A Gradient Guided Diffusion Framework for Chance Constrained Programming

Boyang Zhang

School of Advanced Interdisciplinary Sciences University of Chinese Academy of Sciences Beijing 100049, China zhangboyang23@mails.ucas.ac.cn

Zhiguo Wang*

Department of Mathematics Sichuan University Chengdu 610065, China wangzhiguo@scu.edu.cn

Ya-Feng Liu*

Ministry of Education Key Laboratory of Mathematics and Information Networks
School of Mathematical Sciences
Beijing University of Posts and Telecommunications
Beijing 102206, China
yafengliu@bupt.edu.cn

Abstract

Chance constrained programming (CCP) is a powerful framework for addressing optimization problems under uncertainty. In this paper, we introduce a novel Gradient-Guided Diffusion-based Optimization framework, termed GGDOpt, which tackles CCP through three key innovations. First, GGDOpt accommodates a broad class of CCP problems without requiring the knowledge of the exact distribution of uncertainty—relying solely on a set of samples. Second, to address the nonconvexity of the chance constraints, it reformulates the CCP as a sampling problem over the product of two distributions: an unknown data distribution supported on a nonconvex set and a Boltzmann distribution defined by the objective function, which fully leverages both first- and second-order gradient information. Third, GGDOpt has theoretical convergence guarantees and provides practical error bounds under mild assumptions. By progressively injecting noise during the forward diffusion process to convexify the nonconvex feasible region, GGDOpt enables guided reverse sampling to generate asymptotically optimal solutions. Experimental results on synthetic datasets and a waveform design task in wireless communications demonstrate that GGDOpt outperforms existing methods in both solution quality and stability with nearly 80% overhead reduction.

Our code is available at https://github.com/boyangzhang2000/GGDOpt.

1 Introduction

1.1 Problem formulation

Chance constrained programming (CCP) is an efficient modeling paradigm for optimization problems with uncertain constraints, which finds wide applications in diverse fields, such as finance (Bonami and Lejeune [2009]), robot control (Calafiore and Campi [2006]), and wireless communications

^{*}Corresponding authors.

(Wang et al. [2014]). In this paper, we consider a CCP with the following form:

$$\begin{array}{ll}
\min_{\boldsymbol{x}} & f(\boldsymbol{x}) \\
\text{s.t.} & \boldsymbol{x} \in \mathcal{X}_{\rho},
\end{array} \tag{1}$$

where $f: \mathbb{R}^n \to \mathbb{R}$ is a differentiable objective function and \mathcal{X}_{ρ} is the chance (or probabilistic) constraint set defined by

$$\mathcal{X}_{\rho} = \Big\{ \boldsymbol{x} \in \mathbb{R}^{n} \mid \operatorname{Prob}_{\boldsymbol{h}} \{ \boldsymbol{g}(\boldsymbol{x}, \boldsymbol{h}) \ge \boldsymbol{0} \} \ge 1 - \rho \Big\}.$$
 (2)

In the above, h is a random vector with probability distribution P supported on a set $\Xi \subset \mathbb{R}^d$, $\rho \in (0,1)$, $g=(g_1,g_2,\ldots,g_m):\mathbb{R}^n \times \Xi \to \mathbb{R}^m$, and $\operatorname{Prob}(A)$ denotes the probability of an event A. Problem (1) is generally challenging to solve for the following two reasons. First, evaluating the probability term $\operatorname{Prob}_h\{g(x,h)\geq 0\}$ typically involves a high-dimensional integration, which is computationally intractable. Second, even when g is linear, the feasible set \mathcal{X}_ρ remains nonconvex, further complicating the optimization.

1.2 Related works

Apart from very special cases where \mathcal{X}_{ρ} can be transformed into a convex formulation under strong assumptions (Kataoka [1963], Lagoa et al. [2005], Henrion [2007], Prékopa [2013]), there are two popular approaches to tackling general problem (1), which are Convex Approximation (CA) method and Sample Average Approximation (SAA) method. The CA method seeks to construct a tractable inner approximation of \mathcal{X}_{ρ} , but it typically requires the information of the *exact* distribution P, often assuming that P belongs to specific families such as Gaussian or log-concave distributions (Ben-Tal and Nemirovski [2000], Bertsimas and Sim [2004], Lagoa et al. [2005], Nemirovski and Shapiro [2007]). In contrast, the SAA method approximates P using an empirical distribution based on sampled data, reformulating the CCP as a binary integer program (Ahmed and Shapiro [2008], Pagnoncelli et al. [2009], Adam and Branda [2016]). However, this reformulation remains computationally intractable. These restrictive assumptions on the underlying distribution P, along with the high computational cost, significantly limit the practical applicability of CCP.

One important question to ask is: can we design a general framework to efficiently solve CCP when the underlying distribution P is unknown? The answer to the above question is particularly crucial in our interested case where samples can be efficiently drawn from \mathcal{X}_{ρ} , albeit the explicit formulation of \mathcal{X}_{ρ} is unavailable. This motivates us to seek high-quality solutions to the CCP problem (1) from a new perspective via sampling-based methods (Wibisono [2018], Ma et al. [2019], Lee et al. [2021], Chen et al. [2022], Seyoum and You [2025]). The core idea of applying sampling-based methods to solve CCP problems lies in reformulating the original nonconvex CCP with intractable constraints as a sampling problem from an unknown distribution. This reformulation leverages probabilistic techniques to handle the challenging constraints through stochastic sampling rather than deterministic evaluation.

Notably, generative models are designed to approximate unknown data distributions based on observed samples, enabling the generation of new data points from the learned approximation. In particular, diffusion models have emerged as a powerful family of generative models, offering high-quality sample generation, stable training dynamics, and scalability to high-dimensional problems (Ho et al. [2020]). The sampling process based on score estimation enables diffusion models to generalize to conditional distributions, thereby generating samples that satisfy requirements through conditional information guidance (Ho and Salimans [2022]). As a powerful generative artificial intelligence (AI) technology, diffusion model has been successfully deployed across various domains, such as, image generation (Yue et al. [2023], Huang et al. [2025]), inverse problems (Chung et al. [2022b], Chung et al. [2022a], Song et al. [2023]), and optimization (Krishnamoorthy et al. [2023], Li et al. [2024], Wu et al. [2024], Kong et al. [2024], Liang et al. [2025]). Recently, Guo et al. [2024] introduced a novel form of gradient guidance to adapt pre-trained diffusion models for user-specified tasks.

Despite their success in various domains, diffusion models have rarely been explored in the context of CCP. The possible reason behind might be that tackling CCP problems via diffusion models generally requires efficient sampling from a composite distribution, the product of an unknown data distribution (associated with the constraint) and a known Boltzmann distribution (induced by the objective function), but the training data is only available from the unknown component. This makes the application of diffusion models to CCP both novel and nontrivial.

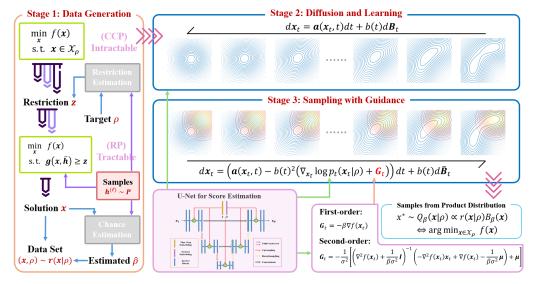


Figure 1: A framework of GGDOpt. (1) Generate a training set of points satisfying the chance constraint by solving a deterministic restricted problems. (2) Train a diffusion model with classifier-free guidance to learn the score of the conditional distribution. (3) Perform the reverse diffusion process with additional gradient guidance to sample from the product of the data distribution and the Boltzmann distribution.

1.3 Our contributions

In this paper, we propose GGDOpt (see Figure 1), a novel Gradient-Guided Diffusion-based Optimization framework for solving problem (1), with the following originality:

- Applicable to broader problem domains. Built on the basis of diffusion model with classifier-free guidance and optimization via sampling, GGDOpt accommodates a broad class of CCP problems without requiring the knowledge of the exact distribution of uncertainty—relying solely on a set of samples.
- **Problem reformulation with a novel paradigm.** GGDOpt reformulates the CCP problem as a sampling task over the product of two distributions: an unknown data distribution implicitly defined by the constraint and a Boltzmann distribution induced by the objective function with a full utilization of first- and second-order information of the underlying CCP.
- Feasibility-aware data generation and efficient guided sampling. To generate high-quality training data that satisfy the chance constraint, GGDOpt solves a deterministic restricted problems by standard optimization techniques. The solutions are used to guide the training of the conditional diffusion model, effectively capturing the geometry of the feasible region. To sample from the product distribution, we develop a gradient-guided reverse process derived in closed form based on the structure of the product distribution. Compared with Guo et al. [2024], our guidance terms do not require backpropagation through the neural network.
- Theoretical convergence and practical evaluation. Regarding the sampling process as a reverse time stochastic differential equation (SDE), GGDOpt is shown to generate asymptotically optimal solutions as the time step and inverse temperature go to infinity. A practical error bound is also provided with two components: the limited time length error and limited inverse temperature error.

1.4 Organization

The remainder of the paper is organized as follows. In Section 2, a reformulation of CCP problem (1) is provided via sampling, and a gradient guidance-based score estimation schedule is provided with both first- and second-order information. A novel GGDOpt framework for solving problem (1) is given in Section 3. Theoretical convergence and experimental results are presented in Section 4 and Section 5, respectively. The conclusion is drawn in Section 6.

2 Problem reformulation via sampling

Let $r(\boldsymbol{x}|\rho) = \mathbb{I}_{\mathcal{X}_{\rho}}(\boldsymbol{x})$ denote the indicator function of the chance constraint \mathcal{X}_{ρ} . Let $B_{\beta}(\boldsymbol{x}) \propto e^{-\beta f(\boldsymbol{x})}$ represent the Boltzmann distribution associated with the objective function $f(\boldsymbol{x})$, where $\beta > 0$. The resulting sampling task is to draw samples from the following target distribution:

sample
$$\mathbf{x} \sim Q_{\beta}(\mathbf{x}|\rho) \propto r(\mathbf{x}|\rho)B_{\beta}(\mathbf{x}).$$
 (3)

Intuitively, the distribution $Q_{\beta}(\boldsymbol{x}|\rho)$ assigns higher probability density to regions where the objective function $f(\boldsymbol{x})$ takes smaller values. Under certain regularity conditions (Kong et al. [2024]), as $\beta \to \infty$, the sampling distribution $Q_{\beta}(\boldsymbol{x}|\rho)$ asymptotically concentrates around the global minimizer of the CCP in (1). Therefore, the CCP (1) admits the following equivalent reformulation:

$$\boldsymbol{x}^* = \operatorname*{arg\,min}_{\boldsymbol{x}} \ \left\{ f(\boldsymbol{x}) + \mathbb{I}_{\mathcal{X}_{\rho}}(\boldsymbol{x}) \right\} \iff \operatorname{sample} \, \boldsymbol{x}^* \sim Q_{\beta}(\boldsymbol{x}|\rho), \ \beta \to \infty.$$
 (4)

A natural way would be to directly employ Langevin dynamics for sampling from distribution $Q_{\beta}(\boldsymbol{x}|\rho)$. However, the unknown nature of component $r(\boldsymbol{x}|\rho)$ prevents the derivation of an exact expression of the score function. Fortunately, we can obtain a set of feasible samples $\{\boldsymbol{x}^{(i)}, \rho^{(i)}\}_{i=1}^N$, which are drawn from the unknown distribution $r(\boldsymbol{x}|\rho)$. More details on this will be presented in Subsection 3.1. This motivates us to leverage diffusion models to directly learn the product distribution $Q_{\beta}(\boldsymbol{x}|\rho) \propto r(\boldsymbol{x}|\rho)B_{\beta}(\boldsymbol{x})$, where $r(\boldsymbol{x}|\rho)$ is unknown but $B_{\beta}(\boldsymbol{x})$ is explicitly known.

2.1 Diffusion models

Given observed samples x_0 from a distribution of interest, the goal of a diffusion model is to learn to model its true data distribution $p_0(x_0)$. Once learned, we can generate new samples from our approximate model at will. The diffusion model builds a diffusion process by defining a forward SDE starting from $p_0(x_0)$ as follows:

$$dx_t = a(x_t, t)dt + b(t)dB_t, (5)$$

where $t \in [0,T]$, B_t is the standard Wiener process (a.k.a., Brownian motion), $a(\cdot,t): \mathbb{R}^d \to \mathbb{R}^d$ is a vector valued function called the drift coefficient, and $b(\cdot): \mathbb{R} \to \mathbb{R}$ is a scalar function known as the diffusion coefficient.

By starting from samples of $x_T \sim p_T(x_T)$ and reversing the process, we can obtain samples $x_0 \sim p_0(x_0)$. The reverse of a diffusion process is also a diffusion process, running backwards in time and given by the following reverse-time SDE:

$$d\mathbf{x}_t = \left(\mathbf{a}(\mathbf{x}_t, t) - b(t)^2 \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t)\right) dt + b(t) d\bar{\mathbf{B}}_t, \tag{6}$$

where \bar{B}_t is a standard Wiener process when the time flows backwards from T to 0. The only unknown term $\nabla_{x_t} \log p_t(x_t)$ is the score function of the marginal density $p_t(x_t)$.

To estimate $\nabla_{x_t} \log p_t(x_t)$, we can train a time-dependent score-based model $s_{\theta}(x_t, t)$ with

$$\boldsymbol{\theta}^* = \underset{\boldsymbol{\theta}}{\operatorname{arg\,min}} \ \mathbb{E}_{t \sim \mathcal{U}[0,T]} \left\{ \lambda_t \mathbb{E}_{\boldsymbol{x}_0} \mathbb{E}_{\boldsymbol{x}_t | \boldsymbol{x}_0} \left[\left\| \boldsymbol{s}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t) - \nabla_{\boldsymbol{x}_t} \log p_{0t}(\boldsymbol{x}_t | \boldsymbol{x}_0) \right\|_2^2 \right] \right\}, \tag{7}$$

where $p_{0t}(\boldsymbol{x}_t|\boldsymbol{x}_0)$ is the transition kernel and can be obtained by the forward process (5). When $\boldsymbol{a}(\cdot,t)$ is affine, the transition kernel is always a Gaussian distribution, where the mean and variance are often known in closed forms (Särkkä and Solin [2019]). With sufficient data and model capacity, score matching ensures that the optimal solution $\boldsymbol{s}_{\boldsymbol{\theta}^*}(\boldsymbol{x}_t,t)$ approximates $\nabla_{\boldsymbol{x}_t} \log p_t(\boldsymbol{x}_t)$ for almost all \boldsymbol{x}_t and t.

2.2 Gradient guidance

A direct application of diffusion models to CCP (1) is infeasible, as this requires sampling from the product distribution $Q_{\beta}(\boldsymbol{x}|\rho) \propto r(\boldsymbol{x}|\rho)B_{\beta}(\boldsymbol{x})$, whereas only samples from $r(\boldsymbol{x}|\rho)$ are accessible. Therefore, obtaining a precise characterization of the score function of $Q_{\beta}(\boldsymbol{x}|\rho)$ and its diffused version is crucial.

For a given data set $\mathcal{D} = \{(\boldsymbol{x}^{(i)}, \rho^{(i)})\}_{i=1}^N$, we use its empirical $p_0(\boldsymbol{x}_0|\rho)$ to approximate the unknown distribution $r(\boldsymbol{x}_0|\rho)$ and denote $\tilde{p}_0(\boldsymbol{x}_0|\rho) \propto p_0(\boldsymbol{x}_0|\rho)B_{\beta}(\boldsymbol{x}_0)$. The diffused distribution is then given by the forward process (5), i.e.,

$$p_{t}(\boldsymbol{x}_{t}|\rho) = \int_{\boldsymbol{x}_{0}} p_{0t}(\boldsymbol{x}_{t}|\boldsymbol{x}_{0})p_{0}(\boldsymbol{x}_{0}|\rho)d\boldsymbol{x}_{0},$$

$$\tilde{p}_{t}(\boldsymbol{x}_{t}|\rho) = \int_{\boldsymbol{x}_{0}} p_{0t}(\boldsymbol{x}_{t}|\boldsymbol{x}_{0})\tilde{p}_{0}(\boldsymbol{x}_{0}|\rho)d\boldsymbol{x}_{0} \propto \int_{\boldsymbol{x}_{0}} p_{0t}(\boldsymbol{x}_{t}|\boldsymbol{x}_{0})p_{0}(\boldsymbol{x}_{0}|\rho)B_{\beta}(\boldsymbol{x}_{0})d\boldsymbol{x}_{0}.$$
(8)

In order to sample with the reverse process (6), we need to characterize the score function of the diffused product distribution $\nabla_{x_t} \log \tilde{p}_t(x_t|\rho)$, which is given by the following theorem.

Theorem 1. For any given $\beta > 0$, there exists $\hat{x}_0(x_t)$ such that the score function of the diffused product distribution can be formulated as

$$\nabla_{\boldsymbol{x}_t} \log \tilde{p}_t(\boldsymbol{x}_t | \rho) = \nabla_{\boldsymbol{x}_t} \log p_t(\boldsymbol{x}_t | \rho) \underbrace{-\beta \nabla_{\boldsymbol{x}_t} f(\hat{\boldsymbol{x}}_0(\boldsymbol{x}_t))}_{\text{gradient guidance } \boldsymbol{G}_t}, \tag{9}$$

where $\nabla_{x_t} \log p_t(x_t|\rho)$ is the score function of the diffused data distribution and $\hat{x}_0(x_t)$ satisfies

$$f(\hat{\boldsymbol{x}}_0(\boldsymbol{x}_t)) = -\frac{1}{\beta} \log \left(\int_{\boldsymbol{x}_0} p_{t0}(\boldsymbol{x}_0 | \boldsymbol{x}_t, \rho) B_{\beta}(\boldsymbol{x}_0) d\boldsymbol{x}_0 \right). \tag{10}$$

Theorem 1 demonstrates that sampling from the product distribution can be accomplished by introducing a gradient guidance term during the sampling process of the original data distribution, which has a strong connection between the posteriori $p_{t0}(\mathbf{x}_0|\mathbf{x}_t, \rho)$ and the Boltzmann distribution $B_{\beta}(\mathbf{x}_0)$.

Next, we present a special case where the gradient guidance terms admit explicit expressions.

Corollary 1. Assume that $p_{t0}(x_0|x_t, \rho) = \mathcal{N}(x_0|\mu_{0|t}, \sigma_{0|t}^2 I)$, then we have the following results.

• First-order guidance: For $f \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R})$, we get

$$G_t = -\beta \nabla_{x_t} f(x_t). \tag{11}$$

• Second-order guidance: For $f \in \mathcal{C}^2(\mathbb{R}^n, \mathbb{R})$, we get

$$G_{t} = -\frac{1}{\sigma_{0|t}^{2}} \left[H^{-1} \left((-\nabla_{x_{t}}^{2} f(x_{t}) x_{t} + \nabla_{x_{t}} f(x_{t})) - \frac{1}{\beta \sigma_{0|t}^{2}} \mu_{0|t} \right) + \mu_{0|t} \right], \quad (12)$$

where
$$\boldsymbol{H} = \nabla_{\boldsymbol{x}_t}^2 f(\boldsymbol{x}_t) + \frac{1}{\beta \sigma_{\text{old}}^2} \boldsymbol{I}$$
.

It is worthwhile noting that, for $p_0(\boldsymbol{x}_0|\rho) = \mathcal{N}(\boldsymbol{x}_0|\boldsymbol{\mu}_0, \sigma_0^2\boldsymbol{I})$ and the Gaussian transition kernel, the assumption in Corollary 1 holds and the parameters $(\boldsymbol{\mu}_{0|t}, \sigma_{0|t})$ can be expressed explicitly. In practice, we can use Tweedie's formula (Efron [2011]) to obtain an estimator of $\boldsymbol{\mu}_{0|t}$, and treat the variance as a hyper parameter; see Subsection 3.3 for details on this. Although the second-order guidance requires computing the inverse of a general Hessian matrix, which may be computationally expensive, it brings faster convergence and better variance reduction.

3 GGDOpt for CCP

In this section, we give our GGDOpt framework for CCP (1). The whole process can be divided into three stages: data generation, diffusion and learning, and sampling with guidance. More specifically, in the data generation stage, a collection of points satisfying the chance constraint is generated to characterize the nonconvex feasible set. The diffusion and learning stage progressively inject noise to convexify the nonconvex feasible region and learn the score function of the conditional distribution in order to perform sampling. After learning, the sampling with guidance stage iteratively runs the reverse process with an extra gradient guidance to sample from the product distribution, which will asymptotically converge to an optimal solution to problem (1). Next, we present the details of the three stages in GGDOpt one by one.

3.1 Stage 1: data generation

First we give an efficient approach to generate high-quality data that satisfy the chance constraint while maintaining lower objective values. Suppose that we have a set of samples $\{\boldsymbol{h}^{(\ell)}\}_{\ell=1}^L$, denote the empirical mean $\bar{\boldsymbol{h}} = \frac{1}{L} \sum_{\ell=1}^L \boldsymbol{h}^{(\ell)}$. Notice that in most of cases, it's much easier to solve the following deterministic restricted problem (RP) with a fixed $\bar{\boldsymbol{h}}$:

$$\min_{\boldsymbol{x}} f(\boldsymbol{x})
\text{s.t.} \quad g(\boldsymbol{x}, \bar{\boldsymbol{h}}) \ge \boldsymbol{z}_i,$$
(13)

where $z_i \ge 0$ is a given restriction, i = 1, ..., N. Let $x(z_i)$ denote the solution to problem (13) for a given z_i . As the smallest element z_{min} in z_i increases, the probability of the nonlinear constraint $g(x(z_i), h) \ge 0$ also increases. Then, solving problem (13) allows us to generate high-quality data that satisfies the chance constraint for arbitrary $\rho \in (0, 1)$ while enjoys low objective values.

Since the distribution of the random variable h is unknown, referring SAA method, we approximate the chance constraint using the empirical distribution over samples $\{h^{(\ell)}\}_{\ell=1}^L$. Then, after getting $x(z_i)$, we have

$$\operatorname{Prob}_{\boldsymbol{h}}\{\boldsymbol{g}(\boldsymbol{x}(\boldsymbol{z}_i), \boldsymbol{h}) \geq \boldsymbol{0}\} \approx \underbrace{\frac{1}{L} \sum_{l=1}^{L} \ell_{0/1}(\boldsymbol{g}(\boldsymbol{x}(\boldsymbol{z}_i), \boldsymbol{h}^{(\ell)})),}_{1-o^{(i)}}, \tag{14}$$

where $\ell_{0/1}(g) = 1$ if $g \ge 0$ and $\ell_{0/1}(g) = 0$ otherwise. By calculating the empirical $\rho^{(i)}$, an asymptotic approximation of the underlying probability is obtained, requiring no assumption on the underlying distribution P. In the appendix, we give a tight lower bound for the probability constraint $\operatorname{Prob}_h\{g(x(z_i),h)\ge 0\}$ if the variance and the mean of the random variable h are known, which is helpful to obtain a better approximation $\rho^{(i)}$.

Let $x^{(i)} := x(z_i)$ and repeating the above process, i.e., solving problem (13) and estimating $\rho^{(i)}$, and gradually increasing z_i , we can generate a collection of data points $\mathcal{D} = \{x^{(i)}, \rho^{(i)}\}_{i=1}^N$, which are then used to train our GGDOpt in the next stages.

3.2 Stage 2: diffusion and learning

From Theorem 1, we observe that the score function of the diffused product distribution has two terms, the conditional score $\nabla_{\boldsymbol{x}_t} \log p_t(\boldsymbol{x}_t|\rho)$ and the gradient guidance term \boldsymbol{G}_t for which explicit forms of first- and second-order guidances have been derived in Corollary 1. Then the challenge reduces to learning the conditional score $\nabla_{\boldsymbol{x}_t} \log p_t(\boldsymbol{x}_t|\rho)$.

In practice, naively conditioning a standard diffusion model by appending the conditioned variable at each step of the sampling process does not work well, as the model often ignores the conditioned information. Related works on conditional score estimation have been studied in (Dhariwal and Nichol [2021], Dhariwal and Nichol [2021], Ho and Salimans [2022]). Here we propose to use the classifier-free guidance (Ho and Salimans [2022]) to give an approximation of $\nabla_x \log p_t(x|\rho)$.

Instead of training a separate classifier model, classifier-free guidance choose to train an unconditional score estimator to approximate $\nabla_{\boldsymbol{x}_t} \log p_t(\boldsymbol{x}_t)$ together with the conditional score estimator to approximate $\nabla_{\boldsymbol{x}_t} \log p_t(\boldsymbol{x}_t|\rho)$. Specificity, we train a single model $s_{\boldsymbol{\theta}}(\boldsymbol{x}_t,t,\rho)$, and the conditioning information ρ is randomly discarded as empty set \emptyset with probability p_{uncond} to train unconditionally. Then the conditional score $\nabla_{\boldsymbol{x}_t} \log p_t(\boldsymbol{x}_t|\rho)$ is estimated by

$$\nabla_{\boldsymbol{x}_t} \log p_t(\boldsymbol{x}_t | \rho) \approx (1 + w) \boldsymbol{s}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t, \rho) - w \boldsymbol{s}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t, \emptyset), \tag{15}$$

for a given weight parameter w. Specifically, for the given data set \mathcal{D} and network $s_{\theta}(x_t, t, \rho)$ parameterized by θ , the training objective is defined as

$$Loss(\boldsymbol{\theta}) = \mathbb{E}_{t \sim \mathcal{U}[0,T]} \left\{ \mathbb{E}_{\boldsymbol{x}_0,\rho} \mathbb{E}_{\boldsymbol{x}_t | \boldsymbol{x}_0} \left[\| \boldsymbol{s}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t, \rho) - \nabla_{\boldsymbol{x}_t} \log p_{0t}(\boldsymbol{x}_t | \boldsymbol{x}_0) \|_2^2 \right] \right\},$$
(16)

and trained with Adam (Kingma [2014]). The training process of GGDOpt is given in Algorithm 1.

Algorithm 1 Training of GGDOpt Algorithm 2 Sampling of GGDOpt $\begin{array}{ll} \text{Input: } \{({\boldsymbol x}^{(i)}, \rho^{(i)})\}_{i=1}^N \sim p_0({\boldsymbol x}|\rho). \\ \text{Output: } {\boldsymbol s}_{{\boldsymbol \theta}^*}({\boldsymbol x}, t, \rho). \end{array}$ **Input:** $s_{\theta^*}(x, t, \rho)$, objective f. Output: x_0^* . 1: $x_T \sim p_T$. 1: repeat 2: **for** t = T, ..., 1 **do** 2: Load $(x_0, \rho_0) \sim p_0(x|\rho)$. Set $\rho \leftarrow \emptyset$ with probability p_{uncond} . Calculate $\tilde{s}_{\theta}(x_t, t, \rho)$ with (18). Calculate G_t with (11) or (12). Sample $t \sim \mathcal{U}[0, T]$. 5: Take guided sampling step with (17). Generate $x_t \sim p_{0t}(x_t|x_0)$. 6: end for Take gradient descent step on (16). 7: **return** $x_0^* = x_0$. 7: **until** converged.

3.3 Stage 3: sampling with guidance

Given the forward process (5), the corresponding reverse process is given by the following reversetime SDE with trained $s_{\theta}(x_t, t, \rho)$ and gradient guidance G_t :

$$d\mathbf{x}_{t} = \left[\mathbf{a}(\mathbf{x}_{t}, t) - b(t)^{2} \left(\tilde{\mathbf{s}}_{\boldsymbol{\theta}}(\mathbf{x}_{t}, t, \rho) + \mathbf{G}_{t}\right)\right] dt + b(t) d\bar{\mathbf{B}}_{t}, \tag{17}$$

where

$$\tilde{s}_{\theta}(x_t, t, \rho) = (1 + w)s_{\theta}(x_t, t, \rho) - ws_{\theta}(x_t, t, \emptyset). \tag{18}$$

For the first-order gradient guidance G_t in (11), we directly use the gradient of the objective scaled by a hyper parameter β . For the second-order gradient guidance (12), we need to give the posterior mean and variance $(\mu_{0|t}, \sigma_{0|t}^2)$. Here we use Tweedie's formula (Efron [2011]) to get an estimator of the posterior mean as follows:

$$\boldsymbol{\mu}_{0|t} = \mathbb{E}\left[\boldsymbol{x}_0|\boldsymbol{x}_t, \rho\right] = \frac{1}{\sqrt{\bar{\alpha}_t}}(\boldsymbol{x}_t + (1 - \bar{\alpha}_t)\tilde{\boldsymbol{s}}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t, \rho)),\tag{19}$$

with priori $p_{0t}(\boldsymbol{x}_t|\boldsymbol{x}_0) = \mathcal{N}(\boldsymbol{x}_t|\sqrt{\bar{\alpha}_t}\boldsymbol{x}_0, (1-\bar{\alpha}_t)\boldsymbol{I})$ for a specific noising schedule $\bar{\alpha}_t$.

While Tweedie's formula theoretically provides both the posterior mean and covariance, $\Sigma_{0|t} = (1 - \bar{\alpha}_t)(\boldsymbol{I} + (1 - \bar{\alpha}_t)\nabla^2\log p(\boldsymbol{x}_t))$, computing the covariance requires evaluating the Hessian of $\log p(\boldsymbol{x})$. In our framework, the score function s_{θ} is parameterized by a neural network, and computing its second derivatives involves backpropagation through the network's Jacobian, which is computationally expensive, especially in high dimensions. To strike a balance between performance and efficiency, we choose to treat the covariance as a tunable hyper parameter σ^2 . In the appendix, we give a detailed comparison between the fully Tweedie-based method and our approach to show that using a fixed variance can be a practical and robust alternative.

Then the second-order guidance can be calculated by

$$G_t = -\frac{1}{\sigma^2} \left[(\nabla^2 f(\boldsymbol{x}_t) + \frac{1}{\beta \sigma^2} \boldsymbol{I})^{-1} \left((-\nabla^2 f(\boldsymbol{x}_t) \boldsymbol{x}_t + \nabla f(\boldsymbol{x}_t)) - \frac{1}{\beta \sigma^2} \boldsymbol{\mu}_{0|t} \right) + \boldsymbol{\mu}_{0|t} \right], \quad (20)$$

and the sampling process of GGDOpt is given in Algorithm 2.

4 Convergence analysis

In this section, we give the convergence analysis of the proposed GGDOpt framework in both theoretical and practical aspects. We show that: theoretically, the samples generated by the sampling process will concentrate around the points with the lowest function values within the support of the data distribution; and practically, the gap between the expected function values of generated samples and the optimal value will be bounded by two components.

4.1 Theoretical convergence

As provided by (Pidstrigach [2022]), under mild assumptions, the sampling distribution of the standard diffusion model will have the exact same support as the data distribution. But what if we introduce an

extra gradient guidance term? For a given ρ , denote $\mathcal{D}_{\rho} = \{ \boldsymbol{x}^{(i)} \mid (\boldsymbol{x}^{(i)}, \rho^{(i)}) \in \mathcal{D}, \rho^{(i)} \leq \rho \}$ as the approximated feasible set of \mathcal{X}_{ρ} . The following theorem says that in our settings, as $T \to \infty$ and $\beta \to \infty$, the samples of GGDOpt will concentrate around the points with the lowest function values within the support of the data distribution \mathcal{D}_{ρ} for any given ρ .

Theorem 2. For any given $\rho \in (0,1)$, suppose that there exists a constant δ such that the error in the score estimation can be bounded as:

$$\|\tilde{\mathbf{s}}_{\boldsymbol{\theta}}(\mathbf{x}_t, t, \rho) + \mathbf{G}_t - \nabla_{\mathbf{x}_t} \log \tilde{p}_t(\mathbf{x}_t | \rho) \| \le \delta, \quad \forall \mathbf{x}_t.$$
 (21)

For samples $\tilde{x}_{sample} \sim p_{sample}(x_0|\rho)$ generated by the reverse process

$$d\mathbf{x}_{t} = \left[\mathbf{a}(\mathbf{x}_{t}, t) - b(t)^{2} \left(\tilde{\mathbf{s}}_{\boldsymbol{\theta}}(\mathbf{x}_{t}, t, \rho) + \mathbf{G}_{t} \right) \right] dt + b(t) d\bar{\mathbf{B}}_{t}, \tag{22}$$

with prior $p_{prior} = \mathcal{N}(\mathbf{0}, \mathbf{I})$, affine drift coefficients $\boldsymbol{a}(\cdot, t)$, and

$$\tilde{s}_{\theta}(\boldsymbol{x}_{t}, t, \rho) = (1 + w)s_{\theta}(\boldsymbol{x}_{t}, t, \rho) - ws_{\theta}(\boldsymbol{x}_{t}, t, \emptyset), \tag{23}$$

as $T \to \infty$, $p_{sample}(\boldsymbol{x}_0|\rho)$ will have the same support as $\tilde{p}_0(\boldsymbol{x}_0|\rho)$. Further, as $\beta \to \infty$, $\tilde{\boldsymbol{x}}_{sample}$ will concentrate around $\boldsymbol{x}^* = \arg\min_{\boldsymbol{x} \in \mathcal{D}_\rho} f(\boldsymbol{x})$.

The assumption in the score estimation error (21) quantifies the approximation accuracy of the trained score network relative to the true score function. It depends on the training quality of the neural network and the expressiveness of the model class. This type of assumption is common in the theoretical analysis of diffusion models (see, e.g., Pidstrigach [2022], De Bortoli et al. [2021]) and is used to establish convergence results in generative modeling and sampling.

4.2 Practical error bound

In practice, the forward process cannot reach the stationary distribution and the training is not perfect. This results in the failure of the sample distribution to strictly concentrate on the data points. This will lead to two components of errors: the limited time length error I_1 and limited inverse temperature error I_2 , which are given as follows:

$$|\mathbb{E}[f(\tilde{\boldsymbol{x}}_{sample})] - f(\boldsymbol{x}^*)| \le |\underbrace{\mathbb{E}[f(\tilde{\boldsymbol{x}}_{sample})] - \mathbb{E}[f(\boldsymbol{x}^{\pi})]|}_{I_1} + \underbrace{|\mathbb{E}[f(\boldsymbol{x}^{\pi})] - f(\boldsymbol{x}^*)|}_{I_2}. \tag{24}$$

In the above, \tilde{x}_{sample} is sampled from the reverse process (17), x^{π} follows the strong solution p^{π} to the Fokker-Planck equation of (17), and $x^* = \arg\min_{x \in \mathcal{D}_{\rho}} f(x)$. Next, we will give practical error bounds of both the two components with finite T and β .

Assumption 1. We assume the following conditions hold:

- The forward process is given by $dx = b(t)dB_t$;
- The reverse process starts in $p_{prior} = \mathcal{N}(\boldsymbol{m}_T, \boldsymbol{\Sigma}_T)$ where $\boldsymbol{m}_T = \mathbb{E}[\tilde{p}_0(\boldsymbol{x}_0|\rho)]$ and $\boldsymbol{\Sigma}_T = \operatorname{Cov}(\tilde{p}_0(\boldsymbol{x}_0|\rho)) + T \cdot \boldsymbol{I};$
- The objective function f(x) satisfies $\|\nabla_x f(x)\|_2 \le C_1 \|x\|_2 + C_2$.

The first two conditions in Assumption 1 correspond to the VE SDE in (Song et al. [2020b]) and are primarily used to characterize the discrepancy between the end distribution and the prior distribution. The third assumption is common in the convergence analysis of stochastic optimization and sampling algorithms (see, e.g., Raginsky et al. [2017]). In practice, Assumption 1 holds for a broad class of functions, including smooth bounded functions and quadratic objectives, which frequently arise in real-world optimization problems.

Theorem 3. Under Assumption 1, denote $\sigma^{(k)}, k=1,\ldots,n$, the eigenvalues of Σ_T . For any given $\rho \in (0,1)$, denote $N_\rho = |\mathcal{D}_\rho|$ and $\boldsymbol{x}^* = \arg\min_{\boldsymbol{x} \in \mathcal{D}_\rho} f(\boldsymbol{x})$. Then for any given T>0 and $\beta>0$, the optimization error can be bounded by

$$|\mathbb{E}[f(\tilde{\boldsymbol{x}}_{sample})] - f(\boldsymbol{x}^*)| \leq \underbrace{C_I(\sqrt{C_T} + (C_T/2)^{1/4})}_{I_1} + \underbrace{(N_\rho - 1) \max_{\boldsymbol{x} \in \mathcal{D}_\rho} |f(\boldsymbol{x}) - f(\boldsymbol{x}^*)| e^{-\beta\delta_\rho}}_{I_2},$$
(25)

where $C_T = \frac{1}{2}\log\left(\prod_{k=1}^n(\sigma^{(k)}/T)\right)$ and C_I,δ_{ρ} are constants.

Theorem 3 provides a non-asymptotic convergence result of GGDOpt with limited time length and inverse temperature. As $T \to \infty$ and $\beta \to \infty$, the optimization error goes to zero and GGDOpt is shown to generate asymptotically optimal solutions.

5 Experimental results

In this section, we perform numerical experiments on both synthetic datasets and a wireless communications waveform design problem. To generate the data, we employ CVX (Grant et al. [2008]) to solve the restricted problem (13). In the diffusion and learning stage, we set T=1000 with a linear noise schedule $\eta(t)$ ranging from 0.0001 to 0.02, and let $a(x,t)=-\frac{1}{2}\eta(t)x$ and $b(t)=\sqrt{\eta(t)}$. In the sampling with guidance stage, we evaluate both first- and second-order gradient guidances via implementing a DDIM-based technique (Song et al. [2020a]) with a descaled time step T'=100 for accelerated sampling. We employ two variants of the U-Net model (Ronneberger et al. [2015]) as our score estimator: U-Net-1D for the linear chance constrained problem and both for robust waveform design. Additional experimental details are provided in the supplementary materials.

5.1 Linear chance constrained problem

Consider the following linear chance constrained problem:

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \quad \frac{1}{2} \boldsymbol{x}^\top \boldsymbol{x} + \boldsymbol{b}^\top \boldsymbol{x}
\text{s.t.} \quad \text{Prob}_{\boldsymbol{c} \sim p_{\boldsymbol{c}}} \{ \boldsymbol{c}^\top \boldsymbol{x} + d \ge 0 \} \ge 1 - \rho,$$
(26)

where $p_c = \mathcal{N}(c; \bar{c}, I)$ and (b, \bar{c}, d, ρ) are hyper parameters selected from a test set. The above problem can be reformulated as a second-order conic (SOC) program, for which CVX (Grant et al. [2008]) is used for solution. To generate training data, we solve the restricted version of problem (26) for N = 1000 values of z linearly spaced in the interval [0, 0.5]. Then we execute the reverse process with first- and second-order gradient guidance to generate samples.

We compare our proposed GGDOpt against different types of SAA methods for solving the problem, using the corresponding CVX solutions as performance benchmarks. Each algorithm was executed 100 times (except CVX). The results with n=8 are presented in Table 1.

Method	Repeat	FvalMean	FvalStd	FvalMedian	Runtime
SOC_CVX (Grant et al. [2008])	1	-0.6586	0	-0.6586	0.3214
SAA_CVaR (Nemirovski and Shapiro [2007])	100	-0.5893	0.0248	-0.5869	0.3063
SAA_MIP (Pagnoncelli et al. [2009])	100	-0.6281	0.0157	-0.6318	15.4502
SAA_PDCA (Wang et al. [2023])	100	-0.6389	0.0314	-0.6408	0.6276
SAA_SNSCO (Zhou et al. [2024])	100	0.8051	3.4014	-0.6371	0.2793
GGDOpt_WithoutGuidance	100	0.3481	0.5486	0.2798	0.0465
GGDOpt_First-order	100	-0.6483	0.0051	-0.6488	0.0486
GGDOpt_Second-order	100	-0.6491	0.0056	-0.6503	0.0507

Table 1: Comparison results on the linear chance constrained problem (26)

The results in Table 1 demonstrate that, compared to the SOC_CVX method, which requires explicit knowledge of the underlying distribution, GGDOpt can approximately find the global minimizer with only samples from distribution p_c while simultaneously achieving significant overhead reduction. Compared to SAA methods, GGDOpt achieves superior performance in terms of lower function values and enhanced numerical stability under the effect of gradient guidance.

As expected, the runtime increases with the problem dimension. However, both the first- and second-order versions of GGDOpt remain consistently faster than the baseline SAA_PDCA method across all dimensions. Moreover, the increase in runtime is moderate, indicating that our approach scales favorably even in high-dimensional settings.

Furthermore, as the runtime increases with the problem dimension, both the first- and second-order versions of GGDOpt reduce the computational time by approximately 80% compared with , offering substantial efficiency improvements. More detailed experimental results on larger problem scale and computational costs are listed in the appendix.

5.2 Robust waveform design

Consider the following robust waveform design problem (Wang et al. [2014])

$$\min_{\mathbf{S}_{1},\dots,\mathbf{S}_{K}\in\mathbb{R}^{N_{t}\times N_{t}}} \sum_{i=1}^{K} \operatorname{Tr}(\mathbf{S}_{i})$$
s.t.
$$\operatorname{Prob}_{\mathbf{h}_{i}\sim\mathcal{N}(\bar{\mathbf{h}}_{i},\mathbf{C}_{i})} \{ \mathbf{R}_{i} \geq r_{i} \} \geq 1 - \rho_{i}, i = 1, 2, \dots, K,$$

$$\mathbf{S}_{1},\dots,\mathbf{S}_{K} \succeq \mathbf{0}, i = 1, 2, \dots, K,$$

$$(27)$$

where N_t is the number of antennas at the base station and K is the total number of users. For each user i, $S_i \succeq \mathbf{0}$, h_i , R_i and $r_i \geq 0$ denote the signal covariance matrix (to be designed), the random channel vector, the achievable rate, and the desired rate target, respectively.

Firstly, we use U-Net-2D as the score estimator. Notice that during the data generation, all the solutions to the restricted problem (13) exhibit a rank-one structure (Huang and Zhang [2007], Chang et al. [2008], Huang et al. [2020]). Remarkably, the generated samples maintain this rank-one property (with dominant eigenvalue accounting for >99% of the total eigenvalue) after training, suggesting that the solutions to the robust waveform design problem (27) inherently reside on a rank-one manifold with extremely high probability (Wang et al. [2014]), which GGDOpt successfully captures. This implies that rank-one decomposition can be effectively applied after generation, enabling the use of U-Net-1D as a score estimator to reduce computational costs in both training and sampling process.

Table 2 summarizes the comparison results of GGDOpt and two state-of-the-art methods for solving problem (27) with $N_t=16$ and K=3, where the worst probabilities that the chance constraints satisfy for K users are underlined. Notably, both baseline methods rely on explicit knowledge of the underlying distribution, whereas GGDOpt operates solely based on samples. The results show that GGDOpt outperforms existing convex approximation methods, achieving superior feasible solutions outside the convex restriction of the feasible set, while significantly reducing computational overhead. Complete experimental details are provided in the appendix.

1		L				
Method	Metric	$\rho = 0.05$	$\rho = 0.10$	$\rho = 0.15$	$\rho = 0.20$	
Sphere Bounding Ben-Tal and Nemirovski [2000]	Probability	<u>0.99;</u> 0.99; 0.99	<u>0.99;</u> 0.99; 0.99	<u>0.99;</u> 0.99; 0.99	<u>0.99;</u> 0.99; 0.99	
	FuncValue	0.1374	0.1366	0.1361	0.1357	
	Runtime	1.4688	1.4375	1.4113	1.3875	
Bernstein-type Inequality Wang et al. [2014]	Probability	0.96; <u>0.95</u> ; 0.96	0.93; <u>0.93</u> ; 0.93	0.91; <u>0.91</u> ; 0.92	0.90; <u>0.90</u> ; 0.91	
	FuncValue	0.1260	0.1253	0.1248	0.1244	
	Runtime	1.2938	1.2813	1.2593	1.2652	
GGDOpt First-order guidance	Probability	0.99; <u>0.95;</u> 0.99	0.92; 0.98; <u>0.91</u>	0.93; <u>0.86</u> ; 0.94	0.87; <u>0.81</u> ; 0.91	
	FuncValue	0.1279	0.1265	0.1254	0.1247	
	Runtime	0.0691	0.0628	0.0603	0.0635	
GGDOpt Second-order guidance	Probability	0.97; <u>0.95</u> ; 0.96	0.90; 0.94; 0.90	0.88; <u>0.85</u> ; 0.86	0.88; <u>0.80</u> ; 0.87	
	FuncValue	0.1260	0.1246	0.1239	0.1237	
	Runtime	0.0788	0.0712	0.0687	0.0682	

Table 2: Optimization methods comparison for robust waveform design

6 Conclusion

In this paper, we have proposed GGDOpt, a gradient-guided diffusion framework that efficiently solves nonconvex CCP without requiring the exact distribution knowledge. By reformulating CCP as a sampling problem over the product of an unknown data distribution and a Boltzmann distribution, GGDOpt leverages both first- and second-order gradient information during reverse sampling. Theoretical convergence guarantees and practical error bounds are provided under mild assumptions. Experimental results demonstrate that GGDOpt outperforms existing methods in both solution quality and numerical stability with significant overhead reduction.

Acknowledgments

The work of Boyang Zhang and Ya-Feng Liu was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 12021001 and Grant 12371314. The work of Zhiguo Wang was supported in part by The National Key Research and Development Program of China under Grant 2020YFA0714003 and in part by NSFC under Grant 62203313.

References

- Lukáš Adam and Martin Branda. Nonlinear chance constrained problems: optimality conditions, regularization and solvers. *Journal of Optimization Theory and Applications*, 170:419–436, 2016.
- Shabbir Ahmed and Alexander Shapiro. Solving chance-constrained stochastic programs via sampling and integer programming. In *State-of-the-Art Decision-Making Tools in the Information-Intensive Age*, pages 261–269. Informs, 2008.
- Aharon Ben-Tal and Arkadi Nemirovski. Robust solutions of linear programming problems contaminated with uncertain data. *Mathematical Programming*, 88:411–424, 2000.
- Dimitris Bertsimas and Melvyn Sim. The price of robustness. *Operations research*, 52(1):35–53, 2004.
- Pierre Bonami and Miguel A Lejeune. An exact solution approach for portfolio optimization problems under stochastic and integer constraints. *Operations Research*, 57(3):650–670, 2009.
- Giuseppe Carlo Calafiore and Marco C Campi. The scenario approach to robust control design. *IEEE Transactions on Automatic Control*, 51(5):742–753, 2006.
- Tsung-Hui Chang, Zhi-Quan Luo, and Chong-Yung Chi. Approximation bounds for semidefinite relaxation of max-min-fair multicast transmit beamforming problem. *IEEE Transactions on Signal Processing*, 56(8):3932–3943, 2008.
- Yongxin Chen, Sinho Chewi, Adil Salim, and Andre Wibisono. Improved analysis for a proximal algorithm for sampling. In *Conference on Learning Theory*, pages 2984–3014. PMLR, 2022.
- Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffusion posterior sampling for general noisy inverse problems. *arXiv preprint arXiv:2209.14687*, 2022a.
- Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving diffusion models for inverse problems using manifold constraints. *Advances in Neural Information Processing Systems*, 35:25683–25696, 2022b.
- Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger bridge with applications to score-based generative modeling. *Advances in Neural Information Processing Systems*, 34:17695–17709, 2021.
- Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances in Neural Information Processing Systems*, 34:8780–8794, 2021.
- Bradley Efron. Tweedie's formula and selection bias. *Journal of the American Statistical Association*, 106(496):1602–1614, 2011.
- Michael Grant, Stephen Boyd, and Yinyu Ye. Cvx: Matlab software for disciplined convex programming, 2008.
- Yingqing Guo, Hui Yuan, Yukang Yang, Minshuo Chen, and Mengdi Wang. Gradient guidance for diffusion models: An optimization perspective. *arXiv* preprint arXiv:2404.14743, 2024.
- René Henrion. Structural properties of linear probabilistic constraints. *Optimization*, 56(4):425–440, 2007.
- Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598, 2022.

- Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in Neural Information Processing Systems*, 33:6840–6851, 2020.
- Yi Huang, Jiancheng Huang, Yifan Liu, Mingfu Yan, Jiaxi Lv, Jianzhuang Liu, Wei Xiong, He Zhang, Liangliang Cao, and Shifeng Chen. Diffusion model-based image editing: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2025.
- Yongwei Huang and Shuzhong Zhang. Complex matrix decomposition and quadratic programming. *Mathematics of Operations Research*, 32(3):758–768, 2007.
- Yongwei Huang, Sergiy A Vorobyov, and Zhi-Quan Luo. Quadratic matrix inequality approach to robust adaptive beamforming for general-rank signal model. *IEEE Transactions on Signal Processing*, 68:2244–2255, 2020.
- Shinji Kataoka. A stochastic programming model. *Econometrica: Journal of the Econometric Society*, pages 181–196, 1963.
- Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
- Lingkai Kong, Yuanqi Du, Wenhao Mu, Kirill Neklyudov, Valentin De Bortoli, Dongxia Wu, Haorui Wang, Aaron Ferber, Yi-An Ma, Carla P Gomes, et al. Diffusion models as constrained samplers for optimization with unknown constraints. *arXiv preprint arXiv:2402.18012*, 2024.
- Siddarth Krishnamoorthy, Satvik Mehul Mashkaria, and Aditya Grover. Diffusion models for black-box optimization. In *International Conference on Machine Learning*, pages 17842–17857. PMLR, 2023.
- Constantino M Lagoa, Xiang Li, and Mario Sznaier. Probabilistically constrained linear programs and risk-adjusted controller design. *SIAM Journal on Optimization*, 15(3):938–951, 2005.
- Yin Tat Lee, Ruoqi Shen, and Kevin Tian. Structured logconcave sampling with a restricted gaussian oracle. In *Conference on Learning Theory*, pages 2993–3050. PMLR, 2021.
- Zihao Li, Hui Yuan, Kaixuan Huang, Chengzhuo Ni, Yinyu Ye, Minshuo Chen, and Mengdi Wang. Diffusion model for data-driven black-box optimization. *arXiv preprint arXiv:2403.13219*, 2024.
- Ruihuai Liang, Bo Yang, Pengyu Chen, Xianjin Li, Yifan Xue, Zhiwen Yu, Xuelin Cao, Yan Zhang, Mérouane Debbah, H Vincent Poor, et al. Diffusion models as network optimizers: Explorations and analysis. *IEEE Internet of Things Journal*, 2025.
- Yi-An Ma, Yuansi Chen, Chi Jin, Nicolas Flammarion, and Michael I Jordan. Sampling can be faster than optimization. *Proceedings of the National Academy of Sciences*, 116(42):20881–20885, 2019.
- Arkadi Nemirovski and Alexander Shapiro. Convex approximations of chance constrained programs. *SIAM Journal on Optimization*, 17(4):969–996, 2007.
- Bernardo K Pagnoncelli, Shabbir Ahmed, and Alexander Shapiro. Sample average approximation method for chance constrained programming: theory and applications. *Journal of Optimization Theory and Applications*, 142(2):399–416, 2009.
- Jakiw Pidstrigach. Score-based generative models detect manifolds. *Advances in Neural Information Processing Systems*, 35:35852–35865, 2022.
- András Prékopa. Stochastic programming, volume 324. Springer Science & Business Media, 2013.
- Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex learning via stochastic gradient langevin dynamics: a nonasymptotic analysis. In *Conference on Learning Theory*, pages 1674–1703. PMLR, 2017.
- Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In *Medical Image Computing and Computer-assisted Intervention–MICCAI* 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18, pages 234–241. Springer, 2015.

- Simo Särkkä and Arno Solin. *Applied stochastic differential equations*, volume 10. Cambridge University Press, 2019.
- Nahom Seyoum and Haoxiang You. Beyond smoothness and convexity: Optimization via sampling. *arXiv* preprint arXiv:2504.02831, 2025.
- Bowen Song, Soo Min Kwon, Zecheng Zhang, Xinyu Hu, Qing Qu, and Liyue Shen. Solving inverse problems with latent diffusion models via hard data consistency. *arXiv preprint arXiv:2307.08123*, 2023.
- Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv* preprint arXiv:2010.02502, 2020a.
- Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. *arXiv* preprint *arXiv*:2011.13456, 2020b.
- Kun-Yu Wang, Anthony Man-Cho So, Tsung-Hui Chang, Wing-Kin Ma, and Chong-Yung Chi. Outage constrained robust transmit optimization for multiuser miso downlinks: Tractable approximations by conic optimization. *IEEE Transactions on Signal Processing*, 62(21):5690–5705, 2014.
- Peng Wang, Rujun Jiang, Qingyuan Kong, and Laura Balzano. A proximal dc algorithm for sample average approximation of chance constrained programming. *arXiv* preprint arXiv:2301.00423, 2023.
- Andre Wibisono. Sampling as optimization in the space of measures: The langevin dynamics as a composite optimization problem. In *Conference on Learning Theory*, pages 2093–3027. PMLR, 2018.
- Dongxia Wu, Nikki Lijing Kuang, Ruijia Niu, Yi-An Ma, and Rose Yu. Diff-bbo: Diffusion-based inverse modeling for black-box optimization. *arXiv preprint arXiv:2407.00610*, 2024.
- Zongsheng Yue, Jianyi Wang, and Chen Change Loy. Resshift: Efficient diffusion model for image super-resolution by residual shifting. *Advances in Neural Information Processing Systems*, 36: 13294–13307, 2023.
- Shenglong Zhou, Lili Pan, Naihua Xiu, and Geoffrey Ye Li. A 0/1 constrained optimization solving sample average approximation for chance constrained programming. *Mathematics of Operations Research*, 2024.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The main results and contributions of this paper are all included in the abstract and introduction clearly.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals
 are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We point out all assumptions and discuss the limitations of the work thoroughly in the supplementary material.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: All the assumptions used are included in the main paper, and the proofs are provided in the supplementary material.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The main configuration of experiments is claimed in the Experimental results section, and more details are provided in the supplementary material. We will release the code once the paper is published.

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
- (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: The data generation algorithm is provided in this paper and can be reproduced easily. The code is a straightforward implementation of the proposed framework, and will be released once the paper is published.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The experimental settings are presented in the main paper, and full details are provided in the supplementary material.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In the experiments, we run multiple times for each method and the stability is shown in the main paper.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.

- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: The information of the compute resources is provided in the supplementary material.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: This paper focus on the theoretical results of Gradient Guidance and a framework for solving chance constrained problems. There is no direct path to any negative applications of this paper.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All the original papers of used models and algorithms are properly cited in this paper.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.

- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets, and our code will be released once the paper is published.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects. Guidelines:

 The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.

- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important, original, or non-standard components.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.