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Abstract
Enormous power has been demonstrated by geo-
metric deep learning (GDL) in molecular data
analysis. However, there are still challenges
in achieving high efficiency and expressivity in
molecular representations, which are fundamen-
tal for the success of GDL. In this work, we in-
troduce path complex neural network (PCNN)
model for molecular property prediction. The
essential idea is to use path complices to char-
acterize various types of molecular interactions
specified in molecular dynamic (MD) force field.
We propose a path complex message-passing mod-
ule to allow the communication of simplex fea-
tures within/between different dimensions. Our
model has been extensively validated on bench-
mark datasets and can achieve the state-of-the-art
results.

1. Introduction
Effectively predicting molecular properties is of paramount
importance in the fields of drug design (Zhang et al., 2017;
Chen et al., 2018; Mak & Pichika, 2019; Chan et al., 2019),
biology (Townshend et al., 2021; Jamasb et al., 2022), chem-
istry (Qiao et al., 2022), and materials (Vlassis et al., 2020).
As Geometric Deep Learning (GDL) has demonstrated
tremendous potential and power in molecular sciences, an
increasing number of studies have employed GDL models
for effective representation learning of molecules (Bronstein
et al., 2017; Atz et al., 2021; Ingraham et al., 2023). Due to
its simplicity, flexibility, and efficiency, the molecular graph
(Wieder et al., 2020; Yu & Gao, 2022; Atz et al., 2021; Li
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et al., 2022; Wang et al., 2022b) has become the most popu-
lar among the three types of representations (topological, ge-
ometric, and functional) used to describe molecules in GDL
models. However, relying solely on graphical representa-
tions fails to capture the many-body interactions present in
many complex systems, and the expressiveness of this ap-
proach has been proven to be limited (Bodnar et al., 2021).

In a common GNN model, the covalent-bond based graph
is used as the de facto molecular graph. Node features
are usually selected from atomic properties and further up-
dated with aggregating information from neighboring nodes
(Huang et al., 2020; Shindo & Matsumoto, 2019; Shui &
Karypis, 2020a; Schütt et al., 2017; Unke & Meuwly, 2019).
To enhance GNN performance, three major approaches have
been proposed. The first approach is to devise more compli-
cated molecular graphs to incorporate non-covalent interac-
tions. The most popular way is to use a cutoff distance and
edges are generated between any two atoms within the cutoff
distance. Further, molecule-based line graph model has been
developed with nodes representing atom bonds and edges
representing bond angles (Choudhary & DeCost, 2021). The
second approach is to consider global physical features and
local geometric information. Global physical attributes such
as temperature, pressure, entropy, etc, have been added into
GNN architectures for a better characterization the molecu-
lar states and environments in MEGNet (Chen et al., 2019)
and SphereNet (Liu et al., 2022). Local geometric features,
in particular bond lengths, bond angles (Schütt et al., 2018;
Flam-Shepherd et al., 2021), dihedral angles (Wang et al.,
2022a), and torsion angles which are key to molecular prop-
erties, have been extensively considered in models such as
DimNet (Gasteiger et al., 2020), GemNet (Gasteiger et al.,
2021), ALIGNN (Choudhary & DeCost, 2021) and GEM
(Fang et al., 2022). The third approach is to design efficient
message-passing modules for invariant features, equivalent
properties, and higher order tensors. The GNN expressivity
is tightly related to message-passing modules used in the
invariant/equivalent/higher-order-tenser layers. The above
three approaches are synergistically integrated with each
other.

In this work, we develop path complex-based molecular
representation and path complex neural network (PCNN)
model for molecular property analysis, as in Figure 1. Our
path complices are specially designed, based on de facto
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Figure 1. Architecture of PCNN. Each gear component updates its representation in the current dimension by integrating both high-order
and low-order information. Up to 3-path is included to Three different ”Readout” modules are denoted as R1, R2, and R3. Depending
on the model setting, one of the “Readout” module will be selected.

covalent-bond molecular graph, to characterize different
types of energy specified in molecular dynamic (MD) force
field. More specifically, the MD potential energy (Mayo
et al., 1990; González, 2011; Leach, 2001) contains bond
term (EB , two-body), bond-angle term (EA, three-body),
and dihedral-angle term (ET , four-body), which are well
characterized by our 1-path, 2-path, and 3-path features,
respectively. We design efficient path-complex message-
passing to allow the information passing between simplex
features (at different dimensions), and use the aggregated
information to predict molecular properties. Testing on
benchmark datasets has shown promising performance. Our
contributions are as follows:

1. For the first time, we develop path complex-based
molecular representation that can explicitly character-
ize different terms in molecular dynamic (MD) force
field.

2. We propose a path Weisfeiler-Lehman (PWL) test for
distinguishing non-isomorphic path complexes, based
on the theoretical results, we developed path complex
neural network (PCNN) model for molecular property
analysis. We then show that PCNN is as powerful as
PWL and strictly better than WL test.

3. Our PCNN model has been extensively tested and val-
idated on benchmark datasets. It has been found that
our model can achieve state-of-the-art results.

2. Related Work
2.1. Graph Neural Networks for Molecular Property

Prediction

Graph neural network models have played an pivotal role in
molecular data analysis. Traditional GNN models represent
molecules as the de factor covalent-bond-based molecular
graphs, and use major GNN architectures, such as GIN (Xu
et al., 2018), GAT (Velickovic et al., 2017), GCN (Kipf &
Welling, 2016), SGCN (Danel et al., 2020) and GTtrans-
former (Rong et al., 2020), to learn molecular properties
(Yang et al., 2019; Xiong et al., 2019; Choudhary & De-
Cost, 2021; Fang et al., 2022). With the importance of
non-covalent bonds, cutoff-distance-based molecular graph
representations have been widely employed in GNN models,
such as DimeNet (Gasteiger et al., 2020), HMGNN (Shui &
Karypis, 2020b), GeoGNN (Fang et al., 2022), Mol-GDL
(Shen et al., 2023), etc. Further, higher-order interactions
(beyond pair-wise forces) has been explicitly incorporated
into GNN models, including ALIGNN (Choudhary & De-
Cost, 2021), GEM (Fang et al., 2022), DimeNet (Gasteiger
et al., 2020), GemNet (Gasteiger et al., 2021), etc, by the
consideration of bond angles, dihedral angles, torsion an-
gles, and other local geometric information. In particular,
these higher-order terms can be directly related to MD force
field information (Halgren, 1996; Choudhary et al., 2018).
Finally, pre-training process has been adopted to further
improve the accuracy of GNN models, such as N-Gram (Liu
et al., 2019), PretrainGNN (Hu et al., 2019), GEM (Fang
et al., 2022), MolCLR (Wang et al., 2022b), DMP (Zhu
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Figure 2. Different Representations of the C2H6O Molecule. Figure (a) displays the molecular structure of C2H6O, including the oxygen
(O), carbon (C), and hydrogen (H) atoms. Figure (b) shows the graph representation based on chemical bonds; figure (c) illustrates the
nearly fully connected graph generated based on a distance threshold (cutoff); and figure (d) presents the representation using the path
complex method and its physical implications. In the diagrams, solid lines represent chemical bonds, while dashed lines represent cutoff
connections.

et al., 2023), etc.

2.2. Topological Deep Learning (TDL)

Topological Deep Learning (TDL) (Hajij et al., 2022; Bod-
nar, 2022) leverages novel topological tools to characterize
data with complicated higher-order structures. Different
from graph-based data representation, TDL uses topological
representations from algebraic topology, including simpli-
cial complexes (Bodnar, 2022; Schaub et al., 2022), cell
complexes (Hajij et al., 2020; Roddenberry et al., 2022;
Giusti et al., 2023), sheaves (Hansen & Ghrist, 2019; Bod-
nar et al., 2021), hypergraphs (Feng et al., 2019; Kim et al.,
2020; Bai et al., 2021), and combinatorial complexes (Ha-
jij et al., 2022) to model not only pair-wise interactions
(as in graphs), but also higher-order interactions among
three or more elements. In fact, these algebraic topology-
based molecular representations have already achieved great
success in molecular data analysis, including protein flexi-
bility and dynamic analysis (Xia & Wei, 2014; Sverrisson
et al., 2021), drug design (Cang & Wei, 2017), virus analy-
sis (Chen et al., 2022), materials property analysis (Reiser
et al., 2022; Townsend et al., 2020). Further, TDL uses a
generalized message-passing mechanism thus enables the
communication of information from simplices of different
dimensions. In contrast to GNNs, where information is
passing among nodes or edges, TDL allows information to
propagate through any neighborhood relation (Roddenberry
et al., 2021).

Recently, path complex and its related models, including
path homology (Grigor’yan et al., 2018), persistent path
homology (Chowdhury & Mémoli, 2018; Liu et al., 2023;
Chen et al., 2023), and path Laplacian (Wang & Wei, 2023),
have been developed and demonstrated great potential for
the analysis of molecular structures. However, there is still
a lack of effective models that integrate path (simplex) com-
plex with deep learning architecture in molecular domain.

3. Path Complex Neural Network
Path complex was originally developed on directed graph
(or digraph) and set, by Grigoryan, Lin, Muranov and Yau
in 2012 (Grigor’yan et al., 2012). They also proposed a new
homology theory for path complex, called path homology,
and use it to explore topological invariant information of
digraphs (Grigor’yan et al., 2014). Mathematically, path
homology provides a novel framework to systematically
explore intrinsic topological information of more general
structures (Grigor’yan et al., 2019; Grigor’yan et al., 2020).

3.1. Generalized Path Complex

Definition 3.1 (Path). Given a simple undirected graph G =
(V,E) over the vertex set V , an n-path σn of G is defined
as any sequence of n+ 1 vertices v0v1 · · · vn(vi ∈ V ) such
that every two vertices are distinct and every two adjacent
vertices form an edge.

Note that for each n-path σn = v0v1 · · · vn, σ′
n =

vn · · · v1v0 is also an n-path, we identify these two paths as
the same one. For an n-path σn = v0 · · · vn, the (n − 1)-
paths by removing the first or last vertex, denoted by ∂L

σn

and ∂R
σn

respectively, are called the faces of σn. The n-path
τn is called a coface of (n− 1)-path σn−1 if σn−1 is a face
of τn. Two n-paths are upper adjacent if they are faces
of a common (n + 1)-path, lower adjacent if they have a
common (n− 1)-path as face. For an n-path σn, let B(σn)
be the set of faces of σn, C(σn) be the set of cofaces of σn,
N↑(σn) be the set of n-paths that are upper adjacent with
σn, N↓(σn) be the set of n-paths that are lower adjacent
with σn. We can use the above four relations to define the
neighbors of an n-path σn.

3.2. Path WL Test

The deep theoretical connection between the Weisfeiler-
Lehman (WL) graph isomorphism test and message-passing
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Figure 3. The PCNN Module. □ denotes the layer’s input, ∥ concatenation, and ϕ a non-linearity. Upper embedding and Upper interaction
refers to utilizing high-order path features to update low-order path features, while Lower embedding and Lower interaction refers to
using low-order path features to update high-order path features.

graph neural networks (GNNs) is well-documented (Xu
et al., 2018). Leveraging this relationship, we introduce
a path complex version of the WL test, aiming to create
a message-passing procedure that maintains the test’s ex-
pressive power. We term this approach the Path Weisfeiler
Lehman (PWL) Test, with details provided in Appendix B.

Definition 3.2 (PWL). The steps of general PWL are as
follows:

1. Given a path complex P , all the paths of P are initial-
ized with the same color.

2. For the color ctσ of path σ at iteration t, the color ct+1
σ

of σ at the next iteration is computed by perfectly
hashing the color multi-set of the neighbors of σ.

3. The algorithm stops once a stable coloring is reached.
Two path complexes are considered non-isomorphic if
their color histograms are different at some dimensions.

Based on the four neighbor definitions, including face neigh-
bor B(σ), coface neighbor C(σ), upper adjacent neighbor
N↑(σ) and lower adjacent neighbor N↓(σ), we have four
types of neighbor color multi-sets. Let ct be the coloring of
PWL for path complex P at iteration t, four types of color
multi-sets are as follows

1. ctB(σ) = {{ctτ |τ ∈ B(σ)}}

2. ctC(σ) = {{ctτ |τ ∈ C(σ)}

3. ct↑(σ) = {{(ctτ , ctσ∪τ )|τ ∈ N↑(σ)}

4. ct↓(σ) = {{(ctτ , ctσ∩τ )|τ ∈ N↓(σ)}

Having the neighbor color multi-sets, we obtain the follow-
ing update rule that contains all four types of neighbors:

ct+1
σ = HASH{ctσ, ctB(σ), ctC(σ), ct↑(σ), ct↓(σ)}

Actually, certain neighbors can be removed without affect-
ing the expressive power of PWL test in terms of path com-
plex that can be differentiated.

Theorem 3.3. PWL with HASH{ctσ, ctB(σ), ct↑(σ)} is
as powerful as PWL with the updating strategy
HASH{ctσ, ctB(σ), ctC(σ), ct↑(σ), ct↓(σ)}.

Theorem 3.4. PWL is strictly more powerful than WL.

3.3. Molecular PCNN model

Molecular Path Complex Representation An illustra-
tion of our path simplices and their relations with bond terms
can be found in Figure 2. Here we consider the C2H6O
molecule and its path simplices. Table 2 (in the Appendix
A.1) presents a comprehensive listing of our 1-path, 2-path,
and 3-path features.

General Path Complex Neural Network We introduce a
comprehensive Path Complex Neural Network (PCNN) that
employs the specified message-passing operations. For de-
tailed information on the modules within the PCNN, please
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Table 1. Comparison with GNN architectures. The best performance is indicated as bold, and the subindex indicates standard deviation
values. * indicates that the result is not available for the model.

Method QM7 QM9 Tox21 HIV MUV

GNN

GIN 110.3(7.2) 0.00886(0.00005) * * *
GAT 103.0(4.4) 0.01117(0.00018) * * *
GCN 100.0(3.8) 0.00923(0.00019) * * *
D-MPNN 103.5(8.6) 0.00812(0.00009) 0.759(0.007) 0.771(0.005) 0.786(0.014)

Attentive FP 72.0(2.7) 0.00812(0.00001) 0.761(0.005) 0.757(0.014) 0.766(0.015)

GTransformer 161.3(7.1) 0.00923(0.00019) * * *
SGCN 131.3(11.6) 0.01459(0.00055) * * *
DimNet 95.6 (4.1) 0.01031(0.00076) * * *
HMGNN 101.6 (3.2) 0.01239(0.00001) * * *
Mol-GDL 62.2(0.4) 0.00952(0.00013) 0.791(0.005) 0.808(0.007) 0.675(0.014)

Pretrain GNN

N-GramRF 92.8(4.0) 0.01037(0.00016) 0.758(0.009) 0.787(0.004) 0.748(0.002)

N-GramXGB 81.9(1.9) 0.00964(0.00031) 0.758(0.009) 0.787(0.004) 0.748(0.002)

PretrainGNN 113.2(0.6) 0.00922(0.00004) 0.781(0.006) 0.799(0.007) 0.813(0.021)

GROVERbase 94.5(3.8) 0.00986(0.00055) 0.743(0.001) 0.625(0.009) 0.673(0.018)

GROVERlarge 92.0(0.9) 0.00986(0.00025) 0.735(0.001) 0.682(0.011) 0.673(0.018)

MolCLR * * * 0.750 (0.002) 0.796 (0.019)

GEM 58.9(0.8) 0.00746(0.00001) 0.781(0.001) 0.806(0.009) 0.817(0.005)

DMP 74.4(1.2) * 0.791(0.004) 0.814(0.004) *
SMPT * * 0.797 (0.001) 0.812 (0.001) 0.822 (0.008)

PCNN 53.9(2.1) 0.00685(0.00005) 0.801(0.002) 0.823(0.004) 0.827(0.015)

refer to Figure 3. For a path σ in P , we have

mt+1
B (σ) = AGGτ∈B(σ)(MB(h

t
σ, h

t
τ )) (1)

mt+1
↑ (σ) = AGGτ∈N↑(σ)(M↑(h

t
σ, h

t
τ , h

t
σ∪τ )) (2)

Then, the updating function considers these two types of
messages and the previous color of σ:

ht+1(σ) = U(ht
σ,m

t
B(σ),m

t
↑(σ)) (3)

After L layers of the message passing process, the readout
function takes the color multi-sets at all dimensions as input:

hP = READOUT({{hL
σ}}dim(σ)=0, · · · , {{hL

τ }}dim(τ)=p)
(4)

Theorem 3.5. A Path Complex Neural Network (PCNN)
with sufficient layers and injective neighborhood aggrega-
tors achieves the same expressive power as the PWL.

4. Experiments
4.1. Results

The comparison of our PCNN with existing models, on
benchmark datasets are illustrated in Table 1. Detailed
Benchmark Models and Hyperparameters can be found in
Section A.3 (in Appendix A). Our PCNN model demon-
strates significant performance advantages on the most
datasets, primarily due to its advanced feature expression
capabilities and enhanced recognition of complex molecu-
lar structures. The message-passing mechanism within the

PCNN is structured into two distinct layers: the upper em-
bedding, which considers upper adjacent neighbors, and the
lower embedding, which focuses on upper adjacent neigh-
bors and face neighbors. This dual-layered approach enables
the integration of path information from multiple perspec-
tives, theoretically improving the model’s proficiency in
managing both local and global structures of the graph.
Each path is not only updated based on the features of its
constituent nodes but also incorporates information from
both higher-order and lower-order connected paths. This
sophisticated mechanism aids the model in detecting sub-
tle structural variations within molecules that are typically
challenging to differentiate.

5. Conclusion
In this study, we presented the PCNN model, a novel molec-
ular structure representation based on path complexes, de-
signed for predicting molecular properties. This approach
integrates force fields with path complexes, enhancing our
understanding of the molecular structure-function relation-
ship, and supports theoretical and practical applications in
molecular design and materials science. The PCNN model
utilizes 0-paths for atomic properties, 1-paths for pairwise
interactions, 2-paths for bond angle terms, and 3-paths for
dihedral angle information. It leverages these paths to com-
pute attention scores, facilitating effective message propaga-
tion and feature integration across different informational
levels. Validation on benchmark datasets confirmed PCNN’s
superior predictive abilities.
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A. supplemental material
A.1. Initialization Features

Table 2. MD Encoder for Path Features
Features Type Description Type Size

1-Path
(bond)

Bond Directionality None, Beginwedge, Begindash, etc. One-Hot 7
Bond Type Single, Double, Triple, or Aromatic. One-Hot 4

Bond Length Numerical length of the bond. Float 1
In Ring Indicates if the bond is part of a chemical

ring.
One-Hot 2

1-Path
(non-bond)

cutoff=3

Atom charges Atoms charges in Molecular (qi, qj , qi×qj) Float 3
Distance between atoms Distance between atoms

(1/dij , 1/d
6
ij , 1/d

12
ij )

Float 3

2-Path

Centroid Centroid position of the triangle formed by
2-path

Float 3

Distance Three bond lengths (two for covalent bond
and one for non-covalent bond)

Float 3

Area Triangle area spanned by 2-path Float 1
Bond Angle Bond angle for 2-path Float 1

3-Path

Volume Volume spanned by 3-path Float 1
Dihedral Dihedral angle for 3-path Float 1

Total Area Total Area of the corresponding four trian-
gles

Float 1

Bond Length Non-covalent bond length ({v1v3},{v2v4},
{v1v4})

Float 3

A.2. Dataset details, Min-Max Scaling, Splitting Metho and Mean Absolute Err

In this study, we analyzed three key quantum chemistry datasets from MoleculeNet (Wu et al., 2018) and MolBench (Jiang
et al., 2023): QM7 (Blum & Reymond, 2009), QM8 (Ramakrishnan et al., 2015), QM9 (Ruddigkeit et al., 2012), Tox21,
HIV and MUV, all of which are publicly available on the MoleculeNet website: https://moleculenet.org/datasets-1. Details
about these datasets are in Table 3.

Table 3. The details of the datasets. Note that the subindex indicates standard deviation values.
Dataset QM7 QM9 Tox21 HIV MUV

No. molecules 6,830 133,885 7831 41127 93808
No. average atoms 16(3) 18(3) 36(23) 46(24) 43(10)
No. tasks 1 3 12 1 17
Task type Regression Regression Classification Classification Classification

Note that the subindex indicates standard deviation values. For instance, the element 16(13) means the number of average
atoms in QM7 is 16, with 13 as its standard deviation. The QM7 dataset is a subset of the GDB-13 database (Blum
& Reymond, 2009), which contains approximately 1 billion organic molecules with up to seven ”heavy” atoms (C, N,
O, S). The QM7 dataset comprises 7,160 molecules along with their corresponding atomization energies. The QM9
dataset, a subset of the GDB-17 database, provides twelve properties, encompassing geometric, energetic, electronic, and
thermodynamic properties. This dataset consists of 133,865 molecules. Tox21 is qualitative toxicity measurements on 12
biological targets, including nuclear receptors and stress response pathways. HIV is experimentally measured abilities to
inhibit HIV replication. MUV is subset of PubChem BioAssay by applying a refined nearest neighbor analysis, designed for
validation of virtual screening techniques.
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Min-Max Scaling Given that QM7 and QM9 involve regression, we applied min-max normalization to scale target
values between 0 and 1. In multiple-target regression tasks, Min-Max Scaling is commonly used to normalize the targets.
This technique linearly transforms the target values to a specified range between a minimum and maximum value. The
transformation follows the formula:

y =
y − ymin

ymax − ymin
, yscal = ymax − ymin (5)

Here, y represents the normalized target value, y is the original target value, ymin is the minimum value of the target, and
ymax is the maximum value of the target.

During prediction, the normalized predictions obtained from the model need to be transformed back to the original scale of
the target values. The transformation is performed using the formula:

ỹ = ŷ · yscal + ymin, y = y · yscal + ymin (6)

where ŷ is the model output, and ỹ and y are used for loss function computation and evaluation.

This normalization process ensures that all target values are scaled within a fixed range, typically between 0 and 1. It
facilitates better convergence during model training and helps in handling targets with varying scales effectively. Furthermore,
Min-Max Scaling maintains the relative relationships between target values while bringing them into the desired range,
making it a suitable choice for multiple-target regression tasks.

A.3. Benchmark Models and Hyperparameters

For an extensive validation of our PCNN model, we consider three widely-used benchmark datasets from MoleculeNet (Wu
et al., 2018). In data preprocessing, we utilize Merck molecular force field (MMFF94) function from RDKit to generate
molecular 3D structures. Following the work of Bharath Ramsundar (Ramsundar et al., 2019), we employed scaffold
splitting to partition all datasets. This method segments molecules based on their scaffolds (molecular substructures).
Scaffold splitting is a more challenging partitioning approach that can better evaluate a model’s generalization ability on
out-of-distribution data samples. To ensure a fair comparison with other models, we adopted the same scaffold splitting
method to divide the task datasets into training, validation, and test sets with a ratio of 8:1:1.

We have compared our PCNN model with state-of-the-art GNN models with and without pre-training process. The compared
GNN models without pre-training process include (1) the commonly used GNN architectures, GIN (Xu et al., 2018), GAT
(Velickovic et al., 2017) and GCN (Kipf & Welling, 2016); (2) recent works incorporating three-dimensional molecular
geometry, SGCN (Danel et al., 2020), DimeNet (Gasteiger et al., 2020) and HMGNN (Shui & Karypis, 2020b); (3) the
architectures specially designed for molecular representation, D-MPNN (Yang et al., 2019), AttentiveFP (Xiong et al., 2019)
Mol-GDL (Shen et al., 2023). Additionally, the compared GNN models with pre-training process include, N-Gram (Liu
et al., 2019), PretrainGNN (Hu et al., 2019), GROVER (Rong et al., 2020), GEM (Fang et al., 2022), DMP (Zhu et al., 2023)
and SMPT (Li et al., 2024).

MAE (Mean Absolute Error) The Mean Absolute Error (MAE) is defined as:

MAE =
1

N

N∑
i=1

|yi − ŷi| (7)

where yi and ỹi represent the true value and predicted value of the ith sample respectively. MAE is a commonly used metric
for evaluating regression performance. A lower MAE value indicates higher prediction accuracy, with a decrease in MAE
typically suggesting improved model performance.

Hyperparameters setup Hyperparameters We have set up a set of hyperparameters for training the model are summa-
rized in Table 4. Inaddition, the optimizer selected as ADAM, and the loss function chosen as L1. All models are trained
using NVIDIA RTX A6000 48GB GPUs.
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Table 4. Hyperparameters set up.

Dataset QM7 QM9 Tox21 HIV MUV

Learning rate 1e-4 1e-3 1.5e-4 1e-3 1e-4
Batch size 512 64 36 512 512
No.heads 1 6 6 2 1
No.layers 2 2 2 2 2
Train/Valid/Test 8:1:1 8:1:1 8:1:1 8:1:1 8:1:1
Loss function L1 L1 BCE BCE BCE
Optimizer ADAM ADAM ADAM ADAM ADAM
Epochs 500 500 1000 1000 1000
Seed 42 42 42 42 42

B. Path Weisfeiler Lehman (PWL) Test
B.1. Path Complex

Definition B.1 (Path Complex Isomorphism). Given two path complexes P1, P2 over the vertices V1, V2. P1 and P2 are
called isomorphic if there is a map f : V1 → V2 such that σn = v0v1 · · · vn ∈ P1 ⇐⇒ f(σ) = f(v0)f(v1) · · · f(vn) ∈ P2.

Theorem B.2. Given two graphs G1, G2, let PG1
, PG2

be the path complexes derived from G1, G2 respectively. We have

G1
∼= G2 ⇐⇒ PG1

∼= PG2

B.2. Path Complex Coloring

Definition B.3 (Path Coloring). A path coloring is a map c such that for each path complex P and any path σ of P , c(σ) is
a color from a fixed color table. We denote this color by cPσ .

We will often omit P in the subscript when the underlying path complex is arbitrary.

Definition B.4. Given two path complexes P1, P2 and a path coloring c. P1 and P2 are called c-similar, denoted by
cP1 = cP2 , if for any dimension n, we have the color multi-sets equality

{{cP1
σ |dim(σ) = n, σ ∈ P1}} = {{cP2

τ |dim(τ) = n, τ ∈ P2}}

Definition B.5 (PWL). We give a path complex version of the WL test to derive a message passing procedure that can retain
the expressive power of the test. We call this the Path WL (PWL), the steps of general PWL are as follows:

1. Given a path complex P , all the paths of P are initialized with the same color.

2. For the color ctσ of path σ at iteration t, the color ct+1
σ of σ at the next iteration is computed by perfectly hashing the

color multi-set of the neighbors of σ.

3. The algorithm stops once a stable coloring is reached. Two path complexes are considered non-isomorphic if their
color histograms are different at some dimensions.

Neighbor Color Multi-set Based on the four neighbor definitions, we have four types of neighbor color multi-sets. Let ct

be the coloring of PWL for path complex P at iteration t, four types of color multi-sets are as follows

1. ctB(σ) = {{ctτ |τ ∈ B(σ)}}

2. ctC(σ) = {{ctτ |τ ∈ C(σ)}

3. ct↑(σ) = {{(ctτ , ctσ∪τ )|τ ∈ N↑(σ)}

4. ct↓(σ) = {{(ctτ , ctσ∩τ )|τ ∈ N↓(σ)}
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Having the neighbor color multi-sets, we obtain the following update rule that contains all four types of neighbors:

ct+1
σ = HASH{ctσ, ctB(σ), ctC(σ), ct↑(σ), ct↓(σ)}

Actually, certain neighbors can be removed without affecting the expressive power of PWL test in terms of path complex
that can be differentiated.

Theorem B.6. PWL with HASH{ctσ, ctB(σ), ct↑(σ)} is as powerful as PWL with the four-neighbor-updating strategy
HASH{ctσ, ctB(σ), ctC(σ), ct↑(σ), ct↓(σ)}.

Theorem B.7. PWL is strictly more powerful than WL.

Theorem B.8. PWL is no less powerful than SWL (Bodnar et al., 2021) with the clique complex lifting.

B.3. Path Complex Neural Network

We propose a general Path Complex Neural Network (PCNN) using the following messages passing operations. For a path
σ in P , we have

mt+1
B (σ) = AGGτ∈B(σ)(MB(h

t
σ, h

t
τ )) (8)

mt+1
↑ (σ) = AGGτ∈N↑(σ)(M↑(h

t
σ, h

t
τ , h

t
σ∪τ )) (9)

Then, the updating function considers these two types of messages and the previous color of σ:

ht+1(σ) = U(ht
σ,m

t
B(σ),m

t
↑(σ)) (10)

After L layers of the message passing process, the readout function takes the color multi-sets at all dimensions as input:

hP = READOUT({{hL
σ}}dim(σ)=0, · · · , {{hL

τ }}dim(τ)=p) (11)

Theorem B.9. PCNN with sufficient layers and injective neighborhood aggregators are as powerful as PWL.

B.4. Proof of Main Results

In order to prove the main results, we give some notations.

Definition B.10 (Path Coloring Refinement). A path coloring c refines a path coloring d, denoted by c ⊑ d, if for any
path complex P1, P2 and σ ∈ P1, τ ∈ P2, cP1

σ = cP2
τ implies dP1

σ = dP2
τ . Additionally, if d ⊑ c, we say that c and d are

equivalent.

Lemma B.11. Given two path complexes P1, P2 with A ⊂ P1, B ⊂ P2. Assume c and d are two path coloring such that
c ⊑ d. If {{dP1

σ |σ ∈ A}} ̸= {{dP2
τ |τ ∈ B}}, then {{cP1

σ |σ ∈ A}} ̸= {{cP2
τ |τ ∈ B}}.

Proof. Let C1 = {{cP1
σ |σ ∈ A}}, C2 = {{cP2

τ |τ ∈ B}}. Assume C1 = C2, then there is a bijection f : A → B such that
∀σ ∈ A, τ = f(σ), we have cP1

σ = cP2
τ . From c ⊑ d we know dP1

σ = dP2
τ . Consequently, {{dP1

σ |σ ∈ A}} = {{dP2

f(σ)|σ ∈
A}} = {{dP2

τ |τ ∈ B}}, which contradicts with the condition that {{dP1
σ |σ ∈ A}} ̸= {{dP2

τ |τ ∈ B}}. Hence the assumption
is wrong.

Corollary B.12. Given two path colorings c and d such that c ⊑ d. If dP1 ̸= dP2 , then cP1 ̸= cP2 .

Proof. This follows by replacing the subsets A,B by the sets of n-paths of P1 and P2 respectively in the proof of Lemma
B.11.

The above corollary B.12 means that if c refines d, then c is able to distinguish all the path complex pairs that d can
distinguish. In this sense, we can say that c is at least as powerful as d. If c and d are equivalent, we say they have the same
expressive power.

Proof of Theorem B.2. It is easy to see that if G1
∼= G2, then PG1

∼= PG2 . The inverse statement follows from the fact that
any graph is a subcomplex of its derived path complex by considering the 0-paths and 1-paths.
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Proof of Theorem B.6. Let at be the coloring at iteration t of the updating startegy

HASH{atσ, atB(σ), atC(σ), at↑(σ), at↓(σ)}

bt be the coloring at iteration t of the updating strategy

HASH{btσ, btB(σ), bt↑(σ), bt↓(σ)}

ct be the coloring at iteration t of the updating strategy

HASH{ctσ, ctB(σ), ct↑(σ)}

We firstly prove that at and bt are equivalent, then prove that bt and ct are equivalent.

1. at and bt are equivalent. We have at ⊑ bt because at contains additional colors of its coface neighbors in the color
updating rule. It suffices to prove that bt ⊑ at. We do this by induction. The base case holds since all the paths are
initialized with the same color. Assume the result holds for t = k, we prove that bk+1 ⊑ ak+1. Let σ ∈ P1 and τ ∈ P2

be two n-paths from two arbitrary path complexes, suppose bk+1
σ = bk+1

τ , we prove that ak+1
σ = ak+1

τ .

The equation bk+1
σ = bk+1

τ means that the hash function at iteration t+1 have the same arguments. Consequently,
bkσ = bkτ , bkB(σ) = bkB(τ), b

k
↑(σ) = bk↑(τ), b

k
↓(σ) = bk↓(τ). We prove that bkC(σ) = bkC(τ).

We have bk↑(σ) = bk↑(τ) and

bk↑(σ) = {{(bke , bkσ∪e)|e ∈ N↑(σ)}}, bk↑(τ) = {{(bke , bkτ∪e)|e ∈ N↑(τ)}} (12)

Replacing the first component of the tuple by the same color, we have

{{(−, bkσ∪e)|e ∈ N↑(σ)}} = {{(−, bkτ∪e)|e ∈ N↑(τ)}} (13)

By the definition of upper adjacency and coface we have

bkC(σ) = {{bkw|w ∈ C(σ)}} = {{bkσ∪e|e ∈ N↑(σ)}} (14)

bkC(τ) = {{bkw|w ∈ C(τ)}} = {{bkτ∪e|e ∈ N↑(τ)}} (15)

Combining Equation (12), (13), (14), (15), we have bkC(σ) = bkC(τ).

From the induction hypothesis, we have akσ = akτ , akB(σ) = akB(τ), a
k
C(σ) = akC(τ), a

k
↑(σ) = ak↑(τ), a

k
↓(σ) = ak↓(τ),

so ak+1
σ = ak+1

τ .

2. bt and ct are equivalent. Similarly we have bt ⊑ ct, we further prove that c2t ⊑ bt. We do this by induction. The
base case is obvious because all the paths are initialized with the same color. Assume the results holds for t = k,
we prove that c2k+2 ⊑ bk+1. Let σ ∈ P1 and τ ∈ P2 be two n-paths from two arbitrary path complexes, suppose
c2k+2
σ = c2k+2

τ , we prove that bk+1
σ = bk+1

τ .

For c2k+2
σ = c2k+2

τ , by going back two steps of the hash function, we have c2kσ = c2kτ , c2kB (σ) = c2kB (τ), c2k↑ (σ) =

c2k↑ (τ). We want to prove that c2k↓ (σ) = c2k↓ (τ).

Assume c2k↓ (σ) ̸= c2k↓ (τ), then there is a color pair (c0, c1) such that (c0, c1) appears more times in c2k↓ (σ) (without
loss of generality) than in c2k↓ (τ). For any path δ and λ, define

A(δ) = {{(c2kϕ = c0, c
2k
δ = c1)|ϕ ∈ C(δ)}} (16)

Cλ = {{|A(δ)||δ ∈ B(λ)}} (17)

Then we have
Cσ = {{|A(δ)||δ ∈ B(σ)}} = {{|(c2kϕ = c0, c

2k
δ = c1)||δ ∈ ϕ ∩ σ}} (18)

Cτ = {{|A(δ)||δ ∈ B(τ)}} = {{|(c2kϕ = c0, c
2k
δ = c1)||δ ∈ ϕ ∩ τ}} (19)

So Cσ ̸= Cτ .

14
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Considering the path coloring d(δ) = |A(δ)|. For two n-paths δ1, δ2, if d(δ1) ̸= d(δ2), we can assume that |A(δ1)| >
|A(δ2)| without loss of generality, then the number of upper adjacent neighbors of δ1 and δ2 up to color pair (c0, c1)
are different, which means c2k↑ (δ1) ̸= c2k↑ (δ2). So c2k+1

δ1
̸= c2k+1

δ2
, which means c2k+1 ⊑ d.

Applying Lemma B.11 to B(σ) and B(τ), we have

{{c2k+1
δ1

|δ1 ∈ B(σ)}} ̸= {{c2k+1
δ2

|δ2 ∈ B(τ)}} (20)

The above multi-sets are exactly the color multi-sets of the faces of σ and τ , which means c2k+1
B (σ) ̸= c2k+1

B (τ).
Consequently, c2k+2

σ ̸= c2k+2
τ , which contradicts with the induction hypothesis, so c2k↓ (σ) = c2k↓ (τ).

From the induction hypothesis, we have bkσ = bkτ , bkB(σ) = bkB(τ), b
k
↑(σ) = bk↑(τ), b

k
↓(σ) = bk↓(τ), so bk+1

σ = bk+1
τ .

Proof of Theorem B.7. Given a path complex P , let at be the coloring of the vertices of P at iteration t of WL and bt be the
coloring of the same vertices at iteration t of PWL. We firstly prove that bt ⊑ at, then give a pair of graphs to show that they
cannot be differentiated by WL but can be differentiated by PWL.

1. bt ⊑ at. We do this by induction. The base case holds because all vertices are initialized with the same color. Suppose
the result holds for t = k, we prove that bk+1 ⊑ ak+1. Let v and w be two vertices of two arbitrary path complexes
P1, P2, suppose bk+1

v = bk+1
w , we prove that ak+1

v = ak+1
w .

Note that vertices only has upper adjacent neighbors, so we have bkv = bkw, b
k
↑(v) = bk↑(w). The second equation means

{{bkx|(bkx,−) ∈ bk↑(v)}} = {{bky |(bky ,−) ∈ bk↑(w)}}

This can be equivalently written as

{{bkx|x ∈ N↑(v)}} = {{bky |y ∈ N↑(w)}}

From the induction hypothesis, we have akv = akw and

{{akx|x ∈ N↑(v)}} = {{aky |y ∈ N↑(w)}}

These are the arguments of the hash function for WL to compute the colors of v and w in the next iteration, so
ak+1
v = ak+1

w .

2. Considering the graphs in Figure 4, they cannot be differentiated by WL test. In PWL test, the path complex derived
from the right graph has not any 3-path while the derived path complex from the left graph has 3-paths.

Figure 4. Two graphs that cannot be distinguished by WL but can be differentiated by PWL.

Proof of Theorem B.8. Considering the graphs in Figure 5, they cannot be differentiated by SWL test. In PWL test, the path
complex derived from the right graph has not any 4-path while the derived path complex from the left graph has 4-paths.

15
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Figure 5. Two graphs that cannot be distinguished by SWL but can be differentiated by PWL.

Proof of Theorem B.9. Let bt and dt be the coloring at iteration t of PWL and the t-th layer of an PCNN respectively.
Assume the PCNN has L layers and assume dt = dL(t > L). We use induction to prove that dt ⊑ bt. The base case holds
by definition. Suppose the result holds for t = k, when t = k + 1, we prove that dk+1 ⊑ bk+1. For any two n-paths σ, τ of
any two path complexes P1, P2 such that dk+1

σ = dk+1
τ , we prove that bk+1

σ = bk+1
τ .

The condition means all the update, aggregate and message functions are injective, so their composition is also injective.
Hence dkσ = dkτ , dkB(σ) = dkB(τ), d

k
↑(σ) = dk↑(τ).

dkB(σ) = dkB(τ) means
{{dks |s ∈ B(σ)}} = {{dkt |t ∈ B(τ)}}

dk↑(σ) = dk↑(τ) means
{{(dks , dks∪σ)|s ∈ N↑(σ)}} = {{(dkt , dkt∪τ )|t ∈ N↑(τ)}}

By the induction hypothesis, we have bkσ = bkτ .

{{bks |s ∈ B(σ)}} = {{bkt |t ∈ B(τ)}}

{{(bks , bks∪σ)|s ∈ N↑(σ)}} = {{(bkt , bkt∪τ )|t ∈ N↑(τ)}}

So bkσ = bkτ , bkB(σ) = bkB(τ), b
k
↑(σ) = bk↑(τ), these are the arguments of the hash function in PWL, so bk+1

σ = bk+1
τ .
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