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Abstract

While large language models (LLMs) have001
demonstrated remarkable abilities across vari-002
ous fields, hallucination remains a significant003
challenge. Recent studies have explored hal-004
lucinations through the lens of internal repre-005
sentations, proposing mechanisms to decipher006
LLMs’ adherence to facts. However, these007
approaches often fail to generalize to out-of-008
distribution data, leading to concerns about009
whether internal representation patterns reflect010
fundamental factual awareness, or only overfit011
spurious correlations on the specific datasets.012
In this work, we investigate whether a universal013
truthfulness hyperplane that distinguishes the014
model’s factually correct and incorrect outputs015
exists within the model. To this end, we scale016
up the number of training datasets and conduct017
an extensive evaluation – we train the truthful-018
ness hyperplane on a diverse collection of over019
40 datasets and examine its cross-task, cross-020
domain, and in-domain generalization. Our021
results indicate that increasing the diversity of022
the training datasets significantly enhances the023
performance in all scenarios, while the volume024
of data samples plays a less critical role. This025
finding supports the optimistic hypothesis that026
a universal truthfulness hyperplane may indeed027
exist within the model, offering promising di-028
rections for future research.029

1 Introduction030

Although large language models (LLMs) have031

gained significant success in a wide range of do-032

mains (OpenAI, 2023; Touvron et al., 2023a,b),033

hallucination problems remain the main challenges034

that hinder their wider applications (Ji et al., 2023;035

Zhang et al., 2023; Huang et al., 2023). This issue036

is further aggravated by a limited understanding of037

the opaque inner mechanisms of LLMs’ factual be-038

haviors. Recent works start to investigate hallucina-039

tions from the perspective of inner representations,040

adopting the probing method (Alain and Bengio,041

2017) to identify hyperplanes on the space of hid- 042

den states to distinguish between correct responses 043

and hallucinations (Burns et al., 2023; Azaria and 044

Mitchell, 2023; Li et al., 2023b; Zou et al., 2023; 045

Marks and Tegmark, 2023; CH-Wang et al., 2023). 046

The underlying hypothesis is that the hidden states 047

of language models already encode significant in- 048

formation on hallucination, and we are able to tell 049

hallucinations from the hidden states. 050

While these studies have achieved impressive 051

hallucination detection performance on the datasets 052

which the probes are trained on (Burns et al., 053

2023; Li et al., 2023b; Zou et al., 2023; Marks 054

and Tegmark, 2023; CH-Wang et al., 2023), they 055

often struggle to generalize to out-of-distribution 056

(OOD) data samples (Burns et al., 2023; Marks and 057

Tegmark, 2023; CH-Wang et al., 2023). We fur- 058

ther verify such OOD generalization failure in our 059

experiments, confirming that the performance of 060

the probe trained solely on TruthfulQA (Lin et al., 061

2022) – a widely used dataset to train probes (Li 062

et al., 2023b; Chen et al., 2023; Joshi et al., 2023) – 063

will drop 25 absolute points on average for several 064

other datasets compared to in-domain detection. 065

This failure and raises two principled questions: (1) 066

Does the identified inner representation features 067

in previous works really capture the model’s inner 068

hallucination, or only overfit spurious patterns of 069

the specific dataset? (2) Does a universal truth- 070

fulness hyperplane exist that can classify factual 071

correctness on diverse tasks? 072

We aim to answer these questions in this work. 073

Inspired by the success of diversified instruction 074

tuning (Sanh et al., 2022; Wei et al., 2022; Chung 075

et al., 2022; Wang et al., 2023), our idea is to in- 076

crease the diversity of the training data by scaling 077

up the number of training datasets, so that we may 078

find the universal truthfulness hyperplane that can 079

generalize across tasks using the framework shown 080

in Figure 1. Specifically, we construct a comprehen- 081

sive and diverse collection of hallucination detec- 082
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Figure 1: Top: we extract representations from the last token of the input sequence, then specific locations of the hidden states
inside the LLM are selected and concatenated as input to train the probe. Bottom: Previous works mainly train the linear
probe on one dataset which tends to overfit spurious features. Our work utilizes diverse datasets to examine whether a universal
truthfulness hyperplane exists that can generalizes to out-of-domain data.

tion datasets to facilitate the analysis. The dataset083

comprises 17 distinct categories of tasks covering084

over 40 datasets from knowledge-seeking QA tasks085

such as Triviaqa (Joshi et al., 2017), Natural Ques-086

tions (Kwiatkowski et al., 2019) to structure-to-087

text tasks such as E2ENLG (Dušek et al., 2020),088

with each task containing both correct and incorrect089

samples, as illustrated in Figure 2. These datasets090

enable us to thoroughly evaluate the performance091

and robustness of the truthfulness probes.092

In our experiments, we train probes using di-093

verse datasets and evaluate their generalization094

performance in three scenarios: cross-task, cross-095

domain, and in-domain. We study the effectiveness096

of probing different locations of hidden states and097

find that the attention heads lead to the highest098

accuracy. Our probe method beats the prompting-099

based approach as well as the probability baseline100

significantly and outperforms the previous probe101

that is trained only on one dataset by 14 absolute102

points, achieving ∼ 70% cross-task accuracy. This103

provides empirical evidence for the existence of104

a shared representation of truthfulness within the105

model. Notably, despite our probe being trained on106

an extensive collection of datasets, it achieves high107

performance with an average of only 10 data sam-108

ples per dataset. This demonstrates the method’s109

data efficiency and its straightforward applicability110

in identifying a universal truthfulness hyperplane.111

2 Probing Hidden States for Truthfulness112

2.1 Overview113

Probing methods are defined as training classifiers114

with hidden states of the neural networks as input to115

identify specific properties of the input (Alain and 116

Bengio, 2017; Belinkov, 2022). Previous works 117

primarily focus on the linguistic information in rep- 118

resentations (Jawahar et al., 2019; Tenney et al., 119

2019), while recent works explore truthfulness as 120

the property and design probes to detect the truth- 121

fulness of large language models (Li et al., 2023b; 122

Chen et al., 2023; Marks and Tegmark, 2023; Zou 123

et al., 2023; CH-Wang et al., 2023). In addition to 124

typical linear supervised probes like logistic regres- 125

sion (LR) (CH-Wang et al., 2023) and mass mean 126

(MM) (Marks and Tegmark, 2023), unsupervised 127

linear probes such as CCS (Burns et al., 2023) and 128

LAT (Zou et al., 2023) are also studied for truth- 129

fulness. Previous works train the probe exclusively 130

on one or a few specific datasets and subsequently 131

evaluate their performance on the same or simi- 132

lar datasets (Li et al., 2023b; Chen et al., 2023; 133

Azaria and Mitchell, 2023; Marks and Tegmark, 134

2023), which may overfit to the spurious features 135

of the datasets and fail to capture the underlying 136

truthfulness inside the model. In contrast, our ob- 137

jective in this work is to examine the existence 138

of a universal truthfulness hyperplane encoded in 139

the trained probes that can generalize well across 140

various datasets. 141

2.2 Formulation 142

As many works argue that the linear representations 143

for high-level semantic concepts in LLMs (Tigges 144

et al., 2024; Jiang et al., 2024) and the linear struc- 145

ture probes offer good interpretability, we employ 146

two linear probing methods: logistic regression 147

(LR) and mass mean (MM) to extract truthful- 148

ness from the hidden states of LLMs in this pa- 149
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Figure 2: Our curated datasets and tasks. Left (Blue) part represents the training tasks, while the right (Orange) represents the
test tasks.

per. Formally, given a dataset D = {(xi, yi)|i =150

1, · · · , N}, where xi is a data sample and yi ∈151

{0, 1} indicates whether xi is factually correct or152

not, we extract the representations by hi = ϕ(xi)153

and then categorize them into two parts: H+ =154

{hi|yi = 1} and H− = {hi|yi = 0}. As xi is155

a text sequence in our context, we compute hi as156

the representation of the last token in xi from a157

transformer model (Vaswani et al., 2017) across158

this paper, and in §2.4 we will discuss the specific159

hidden states locations (e.g., from which layer to160

extract hi) from transformers to extract hi. The LR161

and MM probes learn different truthfulness vectors:162

163 θlr = argmin
θ

∑
i

[
yi log

(
σ(θThi)

)
+

(1− yi) log
(
1− σ(θThi)

)]
,

(1)164

θmm = H+ −H−, (2)165

where H+ and H− correspond to the average166

representations of the sets H+ and H−, respec-167

tively. θlr is from logistic regression and θmm168

just aligns with the direction from H− to H+.169

After obtaining θ, classification is performed as170

yi = 1(θTh ≥ 0) where 1 is the indicator func-171

tion. This way, θTh = 0 essentially defines a172

linear hyperplane that is orthogonal to the direction173

of the truthful vector θ in the space of h to classify174

truthfulness, and we refer to it as the truthfulness175

hyperplane. The truthfulness hyperplane may be176

specific to datasets, or universal across different177

distributions that represent the self-awareness of178

the truthfulness of the model, which is the question 179

we aim to study in this work. 180

2.3 Data Curation 181

Previous probing papers all focus on training the 182

probes exclusively on one or one type of dataset so 183

that they may fail to obtain the universal truthful- 184

ness hyperplane and overfit to the specific data. For 185

example, Li et al. (2023b); Chen et al. (2023) pri- 186

marily train and evaluate on TruthfulQA (Lin et al., 187

2022), while Azaria and Mitchell (2023); Marks 188

and Tegmark (2023) mainly concentrate on datasets 189

containing single-sentence true or false statements. 190

Meanwhile, CH-Wang et al. (2023) only consider 191

the truthfulness probe on in-context generation 192

tasks. Some works have observed the failure of 193

generalization on OOD data samples (Burns et al., 194

2023; Marks and Tegmark, 2023; CH-Wang et al., 195

2023). Our experiments of OOD generalization 196

failure of probes solely trained on TruthfulQA in 197

§3.2 further validate that the learned hyperplane in 198

the probe is overfitting on the trained distribution 199

and not universal. 200

Therefore, to find the potentially universal truth- 201

fulness hyperplane, we create and collect a variety 202

of datasets used for hallucination detection. Fol- 203

lowing the task taxonomy from T0 and Flan (Sanh 204

et al., 2022; Wei et al., 2022), we create a col- 205

lection of 49 datasets in 17 tasks,1 shown in Fig- 206

1The term ‘task’ is used to refer to a group of similar
datasets.
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ure 2. We aim to conduct hallucination detection207

that requires both correct and incorrect data. To208

collect incorrect data points, for datasets that pair209

with false answers, such as multiple-choice ques-210

tions, we select the wrong answers randomly as211

the responses. For text generation tasks that typ-212

ically only consist of a single correct answer, we213

employ two different strategies to produce incor-214

rect data examples: For the grounding-based text215

generation dataset E2ENLG (Dušek et al., 2020),216

we randomly replace attributes to produce false217

attributes. Meanwhile, we utilize GPT-3.5-turbo218

for WEBNLG (Gardent et al., 2017) and GPT-4-219

turbo for other datasets (e.g. TriviaQA (Joshi et al.,220

2017)), to generate convincing but false answers.221

As shown in Figure 2, we split the tasks into222

training tasks and test tasks to evaluate cross-task223

generalization. For each dataset, we use a prompt224

template to format the input and divide the dataset225

into training, validation, and test splits. It is impor-226

tant to note that the training split for every dataset227

consists of up to 800 data samples and each valida-228

tion split has 100 data samples, while the remaining229

samples are used as the test splits. We find that 800230

training samples for each dataset are enough to231

train the probe and we do not observe significant232

gains as we further increase the training samples, as233

we will show in §3.5. More details on data curation234

are discussed in Appendix A.235

2.4 The Probe Design236

Input Representations: In §2.2 we have de-237

scribed to use the representation of the last token238

of the input sequence as the feature h. However,239

the specific locations inside the transformer model240

to extract the representations are still up to decide –241

for example, which layer of hidden states to use?242

Shall we use attention activation or layer residual243

activation? Various previous studies have explored244

probing on different types of representations. Li245

et al. (2023b); Campbell et al. (2023) conduct truth-246

fulness probing on the attention head outputs, an-247

other line of works consider using the layer residual248

activations (Burns et al., 2023; Azaria and Mitchell,249

2023; Marks and Tegmark, 2023). Among these250

works, Burns et al. (2023) select the last layer resid-251

ual activation as input to train probes, while Azaria252

and Mitchell (2023); Marks and Tegmark (2023)253

utilize specific intermediate layers to train probes.254

Based on our preliminary experiments, we deter-255

mine that attention head outputs serve as an effec-256

tive representation, denoted as h, for training our257

probe. We will report the ablation results in §3.5 258

to compare attention head outputs to layer residual 259

stream activations. Besides, one layer, or especially 260

one attention head may not be expressive enough, 261

and the truthfulness inside the model may be cap- 262

tured by different locations of representations to- 263

gether. Therefore, we consider combining the at- 264

tention heads across different layers. Relevantly, 265

CH-Wang et al. (2023) train probes in each layer 266

respectively and ensemble all of them to make the 267

final prediction. However, we argue that using all 268

hidden states inside the model results in significant 269

redundancy during training and inference time, and 270

it is likely that only a small fraction of the hidden 271

states capture the truthfulness information. There- 272

fore, we adopt a hidden states location selection 273

strategy to select and combine certain representa- 274

tions of the last token in the input sequence to train 275

the probe, as we detail next. An overview of the 276

input feature extraction is illustrated in Figure 1. 277

Selecting Hidden States Locations: We hypoth- 278

esize that only a small fraction of the representa- 279

tions in the transformer model is related to truth- 280

fulness, and within these hidden states, different 281

locations may contain varying information about 282

the truthfulness of diverse datasets or different as- 283

pects of the same dataset. Therefore, we perform 284

a preliminary probe training procedure to select 285

the specific locations of representations of the last 286

token. Concretely, we train a preliminary probe 287

for each attention head across all layers of the last 288

token respectively on the aggregated training splits 289

of the training tasks, which leads to 1024 (32 layers 290

x 32 heads) different probes based on LLaMA2-7b- 291

chat (Touvron et al., 2023b) representations. Then 292

we measure the truthfulness classification accura- 293

cies of these probe models on the validation split 294

of each dataset in the training tasks respectively. 295

Subsequently, for each validation split, we select 296

the top num locations with the highest accuracy. 297

Such a procedure will select out at most 41 ∗ num 298

locations in total after removing duplicates where 299

41 is the number of validation splits. Finally, we 300

concatenate the representations of all these selected 301

locations as the input to train the final probe model. 302

num is a tunable hyperparameter and we find that 303

larger num does not always produce better results 304

– in fact, in our experiments a num equal to 1 or 2 305

typically yields the best performance. We include 306

the ablation results on num in Appendix B. 307
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Figure 3: Examples of sparsity test on different datasets using the logistic regression (LR) and the mass mean (MM) probe.

Sparsity of Truthfulness Features: Even308

though we select only a small fraction of hidden309

representations from the model, the overall input310

features are still high-dimensional. Inspired311

by Gurnee et al. (2023), which examines the312

sparsity of learned representations by k-sparse313

probes trained on over 100 distinct features,314

we consider enforcing sparsity constraints in315

our probe design. Specifically, we evaluate the316

sparsity of truthfulness by employing the linear317

ranking method that utilizes the weights of the318

trained classifiers to rank the neurons and selects319

those with high ranks (Dalvi et al., 2019) – we320

identify the indices of the largest k values in321

|θ|, then we index the corresponding k features322

from the original h to form the new input feature.323

Our preliminary sparsity test, conducted on a324

single dataset and one attention head output,325

demonstrates that reducing the number of neurons326

by nearly half does not decrease task performance,327

as shown in Figure 3, where the experiment details328

can be found in Appendix C. Consequently, we329

introduce this tunable hyperparameter k used to330

compress each representation into k dimensions.331

The hyperparameter k can be set as 64 or 128,332

with 128 representing the full dimensionality333

of the attention head output for our used 3334

models: LLaMA2-7b-chat (Touvron et al., 2023b),335

LLaMA2-13b-chat (Touvron et al., 2023b) and336

Mistral-7b (Jiang et al., 2023).337

3 Experiment338

3.1 General Setup339

We experiment under three evaluation settings:340

cross-task, cross-domain, and in-domain. In each341

setting, we evaluate on the same test tasks (3 tasks:342

sentence completion, short answer close book QA343

and summarization tasks, 8 datasets) shown in Fig-344

ure 2. For a given value of the hyperparameter345

num, we always adopt the validation splits of the346

training tasks as validation data for selecting num347

positions. Concretely, for (1) Cross-Task, the train- 348

ing data are the training splits of the training tasks; 349

(2) Cross-Domain, the training data include the 350

training splits of all the training tasks plus all the 351

datasets within the current test task, except for the 352

test dataset itself; and (3) In-Domain, we utilize 353

the training splits of all the datasets – including 354

the training split of the test dataset itself – to train 355

the probe. Generally, we emphasize the cross-task 356

results the most which we think reflects whether 357

the learned hyperplane can generalize in the wild 358

and is universal. We mainly conduct our experi- 359

ments with the LLaMA2-7b-chat model (Touvron 360

et al., 2023b), while in §3.4 we experiment with 361

the Mistral-7b-v0.1 base model (Jiang et al., 2023) 362

and the LLaMA2-13b-chat model (Touvron et al., 363

2023b) as well. More details on the setup can be 364

found in Appendix E. 365

Hyperparameters: There are two hyperparam- 366

eters to tune in our probe model, num, which de- 367

cides the number of representations to the input, 368

and k which denotes the compressed dimensions 369

for every representation as indicated in §2.4. Hy- 370

perparameter tuning of num and k is exclusively 371

performed on the test splits of the training tasks 372

from Figure 2, ensuring that we never use the val- 373

idation or test splits of our test tasks to select the 374

hyperparameters. Please see Appendix D for de- 375

tails on hyperparameter tuning. 376

Baselines: We mainly compare our probe method 377

with two baselines. (1) Self-Eval (Kadavath et al., 378

2022): In this approach, we directly prompt the 379

model to assess the correctness of each data sample 380

by the prompt such as “Is the answer correct or 381

wrong?”. Then we constrain the model to decode 382

only from “correct” or “wrong” tokens. (2) Proba- 383

bility: This method calculates the probability of an- 384

swers in data samples. In cases where the datasets 385

contain long answers, such as TruthfulQA (Lin 386

et al., 2022) and E2ENLG (Dušek et al., 2020), we 387
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Method In-distribution Average OOD

Random 50.00 50.00
FT 79.50 56.51
Self-Eval 62.96 63.31
Probability 55.96 –
Probe-LR 82.28 54.44
Probe-MM 77.08 50.71

Table 1: The in-distribution and OOD accuracy of different
probes trained on TruthfulQA, Self-Eval, Probability, and FT
(finetuning) method (%).

normalize log probability by length to compute the388

per-token log probability. We classify the exam-389

ple to be factually correct when the probability is390

larger than a threshold τ , which is a hyperparame-391

ter that is tuned on different training splits. Specif-392

ically, these splits are from datasets of different393

tasks for cross-task settings, a randomly different394

dataset within the same task for cross-domain set-395

tings, and the same dataset for in-domain settings.396

For both Self-Eval and Probability baselines, we397

select data samples from these different training398

splits in the three settings as few-shot demonstra-399

tions. In addition to the baselines, we also report400

results from the Finetuning method, where we fine-401

tune the entire model on the same training data402

as our probe to judge the truthfulness of the data403

sample. We note that the Finetuning method ap-404

proximately serves as an upper bound of our probe405

method. This is because our work aims to identify406

the potentially universal truthfulness hyperplane407

where we do not change the model parameters or408

hidden states, while finetuning the models is given409

much more flexibility by updating the models.410

3.2 Dedicated Probes Fail to Generalize411

Before discussing the main results of our probe412

model, we first reproduce the settings in previ-413

ous works where we train our probe model on the414

TruthfulQA dataset (Lin et al., 2022; Chen et al.,415

2023). TruthfulQA is a popular dataset measuring416

the truthfulness of models, and many works con-417

duct truthfulness probing trained on TruthfulQA418

and are dedicated to improving the TruthfulQA per-419

formance (Li et al., 2023b; Chen et al., 2023). It420

is unknown whether the linear probes from previ-421

ous works identify the real truthfulness hyperplane,422

or only overfitting to the truthfulness features of423

the TruthfulQA dataset. Specifically, we train the424

probe on TruthfulQA and utilize the TruthfulQA425

validation split to tune the hyperparameters. We426

evaluate the probe on the TruthfulQA test split as427

in-distribution test, as well as 8 other datasets as428

out-of-distribution (OOD) test, which are from the429

test tasks in Figure 2. We report the average results, 430

while the details of baselines and OOD results for 431

every dataset can be seen in Appendix E.1. 432

Results: The in-distribution and out-of- 433

distribution (OOD) performance are reported 434

in Table 1. For OOD evaluation, we present 435

the average accuracy across the test tasks. Our 436

findings indicate that in the in-distribution Truth- 437

fulQA test, the probe method surpasses both the 438

Self-Eval and Probability baselines by nearly 20 439

percentage points. In stark contrast, the probe 440

method’s performance deteriorates significantly 441

when tested on OOD data, lagging behind the 442

Self-Eval baseline by approximately 10 percentage 443

points. The probe’s accuracy, close to the chance 444

level at 50, implies that the learned hyperplane 445

of the probe fails to contain any truthfulness 446

information pertinent to certain OOD datasets. 447

This OOD generalization failure observation is 448

consistent with prior research (CH-Wang et al., 449

2023; Marks and Tegmark, 2023), which suggests 450

that representations of truthfulness are highly 451

task-specific and distribution-dependent. The 452

failure underscores that the hyperplane derived 453

from training solely on the TruthfulQA dataset is 454

not the universal truthfulness hyperplane. 455

3.3 Main Results – On the Universal 456

Truthfulness Hyperplane 457

To investigate the existence of the universal truth- 458

fulness hyperplane, we report the results of both 459

the logistic regression probe (Probe-LR) and the 460

mass mean probe (Probe-MM) in the cross-task, 461

cross-domain, and in-domain settings respectively. 462

Descriptions of the two probes can be found in §2.1. 463

In Table 2, we observe that both Probe-LR and 464

Probe-MM consistently outperform the Self-Eval 465

and Probability baselines across all three settings, 466

with average improvements of 5.10, 4.35, 6.69 467

absolute percentage points respectively over the 468

stronger baseline. The Probe-MM method outper- 469

forms the two baselines on 7 out of 8 test datasets 470

in the cross-task setting. Notably, both probe 471

methods achieved approximately 70% accuracy 472

in the challenging cross-task setting. Compared 473

to previous OOD generalization failure, our re- 474

sults convey positive signals on the existence of 475

a universal truthfulness hyperplane inside LLMs. 476

Comparing Probe-LR to Probe-MM, Probe-LR out- 477

performs Probe-MM in both cross-domain and in- 478

domain settings, while Probe-MM exhibits slightly 479
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Method Short Answer Close Book QA Summarization Sentence Completion AverageNQ Trivia QA SciQ XSum CNN DM SC HS CoPA

Cross-task

FT 69.92 73.34 80.00 78.66 85.68 72.07 73.68 88.00 77.67
Self-Eval 56.80 69.90 81.70 67.00 65.98 65.71 56.48 54.50 64.76
Probability 57.56 68.96 68.05 52.12 61.94 56.95 49.30 72.50 60.92
Probe-LR 63.90 71.36 76.90 63.98 80.66 70.71 64.40 62.00 69.24
Probe-MM 58.52 71.88 82.60 75.82 71.38 73.06 59.50 71.00 70.47

Cross-domain

FT 70.54 73.54 80.70 58.20 95.82 71.43 73.18 85.50 76.11
Self-Eval 56.78 68.92 81.55 67.00 65.98 67.40 61.52 59.50 66.08
Probability 57.18 67.72 65.70 53.50 58.04 68.15 49.24 81.00 62.57
Probe-LR 64.66 71.48 79.45 65.64 85.34 68.79 67.06 68.50 71.36
Probe-MM 58.64 71.82 82.80 67.66 73.22 72.80 63.60 65.50 69.50

In-domain

FT 70.16 76.80 83.85 96.20 99.38 74.27 87.38 93.50 85.19
Self-Eval 57.60 70.96 84.30 67.00 65.98 66.92 58.04 78.50 68.66
Probability 56.66 70.54 85.20 54.46 62.52 69.70 52.68 88.50 67.53
Probe-LR 67.34 74.50 82.80 90.20 95.88 72.98 73.80 75.00 79.06
Probe-MM 58.56 71.96 83.55 78.08 76.88 72.47 61.12 70.50 71.64

Table 2: Results of training on diverse datasets, where FT indicates the Finetuning method, SC indicates the Story Cloze dataset,
and HS indicates the HellaSwag dataset.

better generalization performance in the cross-task480

scenario, which is expected since the Probe-MM481

does not specifically “train” the classifier through482

optimization, thus less likely to overfit to spuri-483

ous patterns of the training data, similar findings484

have been presented before in Marks and Tegmark485

(2023). Notably, Finetuning (FT) achieves the high-486

est accuracy, reaching over 75% accuracy across487

all three settings. These results demonstrate the488

practicality of FT on this task, and imply that a489

well-tuned model may be able to classify truth-490

fulness reasonably well. However, we note that491

Finetuning neither produces any interpretation on492

the hidden states of the model, nor answers our cen-493

tral question on whether a universal truthfulness494

hyperplane exists of not. We emphasize our focus495

of this work on exploring whether LLMs’ hidden496

states express the inner notion of truthfulness in a497

simple way, i.e., with a linear hyperplane.498

3.4 Experiments on Other Models499

We also explore our method in the Mistral-7b-v0.1500

base model (Jiang et al., 2023) and the LLaMA2-501

13b-chat model (Touvron et al., 2023b), conducting502

cross-task experiments. The results are shown in503

Table 3. Consistent with the findings from the504

LLaMA2-7b-chat experiments, Probe-MM demon-505

strates superior generalization compared to Probe-506

LR, particularly for the Mistral-7b model. Specifi-507

cally, Probe-MM achieves better performance than508

both the Self-Eval and Probability baselines for509

both models, exhibiting a substantial improvement510

of 12.81 absolute points for Mistral-7b and 1.23511

points for LLaMA2-13b-chat. Moreover, Probe-512

MM outperforms the baselines on 7 out of 8513

datasets for Mistral-7b and 5 out of 8 datasets514

for LLaMA2-13b-chat. Notably, both Mistral-7b515

and LLaMA2-13b-chat achieve higher cross-task516

accuracies than LLaMA-7b-chat in Table 2, with517

Mistral-7b reaching 77.11 and LLaMA2-13b-chat 518

reaching 73.88, revealing a positive trend that the 519

universal truthfulness hyperplane within the hidden 520

states of more advanced LLMs tends to become 521

more pronounced. The details for hyperparameters 522

tuning can be seen in Appendix D. 523

3.5 Analysis 524

In this section, we perform a series of analysis and 525

ablation experiments to justify our probe designs 526

and gain deeper insights about the approach. 527

Which representation is better? Attention 528

Heads or Layer Activations? In §2.4, we dis- 529

cussed the choice of input representation as part 530

of the probe design, and we chose to use the at- 531

tention heads in our main experiments. Here we 532

perform ablation an this design, comparing atten- 533

tion head and layer activations which are outputs 534

after residual connections of the transformer layer. 535

Concretely, we train LR and MM probes using dif- 536

ferent numbers of training datasets on attention 537

head outputs and layer residual activations respec- 538

tively, conducting the cross-task experiments. In 539

Figure 4a we show that probes based on attention 540

head outputs consistently outperform those trained 541

on layer residual activations at least 3 points. More 542

setup details can be seen in Appendix F. As a result, 543

we utilize the attention head output representations 544

for training probes in our paper. 545

Effect of Number of Training Tasks: In light of 546

the observed benefits of training on diverse datasets, 547

a critical ablation study focuses on the impact of 548

the quantity of training datasets on model perfor- 549

mance. To investigate this, we incrementally in- 550

crease the number of training tasks up to 14 (all 551

training tasks), with a corresponding increase in 552

the number of datasets up to 41, conducting cross- 553

task experiments of training on these incremented 554
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Model Method Short Answer Close Book QA Summarization Sentence Completion AverageNQ Trivia QA SciQ XSum CNN DM SC HS CoPA

Mistral-7b

Self-Eval 60.44 66.08 79.35 61.34 52.96 51.84 50.76 50.00 59.10
Probability 61.00 74.34 60.45 56.36 57.04 66.81 50.40 88.00 64.30
Probe-LR 67.10 78.08 78.60 75.90 76.30 68.95 59.76 72.50 72.15
Probe-MM 63.84 77.56 87.35 84.60 81.74 71.75 69.00 81.00 77.11

LLaMA2-13b-chat

Self-Eval 59.14 71.52 83.40 76.94 80.60 68.92 61.48 83.50 72.65
Probability 61.90 72.34 74.70 54.60 61.14 70.34 49.36 84.50 66.11
Probe-LR 66.88 76.40 79.50 72.22 84.50 72.31 56.24 72.50 72.57
Probe-MM 59.74 74.62 85.80 71.66 81.54 71.14 67.04 79.50 73.88

Table 3: The result of cross-task experiments on Mistral-7b and LLaMA2-13b-chat models, where SC indicates the Story Cloze
dataset, and HS indicates the HellaSwag dataset.
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using attention head outputs and
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Figure 4: The analysis experiment results of training on attention head and layer activations, scaling number of training tasks,
and varying training split size per task.

tasks. Our findings, illustrated in Figure 4b, demon-555

strate a clear trend: as the number of training tasks556

increases, there is a general corresponding enhance-557

ment in average accuracy. This trend further indi-558

cates that training on more diverse datasets helps559

to learn a more universal truthfulness hyperplane.560

The Finetuning (FT) approach underperforms in561

comparison to the Probe method, when using one562

training task. This aligns with the observations563

reported by Clymer et al. (2023). However, our564

study reveals a shift when the diversity of train-565

ing datasets is expanded: the generalization perfor-566

mance of the FT method significantly outstrips that567

of the Probe method.568

Effect of Training Split Size for each Training569

Dataset: To explore the influence of sampled570

data volume for each dataset, we manipulate the571

training split size for each dataset and examine its572

effect on performance. The results are visualized573

in Figure 4c. Surprisingly, the results indicate that574

training even with as few as 10 data points per575

dataset, the performance is comparable to that of576

using 800 samples per dataset. This finding could577

be attributed to the probes’ linear nature, making578

it not rely on extensive training data but only mini-579

mal data. These results are consistent with previous580

studies by Li et al. (2023b) and Zou et al. (2023),581

highlighting the effectiveness of training probes582

with limited data.583

4 Related Works 584

Our work is related to a series of works trying to 585

identify the truthfulness hyperplane inside LLMs. 586

The existence of the universal truthfulness hyper- 587

plane is the foundation when considering truthful- 588

ness as an attribute for probing. Without such a 589

hyperplane, it implies that all efforts in truthfulness 590

probing (Burns et al., 2023; Azaria and Mitchell, 591

2023; Zou et al., 2023; Marks and Tegmark, 2023; 592

Li et al., 2023b; Chen et al., 2023) might merely be 593

overfitting to spurious features of the task, rather 594

than capturing genuine truthfulness. Based upon 595

such insights, several studies have also explored 596

interventions to enhance model truthfulness by 597

utilizing the vectors identified through probes (Li 598

et al., 2023b; Chen et al., 2023; Zou et al., 2023). 599

Generally, utilizing the learned truthful vector, they 600

edit the representation space directly (Li et al., 601

2023b; Chen et al., 2023) or optimize the repre- 602

sentation space towards more truthful states (Zou 603

et al., 2023). 604

5 Conclusion 605

In this paper, we examine whether a universal truth- 606

fulness hyperplane exists inside the model, through 607

designing and training a probe on diverse datasets. 608

Our approach greatly improves existing results and 609

conveys positive signals on the existence of such a 610

universal truthfulness hyperplane. 611
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Limitations612

First, there are several other methods to probe the613

language model’s knowledge or hallucination, such614

as CCS (Burns et al., 2023) and LAT (Zou et al.,615

2023). In our paper, we only consider the com-616

monly used supervised probing methods: logistic617

regression and mass mean. Further work can ex-618

plore other methods. Second, although we strive619

to include a wide range of diverse datasets, there620

is still a gap between our curated datasets and real-621

world data on truthfulness. Third, we leave the in-622

tervention work as future research to verify whether623

the identified vector is causally related to model be-624

havior. Fourth, although we are talking about truth-625

fulness, the absolute detection accuracy is restricted626

by the knowledge of the model. The separation of627

correct and incorrect data within hidden representa-628

tions is contingent upon the model’s understanding.629

Consequently, our curated datasets may include630

noise stemming from the divergence between the631

model’s knowledge and real-world knowledge, or632

from instances that exceed the model’s knowledge633

boundaries. We hypothesis that, in most cases, the634

knowledge of models aligns with the knowledge in635

data so that the Probe trained on our data can well636

discern the truthful or untruthful belief of the model.637

Lastly, our experiments are limited to 7B and 13B638

size models, which demonstrate that stronger mod-639

els exhibit a better truthfulness hyperplane. Future640

work can investigate whether the hidden states of641

even larger models, such as 70B models, are more642

linearly separable on truthfulness.643
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A Data Curation 1029

We categorize datasets into one of the following 1030

task categories. For each dataset, we select a single 1031

prompt template to construct the dataset to reduce 1032

complexity. We utilize a maximum of 5000 data 1033

points for the test set for each dataset (if a dataset 1034

contains fewer than 5000 data points, we include 1035

all of them). Details of the used prompt and how 1036

to construct the wrong data points can be found 1037

below. 1038

A.1 Natural language Inference 1039

RTE RTE is a testing textual entailment dataset 1040

(Wang et al., 2019). We use one prompt template 1041

from Sanh et al. (2022): 1042

1043

Question: [premise] 1044

Does this mean that [hypothesis] is true? A) yes 1045

or B) no. 1046

Answer: [label]. 1047

1048

Here [label] can be “yes” or “no”. By selecting the 1049

opposite label, we construct the wrong data points. 1050

1051
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QNLI The QNLI (Question Natural Language1052

Inference) dataset is a collection of question-1053

answer pairs, where the task is to determine1054

whether the answer to a question is entailed in a1055

given sentence (Wang et al., 2019). We use one1056

prompt template from Sanh et al. (2022):1057

1058

Can you answer the question [question] based1059

only on the following:1060

[sentence]1061

Answer: [label].1062

1063

Here [label] can be “yes” or “no” By selecting the1064

opposite label, we construct the wrong data points.1065

1066

ANLI ANLI (Nie et al., 2020) is a difficult1067

and adversarial NLI dataset. We use one prompt1068

template from Sanh et al. (2022):1069

1070

[premise] Using only the above description and1071

what you know about the world, [hypothesis] is1072

definitely correct, incorrect, or inconclusive?1073

Answer: [label].1074

1075

Here [label] can be “Correct”, “Inconclusive”, or1076

“Incorrect”. By randomly selecting the wrong label,1077

we construct the wrong data points.1078

1079

A.2 Summarization1080

CNN Daily Mail CNN Daily Mail is a news1081

summarization task (Hermann et al., 2015; See1082

et al., 2017). Given an article, the task is to1083

generate the summary. We construct this dataset1084

using the following prompt:1085

1086

Consider the accuracy of the summary of the1087

following article.1088

Article: [article]1089

Summary: [summary]1090

1091

We leverage gpt-4-1106-preview to generate1092

wrong summaries for CNN DailyMail dataset us-1093

ing the following instruction in Table 4, which is1094

adapted from Li et al. (2023a).1095

XSum Xsum is a summarization task with more1096

concise summary (Narayan et al., 2018). We1097

also use gpt4-1106-preview to generate wrong1098

summaries using the same instruction as CNN1099

Daily Mail in Table 4.1100

1101

I want you act as a hallucination summary generator. Given
a document and the right summary, your objective is to write
a hallucinated summary that sounds plausible but is factually
incorrect. You SHOULD write the hallucinated summary
using the following method (each with some examples):

You are trying to write a summary but there is a factual contra-
diction between the summary and the document.
#Document#: Christopher Huxtable, 34, from Swansea, had
been missing since the collapse in February. His body was
found on Wednesday and workers who carried out the search
formed a guard of honour as it was driven from the site in
the early hours of the morning. Ken Cresswell, 57, and John
Shaw, 61, both from Rotherham, remain missing. The body of
a fourth man, Michael Collings, 53, from Brotton, Teesside,
was previously recovered from the site. Swansea East MP
Carolyn Harris, who has been involved with the family since
the incident, said they still did not know all the facts about
the collapse. She said: "I feel very sad. My heart and my
prayers go out to the family who have waited desperately for
Christopher’s body to be found. They can finally have closure,
and say goodbye to him and grieve his loss. "But let’s not
forget that there’s two other families who are still waiting for
their loved ones to be returned." The building was due for
demolition when it partially collapsed in February.
#Right Summary#: A body found in the ruins of a collapsed
building at Didcot Power Station has been identified.
#Hallucinated Summary#: The body of a man whose body was
found at the site of the Swansea Bay Power Station collapse
has been removed from the site.

You should try your best to make the summary become hal-
lucinated. #Hallucinated Summary# can only have about 5
more words than #Right Summary#.

#Document#: [document]
#Right Summary#: [summary]
#Hallucinated Summary#:

Table 4: Instructions used for CNN DailyMail and XSum.

A.3 Sentiment Analysis 1102

IMDB IMDB is a sentiment analysis dataset 1103

from Maas et al. (2011). Given a movie review, the 1104

task is to determine the sentiment is positive or 1105

negtive. We use one prompt template from Sanh 1106

et al. (2022): 1107

1108

[review] 1109

Is this review positive or negative? 1110

[label]. 1111

1112

Here [label] can be “Positive” or “Negative”. By 1113

selecting the opposite label, we construct the 1114

wrong data points. 1115

1116

Yelp Polarity Yelp is a sentiment dataset from 1117

Zhang et al. (2015). Given a yelp review, the task 1118

is to determine whether the review is good or 1119

bad. We use one prompt template from Sanh et al. 1120

13



(2022):1121

1122

Review:1123

[review]1124

Overall rating (Good or Bad):1125

[label].1126

1127

Here [label] can be “Good” or “Bad”. By selecting1128

the opposite label, we can construct the wrong data1129

points.1130

1131

A.4 Topic Classification1132

AG News AG News is a topic classification1133

dataset from Zhang et al. (2015). Given a news1134

article, the task is to determine the topic of the1135

article. We use one prompt template from Sanh1136

et al. (2022):1137

1138

Question: [text]1139

Which of the following sections of a newspaper1140

would this article likely appear in? “World News”,1141

“Sports”, “Business”, or “Science and Technol-1142

ogy”?1143

Answer: [label].1144

1145

By selecting wrong label, we construct the wrong1146

data points.1147

1148

DBPedia DBpedia is a topic classification1149

dataset constructed by picking 14 non-overlapping1150

classes from DBpedia 2014 Zhang et al. (2015).1151

We use the prompt template in Burns et al. (2023):1152

1153

Consider the following example:1154

[text]1155

Which is the topic of this example, [label1] or1156

[label2]?1157

[label].1158

1159

Here [label] can choose from “Company”, “Edu-1160

cational Institution”, “Artist”, “Athlete”, “Office1161

Holder”, “Mean Of Transportation”, “Building”,1162

“Natural Place”, “Village”, “Animal”, “Plant”, “Al-1163

bum”, “Film”, “Written Work”. By choosing the1164

wrong label from [label1] and [label2], we con-1165

struct the wrong data points.1166

A.5 Statement Fact Checking1167

Counterfact Couterfact is a model editing1168

dataset with a correct target and a wrong target1169

for a fact knowledge sentence (Meng et al., 2022). 1170

By selecting correct targets or wrong targets, we 1171

construct correct data points and wrong data points. 1172

We directly use the sentence without any prompt 1173

template. 1174

1175

[statement] 1176

1177

Creak Creak is a dataset for commonsense 1178

reasoning over entity knowledge with sentences 1179

labeled true or false (Onoe et al., 2021). Same as 1180

Counterfact, we don’t use any prompt template. 1181

1182

[statement] 1183

1184

SAPLMA SAPLMA is a true-false dataset with 1185

statements covering the following topics: “Cities”, 1186

“Inventions”, “Chemical Elements”, “Animals”, 1187

“Companies”, and “Scientific Facts” (Azaria 1188

and Mitchell, 2023). Same as Counterfact and 1189

Creak, we directly use the statements as data points. 1190

1191

[statement] 1192

1193

A.6 Paraphrase Identification 1194

MRPC MRPC dataset is a collection of sentence 1195

pairs with binary labels indicating whether the pair 1196

is a true paraphrase or not (Wang et al., 2019). We 1197

use one prompt template from Sanh et al. (2022): 1198

1199

Question: I want to know whether the following 1200

two sentences mean the same thing. 1201

[sentence1] 1202

[sentence2] 1203

Do they? 1204

Answer: [label]. 1205

1206

Here [label] can be “Yes” or “No”. By selecting 1207

the opposite label, we construct the wrong data 1208

points. 1209

1210

QQP QQP dataset is a dataset consisting of pairs 1211

of questions, which labeled as either “duplicate” 1212

or “not duplicate”, indicating whether the two 1213

questions are semantically equivalent or not (Wang 1214

et al., 2019). We use one prompt template from 1215

Sanh et al. (2022): 1216

1217

14



Are the questions [question1] and [question2]1218

asking the same thing?1219

Answer: [label].1220

1221

Here [label] can be “Yes” or “No”. By choosing1222

the opposite label, we construct the wrong data1223

points.1224

1225

PAWS PAWS dataset consists of sentence pairs1226

annotated as either semantically equivalent (i.e.,1227

paraphrases) or non-equivalent (Zhang et al.,1228

2019). We use one prompt template from Sanh1229

et al. (2022):1230

1231

Sentence 1: [sentence1]1232

Sentence 2: [sentence2]1233

Question: Do Sentence 1 and Sentence 2 express1234

the same meaning? Yes or No?1235

Answer: [label].1236

1237

Here [label] can be “Yes” or “No”. By choosing1238

the opposite label, we construct the wrong data1239

points.1240

1241

A.7 Short Answer Close Book QA1242

Natural Questions Here we use nq open dataset1243

consisting of questions (from Google Search) and1244

short answers (Kwiatkowski et al., 2019). We use1245

the following prompt:1246

1247

Question: [question]1248

Answer: [answer]1249

1250

We leverage gpt-4-1106-preview to generate1251

false answers, using the following instruction in1252

Table 5:1253

Given a question and correct answer, you are asked to generate
a reasonable but false answer. Here are some examples.
#Qusetion#: where did they film hot tub time machine
#Correct Answer#: Fernie Alpine Resort
#False Answer#: Town of Hobbiton, New Zealand

#Qusetion#: who does annie work for attack on titan
#Correct Answer#: Marley
#False Answer#: The Survey Corps

Here is the question and its correct answer, you need to gener-
ate a reasonable but false answer.
#Question#: [question]
#Correct Answer#: [answer]
#False Answer#:

Table 5: Instructions used for Natural Questions

Trivia QA Trivia QA is a reading comprehension 1254

dataset containing over 650K question-answer- 1255

evidence triples (Joshi et al., 2017). We only retain 1256

questions and answers and use the same prompt as 1257

Natural Questions. 1258

1259

Question: [question] 1260

Answer: [answer] 1261

1262

We leverage gpt-4-1106-preview to generate 1263

false answers, using the following instruction in 1264

Table 6. 1265

Given a question and correct answer, you are asked to generate
a reasonable but false answer. Here are some examples.
#Question#: Wolf Mankowitz wrote the 1953 novel ‘A Kid
For Two. . . ’ what?
#Correct Answer#: Farthings
#False Answer#: Kookaburras

#Question#: The 2013-4 MacRobertson Shield international
competition, hosted in New Zealand, was in what sport?
#Correct Answer#: Croquet
#False Answer#: Curling

Here is the question and its correct answer, you need to gener-
ate a reasonable but false answer.
#Question#: [question]
#Correct Answer#: [answer]
#False Answer#:

Table 6: Instructions used for Trivia QA

SciQ The SciQ dataset contains crowdsourced 1266

science exam questions about Physics, Chemistry 1267

and Biology, among others with 4 answer options 1268

each (Welbl et al., 2017). We select one answer 1269

for each data and use same prompt as Natural 1270

Questions. 1271

1272

Question: [question] 1273

Answer: [answer] 1274

1275

By selecting the wrong answer, we construct the 1276

wrong data points. 1277

1278

A.8 Long Answer Close Book QA 1279

Natural Questions Long To increase the 1280

diversity and better test generalization, we use 1281

gpt-4-1106-preview to rewrite the short answer in 1282

Natural Questions into one sentence long answer. 1283

Still, we use the same prompt template as Natural 1284

Questions. 1285

1286

Question: [question] 1287
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Answer: [answer]1288

1289

We leverage gpt-4-1106-preview to paraphrase1290

the short answer into a long answer in Natural Ques-1291

tions dataset using the following instruction in Ta-1292

ble 7.1293

You need to rewrite the following short answers into a longer,
complete sentence as the answer, even if the answer is incor-
rect, do not change the meaning.
#Qusetion#: where did the allies go after north africa
#Short Answer#: France
#Long Answer#: After the successful North African campaign,
the Allies proceeded to advance towards France as part of their
strategic plan during World War II.

#Qusetion#: how many seasons of the bastard executioner are
there
#Short Answer#: three
#Long Answer#: The Bastard Executioner" consists of a total
of three seasons.

Here is the question and its short answer, you only need to
generate a long answer. Remember don’t change the meaning,
even if the answer is incorrect.
#Question#: [question]
#Short Answer#: [answer]
#Long Answer#:

Table 7: Instructions used for Natural Questions Long

Trivia QA Long We also rewrite the short1294

answer into long answer in Trivia QA to construct1295

Trivia QA Long. We use the same prompt:1296

1297

Question: [question]1298

Answer: [answer]1299

1300

We leverage gpt-4-1106-preview to paraphrase1301

the short answer into a long answer in Trivia QA1302

dataset using the following instruction in Table 8.1303

A.9 Reading Comprehension (QA)1304

MultiRC MultiRC (Multi-Sentence Reading1305

Comprehension) is a dataset of short paragraphs1306

and multi-sentence questions with answers labeled1307

true or false (Khashabi et al., 2018). We use the1308

following prompt:1309

1310

Exercise: read the text and answer the question.1311

Text: [passage]1312

Question: [question]1313

Answer: [answer]1314

1315

Since MultiRC already has labeled wrong answers,1316

we construct the wrong data points using the1317

You need to rewrite the following short answers into a longer,
complete sentence as the answer, even if the answer is incor-
rect, do not change the meaning.
#Qusetion#: Wolf Mankowitz wrote the 1953 novel ‘A Kid
For Two. . . ’ what?
#Short Answer#: Pennies
#Long Answer#: Wolf Mankowitz, a notable author, penned
the 1953 novel titled "A Kid For Two Pennies," showcasing
his literary prowess and storytelling abilities.

#Qusetion#: Who is the patron saint of dancers?
#Short Answer#: St. Cecilia
#Long Answer#: St. Cecilia, a revered figure in religious
history, holds the esteemed title of being the patron saint
specifically designated to protect and guide dancers, bestowing
upon them blessings and interceding on their behalf.

Here is the question and its short answer, you only need to
generate a long answer. Remember don’t change the meaning,
even if the answer is incorrect.
#Question#: [question]
#Short Answer#: [answer]
#Long Answer#:

Table 8: Instructions used for Trivia QA Long

wrong answers. 1318

1319

SQuAD SQuAD is a reading comprehension 1320

dataset, consisting of questions on a set of 1321

Wikipedia articles, where the answer to every 1322

question is a segment of text, or span, from the 1323

corresponding reading passage, or the question 1324

might be unanswerable (Rajpurkar et al., 2016). 1325

We use one prompt template from Sanh et al. 1326

(2022): 1327

1328

Refer to the passage below and answer the fol- 1329

lowing question: 1330

Passage: [context] 1331

Question: [question] 1332

Answer: [answer] 1333

1334

We use gpt-4-1106-preview to generate false an- 1335

swers for SQuAD dataset using the instruction in 1336

Table 9. 1337

A.10 Reading comprehension multi-choice 1338

BoolQ BoolQ is a question answering dataset for 1339

yes/no questions with passages (Clark et al., 2019). 1340

We use the following prompt: 1341

1342

Passage: [passage] 1343

After reading this passage, I have a question: 1344

[question]? True or False? 1345

Answer: [answer]. 1346

1347
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Given a passage, a question and the right answer, your objec-
tive is to write a answer that sounds plausible (appears in the
passage) but is incorrect. Here is an example.
#Passage#: Super Bowl 50 was an American football game
to determine the champion of the National Football League
(NFL) for the 2015 season. The American Football Con-
ference (AFC) champion Denver Broncos defeated the Na-
tional Football Conference (NFC) champion Carolina Pan-
thers 24–10 to earn their third Super Bowl title. The game
was played on February 7, 2016, at Levi’s Stadium in the
San Francisco Bay Area at Santa Clara, California. As this
was the 50th Super Bowl, the league emphasized the "golden
anniversary" with various gold-themed initiatives, as well as
temporarily suspending the tradition of naming each Super
Bowl game with Roman numerals (under which the game
would have been known as "Super Bowl L"), so that the logo
could prominently feature the Arabic numerals 50.
#Question#: Where did Super Bowl 50 take place?
#Correct Answer#: Santa Clara, California
#False Answer#: San Francisco, California

#Passage#: Archaeological evidence shows that Homo erectus
lived in the region now known as Myanmar as early as 400,000
years ago. The first evidence of Homo sapiens is dated to about
11,000 BC, in a Stone Age culture called the Anyathian with
discoveries of stone tools in central Myanmar. Evidence of
neolithic age domestication of plants and animals and the use
of polished stone tools dating to sometime between 10,000 and
6,000 BC has been discovered in the form of cave paintings
near the city of Taunggyi.
#Question#: When was the extinct species believed to have
lived in Myanmar?
#Correct Answer#: 400,000 years ago
#False Answer#: 11,000 BC

Here is the passage question and its correct answer, you need
to generate a reasonable but false answer.
#Passage#: [passage]
#Question#: [question]
#Correct Answer#: [answer]
#False Answer#:

Table 9: Instructions used for SQuAD

[answer] can be “True” or “False”. By selecting1348

the opposite answer, we construct the wrong data1349

points.1350

1351

RACE RACE is a reading comprehension1352

dataset with passages, questions and four choices1353

collected from English examinations in China,1354

which are designed for middle school and high1355

school students (Lai et al., 2017). We use one1356

prompt template in Sanh et al. (2022).1357

1358

I’m taking a test and have to guess the right1359

answer to the question after the article.1360

Article: [article]1361

Question: [question]1362

Options: A: [options.0]1363

B: [options.1]1364

C: [options.2] 1365

D: [options.3] 1366

Answer: [answer]. 1367

1368

[answer] can be “A”, “B”, “C” or “D”. By selecting 1369

the wrong answer, we construct the wrong data 1370

points. 1371

1372

DREAM DREAM is a multiple-choice 1373

Dialogue-based Reading comprehension exam- 1374

ination dataset. In contrast to existing reading 1375

comprehension datasets (Sun et al., 2019). We use 1376

one prompt template from Sanh et al. (2022): 1377

1378

Dialogue: 1379

[dialogue] 1380

Question: [question] 1381

- choices[0] 1382

- choices[1] 1383

- choices[2] 1384

Answer: [answer] 1385

1386

[answer] is selected from three choices. By 1387

selecting wrong choices, we construct the wrong 1388

data points. 1389

1390

A.11 Sentence Completion 1391

CoPA CoPA is a causal reasoning task to 1392

determine either the cause or the effect of a given 1393

premise (Roemmele et al., 2011). We use one 1394

prompt template in Sanh et al. (2022): 1395

1396

Exercise: choose the most plausible alternative. 1397

[ premise ] 1398

{ if [question] == “cause” } because... { else } 1399

so... { endif } 1400

- [choice1] 1401

- [choice2] 1402

Answer: [answer] 1403

1404

[answer] is selected from the two choices. By 1405

selecting the wrong choice, we construct the wrong 1406

data points. 1407

1408

HellaSwag Hellaswag dataset is a benchmark 1409

dataset created for the task of commonsense 1410

reasoning and understanding, specifically for the 1411

task of predicting the correct continuation of a 1412

given sentence (Zellers et al., 2019). We use one 1413
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prompt template from Sanh et al. (2022):1414

1415

Complete the description with an appropriate1416

ending:1417

First, [sentence1] Then, [sentence2] ...1418

(a) choices[0]1419

(b) choices[1]1420

(c) choices[2]1421

(d) choices[3]1422

Answer: [answer]1423

1424

[answer] is selected from the four choices. By se-1425

lecting the wrong choices randomly, we construct1426

the wrong data points.1427

1428

Story Cloze Story Cloze is a commonsense1429

reasoning dataset for evaluating the choosing the1430

correct ending to a four-sentence story ability1431

(Mostafazadeh et al., 2017). We use one prompt1432

template from Sanh et al. (2022):1433

1434

[sentence1] [sentence2] [sentence3] [sentence4]1435

What is a possible continuation for the story1436

given the following options ?1437

- choices[0]1438

- choices[1]1439

Answer: [answer]1440

1441

[answer] is selected from two choices. By selecting1442

the wrong choices, we construct the wrong data1443

points.1444

1445

A.12 Close Book Multi-Choice QA1446

CommonsenseQA CommonsenseQA is a1447

multiple-choice question answering dataset1448

that requires different types of commonsense1449

knowledge to predict the correct answers (Talmor1450

et al., 2019). We use one prompt template from1451

Sanh et al. (2022):1452

1453

Question: Given the following options, what1454

do you think is the correct answer to the question1455

below:1456

[question]1457

Options:1458

- A: choices[0]1459

- B: choices[1]1460

- C: choices[2]1461

- D: choices[3]1462

- E: choices[4]1463

Answer: [answer]. 1464

1465

[answer] is selected from “A”, “B”, “C”, “D”, 1466

“E”. By randomly selecting wrong answers, we 1467

construct the wrong data points. 1468

1469

ARC ARC is a multi-choice QA dataset which 1470

requires knowledge and reasoning (Clark et al., 1471

2018). It includes challenge and easy parts. We 1472

use both parts. 1473

For arc easy part, we use one prompt template in 1474

Sanh et al. (2022): 1475

1476

[question] 1477

Options: 1478

- choices[0] 1479

- choices[1] 1480

- choices[2] 1481

- choices[3] 1482

Answer: [answer] 1483

1484

Here [answer] is selected from the two choices. By 1485

selecting wrong choices randomly, we construct 1486

the wrong data points. 1487

For arc challenge part, we also use one prompt 1488

template in Sanh et al. (2022): 1489

1490

Here’s a problem to solve: [question] 1491

Among the 4 following options, which is the 1492

correct answer? 1493

- A: choices[0] 1494

- B: choices[1] 1495

- C: choices[2] 1496

- D: choices[3] 1497

Answer: [answer]. 1498

1499

Here [answer] is selected from “A”, “B”, “C”, “D”. 1500

We construct wrong data points by selecting wrong 1501

answer. 1502

1503

PIQA PIQA is a dataset requiring physical 1504

commonsense reasoning. Given a question q and 1505

two possible solutions s1, s2, the task is to choose 1506

the most appropriate solution (Bisk et al., 2020). 1507

We use one prompt template in Sanh et al. (2022): 1508

1509

Solution 1: [sol1] 1510

Solution 2: [sol2] 1511

Goal: [goal] 1512

Given the goal, what is the correct solution? 1513
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Answer by copying the correct solution1514

Answer: [answer]1515

1516

Here [answer] is selected from two sol choices. By1517

selecting wrong choices, we construct wrong data1518

points.1519

1520

OpenBookQA OpenBookQA contains ques-1521

tions that require reasoning and commonsense1522

knowledge (Mihaylov et al., 2018). The task is1523

to select correct answer from four choices for the1524

given question. We use one prompt template in1525

Sanh et al. (2022):1526

1527

Question: [question]1528

Choose an answer from this list:1529

- choices[0]1530

- choices[1]1531

- choices[2]1532

- choices[3]1533

Answer: [answer]1534

1535

Here [answer] is selected from the four choices.1536

By selecting wrong choices, we construct wrong1537

data points.1538

1539

A.13 Structure To Text1540

E2ENLG Here we use E2ENLG CLEAN1541

dataset. The E2E NLG dataset is a dataset for the1542

task of data-to-text natural language generation1543

(Dušek et al., 2020). It consists of tables containing1544

structured data, and corresponding human-written1545

textual descriptions of that data. We use one1546

prompt template in (Sanh et al., 2022):1547

1548

Combine all of the following data into a concise1549

and grammatically correct text:1550

key1: value11551

key2: value21552

...1553

Generated_text: [human_reference]1554

1555

Following the synthetic hallucinations method1556

mentioned in CH-Wang et al. (2023), for an1557

example with n attributes, we modify k attributes1558

(drawn uniformly from [1, n − 1]) by replacing1559

their values with other values that correspond to1560

the same key. Using the resulting modified data1561

and keeping [text] unchanged, we construct wrong1562

data points. 1563

1564

WEBNLG WebNLG dataset is mapping data 1565

to text, where the data is a set of triples extracted 1566

from DBpedia and the text is a verbalisation of 1567

these triples (Gardent et al., 2017). We use one 1568

prompt template in Sanh et al. (2022): 1569

1570

Take the following triple set as part of a Data- 1571

to-Text task: [data]. Make a lexicalization of the 1572

triple set into plain text. 1573

Generated text: [text] 1574

1575

We use gpt-3.5-turbo to modify the attributes and 1576

then generate new text using the instruction in Ta- 1577

ble 10. 1578

A.14 Coreference 1579

Definite Pronoun Resolution Definite Pronoun 1580

Resolution (DPR) dataset is a collection of 1581

annotated sentences that are used to train and 1582

evaluate models for resolving definite pronouns 1583

in English text (Rahman and Ng, 2012). Given a 1584

pronoun, the task is to select the correct antecedent 1585

noun phrase that the pronoun refers to. We use the 1586

following prompt: 1587

1588

Question: [sentence] 1589

Who is [pronoun] referring to? 1590

[candidate1] or [candidate2] 1591

Answer: [answer]. 1592

1593

[answer] is selected from [candidate1] and 1594

[candidate2]. By selecting wrong candidates, we 1595

construct wrong data points. 1596

1597

Winogrande Here we use Winograde xl version. 1598

Winogrande is a dataset to test a machine’s ability 1599

to understand natural language in context and 1600

resolve ambiguities (Sakaguchi et al., 2021). With 1601

binary options, the goal is to choose the right 1602

option for a given sentence. We use one prompt 1603

template in Sanh et al. (2022): 1604

1605

Question: [sentence] In the previous sentence, 1606

does _ refer to [option1] or [option2]? 1607

Answer: [answer]. 1608

1609

[answer] is selected from two options. By selecting 1610

wrong options, we construct wrong data points. 1611

1612
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WSC.Fixed WSC Fixed dataset is a collection1613

of pronoun resolution problems used for evaluating1614

natural language understanding systems. The goal1615

is to determine the correct referent for the pronoun1616

in each sentence (Levesque et al., 2012). We use1617

one prompt template in Sanh et al. (2022):1618

1619

[text] In the previous sentence, does the pronoun1620

“[pronoun]” refer to [noun]? Yes or no?1621

[answer].1622

1623

Here [answer] is “Yes” or “No”. By selecting1624

the opposite answer, we construct the wrong data1625

points.1626

1627

A.15 Reading Comprehension and Common1628

Sense1629

ReCoRD Reading Comprehension with Com-1630

monsense Reasoning Dataset (ReCoRD) is a1631

large-scale reading comprehension dataset which1632

requires commonsense reasoning. ReCoRD1633

consists of queries automatically generated from1634

CNN/Daily Mail news articles; the answer to each1635

query is a text span from a summarizing passage1636

of the corresponding news (Zhang et al., 2018).1637

We use one prompt template in Sanh et al. (2022):1638

1639

[passage]1640

[query]1641

You should decide what “@placeholder” is re-1642

ferring to. Choose between:1643

- choices[0]1644

- choices[1]1645

...1646

Answer: [answer].1647

1648

Here [answer] is selected from choices. By1649

selecting wrong choices, we construct wrong data1650

points.1651

1652

CosmosQA CosmosQA is a dataset of problems1653

that require commonsense-based reading compre-1654

hension, formulated as multiple-choice questions.1655

It focuses on people’s everyday narratives, asking1656

questions concerning on the likely causes or effects1657

of events that require reasoning beyond the exact1658

text spans in the context. We use one prompt1659

template in Sanh et al. (2022):1660

1661

[context]1662

According to the above context, choose the best 1663

option to answer the following question. 1664

Question: [question] 1665

Options: 1666

- choices[0] 1667

- choices[1] 1668

... 1669

Answer: [answer] 1670

1671

Here [answer] is selected from choices. By 1672

selecting wrong choices, we construct wrong data 1673

points. 1674

1675

A.16 Multi-step Reasoning QA 1676

HotpotQA HotpotQA is a question answering 1677

dataset where the questions require finding and 1678

reasoning over multiple supporting documents to 1679

answer (Yang et al., 2018). We use the following 1680

prompt: 1681

1682

Questino: [question] 1683

Answer: [answer] 1684

1685

We leverage gpt-4-1106-preview to generate false 1686

answers, using the following instruction in Ta- 1687

ble 11: 1688

Strategy QA StrategyQA is a question- 1689

answering benchmark focusing on open-domain 1690

questions where the required reasoning steps are 1691

implicit in the question and should be inferred 1692

using a strategy (Geva et al., 2021). We use the 1693

following prompt: 1694

1695

Question: [question] 1696

Answer: [answer]. 1697

1698

Here [answer] can be “Yes” or “No”. By selecting 1699

the opposite answers, we construct the wrong data 1700

points. 1701

1702

A.17 Other 1703

Truthful QA TruthfulQA is a benchmark to 1704

measure whether a language model is truthful in 1705

generating answers to questions where questions 1706

are crafted so that some humans would answer 1707

falsely due to a false belief or misconception (Lin 1708

et al., 2022). We use the following prompt: 1709

1710

Question: [question] 1711
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Answer: [answer]1712

1713

By selecting false answers in the dataset, we1714

construct the wrong data points.1715

1716

Arithmetic Arithmetic dataset is a QA dataset1717

comprising straightforward questions involving1718

addition, subtraction, multiplication, and division1719

(Saxton et al., 2019; Brown et al., 2020). We use1720

the dataset in Srivastava et al. (2023). We use the1721

following prompt:1722

1723

Question: [question]1724

Answer: [answer]1725

1726

We use the given wrong answer in the dataset when1727

constructing the wrong data points.1728

B Ablation study on hyperparameter1729

num1730

num is the hyperparameter that determine the num-1731

ber of selected positions for each validation split.1732

Here, we conduct ablation studying on num. Vary-1733

ing the num, we train probes on all our curated1734

training tasks, selecting num positions for every1735

validation split in training tasks and evaluate on1736

the test tasks in Figure 2. The results in Figure 51737

show that num is 1 or 2 yields highest performance,1738

while including more positions for every validation1739

split even leads to a slight performance decline. Be-1740

sides, increasing num also leads to more memory1741

and time cost.1742
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Figure 5: Ablation study of varying num on cross-task test,
where k is the compression hyperparameter (128 represents
all dimensions of the attention head output).

C Sparisty 1743

In this experiment, we study the sparsity by train- 1744

ing probes on the training set of a single dataset 1745

and evaluating them on the corresponding test split. 1746

We train probes for every attention head output 1747

and then select the position with the highest ac- 1748

curacy to study the sparsity of the representation. 1749

Using the ranking method described in §2.4, we 1750

first compress the full dimensions of the attention 1751

head output to varying k dimensions. Then we re- 1752

train probes using the compressed representations 1753

and test the newly trained probes on the test split. 1754

Figure 6 displays more results. Our results indicate 1755

that using half the dimensions of the attention head 1756

output is sufficient to achieve performance compa- 1757

rable to using the full dimensions. Therefore, we 1758

set the hyperparameter k to be 64 or 128. 1759

Besides, we also explore the sparsity on layer 1760

residual activations. Following the same experi- 1761

ment setting, the result is shown in Figure 7. We ob- 1762

serve that using less than 1024 neurons can achieve 1763

comparable performance than using all 4096 neu- 1764

rons. 1765

D Details on Hyperparameters Tuning 1766

We have two tunable hyperparameters for the Probe 1767

method: num for the number of selected represen- 1768

tations and k for the compressed dimensions for 1769

every representation. We note that we select num 1770

positions according to each validation split. How- 1771

ever, we tune the k and num hyperparameters on 1772

the test splits of training tasks, that we select the hy- 1773

perparameters that achieves highest accuracy on the 1774

test splits of training tasks. Therefore, it’s impor- 1775

tant to note that we never tune the hyperparameters 1776

on validation or test splits of the test tasks. 1777

The range of k is always 64, 128. When conduct- 1778

ing experiment training the probe on single dataset 1779

in §3.2, the range of num is 1, 2, 4, 10, 20, 30, 1780

40, 60, 120. When conducting experiment training 1781

on all training tasks in §3.3, §3.4, and the study 1782

of training splits size in §3.5, the range of num 1783

is 1,2,4. When training the probe on the varying 1784

number of training tasks in §3.5: the experiment of 1785

comparing attention head and layer residual acti- 1786

vations and the experiment of varying the number 1787

of training datasets, the num is still selected from 1788

1, 2, 4, 10, 20, 30, 40, 60, 120. However, we con- 1789

trol the upperbound for num as 160/t, where t is 1790

the number of datasets used training, to make sure 1791

a consistent upper bound for the overall selected 1792
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Figure 6: Some other sparsity observations of attention head outputs on different tasks using the logistic regression (LR) and the
mass mean (MM) probe.
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Figure 7: Some other sparsity observations of layer residual activations on different tasks using the logistic regression (LR) and
the mass mean (MM) probe.

positions when varying the training tasks.1793

E Experiment Details Setting1794

E.1 Probes Fail to Generalize1795

To evaluate in-distribution performance on the1796

TruthfulQA dataset, we implement a 5-shot Prob-1797

ability baseline. This involves selecting five data1798

samples from the TruthfulQA dataset to serve as1799

demonstrations. We then measure the normalized1800

probability and determine a threshold that maxi-1801

mizes accuracy on the TruthfulQA training split.1802

Similarly, we apply the 5-shot approach when im-1803

plementing the Self-Eval baseline. For out-of-1804

distribution (OOD) testing, we employ the Self-1805

Eval baseline in a 0-shot setting, which does not1806

rely on any prior examples. The detailed results for1807

the OOD test are presented in Table 12.1808

E.2 Main Experiments1809

Basically, we follow the principle that select few1810

shot demonstrations or threshold from the same1811

dataset (in-domain), a different dataset within the1812

same task (cross-domain), and a dataset from a1813

different task (cross-task).1814

Probability baseline of cross-task When testing1815

on the Short Answer Close Book QA task, consid-1816

ering Hotpot QA’s (Yang et al., 2018) format or1817

type is close to the task, we rely on the Hotpot QA1818

for the few shot demonstrations and threshold. To1819

be specific, we first conduct the 5-shot Probability 1820

experiments on the Hotpot QA and then scan to find 1821

the threshold that achieves the highest accuracy on 1822

Hotpot QA’s training split. Using the threshold 1823

and 5 correct demonstration from Hotpot QA, we 1824

then evaluate on the Short Answer Close Book QA 1825

task. When testing on the Summarization task, we 1826

use 3 correct demonstrations from WEBNLG (Gar- 1827

dent et al., 2017) dataset and also use the threshold 1828

that makes WEBNLG training split highest accu- 1829

racy. When testing on the Sentence Completion 1830

task, considering the tasks all are multi-choice QA, 1831

we use 5 correct ARC easy (Clark et al., 2018) as 1832

demonstrations and use the ARC easy’s threshold. 1833

Probability baseline of cross-domain In the 1834

Short Answer Close Book QA task, we use Trivia 1835

QA (Joshi et al., 2017) for demonstrations and 1836

threshold when testing SciQ (Welbl et al., 2017) 1837

and NQ (Kwiatkowski et al., 2019) and we use 1838

SciQ for or demonstrations and threshold when test- 1839

ing Trivia QA. In the the Summarization task, con- 1840

sidering the summarization tasks’s data is too long 1841

that not appropriate selected as few shot demon- 1842

strations, we still use WEBNLG as demonstrations. 1843

When testing XSum (Narayan et al., 2018), we use 1844

the threshold that makes CNN Daily Mail’s (Her- 1845

mann et al., 2015; See et al., 2017) training set 1846

highest accuracy during 3 shot Probability (demon- 1847

strations from WEBNLG) experiment. When test- 1848

ing CNN Daily Mail, we use threshold from XSum. 1849
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In the Sentence Completion task, when testing1850

story cloze (Mostafazadeh et al., 2017) and Hel-1851

laSwag (Zellers et al., 2019), we use 5 shot demon-1852

strations and threshold from CoPA (Roemmele1853

et al., 2011). When testing CoPA, we use 5 shot1854

demonstrations and threshold from story cloze.1855

Probability baseline of in-domain We all use1856

threshold that makes its training split highest ac-1857

curacy. We use few shot demonstrations from its1858

training set except Summarization task that we still1859

use WEBNLG (Gardent et al., 2017) since the data1860

is too long.1861

Self-Eval baseline of cross-task When testing1862

the Short Answer Close Book QA task, we use 51863

data (labeled with Correct or Wrong) from Hot-1864

pot QA (Yang et al., 2018) as few shot demonstra-1865

tions. When testing the Summarization task, as1866

mentioned above that the data is so long that the1867

model is hard to follow our aim to judge "Correct"1868

or "Wrong", we here use 0 shot prompt like "Is the1869

answer correct or wrong?\nIt is" When testing the1870

Sentence Completion task, we use 5 data (labeled1871

with Correct or Wrong) from ARC easy.1872

Self-Eval baseline of cross-domain In the Short1873

Answer Close Book QA task, we use Trivia1874

QA (Joshi et al., 2017) for demonstrations when1875

testing SciQ and NQ and we use SciQ for demon-1876

strations and threshold when testing Trivia QA.1877

In the Summarization task, we still use 0 shot1878

prompt. In the Sentence Completion task, when1879

testing story cloze (Mostafazadeh et al., 2017)1880

and HellaSwag (Zellers et al., 2019), we use 51881

shot demonstrations from CoPA (Roemmele et al.,1882

2011). When testing CoPA, we use 5 shot demon-1883

strations from story cloze.1884

Self-Eval baseline of in-domain We use demon-1885

strations selected from its training set except Sum-1886

marization that we still use 0 shot.1887

Finetune model setting We construct data sam-1888

ples using the prompt like1889

“Please determine whether the following answer1890

is correct.1891

[data]1892

It is correct/wrong. ”1893

We use these constructed data to full finetun-1894

ing the model and use same prompt and constrain1895

model generate from "correct" and "wrong" two1896

tokens when evaluating. When training datasets1897

contain fewer than 14 tasks, we use a learning rate1898

of 2e-5 and train the model for 3 epochs. In con- 1899

trast, when training datasets contain more than 14 1900

tasks, we use a learning rate of 2e-5 and train the 1901

model for only 1 epoch. 1902

F Experiment Details for Training on 1903

Attention Head and Layer Activations 1904

In our study, we have explored training probes us- 1905

ing the layer residual activations and attention head 1906

outputs, finding that probes trained on layer acti- 1907

vations consistently underperform attention head 1908

outputs. 1909

We conduct the cross-task experiments with 1910

varying number of training datasets, 4 datasets, 1911

8 datasets, 12 datasets respectively. When train- 1912

ing the probes on attention head outputs, following 1913

the hyperparameters range: k can be 64 or 128, 1914

num can be selected from 1, 2, 4, 10, 20, 30, 40, 1915

60, 120, but maintain the consistent upper bound 1916

160/t, where t is the number of training datasets. 1917

For training probes on layer residual activations, 1918

we also utilize the same framework, including k 1919

and num two hyperparameters, where k can be 1920

1024, 4096 and num fixed at 1, reflecting the lim- 1921

ited selection options available for layers. 1922
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Given the mtriple_set data and its corresponding plain text,
you are asked to modify some (but not all) of the feature
information in the mtriple_set and generate a new text based
on the new mtriple_set. Here are some examples.
#mtriple_set#: [
"Pontiac_Rageous | productionStartYear | 1997",
"Pontiac_Rageous | assembly | Michigan"
]
#text#: The Pontiac Rageous was first produced in 1997 in
Michigan.
#new mtriple_set#: [
"Pontiac_Rageous | productionStartYear | 1997",
"Pontiac_Rageous | assembly | Ohio"
]
#new text#: The initial production of the Pontiac Rageous
took place in 1997 in Ohio.

#mtriple_set#: [
"Acharya_Institute_of_Technology | president | "B.M.
Reddy"",
"Acharya_Institute_of_Technology | city | Bangalore",
"Acharya_Institute_of_Technology | established | 2000",
"Acharya_Institute_of_Technology | country | "India"",
"Acharya_Institute_of_Technology | state | Karnataka",
"Acharya_Institute_of_Technology | numberOfPostgraduateS-
tudents | 700",
"Acharya_Institute_of_Technology | campus | "In Soldevana-
halli, Acharya Dr. Sarvapalli Radhakrishnan Road, Hes-
sarghatta Main Road, Bangalore – 560090.""
]
#text#: Acharya Institute of Technology (president B M
Reddy) was established in 2000 and has 700 postgraduate
students. The campus is located at Soldevanahalli, Acharya
Dr. Sarvapalli Radhakrishnan Road, Hessarghatta Main Road,
Bangalore – 560090, Karnataka, India.
#new mtriple_set#: [
"Acharya_Institute_of_Technology | president | Mr. B.G.
Reddy",
"Acharya_Institute_of_Technology | city | Mysore",
"Acharya_Institute_of_Technology | established | 2000",
"Acharya_Institute_of_Technology | country | India",
"Acharya_Institute_of_Technology | state | Karnataka",
"Acharya_Institute_of_Technology | numberOfPostgraduateS-
tudents | 700",
"Acharya_Institute_of_Technology | campus | In Soldevana-
halli, Acharya Dr. Sarvapalli Radhakrishnan Road, Hes-
sarghatta Main Road, Mysore – 560090."
]
#new text#: Acharya Institute of Technology, located in
Mysore, Karnataka, India, was established in the year 2000.
Under the leadership of President Mr. B.G. Reddy, the institute
has grown to accommodate 700 postgraduate students. The
campus is situated in Soldevanahalli, on Acharya Dr. Sarva-
palli Radhakrishnan Road, Hessarghatta Main Road, Mysore
– 560090.

Here is the test.
#mtriple_set#: [mtriple_set]
#text#: [text]
#new mtriple_set#:

Table 10: Instructions used for WEBNLG

Given a question and correct answer, you are asked to generate
a reasonable but false answer. Here are some examples.
#Qusetion#: What nationality was James Henry Miller’s wife?
#Correct Answer#: American
#False Answer#: British

#Qusetion#: British band The Wanted’s third album includes
a song with a title about which Barbadian superstar?
#Correct Answer#: Rihanna
#False Answer#: Shakira

Here is the question and its correct answer, you need to gener-
ate a reasonable but false answer.
#Question#: [question]
#Correct Answer#: [answer]
#False Answer#:

Table 11: Instructions used for Hotpot QA
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Method Short Answer Close Book QA Summarization Sentence Completion AverageNQ Trivia QA SciQ XSum CNN DM Story Cloze Hellaswag CoPA

Probe (LR) 60.40 54.70 51.25 58.06 52.30 62.26 50.02 46.50 54.44
Probe (MM) 51.70 50.42 49.80 53.06 49.56 50.19 50.98 50.00 50.71
Self-Eval 0-shot 58.40 68.74 82.25 67.00 65.98 53.69 51.90 58.50 63.31
FT 62.38 68.44 62.90 52.56 51.26 53.55 50.98 50.00 56.51
Random 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00

Table 12: Probe trained on TruthfulQA, Self-Eval 0-shot baseline and FT (finetuning) method hallucination detection accuracy
(%) on OOD test sets.
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