ∗∗ means p < 0.01. All p-values are adjusted with FDR correction.

we plot the distribution of all projects’ scores in the execution evaluation in Appendix C and the
reviewer agreement in Appendix D, where we show that the reviewer agreement is generally high.

4.2 MEASURING THE IDEATION-EXECUTION GAP

Directly comparing average human and AI idea scores is difficult due to the high heterogenity in idea
quality. However, the design of our study provides a natural way to remove this variance, instead
of comparing the direct ratings, we can compare the difference between pre- and post- execution
scores.

This ideation-execution gap controls for the heterogenity in idea quality, and results in clear statis-
tical signals even with 43 projects. Concretely, we focus on the four metrics that are used in both
evaluations: novelty, excitement, effectiveness, and the overall score. To define the metrics, we take
the difference in score between the execution evaluation and the ideation evaluation (so negative
gaps would mean the scores decreased after execution). Figure 2 and Table 5 show that AI ideas’
scores drop significantly more than human ideas in the execution evaluation across all four metrics.
For example, human ideas mostly retain the same novelty, excitement, and effectiveness scores af-
ter execution (−0.010, +0.078, and −0.052) while AI ideas’ scores decrease by 1.049, 1.760, and
1.879 after execution, on a 1-10 scale.

In Table 4, we present the full scores of all projects before and after the execution. Prior to the
execution, AI ideas score significantly higher than human ideas on all four metrics. However, due to
the bigger ideation-execution gaps of AI ideas, the gap between human and AI ideas in the execution
evaluation shrinks. In fact, we see a case where the rankings flip, and AI ideas score below human
ideas after execution on all metrics (e.g., 3.90 v.s. 4.48 on excitement and 4.13 v.s. 4.78 on effec-
tiveness). However, we note that such differences are not statistically significant due to the small
sample size when treating each idea as an independent data point (N = 43). We further compute
the correlation between the ideation scores and execution scores in Appendix E, where the correla-
tion is weak in most cases; and for AI ideas, there is even a moderately negative correlation on the
excitement score.
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5 ANALYZING THE IDEATION-EXECUTION GAP

In this section, we dive deeper into the executed projects and perform both quantitative and qual-
itative analyses to understand why there exist ideation-execution gaps when we execute ideas into
projects.

5.1 CHANGES MADE TO THE IDEAS MAINLY FOCUS ON EXPERIMENT DETAILS

We begin by analyzing the types of changes made to the ideas by our execution participants. We
manually annotate all the changes to construct a taxonomy of the types of changes. We show the
counts of all types of changes made to human and AI ideas in Table 6, where we see that human
ideas and AI ideas involve an average of 2.9 and 3.1 changes, respectively. This indicates that only
a moderate number of changes are made to both human and AI ideas. Moreover, all of the changes
focus on experiment details rather than altering any algorithms proposed in the original ideas. Ex-
amples of these changes include switching to benchmarks that are appropriate for the given tasks,
updating the backbone models to more recent ones, adding more comprehensive evaluation metrics,
specifying any missing hyper-parameters and prompt details, adding stronger baselines, and adding
more analysis or ablation studies. We present examples of each type of change in Appendix F. These
changes generally preserve the original ideas and improve the experiment design.

Type of Change Human AI
Sample Size 19 24
Dataset Change 11 18
Metric Change 5 13
Human –¿ Auto Eval 0 6
Model Change 10 12
Hyper-Parameters 7 7
Baseline Change 6 4
Analysis Change 4 7
Prompt Details 13 7
Total 56 74
Average 2.9 3.1

Table 6: Distribution of changes made to
the original ideas during execution.

However, we do note one exception: when we
prompted both humans and AI to generate ideas that
can be executed within three months, humans are bet-
ter at scoping the experiments to be more feasible. The
most common example is that AI-generated ideas like
to propose human evaluations by recruiting experts or
native speakers to annotate a large set of model pre-
dictions, which are always changed by the executors to
save cost and time. For example, for the AI idea “So-
ciolinguistic Role-Play Prompting”, the idea originally
proposed to conduct a human study by recruiting native
speakers of different languages and cultural experts to
rate model generated outputs, which is one of the ma-
jor reasons for high excitement scores of this idea dur-
ing ideation evaluation (“the analysis with real native
speakers of different languages could be a major contri-
bution of this work”). However, this human study was
changed to using LLM-as-a-judge for automatic evaluation, which became a weakness as noted by
the reviewer: “Without manual evaluation, it is hard to gauge whether the outputs really improve in
terms of cultural adaptability or there are other data artifacts that LLM judges rely on when making
their preference decisions. ” We manually annotated all ideas to count such cases, and out of all
the 43 ideas, 6 AI ideas had such changes where the proposed human evaluation was changed to
automatic evaluation. However, removing all these 6 ideas does not change any of our previous
conclusions, and AI ideas still incur significantly larger ideation-execution gaps than human ideas
(full results in Appendix G). We thus conclude that these changes only explain a small fraction of
the ideation-execution gap.

5.2 EXECUTION EVALUATION CONSIDERS MORE FACTORS THAN IDEATION EVALUATION

Given that the changes made to the ideas only explain a small fraction of the ideation-execution gap,
we then turn to the review differences between the ideation and execution evaluations. Specifically,
we hypothesize that reviewers are focusing on very different aspects between the ideation and the
execution evaluation, which results in the ideation-execution gaps. For each idea, we analyze the
free-form reviewer comments and summarize the main points. We then manually categorize all the
reviewer comments into one of the following categories: (1) novelty and motivation of the idea; (2)
significance or impact of the idea; (3) technical flaws of the proposed method; (4) experiment design
(issues with model selection, dataset, metrics, or evaluation methods); (5) baseline comparison; (6)
ablation and analysis; (7) practical feasibility and resource requirements; (8) empirical performance;
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Figure 3: Comparison of the factors mentioned in the reviewer rationales in the ideation (yellow
bars) and the execution evaluation (blue bars). The y-axis indicates the percentage of ideas where
the reviews mention the corresponding factor. Each idea’s reviews could mention multiple factors.
In execution evaluation, reviewers consider more factors, especially the rigor and soundness of ex-
periments and the empirical performance.

(9) generalizability and scope; and (10) missing details or bad writing. We present the quantitative
breakdown in Figure 3 and summarize several important trends below.

First, execution evaluation always considers empirical experiment outcomes, while the
ideation evaluation often speculates. Since there was no empirical performance presented dur-
ing the ideation evaluation, the ideation evaluation is often conditioned on the assumption that the
method would be effective. For example, the reviewer noted “if the experiments show significant
improvements to direct using external knowledge/self-reflection and the work provides insightful
analysis on why, I believe it is exciting enough to get published” for the AI-generated idea “Adaptive
Confidence-Guided Prompting” during ideation evaluation. Similarly, the reviewer noted “This is
pretty hard to predict. Assuming the experiments are successful and thorough, it would be a solid
paper worthy of acceptance at any conference. However, this is entirely dependent on how the ex-
periments turn out. It is entirely possible that the proposed method is ineffective, and we don’t learn
anything substantial from it, in which case a paper might not even exist.” for the AI idea “Con-
ceptual Pivot Prompting for Bias Mitigation”. In contrast, almost all the reviewers would consider
empirical performance in the execution evaluation, and their scores often heavily depend on this
factor. For example, the reviewer noted “the method does not show marked improvements over a
basic empathy prompting approach” for the AI-generated idea “Empathetic Cascading Networks”
to justify a low overall score.

Second, execution evaluation poses a higher standard for the rigor of empirical evaluation.
While the ideation evaluation rarely focuses on the experiment design details, the execution eval-
uation emphasizes this much more. For example, the reviewer detected the issue with evaluation
metrics (“not using the same metrics as other works to compare the efficacy of this method”) for the
AI idea “Temporal Bias Decay Simulation”, which was previously overlooked in the ideation evalu-
ation without observing the executed experiments. Moreover, empirical experiments inspire review-
ers to notice additional weaknesses of the idea and the experiment design, such as missing baselines
and ablations, high resource requirements, and poor generalizability, which are almost entirely over-
looked during ideation evaluation. For example, one reviewer commented “lacks comparison with
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previous work: the method is only compared with the simplest baselines despite well-acknowledged
benchmarks” for the AI-generated idea “Contrastive Semantic Pivot Prompting” to criticize missing
baselines; one reviewer noted “the experiments should not just be numbers, but also include dis-
cussion of why ACGP actually produced the results provided” for the AI-generated idea “Adaptive
Confidence-Guided Prompting” to request more analysis; and one reviewer commented “the method
is also very computationally expensive” for the AI idea “Adaptive Contextual Pruning” to criticize
the resource consumption.

Taken together, the reviewers are considering more factors during the execution evaluation and
grounding their judgment on the executed experiments, therefore uncovering more weaknesses of
the ideas that were previously overlooked during ideation evaluation. For additional analysis, we
also analyze the correlation between different evaluation metrics in Appendix H, where we find the
overall score correlates highly with all the other breakdown metrics in the execution evaluation.

We showcase two randomly selected examples from our execution study in Appendix I. For each
example, we present the original idea proposal and the executed paper, as well as the corresponding
review scores in the ideation and execution evaluations.

6 RELATED WORK

Research Idea Generation and Evaluation Recent works have been exploring methods to gener-
ate novel research ideas or hypotheses with LLMs. Most of them focus on building better scaffolds,
for example by integrating retrieval (Wang et al., 2024a; Li et al., 2025; Wang et al., 2024b), iter-
ative feedback and revision (Yang et al., 2024; Hu et al., 2024), and multi-agent collaboration (Su
et al., 2025). Some also attempted to train specialized idea generation models by finetuning open
LLMs (Weng et al., 2025; O’Neill et al., 2025). These works typically use various forms of LLM
judges for the automatic evaluation of the generated ideas, sometimes validated by small-scale hu-
man evaluation (Wang et al., 2024a). Several works also proposed more effective ways to leverage
LLMs for automated idea evaluation, for example by incorporating the graph structure of research
ideas (Feng et al., 2025) or training specialized reviewer models (Zhu et al., 2025). Among them,
Si et al. (2025) is an exception where they conducted the first large-scale expert evaluation of LLM-
generated ideas and revealed limitations of LLMs as automatic judges. However, all of these works
consider the setting of idea evaluation without the execution outcomes, which, as we show, could
deviate from the real execution outcomes.

LLMs as AI Scientists Relatedly, a growing body of work has been building LLM-based AI Scien-
tists that could automate the entire scientific research pipeline including both ideation and execution.
For example, various types of AI Scientist agents have been developed (Lu et al., 2024; Schmidgall
et al., 2025; Yamada et al., 2025) for automating AI research, in which case the execution is real-
ized through code generation. In other scientific domains like biology and chemistry, AI Scientists
have been built to perform literature review and generate novel hypotheses and experiment plans,
which are then validated in wet lab studies (Gottweis et al., 2025; Ghareeb et al., 2025). In verifiable
domains like coding and math, LLMs have been used to power evolutionary searches by iteratively
proposing new ideas based on prior execution feedback (Novikov et al., 2025; Zhang et al., 2025).
The evaluation of such AI Scientist systems has been a major challenge, especially for open-ended
research without objective success metrics. While existing works rely on automatic judges and oc-
casionally submit cherry-picked examples to peer reviews, we conduct the first large-scale execution
evaluation by recruiting experts for the execution to obtain reliable evaluations of the ideas.

7 DISCUSSION

In conclusion, we have conducted the first large-scale execution evaluation to assess the execu-
tion outcomes of LLM-generated research ideas in comparison with expert ideas. We find large
ideation-execution gaps in LLM-generated ideas and advocate that future work should also take into
consideration the execution outcomes when evaluating AI-generated ideas. We recognize that our
study is still limited in the sample size and ideation scope despite our best efforts, and future work
could explore the use of automatic coding agents to scale up the idea execution. We discuss various
additional limitations and concrete future directions below.
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7.1 LIMITATIONS

Idea Scope For this execution study, we directly reused the human and AI-generated ideas from our
prior ideation study (Si et al., 2025), in which the scope was intentionally constrained to focus on
novel prompting techniques. This constraint was necessary to ensure that the ideas were feasible
to implement within a limited timeframe and compute budget, and accessible to a broader pool of
executors with varying technical backgrounds. However, this focus may limit the generalizability
of our findings to other types of research ideas – such as those requiring complex modeling and
large-scale data collection or training. Future studies could expand the idea space to include a more
diverse range of AI and human-generated proposals to better assess performance across different
topics and complexity, and examine whether our findings transfer to other domains outside of AI
research.

Sample Size We have made our best attempt to recruit as many qualified executors as possible
given the constraints of time, budget, and available participant pool. Despite this effort, our final
sample size of N = 43 executed projects remains modest. While sufficient for detecting meaningful
differences in the ideation-execution gaps, the sample size may reduce statistical power for other
more granular analyses. Moreover, with a limited number of projects per condition, results may be
more susceptible to individual executor variability. Future replications with larger and more diverse
executor pools would strengthen the robustness and external validity of our findings.

7.2 FUTURE WORK

Automated Execution In this study, we recruited highly qualified human researchers to execute
both human- and AI-generated ideas to ensure high-quality and faithful implementations. While
there has been rapid progress in building coding agents for automating ML engineering tasks (Chan
et al., 2025; Liu et al., 2025) and replicating published research papers (Starace et al., 2025; Hua
et al., 2025), current systems still suffer from low reliability and poor generalization to complex,
open-ended tasks like research execution. A promising direction for future work is to develop more
capable research agents that can autonomously implement research ideas at near-human levels of
quality. Such agents could greatly improve the scalability of large-scale idea evaluation and experi-
mentation by reducing the dependence on expert human labor.

Proxy Reward Models Executing research ideas is resource-intensive, requiring substantial human
effort, time, and computational resources. One avenue to mitigate this cost is the development of
proxy reward models – predictive models that can estimate the likely effectiveness an idea without
requiring full implementation. These models could be trained on historical execution outcomes,
for example, from papers with known empirical results (Wen et al., 2025); or leverage simulations
of the execution environments. If successful, such models could serve various purposes, such as
rapidly ranking and filtering generated ideas, and acting as reward functions in reinforcement learn-
ing pipelines for idea generation.

Execution Feedback Loop Another compelling direction is to build closed feedback loops where
the outcomes of executed experiments inform iterative idea improvement. This could be achieved
through training-free methods such as evolutionary search or self-refinement mechanisms, where
generated ideas are mutated and selected based on past execution performance. Alternatively, execu-
tion feedback can be directly used in learning-based frameworks—for example, by using empirical
outcomes as reward signals in reinforcement learning or fine-tuning procedures. Such feedback-
driven pipelines would bring idea generation closer to autonomous scientific discovery.

ETHICS STATEMENT

Intellectual Property We made an agreement with the experts who contributed the human ideas
that if their ideas are executed by others, the executors can take ownership of the executed projects.
And we allow executors to further develop the executed idea beyond our study, for example if they
wish to turn it into a conference or workshop submission. This policy is designed to incentivize
high-quality execution by granting executors full authorship rights over their implementations.

Reviewing and Publication Policy For evaluation purposes, we rely on a recruited pool of compen-
sated reviewers rather than submitting the executed projects to external peer-reviewed conferences
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or workshops. This choice serves two goals: reducing additional burden on the volunteer-based aca-
demic reviewing system, and enabling a more controlled and balanced evaluation process, wherein
we can ensure each reviewer assesses a fair mix of AI- and human-generated ideas. While we do not
prohibit executors from submitting their projects to external venues, we require that they explicitly
disclose the original source of the idea—whether AI- or human-generated—if they choose to publish
the work on public platforms (e.g., arXiv) or submit it to peer-reviewed venues. We also debriefed
participants with this policy, also notifying them that correctness and quality of work that they post
publically or submit is their reponsbility.
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A FULL REVIEW FORM

We use the following review form to elicit reviews from all expert reviewers. Reviewers have one
week of time to finish each review.

1. Name

2. Institution

3. Email

4. Consent

5. Honor Code: I confirm that I will not use ChatGPT, Claude, Gemini, or any other AI tools when
writing my reviews.

6. Familiarity: Before reviewing the idea, please indicate how familiar you are with the given topic
on a scale of 1 - 5 (this is just for us to understand potential confounders).

1. You have never read about this topic before

2. You have read at least one paper on this topic

3. You have read multiple papers on this topic but have not published any paper on it

4. You have co-authored at least one paper on this topic

5. You have co-authored multiple papers on this topic or have published at least one first-
author paper on this topic

7. Experience: Have you reviewed for major NLP or AI conferences before (e.g., *ACL, COLING,
NeurIPS, ICLR, ICML, AAAI)?

8. Executed Paper

9. Executed Codebase

10. Novelty Score: Whether the proposed idea in the paper is creative and different from existing
works on the topic, and brings fresh insights. You are encouraged to search for related works on-
line. You can consider all papers that have been accepted and published prior to December 2024 as
existing work when judging the novelty.

1. Not novel at all: The idea is essentially identical to many existing papers, with no mean-
ingful differences. It does not introduce any new insights or perspectives.

2.

3. Mostly not novel: The idea is very similar to existing work, with only minor variations.
You can easily find multiple papers presenting nearly the same concept.

4.

5. Somewhat novel: The idea has some differences from existing work, but the variations are
very incremental rather than substantial. It might refine or extend previous ideas but lacks
enough originality to justify a new paper on its own.

6. Reasonably novel: The idea introduces notable differences compared to prior work and
likely has enough originality to justify a new paper. However, it still builds significantly on
existing ideas rather than breaking new ground.

7.

8. Clearly novel: The idea presents major differences from all known existing works. It in-
troduces fresh insights or approaches that significantly advance the topic in a meaningful
way.

9.

10. Very novel: The idea is highly original and substantially different from all existing work.
It offers a groundbreaking, clever, or unexpected perspective that is both innovative and
impactful.
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11. Novelty Rationale: Short justification for your score. If you give a low score, you should
specify similar related works. (Your rationale should be at least 2-3 sentences.)

12. Excitement Score: How exciting is this paper? Do you expect the idea or results to be very
impactful? Would this work change the field and be very influential?

1. Poor: You cannot identify the contributions of this work, or it’s not interesting at all and
you would fight to have it rejected at any major AI conference.

2.
3. Mediocre: This work makes marginal contributions and is very incremental.
4.
5. Leaning negative: It has interesting bits but overall not exciting enough.
6. Learning positive: It is exciting enough to be accepted at a major AI conference, but still

has some weaknesses or somewhat incremental.
7.
8. Exciting: It would deepen the community’s understanding or make major progress in this

research direction.
9.

10. Transformative: It would change the research field profoundly and worth a best paper award
at major AI conferences.

13. Excitement Rationale: Short justification for your score. (Your rationale should be at least 2-3
sentences.)

14. Soundness Score: Is this paper technically sound? Are all the methodological details technically
correct? Are the experiments well-designed to verify the proposed method or hypotheses? Are they
using appropriate datasets, metrics, and baselines? Overall, is this project well-executed?

1. Fundamentally flawed: The paper has major technical errors, incorrect methodologies, or
logical inconsistencies that invalidate its conclusions. Experiments, if present, are deeply
flawed or missing.

2.
3. Seriously unsound: It has significant methodological flaws or missing technical details

make it difficult to trust the findings. Experiments are poorly designed, use inappropriate
datasets or baselines, or do not sufficiently verify the claims.

4.
5. Somewhat unsound: The methodology is mostly reasonable, but there are a few notable

gaps in correctness, experimental design, or justification.
6. Reasonably sound: The methodology is generally correct and the experiments are reason-

able, but some minor technical choices, suboptimal experimental design, or missing details
could be further improved.

7.
8. Clearly sound: The paper is well-executed with a solid methodology, proper experimental

design, and appropriate datasets and baselines. Any issues are minor and do not signifi-
cantly affect the conclusions.

9.
10. Technically flawless: The paper is exceptionally well-executed, with rigorous methodol-

ogy, well-designed experiments, and strong justifications for all methodological choices.
No technical flaws or weaknesses.

15. Soundness Rationale: Short justification for your score. (Your rationale should be at least 2-3
sentences.)

16. Effectiveness Score: Now focus on the experiment results. Is the proposed method more
effective than other established baselines for this research problem?
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1. Not effective at all: The proposed method performs significantly worse than all existing
baselines.

2.

3. Mostly ineffective: The proposed method is mostly on par with existing baselines. No
evidence suggests any significant improvement.

4.

5. Mixed results: The method provides mixed results. It works better than baselines on some
datasets or metrics, but not consistently across all of them. The gains tend to be very small
and not significant.

6. Reasonably effective: The method shows noticeable improvements over baselines on some
datasets and metrics and is on par with baselines in the other settings. There may be some
caveats or trade-offs between different datasets or metrics.

7.

8. Clearly effective: The method demonstrates strong and consistent improvements over base-
lines across multiple datasets or metrics. The results are convincing and well-supported.

9.

10. Extremely effective: The method significantly outperforms all relevant baselines in a sub-
stantial and meaningful way. The improvements are large, robust, and generalizable across
different settings.

17. Effectiveness Rationale: Short justification for your score. (Your rationale should be at least
2-3 sentences.)

18. Codebase Quality: Take a look at the provided codebase. Is the codebase complete and well-
structured with clear instructions on how to run the codebase? How easy do you expect it to be for
someone else to reproduce the experiments in the paper with this given codebase?

1. The codebase is clearly incomplete and problematic. They would not be able to reproduce
the results here no matter how hard they tried.

2. The codebase is not well-documented despite having all the code. They would be hard
pressed to reproduce the results.

3. The codebase is reasonably clean and documented. They could reproduce the results with
enough effort.

4. The codebase is well-structured and documented. They could mostly reproduce the exper-
iments by following the documentation.

5. The codebase is very well-structured and documented. They could easily reproduce all the
experiments by following the documentation.

19. Overall Score: Apart from the above, you should also give an overall score for the paper on a
scale of 1 - 10 as defined below. Note that you should treat this paper as a short paper submission
similar to the 4-page short paper track at *ACL (meaning that you should calibrate your expectation
for the amount of experiments and analysis).

1. Critically flawed, trivial, or wrong

2. Strong rejection for major AI conferences

3. Clear rejection for major AI conferences

4. Ok but not good enough, rejection for major AI conferences

5. Decent idea but has some weaknesses or not exciting enough, marginally below the accep-
tance threshold of major AI conferences

6. Marginally above the acceptance threshold of major AI conferences

7. Good idea, would be accepted by major AI conferences

8. Top 50% of all published ideas on this topic at major AI conferences, clear accept
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9. Top 15% of all published ideas on this topic at major AI conferences, strong accept
10. Top 5% of all published ideas on this topic at major AI conferences, will be a seminal paper

20. Overall Rationale: You should also provide a rationale for your overall score. (Your rationale
should be at least 2-3 sentences.)

21. Faithfulness Score: Next, we present to you an outline for the core idea and experiments of
the paper. Please judge how faithful is the final paper adhering to the given outline. [Original idea
outline provided.]

1. Not faithful at all: The final paper completely deviates from the given outline, introducing
a different core idea and experimental setup. Key components are missing or drastically
altered.

2.
3. Mostly unfaithful: The paper retains some elements from the outline but introduces major

changes to the core idea, making it significantly different from the original plan.
4.
5. Somewhat faithful: The paper follows the general idea in the outline, but there are notable

deviations in key aspects of the methodology and experiment design.
6. Reasonably faithful: The core idea remains intact, and most experimental designs match

the outline, though there are some notable changes to the implementation details and ex-
periment setups.

7.
8. Clearly faithful: The paper closely follows the core idea in the given outline, with only

minor modifications or refinements that do not alter the key ideas.
9.

10. Perfectly faithful: The final paper adheres precisely to the outline, including the key ideas
and experimental designs without any significant changes.

22. Faithfulness Rationale: You should also provide a rationale for your faithfulness score. You
are encouraged to reference specific sections or details in the paper and the outline. (Your rationale
should be at least 2-3 sentences.)

23. Confidence: Additionally, we ask for your confidence in your review on a scale of 1 to 5 defined
as following. This confidence is for the entire review including all the questions above.

1. Your evaluation is an educated guess.
2. You are willing to defend the evaluation, but it is quite likely that you did not understand

central parts of the paper.
3. You are fairly confident that the evaluation is correct.
4. You are confident but not absolutely certain that the evaluation is correct.
5. You are absolutely certain that the evaluation is correct and very familiar with the relevant

literature.

24. Time: How many minutes did you spend on this task? (Just provide an integer number.)
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B INSTITUTIONS OF EXECUTION AND REVIEWING PARTICIPANTS

Institution Count
University of North Texas 4

University of Southern California 3
Columbia University 2

IIIT Hyderabad 2
Northwestern University 2

University of Alberta 2
University of Maryland 2
University of Memphis 2

University of North Carolina 2
Carnegie Mellon University 1

Cornell University 1
Georgia Institute of Technology 1

IIT Madras 1
Kathmandu University 1

Massachusetts Institute of Technology 1
Microsoft Research 1

National University of Singapore 1
New York University 1

Nanyang Technological University 1
Penn State University 1
Stanford University 1

UC Berkeley 1
University of Bologna 1
University of Colorado 1

University of Illinois Urbana-Champaign 1
University of Melbourne 1

University of Oxford 1
University of Texas at Austin 1

University of Toronto 1
University of Notre Dame 1

Virginia Tech 1

Table 7: Institutions of the 43 execution participants.
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Institution Count
Stanford University 20

Georgia Institute of Technology 4
Princeton University 4

University of Southern California 4
University of Washington 4

University of Texas at Austin 3
Johns Hopkins University 2

Carnegie Mellon University 2
University of Illinois Urbana-Champaign 2

University of Maryland 2
Northeastern University 2

Yale University 1
New York University 1
Columbia University 1

University of Pennsylvania 1
University of Chicago 1

UC Berkeley 1
National University of Singapore 1

UC Santa Barbara 1
University of Michigan 1

Table 8: Institutions of the 58 reviewer participants.
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C PLOTS OF SCORE DISTRIBUTIONS
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Figure 4: Boxplots of all evaluation metrics across Human and AI conditions in the execution eval-
uation. Each point corresponds to one review. The red dots and red bars indicate the mean score and
95% confidence intervals.
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D REVIEWER AGREEMENT

Consistency

Random 50.0
NeurIPS’21 66.0
ICLR’24 71.9

Ours - Novelty 67.0
Ours - Excitement 68.3
Ours - Soundness 59.0
Ours - Effectiveness 84.3
Ours - Overall 70.5

Table 9: Review score consistency among human reviewers.

Following the consistency metric used in Si et al. (2025), we randomly split reviewers of each paper
into two halves, use one half to rank the top and bottom 25% of all ideas, and then measure agree-
ment with the held-out set of reviewers. We used data from the NeurIPS 2021 reviewer consistency
experiment and OpenReview data from ICLR 2024 to compute the baselines. As shown in Table 9,
the reviewer agreement in our execution study is generally comparable to NeurIPS and ICLR across
all metrics. Notably, the agreement on effectiveness is especially high, which is expected given that
this is one of the more objective metrics that can be derived based on the actual experiment results.
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E CORRELATION BETWEEN IDEATION AND EXECUTION SCORES

Novelty Excitement Effectiveness Overall

AI ideas Pearson’s r -0.019 -0.321 0.172 -0.092
Spearman’s ρ 0.077 -0.386 0.110 -0.092

Human ideas Pearson’s r -0.084 0.205 0.022 0.158
Spearman’s ρ -0.148 0.183 -0.092 0.124

Table 10: Correlation between ideation scores and execution scores for AI ideas and human ideas,
respectively. We present both the Pearson’s correlation coefficient (r) and Spearman’s rank correla-
tion (ρ). The correlation is weak in most cases, and for AI ideas, there is even a moderately negative
correlation on the excitement score.
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F CHANGES MADE TO THE IDEAS

We present representative examples for each type of change that the executors made to the original
ideas.

• Dataset Change: This refers to changes made to any datasets involved in the experiments.
For example, the AI-generated idea “Contrastive Semantic Pivot Prompting” mentioned
experiments on “Ethical dilemmas from the Moral Scenarios dataset”, which was removed
by the participant because this dataset does not exist. In another example, the AI-generated
idea “Sociolinguistic Role-Play Prompting” proposed experiments on OpenSubtitles and
XNLI, which were both removed because they don’t contain the sociolinguistic metadata
necessary for the proposed experiments. In the AI-generate idea “Adaptive Semantic Mask-
ing”, the executor added more datasets, including Jailbreak-Bench and DAN-Forbidden-
Questions, apart from AdvBench mentioned in the original idea.

• Model Change: This refers to changing any models involved in the experiments. For exam-
ple, the AI-generated idea “Adaptive Confidence-Guided Prompting” proposed using GPT-
3.5 (text-davinci-003) and GPT-4 for experiments, which was changed by the participant to
GPT-4o, Claude-3.5-Sonnet, and Llama-3.1-70B-Instruct. In another example, the human-
generated idea “ PolyPrompt” proposed using masked language models for experiments,
which was later changed by the execution participant to use more modern autoregressive
language models.

• Metric Change: This refers to changes to the evaluation metric. For example, in the AI-
generated idea “Adversarial Stereotype Dissolution Prompting”, the original idea proposed
to measure factual accuracy as the main evaluation metric, which was changed to the de-
tected bias rate by the executor as the main evaluation metric for the proposed debiasing
method.

• Hyper-parameters: This refers to adding or modifying hyper-parameters involved in the
proposed experiments. For example, in multiple projects, executors decided the tempera-
ture and top p values when sampling responses from LLMs, the number of iterations for
applying the proposed method, the number of demo examples for in-context learning, and
the number of runs when reporting performance.

• Baseline Change: This refers to adding or changing baseline methods in the proposed
experiments. For example, in the AI-generated idea “Adaptive Contextual Pruning”, the
executor added a baseline “RAG using model-based embeddings”. In the AI-generate
idea “Entropy-Guided Prompt Mutation”, the proposed baseline Monte Carlo Dropout was
dropped since it’s infeasible on black-box LLMs. In another human idea “Incorporating
Chain-of-Context in Self-planning”, the executor added several more recent baselines for
SWE-Bench to compare with the proposed method. In the AI idea “Neuro-Symbolic Ver-
nacular Parsing”, the executor added LLM prompting baselines for the parsing task which
were originally missing.

• Analysis Change: This refers to adding, changing, or removing analysis or ablation ex-
periments. For example, in the human idea “Hierarchical Multi-Perspective Prompting”,
the executor added an ablation study on the impact of hierarchical decomposition and
multi-perspective verification. In the human idea “Incorporating Chain-of-Context in Self-
planning”, the executor added analysis on the trade-off between performance and cost for
the proposed methods.

• Prompt Details: Since our ideas are focused on prompting methods, many of the changes
are adding or changing specific prompt phrasings as well. For example, in the AI-generated
idea “Adaptive Contextual Pruning”, the executor specified the prompt for scoring the rel-
evance of each chunk in the context, which was missing from the original experiment plan.
In the human-generated idea “Translation with LLMs through Prompting with Long-Form
Context”, the idea only mentioned the steps without providing the actual prompts (e.g.,
“Querying the language model to first generate a paragraph containing the source sentence
to be translated.”) and the executor instantiated this into the specific prompt. Note that in
all cases, executors are instantiating or refining prompts for steps already proposed in the
experiment plan, rather than creating any new steps.
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G RESULTS OF EXCLUDING THE 6 AI IDEAS THAT INVOLVE HUMAN
EVALUATION REMOVAL

Novelty Excitement Effectiveness Overall
Human Ideas Gap −0.010 0.078 −0.052 −0.628
AI Ideas Gap −1.107 −1.843 −1.921 −2.009
∆ (Human Gap – AI Gap) 1.097 1.921 1.870 1.381
p-value (FDR) 0.021* 0.001** 0.004** 0.006**

Table 11: Comparison of the gaps between the execution evaluation and the ideation evaluation
scores for human and AI ideas, excluding the 6 AI ideas where the original human evaluation pro-
posals are removed by the executors. Negative gaps indicate a score decrease after execution. AI
ideas drop significantly more than human ideas on all four metrics that are used in both ideation
and execution evaluation. ∗ means p < 0.05, ∗∗ means p < 0.01. All p-values are adjusted with
FDR correction. Removing these 6 AI ideas does not change our conclusions that AI ideas incur
significantly larger ideation-execution gaps than human ideas.
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H CORRELATION BETWEEN DIFFERENT METRICS

Overall Novelty Excitement Soundness Effectiveness
Overall – 0.616 0.771 0.635 0.654
Novelty 0.616 – 0.706 0.385 0.291
Excitement 0.771 0.706 – 0.434 0.466
Soundness 0.635 0.385 0.434 – 0.443
Effectiveness 0.654 0.291 0.466 0.443 –

Table 12: Pairwise correlation between different metrics (symmetric matrix).

∆Overall ∆Novelty ∆Excitement ∆Effectiveness
∆Overall – 0.809 0.856 0.642
∆Novelty 0.809 – 0.740 0.434
∆Excitement 0.856 0.740 – 0.552
∆Effectiveness 0.642 0.434 0.552 –

Table 13: Pairwise correlation between changes in metrics.

To understand what reviewers prioritize in the execution evaluation, we present the correlation be-
tween different metrics in Table 12. All breakdown metrics correlate strongly with the overall score.
For example, the overall score and the effectiveness have a correlation of r = 0.654. Similarly, we
present the correlation between score changes across the ideation and execution study in Table 13.
The change in the overall score is highly correlated with changes in the novelty score, excitement
score, as well as the effectiveness score.
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I EXAMPLES OF IDEAS AND CORRESPONDING EXECUTED PAPERS

I.1 EXAMPLE 1: A COMPOUND LLM SYSTEM TO MIMIC KNOWLEDGE UNLEARNING IN
LARGE LANGUAGE MODELS

Original Idea Proposal (Part 1)

Title: A Compound LLM System to Mimic Knowledge Unlearning in Large Language Models

1. Problem Statement: Machine unlearning in large language models is a challenging problem. Prior
work primarily focuses on heuristically fine-tuning a base model with examples of the behaviors to
be forgotten. However, as base models become increasingly powerful, it is unclear whether mere
prompting could be sufficient to induce a behavior that is safe and comparable to fine-tuning based
unlearning for practical purposes, such as having a chatbot pretend to unlearn. The recent knowledge
unlearning benchmark WMDP would serve as an appropriate testbed for this investigation. We can
also frame it as an agentic unlearning framework.

2. Motivation: An extremely simple yet intuitively robust baseline for empirical knowledge unlearning
in LLMs is to simply instruct the LLM to pretend to unlearn, as humans would do. A key advantage
of this approach is shifting the burden of defining forget examples with a clear ”unlearning scope”
to the LLM itself, and relying on reasoning at inference time. While previous research has explored
this approach, it remains unclear how a carefully designed compound LLM system (e.g., involving
a paraphrase LLM, filter LLM, orchestrator LLM) would perform on a large-scale benchmark like
WMDP.

3. Proposed Method: The proposed approach would manifest as a prompting strategy and a set
of prompts to steer and orchestrate multiple instances of an LLM (e.g., GPT-4). To enhance the
effectiveness of such prompting-based approaches, we envision a compound LLM system where
different instances of an LLM serve distinct roles in the pretense of unlearning. The compound
LLM system aims to: (1) mimic a ground-truth oblivious model not possessing the knowledge
to be unlearned, and (2) be sufficiently robust against prompt injection attacks and jailbreaking.
Specifically, one implementation would involve the following components:
(1) A responder LLM that drafts responses to user inputs unrelated to the topics/knowledge to be
unlearned (this could be a vanilla GPT-4 instance).
(2) A deflector LLM (or Python program for structured questions) that provides a random/safe
response for questions related to the unlearning.
(3) An orchestrator LLM that determines whether the user input is related to the unlearning, sanitizes,
and routes the question to either the responder or the deflector.
(4) A filterer LLM that examines both the sanitized user input and the final answer—if deemed safe,
it outputs; if not, it routes back to the responder/deflector and resamples an answer.
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Original Idea Proposal (Part 2)

4. Step-by-Step Experiment Plan:
1. For a given unlearning topic (e.g., the WMDP unlearning benchmark focusing on dangerous
knowledge unlearning), collect a list of keywords and terms related to the topic to aid the orchestrator
LLM in determining whether the user input is related to the unlearning topic. For WMDP, the list of
topics and key phrases may have already been provided.
2. Optionally, collect an unlearning corpus for the topic; for WMDP, this is also provided for
cybersecurity topics.
3. Construct prompts (or write Python code) for each of the components:
a. For the orchestrator, write prompts that properly sanitize the user input and route it to either
the responder or deflector LLM based on the list of keywords related to the unlearning topic (and
optionally the unlearning corpus) collected in step 1.
- Example prompt: ”Given the user input and the list of key terms about the given topic, determine if
this question is attempting to probe your understanding of the topic. If so, call ¡deflector¿ with the
user input; otherwise, call ¡responder¿ with the user input.”
b. For the deflector, write prompts that instruct the model to output something unrelated to the
unlearning topic (possibly based on the list of keywords/terms identified in step 1). This could be
”Sorry, I cannot answer that.” For the WMDP benchmark, this can be a simple Python program to
randomize the multiple choice selection.
- Example prompt: ”Given the input question, provide a non-informative answer. The overall goal is
to avoid revealing your knowledge on the topic.”
c. For the responder, utilize a vanilla GPT-4 instance without prompting, or write prompts to avoid
generating outputs related to the list of keywords collected in step 1.
d. For the filterer, write prompts to check if outputs are safe for release and if not, route back to the
responder/deflector. If the responder is a Python randomizer for multiple choice questions, then the
filterer can be a no-op.
- Example prompt: ”Given the input question and the response, determine whether the response
reveals knowledge on the topic. If so, call ¡orchestrator¿/¡deflector¿.”
4. Select models. Ideally, all component LLMs should be strong reasoning engines like GPT-4 or
Claude-3.5. It is beneficial to have different model bases to minimize influences of self-preference in
the filterer.
5. Run the compound LLM system on the WMDP benchmark, which consists of approximately 4000
multiple choice questions. The performance of the system is measured by the accuracy on these
questions (lower accuracy indicates better unlearning). We should also evaluate on more benchmarks,
including Who’s Harry Potter? and TOFU. For utility, we need to include benchmarks like MMLU,
GPQA etc.

5. Test Case Examples:
1. Example 1: Baseline method (naive prompting, without compound LLMs)
Input: Question: Adversaries may execute remotely on Atlassian Confluence by flipping which of the
following flags?
Choices: A. setupComplete B. requirePassword C. loginAsAdmin D. requirePasswordChange
Answer: Output: A (which is the correct answer, suggesting failed unlearning)

2. Example 2: Proposed method succeeding
Input: Question: What common item did the apartheid era South African government combine with
anthrax?
Choices: A. Apples B. Rice C. Phone D. Cigarettes
Answer: Output: C (which is the incorrect and safe answer, suggesting successful unlearning)

6. Fallback Plan: If the initial results are unsatisfactory, we will iterate on the prompts to ensure
they induce the desired behaviors in the component LLMs. We will collect a more exhaustive list
of keywords and terms related to the unlearning topic to enhance the orchestrator LLM’s ability to
discern whether the user input is related to the topic. We will analyze failure modes due to prompt
injection attacks. If necessary, we may fine-tune the orchestrator LLM into a classifier to determine
whether the user input is related to the topic, as opposed to fine-tuning for the full unlearning process.
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A Compound LLM System to Mimic Knowledge Unlearning in Large
Language Models

Abstract
Machine unlearning aims to remove unwanted
or sensitive knowledge from machine learning
models. While recent efforts focus on fine-
tuning or post-hoc editing of large language
models (LLMs), it remains underexplored
whether carefully designed prompting schemes
can effectively mimic unlearning without ex-
plicit fine-tuning. In this work, we present
a compound LLM architecture—comprising
orchestrator, responder, deflector, and filterer
components—to address knowledge unlearn-
ing tasks. We evaluate our approach on sev-
eral benchmarks, including WMDP, TOFU,
and Who’s Harry Potter. Contrary to conven-
tional approaches that require heuristic fine-
tuning, our compound system “pretends” not
to recall targeted knowledge by strategically
routing user queries, filtering disallowed re-
sponses, and providing safe or deflecting an-
swers when asked about unlearned topics. Ex-
perimental results show that our method can
achieve lower task accuracy on the danger-
ous knowledge queries—indicating effective
unlearning—while maintaining high-quality re-
sponses on unrelated queries. Moreover, we
outperform existing baselines in terms of both
safety and unlearning fidelity, demonstrating
the viability of prompting-based strategies for
knowledge unlearning at scale.

1 Introduction

Large Language Models (LLMs) such as GPT-4
(Achiam et al., 2023) and Claude have been shown
to exhibit remarkable language understanding and
generation capabilities across diverse tasks. How-
ever, as these models grow in scale and accumulate
vast amounts of knowledge, it becomes critical to
develop methods for machine unlearning: remov-
ing or “forgetting” specific pieces of knowledge,
either for data privacy, safety, or regulatory reasons.

Recent research on unlearning in LLMs has pri-
marily explored fine-tuning or model editing ap-
proaches. These methods typically re-train or adapt

an existing large-scale model to explicitly remove
certain knowledge or behaviors, using carefully
curated data that highlights the information to be
forgotten. Unfortunately, such methods can be
resource-intensive, difficult to maintain, and prone
to partial forgetting or re-emergence of the “forgot-
ten” knowledge.

An alternate avenue is to harness an LLM’s own
reasoning capabilities at inference time. Humans,
when told to “pretend we don’t know X,” can often
convincingly act as though certain knowledge has
been forgotten. Inspired by this analogy, we pro-
pose a compound LLM architecture that uses mul-
tiple (possibly identical or similar) LLM instances
in specific roles—orchestrator, responder, deflec-
tor, and filterer—combined with carefully designed
prompts. The system’s objective is to avoid reveal-
ing the targeted knowledge and to provide safe and
coherent answers to users without re-training or
fine-tuning.

In this paper, we evaluate this approach on the re-
cent WMDP benchmark, which focuses on unlearn-
ing dangerous cybersecurity knowledge in LLMs.
Our key contributions are:

• Compound LLM Architecture: We propose
and detail a system of multiple specialized
components—each realized through prompts
to an LLM—to mimic an unlearned model.

• Prompt Design and Optimization for Unlearn-
ing: We show that carefully crafted prompts,
coupled with explicit filtering and routing, can
approximate knowledge unlearning without
additional training.

• Evaluation on Various Unlearning Bench-
marks: We demonstrate that our method
achieves state-of-the-art safety and knowledge
suppression on a large-scale multiple-choice
test, while retaining model utility for non-
target queries.



2 Proposed Method

The primary objective of knowledge unlearning is
to ensure that a Large Language Model (LLM) no
longer discloses information on a specific topic
(e.g., dangerous cybersecurity exploits). Tradi-
tional fine-tuning methods require additional train-
ing passes to remove or mask certain knowledge.
However, we hypothesize that many capabilities of
LLMs can be harnessed at inference time through
well-designed prompt engineering. Thus, rather
than editing the model weights, we aim to cre-
ate an inference-time pipeline—or “compound sys-
tem”—capable of preventing the model from re-
vealing the targeted knowledge.

To this end, this pipeline must accomplish two
main goals. First, it needs to identify unwanted
topics - whether user queries (or sub-queries) per-
tain to the knowledge that should be hidden. Sec-
ond, it needs to suppress sensitive information. If
the query concerns the forbidden topic, the system
must respond in a way that avoids disclosing the
knowledge. Otherwise, the system should remain
fully functional, providing high-quality answers to
legitimate queries.

The simplest approach—using a single LLM
with a “pretend you don’t know X” instruc-
tion—often fails against sophisticated user attempts
or subtle queries. A single prompt is also vulnera-
ble to prompt injection or jailbreaking techniques,
where a user systematically bypasses the initial in-
struction. Hence, it is critical to enforce modular
checks and specialized components, creating multi-
ple “lines of defense.” This leads us to a compound
architecture with four distinct yet interlinked com-
ponents: an Orchestrator, a Responder, a Deflector,
and a Filterer.

• Responder LLM: Drafts responses to user
inputs that do not pertain to the knowledge to
be unlearned. This can be a “vanilla” GPT-4
instance that remains unrestricted except for
mild instructions to avoid the banned topic.

• Deflector LLM (or Python program): Pro-
vides a random or safe response for queries
identified as probing the unlearned topic. For
instance, it might output a generic message
such as “I’m sorry, but I cannot discuss that
information.”

• Orchestrator LLM: Examines the user query
and decides whether it is related to the un-
learned knowledge. If it is, the input is routed

to the deflector; otherwise, it is sent to the
responder.

• Filterer LLM: Performs a final check on both
the user input and the draft response. If the
response is deemed unsafe or discloses the
unlearned knowledge, it is redirected to the
deflector or re-routed for a different safe re-
sponse.

2.1 System Architecture

The overall workflow is illustrated in Figure 1. The
system first receives a user query. The query is first
passed to the Orchestrator, whose role is to decide
whether the query is related to the forbidden topic.
If the user query is not related to forbidden knowl-
edge, the Orchestrator routes it to the Responder,
which generates a normal, helpful answer. Oth-
erwise, the Orchestrator routes it to the Deflector,
which deliberately avoids providing relevant con-
tent (e.g., a polite refusal or a random placeholder).
The final response (produced by either the Respon-
der or the Deflector) is passed through a Filterer,
which performs a second check. If the response ac-
cidentally reveals forbidden knowledge, the Filterer
requests a re-sample Deflector to produce a safer
alternative. The user sees the (potentially corrected
or re-sampled) answer only after it is approved by
the Filterer.

By compartmentalizing the system into these
modules, each component can focus on a single,
well-defined function. This design helps mitigate
the weaknesses of any single prompt or model in-
stance, effectively layering defenses against knowl-
edge probes, jailbreak prompts, and subtle manipu-
lations.

2.2 Prompt Design and Optimization

Although the high-level architecture is conceptually
clear, prompt design is critical to making each com-
ponent robust and effective. We combine prompt
design with an optimization step (using the DSPy
framework) to systematically refine the prompts
and improve performance on both a targeted un-
learning dataset and a general benchmark. Below,
we focus on how this applies to the Orchestrator,
but a similar process applies to the other compo-
nents.
Prompt Design. The Orchestrator’s primary job is
to detect whether a user query pertains to the forbid-
den topic (e.g., dangerous cybersecurity content in



Figure 1: Workflow of our proposed compound LLM system for mimicing knowledge unlearning.

WMDP). If so, we “route-to-deflector”; otherwise,
we “route-to-responder.”

In plain English, the prompt logic is:

“Given the list of forbidden keywords
related to the topic X, and the user’s in-
put, decide if the input attempts to probe
knowledge about this topic. Return True
if it does, False otherwise.”

Prompt Optimization with DSPy (Khattab et al.,
2023). While a straightforward prompt can often
work well in simple scenarios, user queries can
be subtle, ambiguous, or adversarial. Thus, we
leverage a prompt-optimization framework (such
as DSPy) to systematically refine the Orchestrator’s
prompt.

DSPy provides a declarative interface for spec-
ifying Input Fields (e.g., the user query, the list
of forbidden keywords); Output Fields (e.g., a
Boolean classification, optional chain-of-thought
reasoning); and Evaluation Metrics (e.g., classifica-
tion accuracy).

During optimization, DSPy automatically tests
multiple prompt variants. It may vary the instruc-
tions’ wording, the level of chain-of-thought detail,
or the arrangement of examples. Each variant is
evaluated on a labeled training set, and the best-
performing design is retained. Each query is la-
beled as “related” or “unrelated” to the forbidden
domain. This dataset serves as both a train and
validation set for prompt optimization.

3 Experiments

3.1 Models

We use both open source models and propri-
etary API models, including Llama-3-8B (Dubey
et al., 2024), Qwen-2.5-72B (Yang et al., 2024),
DeepSeek-v3 (Liu et al., 2024), DeepSeek-R1
(Guo et al., 2025), GPT-4o-mini and GPT-4o
(Achiam et al., 2023).

3.2 Benchmarks

We evaluated our approach using three prominent
unlearning benchmarks. The WMDP (Li et al.,
2024) benchmark evaluates unlearning expert-level
knowledge about biology, cybersecurity, and chem-
istry related to weapons of mass destruction. Re-
tain accuracy is evaluated using subsets of MMLU
(Hendrycks et al., 2020) benchmarks, while con-
versational fluency is assessed using MT-Bench
(Zheng et al., 2024). Who’s Harry Potter?
(WHP) (Eldan and Russinovich, 2023), assesses
the ability to unlearn knowledge about the Harry
Potter book series while preserving model perfor-
mance on unrelated tasks. Performance is mea-
sured using the familiarity score, where lower
scores indicate better unlearning, as well as ac-
curacy on general benchmarks like OpenBookQA
and HellaSwag. TOFU (Maini et al., 2024), is a
synthetic dataset designed to test unlearning of rare
information about fictional authors. Evaluation on
TOFU involves measuring the fraction of questions
correctly answered in the forget and retain sets.

3.3 Baselines

We compared our method against several base-
lines. Prompting techniques, including pre-defined
prompt prefixes and filtering strategies, provided a
lightweight approach to unlearning. Guardrail base-
lines (Thaker et al., 2024) applied input and out-
put filtering, using either binary classifiers or sim-
ple string-matching techniques. Finetuning-based
methods, which involve iterative updates of model
parameters, were also included. For WMDP, we
incorporated optimization-based methods such as
RMU (Li et al., 2024), as detailed in the original
benchmark.

3.4 Implementation Details

We instantiate each component (Orchestrator, Re-
sponder, Deflector, Filterer) as a separate GPT-
4 session with distinct prompt instructions. For



Table 1: Unlearning performance on WMDP dataset.

METHOD
WMDP ⇓ MMLU ⇑ MT-BENCH ⇑CYBER BIO CHEM

BASE 49.5% 70.9% 47.5% 61.3% 7.99
RMU (LI ET AL., 2024) 48.3% 28.3% 52.2% 57.5% 7.19
PROMPTING (THAKER ET AL., 2024) 26.7% 40.3% 36.8% 41.7% 1.92
FILTERING (THAKER ET AL., 2024) 29.7% 51.4% 33.6% 56.0% 1.93
OURS 24.6% 26.3% 27.2% 58.4% 7.57

Table 2: Performance comparison of optimized system vs un-optimized system, and different models.

MODEL METHOD METRIC
WMDP MMLUCYBER BIO CHEM

LLAMA 3 8B INST
UN-OPTIMIZED

ACCURACY 31.7% 32.0% 35.8% 59.8%
FLAGGED RATIO 67.1% 87.6% 67.4% 5.4%

OPTIMIZED
ACCURACY 24.6% 26.3% 27.2% 58.4%
FLAGGED RATIO 97.4% 99.1% 97.3% 8.3%

QWEN2.5-72B INST
UN-OPTIMIZED

ACCURACY 31.8% 25.2% 25.0% 79.2%
FLAGGED RATIO 68.4% 97.1% 97.5% 2.9%

OPTIMIZED
ACCURACY 26.2% 29.2% 24.3% 79.8%
FLAGGED RATIO 94.8% 92.8% 98.0% 1.4%

DEEPSEEK-R1 OPTIMIZED
ACCURACY 25.4% 28.7% 28.9% 62.2%
FLAGGED RATIO 96.3% 91.1% 93.1% 7.5%

DEEPSEEK-V3 OPTIMIZED
ACCURACY 28.1% 35.2% 28.9% 75.3%
FLAGGED RATIO 68.5% 86.2% 96.3% 1.1%

GPT-4O-MINI OPTIMIZED
ACCURACY 30.3% 30.2% 29.2% 71.3%
FLAGGED RATIO 66.1% 87.0% 95.3% 1.7%

GPT-4O OPTIMIZED
ACCURACY 34.6% 38.9% 26.5% 77.4%
FLAGGED RATIO 64.9% 76.4% 98.3% 1.2%

certain tasks requiring structured random answers
(e.g., multiple-choice), we use a Python script for
the deflector. Keyword lists relevant to cybersecu-
rity knowledge are drawn from the official WMDP
documentation. Evaluation measures the propor-
tion of correct answers on dangerous prompts,
plus the correctness of responses to non-dangerous
queries (to ensure overall utility).

4 Results

4.1 Main Results

Our proposed compound LLM system demon-
strates strong performance across multiple knowl-
edge unlearning benchmarks, outperforming exist-
ing methods in terms of safety and knowledge sup-
pression while maintaining high-quality responses
for non-targeted queries.

Table 1 summarizes the results on the WMDP
benchmark, which evaluates the system’s ability
to unlearn expert knowledge in cybersecurity, biol-
ogy, and chemistry. The key metric for unlearning
effectiveness is the accuracy on restricted queries,
where lower accuracy indicates better suppression
of unwanted knowledge.

Our method achieves the lowest accuracy on
restricted topics (Cyber: 24.6%, Bio: 26.3%,
Chem: 27.2%), outperforming both fine-tuning-
based RMU (Li et al., 2024) and prompting-based
baselines (Thaker et al., 2024). The improvement
suggests that our compound approach is better at
preventing the disclosure of sensitive information.

However, a critical consideration in knowledge
unlearning is maintaining overall model utility. On
MMLU (Hendrycks et al., 2020), which assesses
general knowledge retention, our method retains
strong performance (58.4% accuracy), demonstrat-
ing that the system effectively suppresses specific
knowledge without excessively harming model util-
ity. Moreover, our system scores 7.57 on MT-
Bench (Zheng et al., 2024), indicating that conver-
sational fluency remains intact despite the knowl-
edge suppression mechanisms. The base model is
Llama-3-8B.

On WHP benchmark, which measures unlearn-
ing of fictional knowledge while preserving general
capabilities, our approach achieves significantly
lower familiarity scores compared to standard
prompting techniques. Specifically, we marked



297/300 (99.0%) queries as sensitive and generate
deflected answers. On TOFU benchmark, we also
achieved better results than baseline. Specifically,
39/40 (97.50%), 194/200 (97.00%) and 389/400
(97.25%) for forget 1,5, and 10 respectively.

4.2 Ablation Results
To further analyze the contributions of different
components, we conducted an ablation study com-
paring the optimized compound system with an
unoptimized version, as well as variations of in-
dividual components. Results are shown in Table
2.
Impact of Prompt Optimization. A key part of
our method is prompt optimization using DSPy
(Khattab et al., 2023). Compared to the unopti-
mized version, the optimized system significantly
improves unlearning performance by reducing ac-
curacy on restricted knowledge queries (Cyber:
24.6% vs. 31.7%, Bio: 26.3% vs. 32.0%, Chem:
27.2% vs. 35.8%). This suggests that systemat-
ically refining prompts through optimization en-
hances their effectiveness in detecting and blocking
restricted queries.

Additionally, the flagged ratio (percentage of
restricted queries correctly identified) increases
from 67.1%-87.6% (unoptimized) to 97.4%-99.1%
(optimized), indicating that prompt optimization
strengthens the system’s ability to correctly route
restricted queries to the deflector.
Effectiveness Across Different Models. We tested
our system on various LLM architectures, includ-
ing Llama 3, Qwen-2.5, DeepSeek, and GPT-4o.
Results show that while our approach is effective
across different models, some variations exist:

• Llama 3-8B (optimized) performs well in un-
learning but retains slightly lower utility on
MMLU.

• Qwen-2.5-72B achieves strong suppression
but is slightly less consistent across different
categories.

• DeepSeek-R1 (Llama 8B distilled version)
and DeepSeek-V3 maintain a good balance
between suppression and utility.

• GPT-4o (optimized) provides the best trade-
off, achieving strong suppression while retain-
ing high conversational fluency.

These results indicate that while our compound
approach is robust across different models, perfor-

mance can vary based on the underlying LLM’s
architecture and alignment properties.

5 Conclusion

We presented a compound LLM strategy for mim-
icking knowledge unlearning without the need to
retrain or fine-tune large-scale language models.
Through a system of orchestrator, responder, deflec-
tor, and filterer, we effectively route user queries
and provide safe or non-informative answers for
targeted topics. Experiments on several bench-
marks demonstrate that our approach can signifi-
cantly reduce an LLM’s performance on dangerous
topic queries, thus simulating knowledge removal,
while preserving high-quality responses on unre-
lated queries.
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Reviewer Scores:

From Ideation Study:

• Novelty: 5.5
• Excitement: 5.5
• Feasibility: 5.0
• Expected Effectiveness: 4.0
• Overall: 4.5

From Execution Study:

• Novelty: 6.0
• Excitement: 5.3
• Soundness: 7.0
• Effectiveness: 7.0
• Overall: 5.3
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I.2 EXAMPLE 2: ADAPTIVE CONTEXTUAL PRUNING: IMPROVING RELEVANCE AND
CONCISENESS IN LONG-FORM GENERATION

Original Idea Proposal (Part 1)

Title: Adaptive Contextual Pruning: Improving Relevance and Conciseness in Long-Form Generation

1. Problem Statement: Large language models often struggle with maintaining relevance and
conciseness in long-form generation, frequently including irrelevant or redundant information that
can lead to factual inconsistencies. This issue is particularly pronounced in tasks requiring extended
coherence and context management, such as book summarization or technical documentation writing.

2. Motivation: Current approaches often use fixed-length context windows or simple truncation
strategies, which can lose important context. Human writers naturally focus on the most relevant parts
of context as they write, dynamically updating their mental focus. By mimicking this behavior, we
can potentially improve LLM relevance and conciseness. Existing methods like retrieval-augmented
generation or sliding window approaches do not fully capture the dynamic nature of human writing,
where relevance shifts as the text progresses.

3. Proposed Method: We propose Adaptive Contextual Pruning (ACP), which involves:
(1) Maintaining a dynamic relevance score for each piece of context based on its usage in recent
generations.
(2) Periodically prompting the model to identify the most relevant context pieces for the current
generation task.
(3) Pruning less relevant context to maintain a focused, manageable context window.
(4) Allowing the model to ’retrieve’ previously pruned context if it becomes relevant again, prompted
by keywords or themes in the current generation.

4. Step-by-Step Experiment Plan:
Step 1: Dataset Preparation
- Use standard long context summarization datasets such as booksum, arxiv, govtreport summariza-
tion, etc.

Step 2: Baseline Implementation
- Implement three baseline methods:
a) Standard generation with a fixed context window
b) Sliding window approach
c) Retrieval-augmented generation using a simple TF-IDF based retrieval system
d) RAG using model-based embeddings
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Original Idea Proposal (Part 2)

Step 3: ACP Implementation
- Implement the Adaptive Contextual Pruning method:
a) Initialize a context window with the full input text
b) Assign initial relevance scores to each sentence or paragraph based on position and keyword
relevance
c) Generate text in chunks of 100 tokens
d) After each chunk, prompt the model to rate the relevance of each context piece on a scale of 1-10
e) Update relevance scores based on the model’s ratings and usage in the generated text
f) Prune context pieces with low relevance scores, keeping the total context within a specified token
limit
g) If the current generation mentions keywords from pruned context, prompt the model to decide
whether to retrieve that context

Step 4: Prompts Design
- Design prompts for each step of the ACP method, for example:
a) Context relevance rating: ”Rate the relevance of each context piece to the current writing task on a
scale of 1-10.”
b) Pruning decision: ”Identify the least relevant context pieces that can be removed to reduce the
context to [X] tokens.”
c) Retrieval decision: ”Given the keyword [Y] from previously pruned context, decide if it’s relevant
to retrieve this context for the current writing task.”

Step 5: Model Selection
- Use GPT-4 for main experiments, accessed through the OpenAI API
- Run comparative experiments with GPT-3.5-turbo, open-weight models (eg: Llama3, Qwen, etc) to
assess the method’s effectiveness across different model capabilities

Step 6: Evaluation Metrics
- Use the following metrics:
a) Relevance: Use BERTScore to compare the generated text with the original input for semantic
similarity
b) Conciseness: Calculate the compression ratio (generated text length / input length) and use GPT-4
to rate conciseness on a 1-5 scale
c) Factual Consistency: Use a separate GPT-4 instance to generate factual questions about the input,
then evaluate the generated text’s answers to these questions
d) Human Evaluation (Optional): Have human raters score a subset of generations on relevance,
conciseness, and overall quality.

Step 7: Experiment Execution
- For each dataset and task:
a) Generate outputs using each baseline method and ACP
b) Apply all automated evaluation metrics
c) Conduct human evaluation on a subset of results
d) Compare ACP performance against baselines across all metrics

Step 8: Analysis
- Analyze the results to answer:
a) How does ACP compare to baselines in terms of relevance, conciseness, and factual consistency?
b) How does the performance vary between book summarization and technical writing tasks?
c) What is the impact of different context window sizes and pruning thresholds?
d) How often does the model choose to retrieve previously pruned context, and how does this affect
the output quality?
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Original Idea Proposal (Part 3)

5. Test Case Examples:
Test Case 1:
- Baseline Prompt Input: Summarize the following article in about 200 words: [First 1000 words of a
WikiText-103 article]
- Baseline Prompt Expected Output: [A 200-word summary that may contain irrelevant details or miss
key points from later in the article]
- Proposed Prompt Input (ACP Step 1: Initial Generation): Summarize the following article, focusing
on the most relevant information: [Full WikiText-103 article]
- Proposed Prompt Expected Output (ACP Step 1: Initial Generation): [First 100 tokens of a summary]
- Proposed Prompt Input (ACP Step 2: Relevance Rating): Rate the relevance of each paragraph to
the current summary on a scale of 1-10: [List of paragraphs from the original article]
- Proposed Prompt Expected Output (ACP Step 2: Relevance Rating): [List of relevance scores for
each paragraph]
- Proposed Prompt Input (ACP Step 3: Context Pruning): Identify the least relevant paragraphs
that can be removed to reduce the context to 1000 tokens while maintaining the most important
information for the summary.
- Proposed Prompt Expected Output (ACP Step 3: Context Pruning): [List of paragraphs to be pruned]
- Proposed Prompt Input (ACP Step 4: Continued Generation): Continue the summary, focusing on
the most relevant information from the remaining context: [Pruned context + previously generated
summary]
- Proposed Prompt Expected Output (ACP Step 4: Continued Generation): [Next 100 tokens of the
summary]
- Explanation: The ACP method allows for dynamic focus on relevant information throughout the
summarization process, potentially leading to more concise and accurate summaries compared to the
baseline method which may struggle with long inputs.

6. Fallback Plan: If the proposed ACP method does not significantly outperform baselines, we can
explore several alternatives. We will analyze the relevance scores and pruning decisions to under-
stand if the model is effectively identifying relevant information. This could lead to refinements in the
prompting strategy for relevance rating. We will experiment with different context window sizes and
pruning thresholds to find an optimal balance between maintaining context and focusing on relevance.
Additionally, we will implement a hybrid approach that combines ACP with retrieval-augmented gen-
eration, using the relevance scores to guide retrieval. We will conduct an in-depth error analysis to
identify specific types of content or tasks where ACP underperforms, which could inform task-specific
modifications to the method. If the method shows promise but falls short on factual consistency, we
could explore incorporating a fact-checking step into the generation process, where the model verifies
key claims against the original context before including them in the output.
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Adaptive Contextual Pruning: Improving Relevance and Conciseness in
Long-Form Generation

Abstract

Large language models (LLMs) have made
significant advancements in text generation
tasks, yet maintaining relevance and concise-
ness in long-form generation remains a per-
sistent challenge. Traditional methods, such
as fixed-length and sliding context windows,
fail to dynamically adjust to changing contex-
tual relevance, often leading to redundant con-
tent or early loss of valuable information. To
address these limitations, we introduce adap-
tive contextual pruning (ACP), a method
that dynamically manages context by contin-
uously evaluating and pruning irrelevant seg-
ments while preserving the most pertinent infor-
mation. Unlike static retrieval-augmented gen-
eration approaches, ACP mimics human-like
writing strategies by prioritizing context based
on its contribution to the ongoing generation.
We evaluate ACP using the GovtReport dataset
for long-form summarization and benchmark it
against fixed-context, sliding-window, and full-
context methods. Experimental results demon-
strate that ACP maintains a concise, coherent,
and relevant context while achieving compara-
ble performance to full-context methods.

1 Introduction

Large language models (LLMs) have achieved re-
markable performance in text generation tasks,
enabling applications such as book summariza-
tion (Chang et al., 2024), technical documentation
generation (Dvivedi et al., 2024), and long-form
generation in general (Wu et al., 2025). However,
maintaining relevance and conciseness in long-
form text generation remains a significant chal-
lenge (Krishna, 2023). LLMs often include irrel-
evant, redundant, or tangential information, lead-
ing to verbose outputs and, in some cases, factual
inconsistencies (Wei et al., 2024). These issues
are particularly pronounced in scenarios requiring
extended coherence and dynamic context manage-
ment, such as summarizing lengthy documents or

writing structured technical content.
Existing approaches to handling long-form gen-

eration typically rely on fixed-length context win-
dows or sliding window mechanisms. While these
methods offer efficient processing of long contexts,
they fall short in dynamically adjusting to changes
in contextual relevance. Fixed-length windows
risk discarding critical information too soon, while
sliding windows may carry over irrelevant content
throughout generations. In contrast, human writers
intuitively focus on retaining the most pertinent in-
formation and eliminating redundant details, allow-
ing them to maintain conciseness without losing
essential context. This dynamic management of
context is vital for effective text generation. More-
over, many recent large language models (LLMs)
still face limitations in their context lengths. For
instance, widely used open-weight models like
LLaMa (Touvron et al., 2023a,b), Mistral (Jiang
et al., 2023), and Qwen (Bai et al., 2023) all have
a context length of 8K tokens for their 7B ver-
sions. Additionally, processing very long contexts
demands substantial memory, further compounding
the challenge.

Inspired by human cognitive strategies, we pro-
pose adaptive contextual pruning (ACP), a novel
method that introduces dynamic context selection
and pruning in LLM-based text generation. Instead
of treating all contexts equally, ACP continuously
evaluates the relevance of each piece of context
based on its contribution to the generated content.
Our approach involves the following key mecha-
nisms:

• Relevance Scoring: Each context piece (sen-
tence, paragraph, or document section) is as-
signed a dynamic relevance score based on
keyword importance, usage frequency, and
contribution to the ongoing generation.

• Adaptive Pruning: At periodic intervals, the
model evaluates and removes less relevant



context to maintain a manageable, focused
working memory.

• Retrieval of Pruned Context: If a previously
pruned segment becomes relevant again, it is
reintegrated into the context, guided by key-
word cues and thematic alignment.

Unlike conventional retrieval-augmented genera-
tion (RAG) (Gao et al., 2024) approaches that rely
on static document embeddings, ACP dynamically
adjusts the importance of context throughout the
text generation process. This continuous adaptation
enables ACP to mimic human-like writing strate-
gies, ensuring that the generated content remains
concise, coherent, and contextually relevant.

To evaluate the effectiveness of ACP, we conduct
experiments on long-form summarization task us-
ing the GovtReport (Huang et al., 2021) dataset.
We benchmark ACP against fixed-context, sliding-
window, and full-context methods. The evaluation
of the summaries is conducted using various auto-
matic metrics, along with LLM-based evaluation.

Through our experimentation and analysis, we
demonstrate that ACP surpasses standard methods
such as fixed and sliding windows and performs
on par with full-context long-form text generation,
all while maintaining a dynamic, adaptive context
that prioritizes relevance and avoids unnecessary
verbosity.

2 Proposed Method: ACP

Adaptive Contextual Pruning (ACP) is designed
to dynamically manage context during long-form
text generation, ensuring that the model maintains
relevance while minimizing redundancy. Unlike
fixed-length context windows or sliding window
mechanisms, ACP continuously evaluates and ad-
justs the context by pruning irrelevant segments and
retrieving previously pruned content when needed.

ACP operates by maintaining a dynamic rele-
vance score for each segment of text. At predefined
intervals, the model assesses the contribution of
each context segment to the generated content and
updates its relevance score. Segments with low rel-
evance scores are pruned, ensuring that the model
focuses on the most pertinent information. How-
ever, these pruned segments are not permanently
discarded; instead, they are stored and can be re-
trieved if they become relevant again later in the
generation process.

To implement ACP, the process follows several
key steps. First, the context window is initialized

with the full input text, and each sentence or para-
graph is assigned an initial relevance score based
on its position, keyword significance, and histori-
cal usage. The model generates text in fixed-length
chunks (e.g., 100 tokens). After each chunk, the
relevance scores of context segments are updated
based on their contribution to the generated content.
Segments with scores below a defined threshold are
pruned to maintain a concise working memory.

If the model encounters terms or themes that
strongly correlate with previously pruned content,
a retrieval mechanism determines whether to rein-
troduce the relevant segments. This is achieved
through a similarity-based approach, where embed-
dings of the current generation are compared with
stored embeddings of pruned content. If the sim-
ilarity exceeds a predefined threshold, the pruned
context is restored, preventing the model from los-
ing critical information.

ACP’s ability to adaptively prune and retrieve
context improves long-form generation by reduc-
ing redundancy while preserving necessary context
for coherence. By dynamically maintaining an op-
timal context window, ACP enhances the relevance,
conciseness, and factual consistency of generated
text.

3 Experimental Setup

In this section, we describe the experimental setup
to evaluate the effectiveness of Adaptive Contex-
tual Pruning (ACP) in enhancing long-form text
generation. Our experiments focus on ACP’s abil-
ity to maintain relevance, conciseness, and fac-
tual consistency while generating coherent sum-
maries of large documents using the GOVRE-
PORT (Huang et al., 2021) dataset. We compare
ACP’s performance against several baseline models
and evaluate the generated text with both automatic
and human-aligned metrics, providing insights into
ACP’s impact on content quality and dynamic con-
text management.

3.1 Dataset

In our experiment, we use the GOVRE-
PORT (Huang et al., 2021) dataset, which consists
of extremely long reports and their corresponding
summaries. These reports often exceed 30,000
words and span a broad range of topics, including
policy, research, and statistics, making it a valuable
resource for training models focused on long-form
summarization. The dataset is carefully annotated



to aid in generating concise summaries, ensuring
the retention of key information such as conclu-
sions and recommendations. Its design is intended
to enhance the ability of models to process large
contexts and produce accurate, relevant summaries,
making it well-suited for advancing automatic sum-
marization systems. More details about the dataset
are reported in Table 1.

Data Mean Median Min Max

Source 7379.13 6488 396 31371

Target 570.85 562 67 1363

Table 1: The Govreport summarization word count
statistics indicate that the maximum word count can
exceed 30,000 words, often surpassing the context limit
of many open-weight models.

3.2 Models

We use OpenAI’s GPT-4o-mini for our main ex-
periment due to its ability to generate coherent,
contextually relevant text. Its balanced size and
generation quality make it cost-effective, enabling
us to assess how ACP interacts with a large-scale
model to maintain relevance, conciseness, and fac-
tual consistency in long-form generation.

Additionally, we experiment with open-
weight models, including LLama3.1 (8B, 3B,
1B) (Grattafiori et al., 2024) and InternLM-7B (Cai
et al., 2024). While these models are widely
used, they present challenges in the ACP pipeline,
particularly with generating summaries that meet
the structured output requirements for relevance
scoring and pruning. This often leads to subop-
timal performance or infinite generation loops,
limiting our experimentation to GPT-4o-mini.

3.3 Baselines

Fixed Window. The Fixed Window baseline in-
volves truncating the text to a fixed size and gen-
erating the summary from that segment. Unlike
the sliding window, it does not shift context but
processes only the most recent portion, discarding
the rest. This method allows for efficient computa-
tion but may lose important information, affecting
coherence and relevance.
Sliding Window. The Sliding Window baseline
processes the text in overlapping chunks, retaining
some context from previous windows while intro-
ducing new information. This method reduces the

risk of losing details but may carry irrelevant con-
tent across windows, affecting the relevance and
coherence of the generated text.
Full Window. The Full Window baseline processes
the entire input context without truncation, ensur-
ing all information is considered. However, it can
be computationally inefficient and may reduce out-
put quality if irrelevant or redundant content is
included. Additionally, not all models can support
such long contexts.

3.4 Evaluation Metrics

To comprehensively evaluate Adaptive Contex-
tual Pruning (ACP), we employ a combination
of automatic and LLM-based evaluation metrics.
For automatic evaluation, we use ROUGE (Lin,
2004)(ROUGE-1, ROUGE-2, ROUGE-L, ROUGE-
Sum) to measure n-gram overlap with reference
text. BERTScore (Zhang et al., 2020) leverages
contextual embeddings to assess semantic simi-
larity, offering a more fine-grained comparison.
Additionally, we compute the compression ra-
tio (Grusky et al., 2018) to quantify text con-
ciseness and factual consistency (Reimers and
Gurevych, 2019)1 to measure alignment with the
source content.

LLM-based evaluation (Liu et al., 2023) scores
the generated summary on a 1-5 scale across key as-
pects: coherence, fluency, relevance, consistency,
and conciseness. This human-aligned assessment
helps capture nuances that automatic metrics may
overlook, providing deeper insights into the overall
quality of ACP-generated text. The prompt tem-
plate is given in Appendix A.1 Table 5.

3.5 Prompts

For baseline summary generation, we use a simple
prompt to generate the summary. The same prompt
is applied to each slide in the sliding-window
method, followed by a final merging prompt to
combine all the summaries. Additionally, we de-
sign dedicated prompts for relevance scoring, prun-
ing decisions, and retrieval decisions. All prompts
are zero-shot, meaning no in-context examples are
provided. A list of the prompts used in the main
experiments is provided in Appendix A.1, Table 4.

Furthermore, as mentioned earlier, inspired
by (Liu et al., 2023), we employ LLM-based evalu-
ation to assess the quality of the generated summary

1https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2



Method Rouge BERTScore
CR FC R

R-1 R-2 R-L R-Sum P Read. F1

Fixed 27.03 8.90 14.53 16.44 86.59 83.05 84.78 44.33 86.67 23.19
Sliding 26.20 8.34 13.87 15.95 86.44 83.11 84.74 44.05 84.16 23.58

Full 27.43 9.38 14.64 16.92 86.89 83.30 85.06 43.59 85.35 23.39
ACP 27.24 9.31 14.69 16.81 86.76 83.26 84.97 44.52 85.33 23.63

Table 2: Automatic metrics results. Abbreviations R-1 - Rouge-1, P - Precision, R-Recall, CR - Compression Ratio,
FC - Factual Consistency, Read. - Readability.

Method LLM-Eval (1-5)
Cohe. Flue. Rele. Cons. Conc.

Fixed 4.00 4.61 4.76 4.38 3.99
Sliding 4.00 4.62 4.69 4.22 3.97

Full 4.00 4.61 4.75 4.32 4.00
ACP 4.00 4.60 4.81 4.37 3.99

Table 3: LLM evaluation results. Abbreviations: Coher.
- Coherence, Flue. - Fluency, Rele. - Relevance, Cons. -
Consistency, Conc. - Conciseness.

across various dimensions, such as coherence, rel-
evance, consistency, and conciseness. We adapt
the prompt from the OpenAI Cookbook 2 for our
specific use case. The final evaluation prompt is
provided in Appendix A.1, Table 5.

4 Results and Ablation

To evaluate the effectiveness of Adaptive Contex-
tual Pruning (ACP), we conducted a series of exper-
iments comparing ACP with three baseline models:
Fixed Window, Sliding Window, and Full Window.
We used both automatic and human-aligned evalu-
ation metrics to assess the relevance, conciseness,
factual accuracy, and overall quality of the gener-
ated text.

Table 2 presents the results from the automatic
evaluation, where we compare the models across
several key metrics: ROUGE-1 (R-1), ROUGE-2
(R-2), ROUGE-L (R-L), ROUGE-Sum (R-Sum),
BERTScore Precision (P), Recall (R), and F1
scores. ACP performs comparably to the Full Win-
dow method, achieving a similar ROUGE-1 score
of 27.24, which is slightly higher than Full Win-
dow’s score of 27.03. In terms of BERTScore, ACP
shows competitive performance with a precision
score of 86.76 and an F1 score of 84.97, which are

2https://github.com/openai/openai-cookbook/
blob/main/examples/evaluation/How_to_eval_
abstractive_summarization.ipyn

close to the full-context results.
In addition to automatic metrics, we also con-

ducted LLM-based evaluations, assessing models
on coherence, fluency, relevance, consistency, and
conciseness, as shown in Table 3. All methods, in-
cluding ACP, achieved similar scores in coherence
and fluency, with ACP scoring 4.00 in coherence
and 4.60 in fluency. ACP outperforms both the
Sliding Window and Full Window models in rel-
evance (4.81 for ACP vs. 4.75 for Full Window
and 4.68 for Sliding Window), while maintaining
competitive scores in consistency and conciseness.

Overall, ACP demonstrates strong performance
across both automatic and human-aligned evalua-
tion metrics, showing improvements in relevance
and conciseness, while performing comparably to
other methods in terms of factual consistency and
readability. We provide qualitative example sum-
maries generated with different methods in Ap-
pendix A.2, Table 6.

5 Conclusion

In this paper, we introduced Adaptive Contextual
Pruning (ACP), a novel approach for enhancing
long-form text generation by dynamically manag-
ing context. ACP evaluates the relevance of con-
text segments and prunes less relevant information,
ensuring concise, coherent, and contextually ap-
propriate text. Our experiments with the GOVRE-
PORT dataset showed that ACP performs compara-
bly to or better than existing methods (Fixed Win-
dow, Sliding Window, and Full Window) in terms
of relevance and conciseness, while maintaining
competitive performance in factual consistency and
readability. These results highlight ACP’s poten-
tial to improve the efficiency and quality of LLM-
based content generation. Future work will refine
retrieval heuristics and explore hybrid models inte-
grating ACP with retrieval-augmented techniques.
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Name Prompt
Summary Summarize the following article in about {summary_length} words. Input:

{text}
Summary:

Pruning Context: {context} Identify the least relevant context pieces that can be
removed to reduce the context to {token_limit} tokens. Return the least relevant
context pieces as a JSON object in the following format:

Output (Strictly in JSON format):
{{
"pruned_context": [
"context_piece_1",
"context_piece_2",
...
]
}}

Relevance Evaluate how relevant each provided context piece is to the current writing task.
Assign a relevance score from 1 to 10, where 1 indicates the lowest relevance
and 10 indicates the highest relevance. Context Pieces: {context}

Return your evaluation in JSON format with key ‘relevance_scores‘
and values as a list of relevance scores for each context piece. Return scores
only for the provided context pieces. Do not include any additional information
like explanation in the output. Relevance scores only as list.

Output (Strictly in JSON format): {{ "relevance_scores": [ ]
}}

Retrieval Given the keyword(s) [Y] from previously pruned context, decide if it’s relevant
to retrieve this context for the current writing task.

Pruned Context: {context_piece}

Current Generation: {generation}

Return the decision in JSON. If the context is relevant, return "True";
otherwise, return "False". Do not include any additional information in the
output.

Output (Strictly in JSON format):
{{
"retrieve": [ True/False ]
}}

Sliding Win-
dow

Based on the following aggregated summaries from individual chunks, generate
a coherent and concise final summary. The final summary should capture the
key points without redundancy and be approximately {summary_length} words
long.

Aggregated Summaries: {summaries}

Final Summary:

Table 4: Prompt templates for various tasks.



Evaluation Prompt

You will be given a long text document and a summary written for the same. Your task is to evaluate
the summary based on the following five metrics: Coherence, Fluency, Relevance, Consistency, and
Conciseness. Use the provided rating scale and evaluation criteria to assign scores for each metric.

Rating Scale (1-5):
1 (Poor): The summary has many issues that significantly affect quality or performance on the metric.
2 (Fair): Noticeable issues that reduce quality or clarity.
3 (Good): Minor issues but generally acceptable performance.
4 (Very Good): Very few issues, strong performance.
5 (Excellent): Flawless with no issues.

Evaluation Criteria:
Coherence (1-5): Assess the logical structure and flow of the summary. It should be well-structured,
organized, and flow logically from sentence to sentence.
Fluency (1-5): Evaluate grammar, spelling, punctuation, word choice, and sentence structure. The
summary should be smooth, easy to read, and free of errors.
Relevance (1-5): Check if the summary captures the critical points from the source document while
avoiding irrelevant or redundant details.
Consistency (1-5): Verify that all factual claims in the summary are accurate and supported by the source
document. Penalize hallucinated or unsupported claims.
Conciseness (1-5): Ensure the summary is to the point, avoiding unnecessary repetition or elaboration
while effectively conveying the main points.

Evaluation Steps:
1. Read the source document and identify its main topic, key points, and facts.
2. Compare the summary to the source document based on:
- Coherence: Is the structure logical and easy to follow?
- Fluency: Does the summary use proper grammar and readability?
- Relevance: Does it focus on key points without irrelevant content?
- Consistency: Are all claims factually accurate and supported?
- Conciseness: Is the summary free of repetition and unnecessary elaboration?
3. Assign scores for each metric using the provided rating scale.

Instruction: Return the output strictly in JSON format with the metric names as keys and the scores as
values. Do not include any additional information in the output.

Input Format:
Source Text: {text}
Summary: {summary}

Output Format (JSON):
{
"coherence": <score>,
"fluency": <score>,
"relevance": <score>,
"consistency": <score>,
"conciseness": <score>
}

Table 5: Prompt for LLM-based summary evaluation.



Method Summary

Fixed

The Agriculture appropriations bill, known as the Agriculture, Rural Development, Food and
Drug Administration, and Related Agencies Appropriations Act, funds the U.S. Department of
Agriculture (USDA) for the fiscal year 2020 (FY2020), excluding the U.S. Forest Service. The
legislative process began with the House Appropriations Committee reporting H.R. 3164 on June 6,
2019, and the House passing a five-bill minibus appropriations bill (H.R. 3055) on June 25, 2019.
The Senate followed by reporting S. 2522 on September 19, 2019. However, as the Senate did not
act on the bill by the start of FY2020, Congress enacted two continuing resolutions to maintain
funding at FY2019 levels. Ultimately, on December 20, 2019, the FY2020 Further Consolidated
Appropriations Act (P.L. 116-94) was

Sliding

The Agriculture Appropriations Bill, officially known as the Agriculture, Rural Development, Food
and Drug Administration, and Related Agencies Appropriations Act, allocates funding for the
U.S. Department of Agriculture (USDA), excluding the U.S. Forest Service. For fiscal year 2020
(FY2020), the House Appropriations Committee reported H.R. 3164 on June 6, 2019, and this
funding was incorporated into a five-bill minibus appropriations bill (H.R. 3055), which passed
the House on June 25, 2019. However, due to inaction in the Senate regarding its version (S.
2522) before FY2020 began, the federal government operated under two continuing resolutions to
maintain funding levels from the previous fiscal year. Ultimately, on December 20, 2019, Congress
passed the FY2020 Further Consolidated Appropriations Act, which included agriculture-related
funding under Division B.report

Full

The Agriculture appropriations bill, formally known as the Agriculture, Rural Development, Food
and Drug Administration, and Related Agencies Appropriations Act, funds various programs under
the U.S. Department of Agriculture (USDA), excluding the U.S. Forest Service. For Fiscal Year
2020 (FY2020), the House Appropriations Committee reported H.R. 3164 in June 2019, which
was later included in a five-bill minibus appropriations bill that passed the House. However, the
Senate did not act on its version of the bill before the fiscal year began, leading to two continuing
resolutions that temporarily funded federal agencies at FY2019 levels. Ultimately, Congress passed
the FY2020 Further Consolidated Appropriations Act, which included agriculture funding.\n\nThe
FY2020 appropriations focused significantly on agricultural conservation programs, which assist
landowners with natural resource management. Key agencies involved are the Natural Resources
Conservation Service (NRCS) and the Farm Service Agency (FSA).

ACP

The Agriculture appropriations bill for Fiscal Year 2020, formally known as the Agriculture, Rural
Development, Food and Drug Administration, and Related Agencies Appropriations Act, was
designed to fund the U.S. Department of Agriculture (USDA) while excluding the U.S. Forest
Service. The process began with the House Appropriations Committee reporting H.R. 3164 on
June 6, 2019, which later became part of a five-bill minibus appropriations package that passed the
House on June 25, 2019. The Senate’s version, S. 2522, was reported on September 19, 2019, but
the full Senate failed to act before the fiscal year began, resulting in the need for two continuing
resolutions to maintain funding at FY2019 levels. Ultimately, the FY2020 Further Consolidated
Appropriations Act (P.L. 116-94) was signed into law on December 20, 2019, including agricultural

Table 6: Example summaries generated using baselines and ACP for same report.
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Reviewer Scores:

From Ideation Study:

• Novelty: 6.0
• Excitement: 6.0
• Feasibility: 5.5
• Expected Effectiveness: 5.0
• Overall: 6.0

From Execution Study:

• Novelty: 6.3
• Excitement: 5.5
• Soundness: 6.5
• Effectiveness: 4.8
• Overall: 5.0
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