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Abstract

Chance constrained programming (CCP) is a powerful framework for addressing
optimization problems under uncertainty. In this paper, we introduce a novel
Gradient-Guided Diffusion-based Optimization framework, termed GGDOpt,
which tackles CCP through three key innovations. First, GGDOpt accommodates
a broad class of CCP problems without requiring the knowledge of the exact
distribution of uncertainty—relying solely on a set of samples. Second, to address
the nonconvexity of the chance constraints, it reformulates the CCP as a sampling
problem over the product of two distributions: an unknown data distribution
supported on a nonconvex set and a Boltzmann distribution defined by the objective
function, which fully leverages both first- and second-order gradient information.
Third, GGDOpt has theoretical convergence guarantees and provides practical
error bounds under mild assumptions. By progressively injecting noise during the
forward diffusion process to convexify the nonconvex feasible region, GGDOpt
enables guided reverse sampling to generate asymptotically optimal solutions.
Experimental results on synthetic datasets and a waveform design task in wireless
communications demonstrate that GGDOpt outperforms existing methods in both
solution quality and stability with nearly 80% overhead reduction.

Our code is available at https://github.com/boyangzhang2000/GGDOpt.

1 Introduction

1.1 Problem formulation

Chance constrained programming (CCP) is an efficient modeling paradigm for optimization problems
with uncertain constraints, which finds wide applications in diverse fields, such as finance (Bonami
and Lejeune| [2009]), robot control (Calafiore and Campi| [2006]), and wireless communications
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(Wang et al.|[2014])). In this paper, we consider a CCP with the following form:
min f(x)
st. xed,

where f : R" — R is a differentiable objective function and &, is the chance (or probabilistic)
constraint set defined by

X, = {a: € R" | Probp{g(z,h) > 0} > 1 — p}. @)

ey

In the above, h is a random vector with probability distribution P supported on a set = C R,
p€(0,1),9g=1(91,92,---,9m) : R" x 2 — R™, and Prob(A) denotes the probability of an event
A. Problem (T) is generally challenging to solve for the following two reasons. First, evaluating the
probability term Probp{g(x, h) > 0} typically involves a high-dimensional integration, which is
computationally intractable. Second, even when g is linear, the feasible set X, remains nonconvex,
further complicating the optimization.

1.2 Related works

Apart from very special cases where X, can be transformed into a convex formulation under strong
assumptions (Kataokal|[[1963]],|Lagoa et al.| [2005]], Henrion| [2007], Prékopa) [2013]]), there are two
popular approaches to tackling general problem (1)), which are Convex Approximation (CA) method
and Sample Average Approximation (SAA) method. The CA method seeks to construct a tractable
inner approximation of X, but it typically requires the information of the exact distribution P,
often assuming that P belongs to specific families such as Gaussian or log-concave distributions
(Ben-Tal and Nemirovski| [2000], Bertsimas and Sim|[2004]], Lagoa et al.| [2005]], Nemirovski and;
Shapiro| [2007]). In contrast, the SAA method approximates P using an empirical distribution
based on sampled data, reformulating the CCP as a binary integer program (Ahmed and Shapiro
[2008]], Pagnoncelli et al.| [2009]],/Adam and Branda [2016]]). However, this reformulation remains
computationally intractable. These restrictive assumptions on the underlying distribution P, along
with the high computational cost, significantly limit the practical applicability of CCP.

One important question to ask is: can we design a general framework to efficiently solve CCP
when the underlying distribution P is unknown? The answer to the above question is particularly
crucial in our interested case where samples can be efficiently drawn from X, albeit the explicit
formulation of X, is unavailable. This motivates us to seek high-quality solutions to the CCP problem
(I) from a new perspective via sampling-based methods (Wibisono| [2018]], Ma et al. [2019)]], Lee
et al.[[2021]], |Chen et al.|[2022]],[Seyoum and You|[2025]]). The core idea of applying sampling-based
methods to solve CCP problems lies in reformulating the original nonconvex CCP with intractable
constraints as a sampling problem from an unknown distribution. This reformulation leverages
probabilistic techniques to handle the challenging constraints through stochastic sampling rather than
deterministic evaluation.

Notably, generative models are designed to approximate unknown data distributions based on observed
samples, enabling the generation of new data points from the learned approximation. In particular,
diffusion models have emerged as a powerful family of generative models, offering high-quality
sample generation, stable training dynamics, and scalability to high-dimensional problems (Ho et al.
[2020]). The sampling process based on score estimation enables diffusion models to generalize to
conditional distributions, thereby generating samples that satisfy requirements through conditional
information guidance (Ho and Salimans|[2022]]). As a powerful generative artificial intelligence (AI)
technology, diffusion model has been successfully deployed across various domains, such as, image
generation (|Yue et al.| [2023]], Huang et al.| [2025]]), inverse problems (Chung et al.|[2022b]],(Chung
et al.[[2022al],|Song et al.| [2023]]), and optimization (Krishnamoorthy et al.|[2023]], Li et al.|[2024],
Wu et al.|[2024], Kong et al.|[2024], |Liang et al.|[2025]]). Recently, /Guo et al.|[2024] introduced a
novel form of gradient guidance to adapt pre-trained diffusion models for user-specified tasks.

Despite their success in various domains, diffusion models have rarely been explored in the context
of CCP. The possible reason behind might be that tackling CCP problems via diffusion models
generally requires efficient sampling from a composite distribution, the product of an unknown data
distribution (associated with the constraint) and a known Boltzmann distribution (induced by the
objective function), but the training data is only available from the unknown component. This makes
the application of diffusion models to CCP both novel and nontrivial.
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Figure 1: A framework of GGDOpt. (1) Generate a training set of points satisfying the chance
constraint by solving a deterministic restricted problems. (2) Train a diffusion model with classifier-
free guidance to learn the score of the conditional distribution. (3) Perform the reverse diffusion
process with additional gradient guidance to sample from the product of the data distribution and the
Boltzmann distribution.

1.3 Our contributions

In this paper, we propose GGDOpt (see Figure [I), a novel Gradient-Guided Diffusion-based
Optimization framework for solving problem (T)), with the following originality:

* Applicable to broader problem domains. Built on the basis of diffusion model with classifier-free
guidance and optimization via sampling, GGDOpt accommodates a broad class of CCP problems
without requiring the knowledge of the exact distribution of uncertainty—relying solely on a set of
samples.

* Problem reformulation with a novel paradigm. GGDOpt reformulates the CCP problem as
a sampling task over the product of two distributions: an unknown data distribution implicitly
defined by the constraint and a Boltzmann distribution induced by the objective function with a
full utilization of first- and second-order information of the underlying CCP.

* Feasibility-aware data generation and efficient guided sampling. To generate high-quality
training data that satisfy the chance constraint, GGDOpt solves a deterministic restricted problems
by standard optimization techniques. The solutions are used to guide the training of the conditional
diffusion model, effectively capturing the geometry of the feasible region. To sample from the
product distribution, we develop a gradient-guided reverse process derived in closed form based on
the structure of the product distribution. Compared with (Guo et al.| [2024], our guidance terms do
not require backpropagation through the neural network.

* Theoretical convergence and practical evaluation. Regarding the sampling process as a reverse
time stochastic differential equation (SDE), GGDOpt is shown to generate asymptotically optimal
solutions as the time step and inverse temperature go to infinity. A practical error bound is also
provided with two components: the limited time length error and limited inverse temperature error.

1.4 Organization

The remainder of the paper is organized as follows. In Section[2] a reformulation of CCP problem (TJ)
is provided via sampling, and a gradient guidance-based score estimation schedule is provided with
both first- and second-order information. A novel GGDOpt framework for solving problem (1) is
given in Section 3] Theoretical convergence and experimental results are presented in Section ff| and
Section 3] respectively. The conclusion is drawn in Section [6}



2 Problem reformulation via sampling

Letr(x|p) = I, (x) denote the indicator function of the chance constraint X,,. Let Bg(x) oc e~/ ()
represent the Boltzmann distribution associated with the objective function f(x), where 8 > 0. The
resulting sampling task is to draw samples from the following target distribution:

sample @ ~ Qs (|p)  r(z|p) By (). )

Intuitively, the distribution Qg (x|p) assigns higher probability density to regions where the objective
function f(x) takes smaller values. Under certain regularity conditions (Kong et al.| [2024]), as
B — o0, the sampling distribution Qg (x| p) asymptotically concentrates around the global minimizer
of the CCP in (IJ). Therefore, the CCP (I)) admits the following equivalent reformulation:

x* = argmin {f(x)+ Ly, (x)} < sample z* ~ Qs(x|p), B — oo. 4)

A natural way would be to directly employ Langevin dynamics for sampling from distribution
Qs(x|p). However, the unknown nature of component r(x|p) prevents the derivation of an exact
expression of the score function. Fortunately, we can obtain a set of feasible samples {z(*), p(*) W
which are drawn from the unknown distribution r(x|p). More details on this will be presented
in Subsection [3.1] This motivates us to leverage diffusion models to directly learn the product
distribution Q(x|p) x r(x|p)Bs(x), where r(x|p) is unknown but Bg(x) is explicitly known.

2.1 Diffusion models

Given observed samples x from a distribution of interest, the goal of a diffusion model is to learn
to model its true data distribution pg (o). Once learned, we can generate new samples from our
approximate model at will. The diffusion model builds a diffusion process by defining a forward SDE
starting from po () as follows:

dﬂ:t = a(wt, t)dt + b(t)dBt, (5)

where t € [0, T, B; is the standard Wiener process (a.k.a., Brownian motion), a(-,t) : R? — R% is
a vector valued function called the drift coefficient, and b(-) : R — R is a scalar function known as
the diffusion coefficient.

By starting from samples of &1 ~ pr(axr) and reversing the process, we can obtain samples
o ~ po(xo) . The reverse of a diffusion process is also a diffusion process, running backwards in
time and given by the following reverse-time SDE:

day = (a(z¢,t) — b(t)*Va, logpe(xy)) dt + b(t)dBy, (6)

where B, is a standard Wiener process when the time flows backwards from 7" to 0. The only
unknown term Vg, log p: () is the score function of the marginal density p; ().

To estimate V5, log p:(x:), we can train a time-dependent score-based model sg (4, t) with
0" = argemin E¢ 0,1 {/\tEmo]Ezt\:z:g [HSO (x4,1) — Vg, IngOt(thCEO)Hg} } ) (7)

where po:(¢|xo) is the transition kernel and can be obtained by the forward process . When
a(-,t) is affine, the transition kernel is always a Gaussian distribution, where the mean and variance
are often known in closed forms (Sarkka and Solin/ [2019]]). With sufficient data and model capacity,
score matching ensures that the optimal solution sg« (x;,t) approximates V, log p;(x;) for almost
all ; and ¢.

2.2 Gradient guidance

A direct application of diffusion models to CCP (T is infeasible, as this requires sampling from the
product distribution Q(x|p) o r(x|p)Bg(x), whereas only samples from r(x|p) are accessible.
Therefore, obtaining a precise characterization of the score function of Qg (x|p) and its diffused
version is crucial.



For a given dataset D = {(z¥, p())}IV |, we use its empirical py(zo|p) to approximate the unknown
distribution r(xo|p) and denote po(xo|p) o po(xo|p)Ba(xo). The diffused distribution is then given
by the forward process @), i.e.,

pt($t|ﬂ) =/ pOt($t|$o)po($0\P)dwo,
o0 (8
De(xt]p) :/ pOt($t|$o)ﬁo($0\P)d$oO</ Pot(+|x0)po(x0|p) Bs(xo)dxo.

In order to sample with the reverse process @), we need to characterize the score function of the
diffused product distribution V5, log p; (x:|p), which is given by the following theorem.

Theorem 1. For any given § > 0, there exists & () such that the score function of the diffused
product distribution can be formulated as

Ve, logpe(xe|p) = Va, logpi(@e|p) =BV, f(Zo(x)), ©

gradient guidance G4

where V, log p(x|p) is the score function of the diffused data distribution and & (x;) satisfies

fanta) =~ 1ox (| po(aolrep)Bsta)da). (10)

Theorem 1 demonstrates that sampling from the product distribution can be accomplished by intro-
ducing a gradient guidance term during the sampling process of the original data distribution, which
has a strong connection between the posteriori pyo (|, p) and the Boltzmann distribution Bg ().

Next, we present a special case where the gradient guidance terms admit explicit expressions.

Corollary 1. Assume that pyo(zo|x¢, p) = N (20| o)t ag‘tI), then we have the following results.

* First-order guidance: For f € C'(R",R), we get
Gi = —[Va, f(z:) (11)
* Second-order guidance: For f € C2(R",R), we get

1 B 1
Gi=—— |H ' (-V2,f(@)@: + Va, f(x)) — =5 Boe | + Hope|,  (12)
90|t Bao\t
where H = V2, f(x;) + ﬂ%I.
ot

It is worthwhile noting that, for po(xo|p) = N (xo|po, o2I) and the Gaussian transition kernel,
the assumption in Corollary 1 holds and the parameters (o, oo|¢) can be expressed explicitly. In
practice, we can use Tweedie’s formula (Efron| [2011])) to obtain an estimator of Moje» and treat the
variance as a hyper parameter; see Subsection [3.3[for details on this. Although the second-order
guidance requires computing the inverse of a general Hessian matrix, which may be computationally
expensive, it brings faster convergence and better variance reduction.

3 GGDOpt for CCP

In this section, we give our GGDOpt framework for CCP (T)). The whole process can be divided into
three stages: data generation, diffusion and learning, and sampling with guidance. More specifically,
in the data generation stage, a collection of points satisfying the chance constraint is generated to
characterize the nonconvex feasible set. The diffusion and learning stage progressively inject noise to
convexify the nonconvex feasible region and learn the score function of the conditional distribution
in order to perform sampling. After learning, the sampling with guidance stage iteratively runs the
reverse process with an extra gradient guidance to sample from the product distribution, which will
asymptotically converge to an optimal solution to problem (I)). Next, we present the details of the
three stages in GGDOpt one by one.



3.1 Stage 1: data generation

First we give an efficient approach to generate high-quality data that satisfy the chance constraint
while maintaining lower objective values. Suppose that we have a set of samples {h(*)} L. denote
the empirical mean h = % 25:1 h(“). Notice that in most of cases, it’s much easier to solve the
following deterministic restricted problem (RP) with a fixed h:

min f(x)
* _ (13)
s.t. gz, h) > z,
where z; > 0 is a given restriction, ¢ = 1, ..., N. Let &(z;) denote the solution to problem for

a given z;. As the smallest element z2,,,;,, in z; increases, the probability of the nonlinear constraint
g(x(z;), h) > 0 also increases. Then, solving problem (13) allows us to generate high-quality data
that satisfies the chance constraint for arbitrary p € (0, 1) while enjoys low objective values.

Since the distribution of the random variable h is unknown, referring SAA method, we approximate
the chance constraint using the empirical distribution over samples {h(é)}gzl. Then, after getting
x(z;), we have

L
Proby{g(z(zi),h) > 0} ~ — 20/1 i), ), (14)

1—p(i)

where £y/1(g) = 1if g > 0 and £y/,(g) = 0 otherwise. By calculating the empirical p™, an
asymptotic approximation of the underlying probability is obtained, requiring no assumption on the
underlying distribution P. In the appendix, we give a tight lower bound for the probability constraint
Prob,{g(x(z;), h) > 0} if the variance and the mean of the random variable h are known, which is
helpful to obtain a better approximation p(*).

Let (") := x(z;) and repeating the above process, i.e., solving problem 1i and estimating p(*),
and gradually increasing z;, we can generate a collection of data points D = {x(®, p()}N | 'which
are then used to train our GGDOpt in the next stages.

3.2 Stage 2: diffusion and learning

From Theorem 1, we observe that the score function of the diffused product distribution has two
terms, the conditional score Vo, log p:(:|p) and the gradient guidance term G for which explicit
forms of first- and second-order guidances have been derived in Corollary 1. Then the challenge
reduces to learning the conditional score V, log p:(+|p).

In practice, naively conditioning a standard diffusion model by appending the conditioned variable at
each step of the sampling process does not work well, as the model often ignores the conditioned
information. Related works on conditional score estimation have been studied in (Dhariwal and
Nichol|[[2021]], Dhariwal and Nicholl [2021]], Ho and Salimans| [2022]). Here we propose to use the
classifier-free guidance (Ho and Salimans|[2022]) to give an approximation of V, log p:(x|p).

Instead of training a separate classifier model, classifier-free guidance choose to train an unconditional
score estimator to approximate Vg, log p(x;) together with the conditional score estimator to
approximate V., log p:(x:|p). Specificity, we train a single model sg (x4, t, p), and the conditioning
information p is randomly discarded as empty set () with probability p,ncong to train unconditionally.
Then the conditional score V5, log p:(x:|p) is estimated by

vmt lngt(iL't‘p) ~ (]' + w)39($t7t7p) - w89($t,t7 (2))7 (15)

for a given weight parameter w. Specifically, for the given data set D and network sg(x¢,t, p)
parameterized by 0, the training objective is defined as

LOSS(O) = ]EtNZ/l[O,T] {Emo pEwt\aco |:||Sg(:13t, t, P) - vmt Ing()t(mt‘mO)Hg} } ) (16)

and trained with Adam (Kingmal [2014])). The training process of GGDOpt is given in Algorithm [I]



Algorithm 1 Training of GGDOpt Algorithm 2 Sampling of GGDOpt

Input: {(z¥, p)}N | ~ po(z|p). Input: sg-(x,t, p), objective f.

Output: sg-(x,t,p). Output: x.

1: repeat I: T ~ pr.

2: Load (xg, po) ~ po(x|p). 2: fort=1T,...,1do

3:  Set p < () with probability pyncond. 3:  Calculate 39 (¢, t, p) with .

4:  Sample t ~ U[0,T]. 4:  Calculate G with or (12) .

5:  Generate &; ~ pot(a¢|To). 5:  Take guided sampling step with (7).
6: Take gradient descent step on (16). 6: end for

7: until converged. 7: return xj = xo.

3.3 Stage 3: sampling with guidance

Given the forward process (3)), the corresponding reverse process is given by the following reverse-
time SDE with trained sg(x:, t, p) and gradient guidance G:

dz, = [a(zy,t) — b(t)* (36 (s, t, p) + Gi)] dt + b(t)dBy, a7

where
So(xy, t,p) = (1 +w)sg(xy, t, p) — wse(xy, t, D). (18)

For the first-order gradient guidance G in (T1), we directly use the gradient of the objective scaled
by a hyper parameter /3. For the second-order gradient guidance (T2), we need to give the posterior
mean and variance (u0|t, Uglt). Here we use Tweedie’s formula (Efron|[2011]) to get an estimator of

the posterior mean as follows:
1
=E P = — 1—a,)s 4 0)), 19
Hojt [@o| 2+, p] \/67t(wt + (1 —a)8e(xi,t,p)) (19)

with priori pos(z¢|20) = N (24| \/arxo, (1 — a;)I) for a specific noising schedule @.

While Tweedie’s formula theoretically provides both the posterior mean and covariance, 3 =
(1 —a)(I + (1 — a&)V?logp(x;)), computing the covariance requires evaluating the Hessian
of logp(x). In our framework, the score function sg is parameterized by a neural network, and
computing its second derivatives involves backpropagation through the network’s Jacobian, which is
computationally expensive, especially in high dimensions. To strike a balance between performance
and efficiency, we choose to treat the covariance as a tunable hyper parameter 0. In the appendix,
we give a detailed comparison between the fully Tweedie-based method and our approach to show
that using a fixed variance can be a practical and robust alternative.
Then the second-order guidance can be calculated by
1 1 1
G, = 52 (VQf(:Et) + WI)*l <(V2f(33t)513t + Vf(xy)) — W“Ot) + /1404 , (20)

and the sampling process of GGDOpt is given in Algorithm 2]

4 Convergence analysis

In this section, we give the convergence analysis of the proposed GGDOpt framework in both
theoretical and practical aspects. We show that: theoretically, the samples generated by the sampling
process will concentrate around the points with the lowest function values within the support of the
data distribution; and practically, the gap between the expected function values of generated samples
and the optimal value will be bounded by two components.

4.1 Theoretical convergence

As provided by (Pidstrigach|[2022]]), under mild assumptions, the sampling distribution of the standard
diffusion model will have the exact same support as the data distribution. But what if we introduce an



extra gradient guidance term? For a given p, denote D, = {z | (2, p)) € D, p() < p} as the
approximated feasible set of X,. The following theorem says that in our settings, as T — oo and
8 — oo, the samples of GGDOpt will concentrate around the points with the lowest function values
within the support of the data distribution D, for any given p.

Theorem 2. For any given p € (0, 1), suppose that there exists a constant § such that the error in the
score estimation can be bounded as:

|86 (1, t, p) + Gt — Vi, log pr(xi|p)|| <0, V. (21)
For samples Tsqmpie ~ Dsample(Lo|p) generated by the reverse process
dz, = [a(zy,t) — b(t)* (36 (s, t, p) + Gi)] dt + b(t)d By, (22)
with prior pprior = N(0, I), affine drift coefficients a(-, ), and
So(xt,t,p) = (1 +w)sg(xs,t, p) — wse (x4, t,0), (23)

as T — 00, Psample (o] p) Will have the same support as po(xo|p). Further, as 8 — 00, &sampie
will concentrate around &* = arg mingcp, f(x).

The assumption in the score estimation error (2T)) quantifies the approximation accuracy of the trained
score network relative to the true score function. It depends on the training quality of the neural
network and the expressiveness of the model class. This type of assumption is common in the
theoretical analysis of diffusion models (see, e.g., |Pidstrigach| [2022], De Bortoli et al.| [2021]]) and is
used to establish convergence results in generative modeling and sampling.

4.2 Practical error bound

In practice, the forward process cannot reach the stationary distribution and the training is not perfect.
This results in the failure of the sample distribution to strictly concentrate on the data points. This will
lead to two components of errors: the limited time length error I; and limited inverse temperature
error I, which are given as follows:

[ELf (@sampte)] — f(@)] < VE[f (Zsampte)] — E[f (@) +|E[f(z™)] — f(z)] .
I Iy

In the above, Zs4mpie 1s sampled from the reverse process , x™ follows the strong solution p™ to
the Fokker-Planck equation of , and x* = argmingcp f (). Next, we will give practical error

bounds of both the two components with finite 7" and 3.

(24)

Assumption 1. We assume the following conditions hold:

* The forward process is given by dz = b(t)dBy;

* The reverse process starts in pprior = N (mr, X7) where mp = E[po(xo|p)] and X7 =
Cov(po(zolp)) + T I

* The objective function f(x) satisfies ||V f(x)]]2 < Ci|lz]]2 + Co.

The first two conditions in Assumption 1 correspond to the VE SDE in (Song et al.|[2020b])) and are
primarily used to characterize the discrepancy between the end distribution and the prior distribution.
The third assumption is common in the convergence analysis of stochastic optimization and sampling
algorithms (see, e.g., Raginsky et al.[[2017]]). In practice, Assumption 1 holds for a broad class of
functions, including smooth bounded functions and quadratic objectives, which frequently arise in
real-world optimization problems.

Theorem 3. Under Assumption 1, denote o), k = 1, ..., n, the eigenvalues of 3. For any given
p € (0,1), denote N, = |Dp| and &* = arg mingcp, f(«). Then for any given 7' > 0 and 3 > 0,
the optimization error can be bounded by
- . 1/4 AN —
|]E[f(msample)] - f(.’E )| < CI( C1T + (CT/Q) / ) + (Np - 1) aI}éabX |f(:13) - f(CC )‘6 [369,

I

I
(25)
where Cr = 2 log ([T_,(c®)/T")) and Cy, , are constants.
Theorem 3 provides a non-asymptotic convergence result of GGDOpt with limited time length and

inverse temperature. As 7" — oo and 5 — oo, the optimization error goes to zero and GGDOpt is
shown to generate asymptotically optimal solutions.



5 Experimental results

In this section, we perform numerical experiments on both synthetic datasets and a wireless commu-
nications waveform design problem. To generate the data, we employ CVX (Grant et al.| [2008]]) to
solve the restricted problem (13). In the diffusion and learning stage, we set 7' = 1000 with a linear
noise schedule 7(¢) ranging from 0.0001 to 0.02, and let a(x,t) = —%n(t)az and b(t) = /n(t). In
the sampling with guidance stage, we evaluate both first- and second-order gradient guidances via
implementing a DDIM-based technique (Song et al.|[2020al]) with a descaled time step 7" = 100 for
accelerated sampling. We employ two variants of the U-Net model (Ronneberger et al. [2015]) as our
score estimator: U-Net-1D for the linear chance constrained problem and both for robust waveform
design. Additional experimental details are provided in the supplementary materials.

5.1 Linear chance constrained problem

Consider the following linear chance constrained problem:

1
min -x'xz+b x
oekn 2 (26)
sit. Probewy {c'x+d>0}>1—p,

where p. = N(c;¢,I) and (b, ¢,d, p) are hyper parameters selected from a test set. The above
problem can be reformulated as a second-order conic (SOC) program, for which CVX (Grant et al.
[2008]]) is used for solution. To generate training data, we solve the restricted version of problem
for N = 1000 values of z linearly spaced in the interval [0, 0.5]. Then we execute the reverse
process with first- and second-order gradient guidance to generate samples.

We compare our proposed GGDOpt against different types of SAA methods for solving the problem,
using the corresponding CVX solutions as performance benchmarks. Each algorithm was executed
100 times (except CVX). The results with n = 8 are presented in Table[T]

Table 1: Comparison results on the linear chance constrained problem

Method Repeat FvalMean FvalStd FvalMedian Runtime
SOC_CVX (Grant et al. i2008ﬁ|) 1 -0.6586 0 -0.6586 0.3214
SAA_CVaR (Nemirovsk; and Shapiro|[2007]) 100 -0.5893 0.0248 -0.5869 0.3063
SAA_MIP (Pagnoncelli et al.|[2009]) 100 -0.6281 0.0157 -0.6318 15.4502
SAA_PDCA (Wang et al.|[2023]) 100 -0.6389  0.0314 -0.6408 0.6276
SAA_SNSCO (Zhou et al.|[2024]) 100 0.8051 3.4014 -0.6371 0.2793
GGDOpt_WithoutGuidanc;: 100 0.3481 0.5486 0.2798 0.0465
GGDOpt_First-order 100 -0.6483 0.0051 -0.6488 0.0486
GGDOpt_Second-order 100 -0.6491 0.0056 -0.6503 0.0507

The results in Table[I]demonstrate that, compared to the SOC_CVX method, which requires explicit
knowledge of the underlying distribution, GGDOpt can approximately find the global minimizer with
only samples from distribution p. while simultaneously achieving significant overhead reduction.
Compared to SAA methods, GGDOpt achieves superior performance in terms of lower function
values and enhanced numerical stability under the effect of gradient guidance.

As expected, the runtime increases with the problem dimension. However, both the first- and second-
order versions of GGDOpt remain consistently faster than the baseline SAA_PDCA method across
all dimensions. Moreover, the increase in runtime is moderate, indicating that our approach scales
favorably even in high-dimensional settings.

Furthermore, as the runtime increases with the problem dimension, both the first- and second-order
versions of GGDOpt reduce the computational time by approximately 80% compared with , offering
substantial efficiency improvements. More detailed experimental results on larger problem scale and
computational costs are listed in the appendix.



5.2 Robust waveform design

Consider the following robust waveform design problem (Wang et al.[[2014]))

K
min Tr(S,;
S1,...,SKERNt XNy Z ( )
- 27
S PrObhiNN(ﬁi’Ci){Ri Z 7"7;} Z 1- Pul = 17 27 . 7K7

Si,....Sk>=0,i=12... K,

where N; is the number of antennas at the base station and K is the total number of users. For each
user i, S; >~ 0, h;, R; and r; > 0 denote the signal covariance matrix (to be designed), the random
channel vector, the achievable rate, and the desired rate target, respectively.

Firstly, we use U-Net-2D as the score estimator. Notice that during the data generation, all the
solutions to the restricted problem exhibit a rank-one structure (Huang and Zhang|[2007]], Chang
et al.|[2008]], Huang et al.|[2020]). Remarkably, the generated samples maintain this rank-one property
(with dominant eigenvalue accounting for >99% of the total eigenvalue) after training, suggesting that
the solutions to the robust waveform design problem (27) inherently reside on a rank-one manifold
with extremely high probability (Wang et al.|[2014]]), which GGDOpt successfully captures. This
implies that rank-one decomposition can be effectively applied after generation, enabling the use of
U-Net-1D as a score estimator to reduce computational costs in both training and sampling process.

Table [2| summarizes the comparison results of GGDOpt and two state-of-the-art methods for solving
problem with N; = 16 and K = 3, where the worst probabilities that the chance constraints
satisfy for K users are underlined. Notably, both baseline methods rely on explicit knowledge of the
underlying distribution, whereas GGDOpt operates solely based on samples. The results show that
GGDOpt outperforms existing convex approximation methods, achieving superior feasible solutions
outside the convex restriction of the feasible set, while significantly reducing computational overhead.
Complete experimental details are provided in the appendix.

Table 2: Optimization methods comparison for robust waveform design

Method Metric p=0.05 p=0.10 p=0.15 p=0.20
. Probability  0.99; 0.99; 0.99  0.99; 0.99; 0.99  0.99; 0.99; 0.99  0.99; 0.99; 0.99
Sphere Bounding
1 FuncValue 0.1374 0.1366 0.1361 0.1357
Ben-Tal and Nemirovski|[2000]
Runtime 1.4688 1.4375 1.4113 1.3875
Probability  0.96; 0.95;0.96  0.93;0.93;0.93 0.91;0.91;0.92  0.90; 0.90; 0.91
Bernstein-type Inequality
1 FuncValue  0.1260 0.1253 0.1248 0.1244
‘Wang et al.|[2014]
Runtime 1.2938 1.2813 1.2593 1.2652
Probability  0.99; 0.95;0.99  0.92;0.98;0.91 0.93;0.86; 0.94 0.87;0.81; 0.91
GGDOpt
FuncValue 0.1279 0.1265 0.1254 0.1247
First-order guidance
Runtime 0.0691 0.0628 0.0603 0.0635
GGDO Probability  0.97;0.95;0.96  0.90; 0.94; 0.90 0.88; 0.85; 0.86  0.88; 0.80; 0.87
t
P FuncValue  0.1260 0.1246 0.1239 0.1237
Second-order guidance
Runtime 0.0788 0.0712 0.0687 0.0682

6 Conclusion

In this paper, we have proposed GGDOpt, a gradient-guided diffusion framework that efficiently
solves nonconvex CCP without requiring the exact distribution knowledge. By reformulating CCP
as a sampling problem over the product of an unknown data distribution and a Boltzmann distribu-
tion, GGDOpt leverages both first- and second-order gradient information during reverse sampling.
Theoretical convergence guarantees and practical error bounds are provided under mild assumptions.
Experimental results demonstrate that GGDOpt outperforms existing methods in both solution quality
and numerical stability with significant overhead reduction.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main results and contributions of this paper are all included in the abstract
and introduction clearly.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We point out all assumptions and discuss the limitations of the work thoroughly
in the supplementary material.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: All the assumptions used are included in the main paper, and the proofs are
provided in the supplementary material.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The main configuration of experiments is claimed in the Experimental results
section, and more details are provided in the supplementary material. We will release the
code once the paper is published.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: The data generation algorithm is provided in this paper and can be reproduced
easily. The code is a straightforward implementation of the proposed framework, and will
be released once the paper is published.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental settings are presented in the main paper, and full details are
provided in the supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In the experiments, we run multiple times for each method and the stability is
shown in the main paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The information of the compute resources is provided in the supplementary
material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper focus on the theoretical results of Gradient Guidance and a frame-
work for solving chance constrained problems. There is no direct path to any negative
applications of this paper.
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All the original papers of used models and algorithms are properly cited in this
paper.
Guidelines:
» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets, and our code will be released once the
paper is published.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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