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Abstract
Fine-tuning large language models (LLMs) is in-
creasingly costly as models scale to hundreds
of billions of parameters, and even parameter-
efficient fine-tuning (PEFT) methods like LoRA
remain resource-intensive. We introduce LowRA,
the first framework to enable LoRA fine-tuning
below 2 bits per parameter with minimal per-
formance loss. LowRA optimizes fine-grained
quantization—mapping, threshold selection, and
precision assignment—while leveraging efficient
CUDA kernels for scalable deployment. Exten-
sive evaluations across 4 LLMs and 4 datasets
show that LowRA achieves a superior perfor-
mance–precision trade-off above 2 bits and re-
mains accurate down to 1.15 bits, reducing mem-
ory usage by up to 50%. Our results highlight the
potential of ultra-low-bit LoRA fine-tuning for
resource-constrained environments.

1. Introduction
Fine-tuning large language models (LLMs) enhances task-
specific performance (Wei et al., 2021; Wang et al., 2022;
Ziegler et al., 2019) and mitigates undesired behaviors such
as hallucinations (Hu et al., 2024; Liu et al., 2023) and harm-
ful responses (Bai et al., 2022; Askell et al., 2021). However,
as model sizes grow—e.g., LLaMA 3.1 (405B)(Dubey et al.,
2024) and DeepSeek-V3 (671B)(Liu et al., 2024a)—fine-
tuning costs escalate significantly (Hu et al., 2021).

Parameter-efficient fine-tuning (PEFT) techniques (Zaken
et al., 2021; Hu et al., 2021; Mao et al., 2021; Liu et al.,
2022a) address this by freezing core model weights and in-
troducing small trainable modules. LoRA (Hu et al., 2021),
a widely adopted PEFT method, inserts low-rank adapters
to reduce computation and memory overhead. Yet, even
with LoRA, fine-tuning large models can exceed single-
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GPU memory limits. Quantized LoRA approaches (e.g.,
QLoRA (Dettmers et al., 2024), LoftQ (Li et al., 2023))
alleviate this by quantizing base model weights without
accuracy loss, enabling fine-tuning on standard GPUs and
even mobile devices.

Despite their success, existing quantized LoRA methods
are confined to 2–4 bits per parameter (Wang et al., 2024;
Meng et al., 2024; Li et al., 2023), often failing at ultra-
low-bit settings (below 2 bits). Enabling such fine-tuning
is critical for ultra-resource-constrained environments, such
as embedded systems (Shen et al., 2023; Chai et al., 2025;
Zhang et al., 2024) and mobile devices (Wang et al., 2025;
Tan et al., 2024). However, current methods face three
fundamental limitations:

• L1: Focus exclusively on coarse-grained quantization of
base model weights.

• L2: Rely on quantization formats assuming a fixed data
distribution across the model weights.

• L3: Depend on simulated quantization with no system-
level support for efficient low-bit execution.

To unlock the full potential of quantized LoRA fine-tuning
below 2 bits per parameter, we introduce LowRA, an accu-
rate and efficient framework featuring: (1) a novel mapping
and threshold search mechanism, (2) a fine-grained preci-
sion assignment strategy, and (3) CUDA-based quantization
primitives for efficient low-bit execution.

Addressing L1 and L2 is particularly challenging, since
LoRA base weights must remain compatible with multiple
adapter sets in practical deployment scenarios (Sheng et al.,
2024; Ostapenko et al., 2024; Chen et al., 2024). This neces-
sitates a task-agnostic, yet highly adaptive, quantization
approach. Additionally, fine-grained precision assignment
requires scalable, low-complexity methods to handle large
parameter spaces. LowRA tackles these with a hierarchical
Integer Linear Programming (ILP)-based precision assigner
and a weighted Lloyd-Max quantization formulation for
adaptive quantization mapping and thresholding.

We extensively evaluate LowRA across 4 LLMs and 4
tasks, benchmarking against state-of-the-art baselines. Re-
sults show that LowRA: (1) achieves superior performance-
precision trade-offs above 2 bits while being the first method
to enable accurate LoRA fine-tuning below 2 bits, (2)
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reduces memory footprint significantly during both fine-
tuning and inference, and (3) introduces minimal overhead
despite its additional components.

In summary, we make the following contributions:

• Identifying Limitations in Quantized LoRA: We pin-
point three key bottlenecks in existing methods and pro-
pose solutions leveraging fine-grained precision assign-
ment and adaptive quantization mapping/thresholding.

• Design and Implementation of LowRA: We develop
an end-to-end framework, LowRA, incorporating a map-
ping/threshold learner, a precision assigner, and efficient
quantization primitives for scalable fine-tuning.

• Improved Performance-Precision Trade-Off: Our
method outperforms baselines in performance-precision
trade-off, enabling an average 0.86-bit reduction per pa-
rameter with negligible performance loss.

• Memory Efficiency Gains: LowRA reduces fine-tuning
memory consumption by 30–50% and enables fine-tuning
and deployment at as low as 1.15 bits per parameter.

• Open-Source Release: We will open-source LowRA
upon publication to foster further research in ultra-low-bit
LoRA fine-tuning.

This paper is organized as follows: Section 2 covers LoRA
fine-tuning and introduces three key limitations of existing
quantized LoRA methods. Section 3 introduces LowRA’s
workflow, with Sections 4, 5, and 6 detailing its design
choices, mapping/threshold search, and precision assign-
ment. Finally, Section 7 presents our evaluation results and
insights. In the Appendix, we provide in-depth details on
kernel designs, ablation studies, memory usage, motivating
sources, related algorithms, and supporting experiments.

2. Background and Motivation
2.1. Low-Rank Adaptation (LoRA) of LLMs

Fine-tuning large language models (LLMs) enables LLM
adaptation to specific tasks or domains (Wei et al., 2021;
Wang et al., 2022; Ziegler et al., 2019), but updating all
parameters becomes prohibitively expensive as model sizes
grow. Low-Rank Adaptation (LoRA) (Hu et al., 2021) ad-
dresses this by freezing base model weights and introducing
trainable low-rank adapter matrices, significantly reducing
memory and compute overhead. This method has become a
cornerstone of parameter-efficient fine-tuning.

2.2. Quantization for LoRA Fine-Tuning

Quantized LoRA fine-tuning further cuts memory usage
by quantizing the base model weights without hurting per-
formance. QLoRA (Dettmers et al., 2024) introduces a
NormalFloat format designed to better capture parameter

distributions., while LoftQ (Li et al., 2023), PiSSA (Meng
et al., 2024), and ApiQ (Liao et al., 2024) jointly optimize
quantized base weights and adapter initializations under a
unified objective. These advances unlock fine-tuning and
deployment of LLMs on low-resource platforms like em-
bedded devices (Shen et al., 2023; Chai et al., 2025) and
mobile phones (Wang et al., 2025; Tan et al., 2024).

2.3. Limitations of Existing Quantized LoRA Methods

Despite these advances, existing quantized LoRA ap-
proaches face fundamental challenges that limit their ef-
ficiency, particularly in ultra-low-bit regimes.

L1: Coarse-Grained Precision Assignment. Most meth-
ods apply a uniform quantization precision across entire
weight matrices or layers. For example, QLoRA uses uni-
form 4-bit precisions for all base weights, while LoftQ
adopts a layerwise mixed-precision scheme (e.g., higher
precision for earlier layers, lower for later layers). How-
ever, our findings (§6) suggest that unlocking ultra-low-
bit fine-tuning requires a finer-grained precision assign-
ment—potentially at the sub-layer or even sub-matrix level.

L2: Discrepancy in Data Distribution. Quantized LoRA
methods often assume a global data distribution when se-
lecting a quantization format. For instance, QLoRA’s Nor-
malFloat relies on a roughly normal distribution. However,
Figure 2 shows that weight distributions vary significantly
across layers and even within channels. Such discrepan-
cies suggest that group-wise or channel-wise quantization
is necessary for improved accuracy.

L3: Lack of High-Performance Quantization Primitives.
Most quantized LoRA implementations rely on simulated
quantization (Li et al., 2023; Qin et al., 2024; Bai et al.,
2020), as hardware support for sub-4-bit or mixed-precision
operations remains limited. For example, LoftQ requires
eight A100 GPUs even for smaller LLMs, making it im-
practical for real-world deployment. Moreover, no existing
system provides optimized low-bit CUDA kernels tailored
to LoRA, exacerbating inefficiencies in fine-tuning and in-
ference (see Appendix J for related GitHub discussions).

3. The LowRA Framework
In this section, we provide an overview of the LowRA end-
to-end workflow, illustrated in Figure 1. The process begins
with the pretrained model weights (T1). We feed each layer
of these weights into a dedicated mapping and thresholds
learner (P1), which produces optimized per-output-channel
mappings and thresholds, denoted (T2). These mappings
and thresholds, along with the pretrained weights, are then
processed by a two-step ILP quantizer (P2) to determine the
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Figure 1. End-to-end workflow of LowRA. LowRA learns the mapping/threshold per output channel, assigns the precision to each
output channel with a precision assigner, and supports fine-tuning workflow with Quantize and Dequantize Kernels. See section 3 for
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Figure 2. Distributions of normalized parameters in different out-
put channels sampled from the first layer of LLaMA2-7b.

optimal precision assignments (T3) for each output channel.

Next, the output-channel-wise quantize kernel (P3), which
supports custom quantization thresholds, uses the derived
thresholds (T2) and the assigned precision levels (T3) to
quantize the weights. We calculate the quantization errors
arising from this step and apply low-rank tensor initializa-
tion (P4). Techniques for intelligent low-rank initialization
include LoftQ (Li et al., 2023) and PiSSa (Meng et al.,
2024) (Appendix D) which generate low-rank tensors (T5)
designed to absorb or reduce quantization errors as possi-
ble during initialization. In our implementation, we opt for
LoftQ (Li et al., 2023) as experiments show that they give
better performance in the low-bit range.

The mixed-precision weights (T4) and initialized low-rank
tensors (T5) feed the fine-tuning module (P5), which uses
an output-channel dequantize kernel (P5.1) to restore base
weights. As in LoRA/QLoRA, base weights (T4) stay frozen
while only the low-rank tensors (T5) are trained. The mod-
ule outputs updated low-rank tensors (T6) alongside the
quantized base weights and their state (T4).

4. Discussion about Design Choices
In this section, we discuss various design choices in the
LowRA framework, as well as system and hardware support.

4.1. Insights behind LowRA Design Choices

Per-Output-Channel Quantization In LLMs, linear lay-
ers often exhibit substantially more variation across out-
put channels than across input channels. In error-sensitive
layers, weight magnitudes vary markedly from one output
channel to the next, producing banded patterns along the
input-channel dimension that reset at each output-channel
boundary (see Appendix H). As a result, grouping parame-
ters by output channel and assigning a unique precision to
each group—i.e., per-output-channel quantization—more
effectively captures their diverse distributions.

Groupwise Normalization Each output channel may still
exhibit significant internal variability even with per-output-
channel quantization. To address this, groupwise normal-
ization is often used to allow each group of elements share
a separate scale. We follow QLoRA’s design of using 64-
element normalization scaled by the absmax (i.e., maximum
absolute value) in each group (Dettmers et al., 2024).

Data-Free Post-Training Quantization Unlike approaches
with quantization-aware training (QAT) (Esser et al., 2019;
Yang et al., 2021; Jeon et al., 2024; Savarese et al., 2022),
our approach adds no overhead to fine-tuning. By automati-
cally searching for quantization mappings and thresholds, it
frees users from manual tuning (Savarese et al., 2022; Zhou
et al., 2023), saving both development and computation
resources. Moreover, contrary to some methods that vary
compression ratios over time (Savarese et al., 2022; Yang
et al., 2021), LowRA maintains a consistent compression ra-
tio, ensuring persistent memory savings during fine-tuning.

Per-Output-Channel Thresholds and Mappings Figure
3 visualizes the roles of thresholds and mappings in the
process of quantization. Thresholds refer to the boundary
points (“bin edges”) that partition the continuous domain
of normalized parameters into discrete intervals and thus
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specific bitstring encodings. Mappings, on the other hand,
specify the representative values assigned to each encoded
bitstring and thus the intervals. As discussed in §2.3, fine-
grained designs of quantization mappings and thresholds
could lead to significantly more accurate approximation and
reconstruction of parameters. LowRA allows each output
channel to adopt a different combination of mappings and
thresholds for more precise fine-grained quantization.

-1.00 +1.00

Thresholds Mappings

Original

Quantized
-0.92 -0.31 0.46 0.78

-0.76 -0.12 0.63

Figure 3. Roles of mappings and thresholds in quantization.

Data-Free One-Shot Post-Training Quantization Most
quantization-aware training (QAT) techniques achieve
higher task performance by incurring additional training
overhead and learning task-specific quantization parame-
ters (Esser et al., 2019; Yang et al., 2021; Jeon et al., 2024;
Savarese et al., 2022). Similarly, many post-training quan-
tization methods require a calibration set for quantization
scheme learning (Liao et al., 2024; Hubara et al., 2021).
In contrast, LowRA uses data-free one-shot post-training
quantization, enabling reusable quantization schemes and
quantized parameters, minimal hyperparameter tuning, and
negligible fine-tuning overhead. This design is particularly
suited to LoRA fine-tuning because: (1) Task-dependent
learning is confined to the adapters, (2) LoRA base weights
are often shared across multiple adapters, and (3) LoRA
primarily targets resource-constrained fine-tuning scenarios.

User-Defined Compression Ratios Quantized LoRA meth-
ods see heavy use in tight resource settings - e.g., limited-
memory GPUs or on-device scenarios - where specifying a
precise compression ratio is pivotal. By tailoring each pa-
rameter’s bit precision, thresholds, and mappings, LowRA
directly aligns compression with real-world resource bud-
gets, ensuring feasibility and efficiency even under strict
constraints. Furthermore, because LowRA fixes the ratio
in a single pass, it obviates the extensive hyper-parameter
tuning needed by alternative methods to find acceptable
compression–accuracy trade-offs (Savarese et al., 2022).

Using LoftQ as Low-Rank Intializer Researchers have
found that the initialization of low-rank tensors are crucial
to the effectiveness of LoRA fine-tuning, especially when
it comes to ultra-low-bit quantized base weight (Li et al.,
2023; Meng et al., 2024; Wang et al., 2024). LoftQ (Li
et al., 2023) and PiSSA (Meng et al., 2024) are two notable
initialization techniques for quantized LoRA (see Appendix
D for a detailed introduction). While PiSSA purports faster

convergence than LoftQ, our experiments consistently show
LoftQ outperforming PiSSA. As illustrated by the sample
data points in Table 1, PiSSA fails to achieve reasonable
task performance at lower bit ranges. This aligns with our
intuition that performing quantization rather than SVD first
allows the low-rank tensors to better absorb quantization
errors. Our findings also corroborate points raised in the
LoftQ appendix. Since our main objective is to enable lower-
precision fine-tuning and deployment, we opt to use LoftQ
as our low-rank initializer. Following the recommendation
from LoftQ, we use five alternating steps for initialization.

Setup LLaMA-7b LLaMA-13b

Method Dataset 2-bit 4-bit 2-bit 4-bit

PiSSA WikiText-2 (↓) 1919.63 5.53 1825.68 5.05
LoftQ 8.63 5.26 7.27 4.79

Table 1. Perplexities of PiSSA and LoftQ as initialization methods
on WikiText-2. Quantization is performed at 2 bits or 4 bits per
parameter. Lower values indicate better performance (↓).

Adapting LowRA to Production Use Cases Many produc-
tion use cases, e.g., batched inference in data centers, require
fixed quantization mappings (Li et al., 2024; Zhao et al.,
2024). LowRA can be adapted to such scenarios by keeping
only the thresholds learnable, which is shown to be useful in
enhancing model performance (Liu et al., 2022b). To maxi-
mize performance with task-agnostic reusable base weight,
LowRA can be extended to use the same set of thresholds
for multiple adapters but learn mappings for each down-
stream task. In other words, each adapter can be connected
to the base weight together with a dedicated base weight
decoding mapping for that downstream task. Nevertheless,
this would demand higher development and computation
costs. In our implementation and experiments, we adopt the
same set of thresholds and mappings for ease of evaluation.

4.2. System and Hardware Support

Building on the limitations noted in §2.3, we implement
practical CUDA-based primitives that support both low-
bit and mixed-precision LoRA fine-tuning with maximum
flexibility (details in Appendix A). Notably, the added kernel
generalization incurs only negligible overhead in end-to-
end inference, as quantization/dequantization constitutes a
minimal portion of the total compute cost.

5. Mapping and Threshold Learner
In this section, we introduce the mapping and threshold
learner in LowRA. Because we want the final base weights
to remain task-agnostic and thus reusable across multiple
adapters, we adopt a simple approach that minimizes the
mean squared error in each output channel. As discussed
in §4.1, one could learn separate decoding mappings for

4



LowRA: Accurate and Efficient LoRA Fine-Tuning of LLMs under 2 Bits

each downstream task (or adapter set), but at a higher fine-
tuning cost. We therefore propose an efficient design for the
mapping/threshold learner that avoids this expense.

Weighted Lloyd-Max Algorithm. We cast the problem
of searching for the optimal quantization mappings and
thresholds for each output channel to minimize MSE as a
Weighted Lloyd-Max Problem. A detailed description of
this algorithm can be found in Appendix G.

Weighted Lloyd’s for LoRA Quantization. As discussed
in 4.1, we perform groupwise normalization to give more
scale to quantization within each output channel. To recap,
with groupwise normalization (Section 4.1), each block of
weights is scaled by the block-wise maximum absolute value
(absmax). Specifically, if we denote the set of original
weights in a block by {xi} and its maximum absolute value
by absmax, then we treat absmax as a per-block weight
in the Weighted Lloyd-Max algorithm. By assigning them
proportionally larger weights, the algorithm “pays more
attention” to those blocks and adjusts their bin thresholds
and centroids accordingly. Consequently, blocks whose
values have smaller magnitudes (and thus smaller absmax)
are penalized less, striking a balance across all blocks to
minimize the overall quantization error in QLoRA.

In our application of the Weighted Lloyd’s algorithm to
LoRA base weight quantization, we initialize the thresholds
as those used by NormalFloats (Dettmers et al., 2024) for 2-
bit and 4-bit precisions and use 0.0 as the initial threshold for
1-bit quantization12. Then, at each iteration, we recompute
the quantization mappings as the weighted centroids of the
assigned data and recompute the thresholds as the midpoints
between consecutive mapping (centroid) values3. We output
the last-computed quantization mappings and thresholds
when max iteration is reached or the MSE stops going down.

In our current implementation, we take the average of all
thresholds to preserve distribution and prevent instability in
the interaction with the Low-Rank Initializer.

6. Mixed-Precision Quantization: Channelwise
Precision Assignment

In this section, we present how mixed-precision quantization
assignment is conducted in LowRA. In light of the afore-
mentioned task-agnostic requirement, a simple yet effective
objective for defining this problem is the minimization of
the overall Summed Square Error (SSE) considering the reg-
ular structure of transformer-based architectures (Waswani
et al., 2017; Dubey et al., 2024; Touvron et al., 2023a). Such

1Separately defined as NormalFloats lack a 1-bit representation
2See the initial values in Appendix F
3In our implementation, we set number of iterations to 2

formulation can serve as an effective proxy to retain more
information for the harder-to-quantize channels in weights.

One can observe that finding the optimal mixed-precision
scheme (w.r.t. SSE) can be formulated as an ILP. How-
ever, due to the large number of output channels in LLMs,
a direct solver-based approach becomes computationally
prohibitive. For instance, solving more than five layers of
LLaMA-2-7B fails to finish within ten hours. To address
this limitation, we propose a two-level ILP workflow (Fig-
ure 4, Algorithm 1) that retains the benefits of ILP-based
methods while ensuring reasonable complexity.

Notation. Let N be the total number of output channels.
Denote by {w(1), . . . , w(K)} the distinct parameter sizes
(i.e., number of parameters) appearing across channels, and
let Ik ⊆ {1, . . . , N} be the set of channel indices whose size
is w(k). We further define Wk =

∑
i∈Ik

w(k) and Wsum =∑K
k=1 Wk, the per-group and total parameter counts that

will be used when allocating the bit-budget.

Algorithm 1 Channelwise Precision Assignment

1: Input: N , distinct w(1), . . . , w(K), partition {Ik}, MSE(i, p),
total budget Btotal

2: Step 1. Compute Wk =
∑

i∈Ik
w(k), then Wsum =∑K

k=1 Wk

3: Step 2. Bk ← Btotal × Wk
Wsum

for k = 1, . . . ,K

4: for k = 1 to K do
5: Step 3. Cluster channels in Ik (e.g. K-Means on MSE

features) into Kk clusters
6: Step 4. Cluster-Level ILP: decide how many channels in

each cluster get each bitwidth, subject to Bk

7: Step 5. Intra-Cluster ILP: within each cluster, assign spe-
cific channels to bitwidths

8: end for
9: Step 6. Combine final bitwidths into b1, . . . , bN

10: Output: (b1, . . . , bN ), total SSE, actual bits used

6.1. Preprocessing for the Pipeline (Step 1-3)

To preprocess channels for the hierarchical ILP pipeline,
we first compute each channel’s MSE under 1-, 2-, and
4-bit quantization. Next, we split channels by parameter
count, which in LLMs typically yields two distinct sizes
(e.g., 4096 and 11008 for LLaMA-2-7B). Within each group,
we then apply three-dimensional K-Means clustering (based
on the three computed MSE values), forming 128 clusters
per group in our implementation.

6.2. Cluster-Level ILP (Step 4)

Formed clusters first go through the following cluster-level
ILP to be assigned budgets of 1-bit, 2-bit, and 4-bit channels.

Consider C clusters, each with Sc channels
(
c = 1, . . . , C

)
.

Let P = {1, 2, 4} be the available bit-precisions4. For each

4For LLaMA, restricting to 2 and 4 bits outperformed including
1 bit for bpp ≥2.0, so we adopt this configuration.
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Figure 4. Two-step ILP-based Workflow for Channelwise Preci-
sion Assignment, with (1) channelwise clustering, (2) cluster-level
ILP assignement, and (3) intra-cluster assignment, sequentially.

cluster c and precision p ∈ P , define:

• costc,p: mean quantization error (e.g., mean-squared er-
ror) per channel in cluster c if all channels in that clus-
ter are assigned to precision p, scaled by the number of
weight parameters per channel in that cluster 5.
• yc,p ∈ Z≥0: decision variable representing the number of

channels in cluster c that will be assigned precision p.

We define a global bit-budget B (i.e., total permissible bits
across all clusters). Let β(p) be the bit-precision value (e.g.,
β(1) = 1, β(2) = 2, β(4) = 4). To enforce the bit budget,
we multiply β(p) by the channel parameter count ωc for
cluster c, and then by the number of channels yc,p. As we
do a bipartite splitting based on the number of parameters
per channel, each channel in a cluster c shares the same ωc.

Minimize
C∑

c=1

∑
p∈P

(
costc,p

)
yc,p

subject to
∑
p∈P

yc,p = Sc, c = 1, . . . , C,

C∑
c=1

∑
p∈P

(
β(p)ωc

)
yc,p ≤ B,

yc,p ∈ Z≥0, 0 ≤ yc,p ≤ Sc.

This formulation seeks to minimize the total weighted quan-

5Contrary to LoftQ’s suggestion, per-layer cost weighting
based on layer index proved suboptimal in our experiments.

tization error by choosing, for each cluster c, how many
of its channels yc,p are assigned to each precision level p.
The constraints ensure that every channel of a cluster is
allocated exactly once, the total bits used do not exceed the
overall budget B, and that the decision variables remain non-
negative integers and do not exceed the number of channels
in their respective clusters.

6.3. Intra-Cluster ILP (Step 5)

Once the cluster-level ILP decides how many channels
{yc,p} in each cluster c should be assigned to each bit preci-
sion p, a second ILP distributes these assignments to each
channel within each cluster.

Let Sc denote the total number of channels in cluster c. For
channel i ∈ {1, . . . , Sc} in cluster c, we define the pre-
computed mean-squared error at precision p as MSE(i, p) =
(precomputed quantization error of channel i at precision p).
We define binary decision variables xi,p = 1 if channel i is
assigned bit precision p; otherwise, xi,p = 0.

Minimize
Sc∑
i=1

∑
p∈P

MSE(i, p)xi,p

subject to
∑
p∈P

xi,p = 1 ∀ i ∈ {1, . . . , Sc},

Sc∑
i=1

xi,p = yc,p ∀ p ∈ P,

xi,p ∈ {0, 1} ∀ i ∈ {1, . . . , Sc}, p ∈ P.
This formulation constitutes the intra-cluster ILP. The objec-
tive minimizes the total quantization error, where MSE(i, p)
is the precomputed mean-squared error for channel i at bit
precision p. The first constraint ensures that each channel
is assigned to exactly one precision. The second constraint
enforces that the number of channels assigned to each pre-
cision p matches the counts yc,p determined by the cluster-
level ILP. Finally, the binary constraint stipulates that each
decision variable xi,p is either 0 or 1.

This intra-cluster ILP enforces that the required number of
channels (from the cluster-level ILP) is assigned to each bit
precision and minimizes local MSE within the cluster.

Efficiently Leveraging ILP Solvers. We collect the as-
signed per-channel precisions in Step 6. By employing
this two-step hierarchical approach, we harness ILP solvers’
strengths while keeping computational overhead low.

7. Evaluation
We evaluate LowRA across four datasets spanning natu-
ral language generation, multi-turn conversation, and long-
context text summarization, demonstrating that:
• Better performance at the same precision: LowRA
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outperforms all baselines below 4-bit and matches their
performance at 4-bit (§7.3).

• Same performance at lower precision: LowRA
achieves comparable performance while reducing pre-
cision by 0.86 bits per parameter on average (§7.3).

• First method to fine-tune LoRA under 2 bits: LowRA
enables fine-tuning down to 1.75 bits on LLaMA-2-
7B, LLaMA-2-13B, and BART-large, and 1.15 bits on
LLaMA-33B (§7.4).

• Substantial memory savings: LowRA reduces memory
usage by 30–50% in fine-tuning and deployment, with
minimal performance loss compared to QLoRA (§7.5).

• Minimal overhead: The additional one-time preprocess-
ing costs in LowRA are negligible (Appendix E).

• Real hardware gains: On one GPU, 1.5-bit LowRA
loads about 29 % faster and, after TTFT, delivers up to
3.4× higher throughput than 4-bit QLoRA—32.2 vs 9.4
tokens/s on LLaMA-7B and 1.4× on LLaMA-13B (§7.6).

7.1. Evaluation Setup

Hardware Platform Experiments are conducted on
NVIDIA A100 GPUs (80GB memory). Each LLaMA exper-
iment runs on a single dedicated GPU. Each BART-large ex-
periment runs two instances concurrently on a single GPU.
Hyperparameters For a fair comparison, we use identi-
cal hyperparameters across all methods, consistent with
QLoRA (Dettmers et al., 2024) and LoftQ (Li et al., 2023).
Details on selected hyperparameters are in Appendix I.
Language Models We evaluate LowRA on a range of
LLMs: LLaMA-2-7B, LLaMA-2-13B (Touvron et al.,
2023b), BART-large (Lewis, 2019), and LLaMA-33B (Tou-
vron et al., 2023a) (to assess ultra-low-bit scalability).
Datasets and Evaluation Metrics We use standard
datasets across different NLP tasks: WikiText-2 (Mer-
ity et al., 2016) (language modeling, perplexity), Open-
Assistant (Köpf et al., 2024) (multi-turn conversation, per-
plexity), XSUM (Narayan et al., 2018) (summarization,
ROUGE scores), and CNN/DailyMail (Hermann et al.,
2015) (summarization, ROUGE scores). Each dataset is
evaluated using the standard metrics used in prior work.

7.2. Baselines

QLoRA QLoRA originally employs a fixed 4-bit quanti-
zation for pretrained LLMs and does not support fine-tuning
below 4 bits. To enable sub-4-bit QLoRA experiments, we
follow the adaptation introduced in LoftQ. Additionally,
QLoRA directly quantizes the pretrained weights while pre-
serving their original distribution, initializing the low-rank
tensors with zeros and small Gaussian noise.

LoftQ LoftQ performs mixed-precision quantization (2-
bit/4-bit) and jointly optimizes both quantized LLM weights

and low-rank adapter initialization. We match LoftQ’s effec-
tive batch sizes but observe discrepancies with its published
results due to: (1) reproducibility constraints – the original
authors did not release experiment seeds or mixed-precision
quantization hyperparameters - (2) hardware differences –
Our experiments run on a single A100 GPU, whereas LoftQ
was trained on 8 A100 GPUs with greater data parallelism -
and (3) quantization implementation – The original LoftQ
experiments rely on simulated quantization, which intro-
duces discrepancies in quantized model weights, as noted
by the research community (Liao, 2023). In contrast, we em-
ploy CUDA-kernel-based quantization and dequantization,
ensuring more accurate and hardware-aligned results.

7.3. Analysis of Key Results

Table 2 presents the performance comparison of LowRA
against QLoRA and LoftQ.

• Better performance at the same precision: LowRA
outperforms QLoRA and LoftQ across all sub-4-bit pre-
cision levels. In particular, at challenging 2-bit quanti-
zation, LowRA achieves a perplexity reduction of: 2.21
(WikiText-2) / 1.45 (Open-Assistant) over QLoRA, and
1.76 (WikiText-2) / 1.12 (Open-Assistant) over LoftQ.
• Same performance at lower precision: LowRA en-

ables fine-tuning with 0.98 bits (QLoRA) / 0.76 bits
(LoftQ) fewer per parameter (on average) without perfor-
mance loss. For example, 2.5-bit LowRA on WikiText-2
(LLaMA-2-7B) matches 4-bit QLoRA; 1.9-bit LowRA on
Open-Assistant (LLaMA-2-7B) matches 2.5-bit LoftQ.

7.4. Fine-Tuning LLMs with Ultra-Low Bits

To investigate the limits of ultra-low bit LoRA fine tuning,
we evaluate LowRA on two model scales: (i) LLAMA 33B
and (ii) LLAMA 65B. Table 3 summarizes perplexities on
WikiText 2 and OpenAssistant when training with 1.25 and
1.15 effective bits per parameter.

LowRA is the only approach that remains stable under
these ultra-low precisions; QLoRA and LoftQ diverge
at this regime. At 1.15 bits LLAMA 33B incurs merely
a +0.54 absolute perplexity on WikiText 2 compared with
the 1.25 bit setting, while retaining competitive quality on
OpenAssistant (5.73). Strikingly, scaling the same recipe
to the 65B model yields further gains—7.49/4.97 perplex-
ity—illustrating that LowRA scales gracefully with param-
eter count despite the extreme quantization.

7.5. Memory Implications

Following the analysis methodology in QLoRA (Dettmers
et al., 2024), we evaluate the memory footprint of LowRA
at different quantization precisions. Full visualizations
are in Appendix C. Our results show that LowRA signifi-
cantly reduces memory usage for both fine-tuning and in-

7



LowRA: Accurate and Efficient LoRA Fine-Tuning of LLMs under 2 Bits

Method Bit LLaMA-2-7B LLaMA-2-13B BART-large

WikiText-2 Open-Assistant WikiText-2 Open-Assistant XSUM CNN/DailyMail

ppl.↓/acc.↑ ppl.↓ ppl.↓/acc.↑ ppl.↓ ROUGE1↑/ROUGE2↑/ROUGEL↑
QLoRA 4.00 6.22 / 0.583 3.52 4.79 / 0.628 3.25 39.07 / 16.31 / 31.09 41.18 / 18.32 / 27.58
LoftQ 4.00 5.26 / 0.613 3.48 4.79 / 0.628 3.23 40.34 / 17.06 / 31.92 41.12 / 18.29 / 27.54
LowRA 4.00 5.25 / 0.612 3.48 4.79 / 0.628 3.23 40.27 / 17.18 / 32.06 40.95 / 18.12 / 27.54

QLoRA 3.00 7.13 / 0.566 4.56 6.06 / 0.588 3.88 17.60 / 2.68 / 13.93 15.34 / 1.12 / 10.44
LoftQ 3.00 6.87 / 0.571 4.42 5.91 / 0.591 3.79 37.23 / 14.34 / 29.30 40.47 / 17.75 / 26.88
LowRA 3.00 5.84 / 0.593 3.87 5.24 / 0.611 3.50 38.84 / 15.68 / 30.57 40.85 / 18.12 / 27.23

QLoRA 2.50 8.05 / 0.546 5.17 6.84 / 0.568 4.36 15.33 / 1.97 / 12.55 13.68 / 1.04 / 9.99
LoftQ 2.50 7.72 / 0.552 4.98 6.70 / 0.572 4.21 34.48 / 12.26 / 27.05 39.81 / 17.19 / 26.57
LowRA 2.50 6.23 / 0.582 4.11 5.51 / 0.601 3.64 37.69 / 14.76 / 29.53 40.88 / 18.06 / 27.01

QLoRA 2.25 8.67 / 0.534 5.59 7.31 / 0.588 4.64 16.37 / 2.22 / 12.84 11.90 / 1.32 / 10.25
LoftQ 2.25 8.22 / 0.543 5.24 6.96 / 0.564 4.46 32.71 / 10.94 / 25.37 39.36 / 16.87 / 26.29
LowRA 2.25 6.40 / 0.578 4.21 5.66 / 0.597 3.73 37.29 / 14.36 / 29.12 41.01 / 18.19 / 27.23

QLoRA 2.00 9.17 / 0.526 6.07 7.64 / 0.551 5.02 DNC 4.84 / 0.00 / 4.36
LoftQ 2.00 8.63 / 0.536 5.68 7.27 / 0.558 4.75 31.89 / 10.18 / 24.59 38.88 / 16.49 / 25.85
LowRA 2.00 6.60 / 0.574 4.35 5.79 / 0.593 3.84 36.75 / 13.93 / 28.61 40.15 / 17.48 / 26.67

QLoRA 1.90 – – – – – –
LoftQ 1.90 – – – – – –
LowRA 1.90 7.13 / 0.562 4.94 6.16 / 0.583 4.22 34.05 / 11.74 / 26.49 39.19 / 16.84 / 26.35

QLoRA 1.80 – – – – – –
LoftQ 1.80 – – – – – –
LowRA 1.80 7.50 / 0.553 5.24 6.48 / 0.575 4.59 33.29 / 11.19 / 25.85 39.20 / 16.69 / 26.07

QLoRA 1.75 – – – – – –
LoftQ 1.75 – – – – – –
LowRA 1.75 7.76 / 0.548 5.43 6.65 / 0.569 4.76 33.09 / 11.05 / 25.69 38.54 / 16.38 / 25.99

Table 2. Performance comparison of different methods on LLaMA-2-7B, LLaMA-2-13B, and BART-large. “–” means this method
fails to support this level of precision. “DNC” means fine-tuning fails to converge. LowRA (using PEFT) not only outperforms QLoRA
and LoftQ in terms of performance-precision trade-off, but also enables us to fine-tune LLMs in the sub-2-bit range. LoftQ results on
Bart-Large are taken as the best of two strategies: (1) layers are ordered based sheerly on layer-index and (2) encoder layers are ordered
before decoder layers. See Appendix K for detailed results. Also, see Appendix B for ablation analysis.

ference, making ultra-low-bit LoRA practical on resource-
constrained hardware.

For inference, reducing precision from 4-bit to 2-bit leads
to 40% lower memory usage on LLaMA-2-13B and 30%
on LLaMA-2-7B (Figures 8). Compressing LLaMA-33B to
1.15 or 1.25 bits achieves even greater savings, reducing the
memory footprint by 50% (Figure 9).

For fine-tuning, LowRA also achieves substantial reductions.
Moving from 4-bit to 2-bit precision cuts memory consump-
tion by 30% on LLaMA-2-13B and 25% on LLaMA-2-7B
(Figures 7). On LLaMA-33B, reducing precision to 1.15 or
1.25 bits per parameter leads to an estimated 45% reduction
in fine-tuning memory usage, making it feasible to train
larger models under stricter memory constraints.

These memory savings are particularly impactful given
that 4-bit QLoRA models are already highly compressed.
By pushing below 2-bit precision with minimal perfor-
mance loss, LowRA enables fine-tuning and deployment

of LLMs on significantly smaller devices. For instance,
a fine-tuned LLaMA-2-7B model can now be deployed
on a Raspberry Pi 4 Model B (4GB RAM) (Foundation,
2019), making on-device inference feasible even in extreme
resource-constrained settings. More strikingly, LowRA is
the first method to enable LLaMA-33B fine-tuning on a sin-
gle NVIDIA Tesla T4 (16GB VRAM) (Corporation, 2021),
demonstrating its potential for democratizing large-scale
LLM adaptation.

Model Bits Dataset QLoRA LoftQ LowRA

LLaMA 33B
1.25 WikiText 2 – – 7.46

OpenAssistant – – 5.44

1.15 WikiText 2 – – 8.00
OpenAssistant – – 5.73

LLaMA 65B 1.15 WikiText 2 – – 7.49
OpenAssistant – – 4.97

Table 3. Perplexity on WikiText 2 and OpenAssistant when
fine tuning LLaMA-33B and LLaMA-65B with ultra low bits. “–”
indicates that the method fails to converge or exceeds memory
limits at the corresponding precision.
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7.6. Inference Implications

In this section, we discuss the implications of LowRA on
LLM inferences. The implications involve three primary
aspects: loading latency, time-to-first-token (TTFT), and
end-to-end throughput. We discuss each aspect below.

1. Loading latency: the time to move model weights
into GPU memory. Loading latency is crucial for
latency-sensitive, bursty (i.e., not steady-state) workloads
where cold-start delays directly impact user experience
and SLA compliance. Results of LLaMA-2-7B on an
RTX A4000 are shown in Table 4.

2. Time-to-first-token (TTFT): the latency from prompt
submission to the first generated token, assuming the
weights are already resident in memory. Sub-second
TTFT is essential for interactive workloads because
even brief stalls break the user’s flow (Yao et al., 2025).
Smaller or quantized models reduce KV-cache transfers
slightly (Liu et al., 2024b), but the step is dominated
by compute, so TTFT improvements from parameter
compression are only modest.

3. End-to-end throughput: the sustained generation
rate—tokens per second or requests per second—after
the model is resident and TTFT has passed. High
throughput dominates cost and user-perceived speed in
long generations, batched chat sessions, and API back-
ends. It scales with effective GPU compute, memory
bandwidth, and parallelization depth; quantization and
smaller checkpoints help, but gains come chiefly from
increased arithmetic intensity and optimized kernels. Ta-
bles 5 summarize measured throughput for LLaMA-7B
on an RTX 3080 and LLaMA-13B on an RTX A4000.

Table 4. Loading latency of LlaMA-2-7B on an RTX A4000. Us-
ing LowRA to compress model to 1.5 bits per parameter reduces
loading latency by close to 30%. LoRA tensors are kept in FP32.

Framework Bits/Param Latency (s)

QLoRA 4 220.73
LowRA 4 218.17
LowRA 1.5 157.51 (–28.6%)

Discussion. Across LLaMA-7B on an RTX 3080, 1.5-bit
LowRA delivers a 3.42× throughput increase over QLoRA
(32.16 vs. 9.40 tokens per second). On LLaMA-13B with
an RTX A4000, the same 1.5-bit configuration still yields
a 1.39× speed-up. These results confirm that sub-2-bit
quantization offers real-world throughput benefits beyond
the well-documented memory savings.

7.7. Training Overhead

We benchmarked LowRA at multiple bit-widths against
QLoRA (4 bit) on an RTX A5000 (24 GB) and an A100
(80 GB). Runtime per iteration is shown in milliseconds;
the last column reports the largest LowRA overhead versus

Table 5. Throughput (tokens/s) for LLaMA-2-7B and LLaMA-2-
13B with on a single GPU. We experiment with a prefill length
of 100 and decode length of 10. QLoRA 4.0 refers to references
results obtained with the original QLoRA implementation.

Model GPU Bits Tokens/s

LLAMA 7B RTX 3080

1.5 32.16
2.0 30.33
2.5 24.35
4.0 9.19

QLoRA 4.0 9.40

LLAMA 13B RTX A4000

1.5 16.11
2.0 14.46
2.5 13.64
4.0 12.17

QLoRA 4.0 11.56

QLoRA. From our evaluation, LowRA adds at most 8.5 %
runtime overhead—and crucially, executes configurations
that QLoRA cannot run due to out-of-memory limits.

Table 6. Benchmarked end-to-end training runtime (ms) of LowRA
across models, hardware, and precision configurations. Seq.
refers to training sequence length, Batch refers to batch num-
ber, and QLoRA refers to the reference training latency of QLoRA
(Dettmers et al., 2024). “-” means no data/not applicable. OOM
means “out-of-memory”.

Seq. Batch 1.5 bit 2.5 bit 3 bit 4 bit QLoRA Max %

LLAMA 7B — RTX A5000
256 1 782.7 789.4 – 782.7 754.3 4.65
512 1 1291.8 1295.8 – 1291.8 1268.5 2.15

1024 1 2398.1 2399.0 – 2398.1 2383.7 0.64
256 2 1268.2 1274.0 – 1268.2 1247.2 2.15
512 2 2319.8 2322.0 – 2319.8 2304.8 0.75

LLAMA 13B — RTX A5000
256 1 1494.7 1494.7 1501.2 1508.0 1444.2 4.42
512 1 2486.0 2486.0 OOM OOM OOM –
256 2 2457.8 2457.8 OOM OOM OOM –

LLAMA 7B — A100 80 GB
256 1 632.1 632.4 631.9 639.3 589.1 8.52
512 1 1073.7 1074.6 1072.9 1079.5 1030.8 4.72
256 2 1056.9 1056.2 1055.9 1063.5 1014.9 4.79

8. Conclusion and Future Work
As LLMs grow, even parameter-efficient schemes like LoRA
strain compute and memory. LowRA overcomes these
limits, enabling accurate LoRA fine-tuning at <2 bits per
weight through fine-grained precision assignment, adaptive
quantization, and custom CUDA kernels. Across models,
LowRA cuts memory by up to 50 % while matching or
exceeding full-precision accuracy down to 1.15 bits, unlock-
ing fine-tuning on mobile, embedded, and other resource-
constrained devices—and charting a path toward ultra-low-
bit LLM training and deployment.
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A. LowRA System Support for Low-Bit Fine-Grained LoRA Fine-tuning
In this appendix, we provide an overview of the CUDA-based system support we built for supporting low-bit fine-grained
quantization and dequantization for LoRA fine-tuning. We specifically introduce the Quantize and Dequantize Kernels for
low-bit fine-grained LoRA fine-tuning. We integrate this into the bitsandbytes8 library for usability.
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Figure 5. Overview of Kernel for Low-Bit Fine-Grained Quantization. Indexing logic omitted for simplicity.
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Figure 6. Overview of Kernel for Low-Bit Fine-Grained Dequantization. Indexing logic omitted for simplicity.

A.1. Quantization (Figure 5)

During the quantization process, within the kernel, each block of data from the weight tensor is loaded, the block’s
maximum magnitude is computed, stored, and used for normalization, then each value is quantized according to its channel’s
bit-precision (defined by precs) and channel-specific decision boundaries (in the form of arrays of decision trees), and finally
the packed quantized results are stored in the output buffer at the corresponding offset.

A.2. Dequantization (Figure 6)

During the dequantization process, within the kernel, each thread calculates its offset into the quantized buffer A based on
the channel’s bit-precision (precs), then loads the relevant packed bytes (qvals). It uses absmax for the current block to
rescale the dequantized values, which are obtained by applying a per-output-channel look-up table on each packed quantized
index. Depending on the precision (1, 2, or 4 bits), the kernel unpacks the bits from qvals, looks up the corresponding float
value in one of the channel-specific look-up table, multiplies by the saved group-wise absmax, and finally writes the results
back into the output tensor.

8https://github.com/bitsandbytes-foundation/bitsandbytes
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B. Ablation Studies
In this appendix, we perform ablation studies on the different components of LowRA. In particular, we compare the
fine-tuning results with QLoRA, LoftQ, ours with only the precision assigner, and ours with both the precision assigner and
the mapping/threshold searcher. Table 7 reports results of Bart-Large on XSUM and CNN/DailyMail. Table 8 reports results
of Llama-2-7B on Wikitext2.

Technique Metric XSUM CNN/DailyMail

2 2.25 2.5 3 4 2 2.25 2.5 3 4

QLoRA
ROUGE1↑ DNC 16.3727 15.3282 17.6011 39.0742 4.8420 11.8987 13.6767 15.3374 41.1846
ROUGE2↑ DNC 2.2212 1.9712 2.6801 16.3124 0.0040 1.3188 1.0364 1.1239 18.3249
ROUGEL↑ DNC 12.8367 12.5547 13.9294 31.0891 4.3608 10.2535 9.9929 10.4375 27.5773

LoftQ
ROUGE1↑ 31.8941 32.6153 33.7645 36.0222 40.3429 38.8866 39.3648 39.8138 40.4684 41.1247
ROUGE2↑ 10.1775 10.7005 11.7335 13.4883 17.0615 16.4935 16.8711 17.1934 17.7529 18.2853
ROUGEL↑ 24.5908 25.1533 26.2388 28.1558 31.9186 25.8534 26.2877 26.5726 26.8812 27.5372

Ours, PA Only
ROUGE1↑ 31.8941 36.4856 37.2861 38.1543 40.3429 38.8866 40.3669 40.6187 41.1820 41.1247
ROUGE2↑ 10.1775 13.6310 14.3775 15.1856 17.0615 16.4935 17.6272 17.8600 18.3966 18.2853
ROUGEL↑ 24.5908 28.4593 29.2036 29.9965 31.9186 25.8534 26.7442 26.9107 27.4180 27.5372

Ours, PA + MTSearch
ROUGE1↑ 36.7454 37.2915 37.6897 38.8396 40.2669 40.1489 41.0133 40.8819 40.8470 40.9493
ROUGE2↑ 13.9324 14.3641 14.7587 15.6822 17.1800 17.4843 18.1898 18.0609 18.1191 18.1223
ROUGEL↑ 28.6133 29.1175 29.5275 30.5712 32.0614 26.6717 27.2268 27.0113 27.2309 27.5392

Table 7. Comparison of ROUGE scores with Bart-Large on XSUM and CNN/DailyMail under different techniques and combinations of
techniques. PA refers to the two-level precision assigner. MTSearch refers to mapping and threshold search.

Technique Metric Wikitext2

1.5 1.75 1.8 1.9 2 2.25 2.5 3 4

QLoRA Perplexity - - - - 9.17 8.67 8.05 7.13 6.22
Accuracy - - - - 0.526 0.534 0.546 0.566 0.583

LoftQ Perlexity - - - - 8.63 8.22 7.72 6.87 5.26
Accuracy - - - - 0.536 0.543 0.552 0.571 0.613

PA Only Perplexity ND ND ND ND 8.63 8.22 7.75 6.75 5.26
Accuracy ND ND ND ND 0.536 0.542 0.550 0.570 0.613

PA+MTSearch Perplexity 9.38 7.76 7.50 7.13 6.60 6.40 6.23 5.84 5.25
Accuracy 0.521 0.548 0.553 0.562 0.574 0.578 0.582 0.593 0.6123

Table 8. Comparison of perplexity and accuracy of Llama2-7B on the Wikitext2 dataset under different techniques and combinations of
techniques. “ND” indicates no data, “-” indicates the techniques fail to support these precisions. PA refers to the two-level precision
assigner. MTSearch refers to mapping and threshold search.

We observe generally that the precision assigner gives a significant advantage for Bart-Large on summarization tasks (Table
7), whereas the mapping/threshold searcher yields significant gains for Llama-2-7B on Wikitext2 (Table 8). Interestingly,
the precision assigner only yields minimal advantage over LoftQ for Llama-2-7B on Wikitext2.

In terms of applying the mapping/threshold searcher to Bart-Large (Table 7), we see a less significant gain in the 2.5-4.0
precision range in comparison to the gains in the 2.0-2.5 precision range. This is in line with our intuition as at higher
precision there are more mappings and thresholds for capturing distributions during quantization and dequantization; thereby,
the tolerance for a less accurate combination of mappings and thresholds is higher.

We encourage future works to build upon LowRA and study the optimal precision assignment and mapping/threshold search
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algorithms for different types of architectures (i.e., encoder-decoder, encoder-only, decoder-only). We will provide easy
integration to new advances in our open-sourced repository.
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C. Memory Requirements
In this appendix, we provide a detailed breakdown of memory footprints. Figure 7 shows the fine-tuning memory footprint
decompositions for LLaMA-2-7B and LLaMA-2-13B. Figure 8 shows the inference memory decomposition for LLaMA-2-
7B and LLaMA-2-13B. Figure 9 shows both inference and fine-tuning memory footprint decomposition for LLaMA-33B.
For fine-tuning, we follow QLoRA’s setup of using a batch size of 1 and sequence length of 512. Number labels on the bars
are in MegaBytes (MB). Estimations are linear layer only (not attention).
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Figure 7. Decomposition of fine-tuning memory footprint for LLaMA-2 7B and 13B under different bits per parameter.
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D. Low-Rank Initializers: LoftQ vs PiSSA
Both LoftQ (Li et al., 2023) and PiSSa (Meng et al., 2024) use an iterative two-step process to enhance LoRA fine-tuning by
exploiting low-rank structure and quantizing the residual. In each iteration:

1. Low-Rank Decomposition: A singular value decomposition (SVD) of the current weight (or an updated version of it)
is performed to factor out a low-rank approximation.

2. Residual Quantization: The remaining component (i.e., the difference between the original weight and the low-rank
approximation) is quantized to preserve overall model capacity with fewer bits.

The key distinction lies in how they initialize this process:

• LoftQ first quantizes the residual, which at the beginning is simply the full base weight. Thus, it “initializes” by treating
the entire unmodified weight as a residual to be quantized and only then proceeds with the low-rank factorization in
subsequent iterations.

• PiSSA starts by performing SVD on the unquantized base weight, extracting a low-rank representation before any
quantization. Only after factoring out the low-rank component does PiSSa quantize the remaining residual.

Below (Table 9) are the experimental results covering the full 2.0-to-4.0 range comparing these two initialization techniques.
We adopt LoftQ’s mixed precision scheme for intermediate precision targets.

Setup LLaMA-7b LLaMA-13b

Method Dataset 2.0 2.25 2.5 3.0 4.0 2.0 2.25 2.5 3.0 4.0

PiSSA
WikiText-2 (↓) 1919.63 795.88 1938.33 1397.26 5.53 1825.68 1822.62 1769.34 1549.48 5.05

LoftQ 8.63 8.22 7.72 6.87 5.26 7.27 6.96 5.7 5.91 4.79

Table 9. Perplexities of PiSSA and LoftQ as initialization methods on WikiText-2 covering full range from 2.0 to 4.0. Lower values
indicate better performance (↓).
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E. Overheads of Mapping/Thresholds Searcher and Precision Assigner
In this appendix, we report the overhead incurred by LowRA’s newly added components. Note that LowRA’s map-
ping/threshold learner and precision learner can both be done offline. The former only needs to be run for each model
architecture, while the latter only needs to be run for each combination of model architecture and user-specified precision
requirement.

Mapping/Threshold Learner Overhead We timed the overhead of our mapping/threshold learner on a single NVIDIA
A100 SXM GPU with GPU memory. For each precision, we ran 2 iterations of the Lloyd-Max algorithm, which we found
sufficient to push down the MSE and enhance task performance. From the average of 10 runs, each run on Bart-Large,
LLaMA2-7B, and LLaMA2-13B takes 111.46, 309.87, and 464.92 seconds, respectively.

Solver Overhead We build our two-level ILP pipeline using the opensourced Coin-Or Branch and Cut (CBC) (Saltzman,
2002) solver via the Python-based modeling library PuLP (Mitchell et al., 2011). The experiments were run on a server with
2x Intel Xeon Gold 6342 CPUs. The solver uses 8 threads in parallel. We timed the overhead of running this two-level ILP
pipeline for each combination of model architecture and precision requirement. From the average of 10 runs, each run on
Bart-Large, LLaMA2-7B, and LLaMA2-13B takes 48.99 seconds, 319.13 seconds, and 665.93 seconds, respectively. Note
that an exact (i.e., one-step) solver for the same problem would fail to finish in a reasonable amount of time.

F. Initialization of the Mapping and Threshold Learner
We attach the mappings and thresholds we use for weighted Lloyd-Max algorithm in Listing 1.

mappings_4bit_init = torch.tensor(
[[-1.0, -0.6961928, -0.5250731, -0.3949175, -0.28444138,

-0.18477343, -0.09105, 0.0, 0.0795803, 0.1609302,
0.2461123, 0.33791524, 0.44070983, 0.562617, 0.72295684, 1.0]],

dtype=torch.float32,
device=device

).repeat(nchannels, 1)

thresholds_2bit_init = torch.tensor(
[[-0.5, 0.16895762, 0.66895762]],
dtype=torch.float32,
device=device

).repeat(nchannels, 1)

mappings_2bit_init = torch.tensor(
[[-1.0, 0.0, 0.3379, 1.0]],
dtype=torch.float32,
device=device

).repeat(nchannels, 1)

thresholds_1bit_init = torch.tensor(
[[0.0]],
dtype=torch.float32,
device=device

).repeat(nchannels, 1)

mappings_1bit_init = torch.tensor(
[[-1.0, 1.0]],
dtype=torch.float32,
device=device

).repeat(nchannels, 1)

Listing 1: Initializations for bit-precision mappings and thresholds.
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G. Weighted Lloyd-Max Algorithm
In this subsection, we briefly introduce the Weighted Lloyd-Max Algorithm (Lloyd, 1982; Max, 1960).

Let {xi}Ni=1 ⊂ Rd be data points with corresponding weights {wi}Ni=1, wi > 0. We seek to find K cluster centers
{yj}Kj=1 ⊂ Rd minimizing the weighted mean-squared error:

min
{c(i)},{yj}

N∑
i=1

wi

∥∥xi − yc(i)
∥∥2,

where c(i) ∈ {1, . . . ,K} is the cluster index assigned to xi. The weighted Lloyd’s algorithm alternates between:

1. Assignment (E-step): Assign each data point xi to the cluster center closest in Euclidean distance:

c(i) ← argmin
1≤j≤K

∥∥xi − yj
∥∥2. (E-step)

2. Update (M-step): Recompute each cluster center yj as the weighted centroid of the points assigned to it:

yj ←
∑

i:c(i)=j wi xi∑
i:c(i)=j wi

. (M-step)

These steps are repeated until convergence or until a stopping criterion (e.g., a maximum number of iterations) is met.
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H. Patterns of Parameter Values in Large Language Models
We randomly sample 200×200 blocks and plot their distributions as heatmaps. In this appendix, we present representative
parameter distributions within each type of tensor in Figure 10 (note that there are two parts). Generally, we observe
banded patterns across input channels and separated by output channels in Self-Attention K-Projection (Figure 10a),
Self-Attention Q-Projection (Figure 10b), and Self-Attention V-Projection layers (Figure 10c), which have been shown to
be more sensitive to quantization errors. For MLP Gate-Projection layers (Figure 10f), we observe some similar patterns,
although not as significant. Self-Attention O-Projection layers (Figure 10d), MLP Up-Projection layers (Figure 10e), and
MLP Down-Projection layers (Figure 10g) have distributions that are mostly evenly spread out.
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(a) Layer 6 - Self-Attention K projection.
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(b) Layer 10 - Self-Attention Q projection.
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(c) Layer 0 - Self-Attention V projection.

0 50 100 150
Input-channel index 

0

50

100

150

O
ut

pu
t-

ch
an

ne
l i

nd
ex

 

Layer 16
Self-Attention, O-Projection

-0.04

-0.02

0

+0.02

+0.04

(d) Layer 16 - Self-Attention O projection.

Figure 10. Sampled 200×200 parameter value heatmaps from different tensors from different layers in LLaMA2-7B (1/2).

20



LowRA: Accurate and Efficient LoRA Fine-Tuning of LLMs under 2 Bits

0 50 100 150
Input-channel index 

0

50

100

150

O
ut

pu
t-

ch
an

ne
l i

nd
ex

 

Layer 23
MLP, Up-Projection

-0.04

-0.02

0

+0.02

+0.04

(e) Layer 23 - MLP Up projection.
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(f) Layer 29 - MLP Gate projection.
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Figure 10. Sampled 200×200 parameter value heatmaps from different tensors from different layers in LLaMA2-7B (2/2).
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I. Experiment Hyperparamter Setup
In this appendix, we lay out the hyperparameters used for different experiments.

Hyperparameter Value

model name or path meta-llama/Llama-2-7b-hf
data seed 42
evaluation strategy steps
eval dataset size 1024
max eval samples 1000
per device eval batch size 4
dataloader num workers 3
lora r 64
lora alpha 64
lora modules all
bf16 True
warmup ratio 0.03
lr scheduler type cosine
gradient checkpointing True
dataset wikitext
dataset config wikitext-2-raw-v1
per device train batch size 16
gradient accumulation steps 4
max steps 126
eval steps 20
learning rate 0.0003
adam beta2 0.999
max grad norm 0.3
weight decay 0.1
seed 0
block size 1024

Table 10. Hyperparameters used for all LLaMA experiments on Wikitext-2.
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Hyperparameter Value

learning rate 1e-4
seed 11
dataset name cnn dailymail
dataset config “3.0.0”
pad to max length True
max source length 512
num train epochs 15
per device train batch size 8
per device eval batch size 32
gradient accumulation steps 32
model name or path facebook/bart-large
evaluation strategy epoch
predict with generate True

Table 11. Hyperparameters for fine-tuning Bart-Large on CNN/DailyMail.

Hyperparameter Value

learning rate 1e-4
seed 11
dataset name xsum
dataset config “3.0.0”
pad to max length True
max source length 512
num train epochs 25
per device train batch size 4
per device eval batch size 32
gradient accumulation steps 32
model name or path facebook/bart-large
evaluation strategy epoch

Table 12. Hyperparameters for fine-tuning Bart-Large on XSUM.
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Hyperparameter Value

model name or path meta-llama/Llama-2-7b-hf
data seed 42
evaluation strategy steps
eval dataset size 1024
max eval samples 500
per device eval batch size 1
max new tokens 32
dataloader num workers 3
group by length True
logging strategy steps
remove unused columns False
lora r 64
lora alpha 64
lora modules all
bf16 True
warmup ratio 0.03
lr scheduler type constant
gradient checkpointing True
dataset oasst1
source max len 16
target max len 512
per device train batch size 4
gradient accumulation steps 4
max steps 1875
eval steps 200
learning rate 0.0002
adam beta2 0.999
max grad norm 0.3
lora dropout 0.1
weight decay 0.0
seed 0

Table 13. Hyperparameters used for all Llama experiments on Open Assistant (oasst1).
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J. Github Issues Related To The Lack of A Practical Quantization Primitive
• https://github.com/yxli2123/LoftQ/issues/1: The use of NF fake quantization in LoftQ

• https://github.com/yxli2123/LoftQ/issues/7: Discrepancy between real model weights and ex-
pected model weights due to fake quantization in LoftQ

• https://github.com/yxli2123/LoftQ/issues/23: The use of NF fake quantization in LoftQ

• https://github.com/yxli2123/LoftQ/issues/36: Unrealized GPU memory saving due to fake quanti-
zation in LoftQ

• https://github.com/GraphPKU/PiSSA/issues/30: Unrealized LLM model size reduction due to fake
quantization in PiSSA

K. Detailed LoftQ Results on Bart-Large

Setup Bart-Large

Method Dataset 2.0 2.25 2.5 3.0 4.0

Layer Index
XSUM 31.89/10.18/24.59 32.62/10.70/25.15 33.76/11.73/26.24 36.02/13.49/28.16 40.34/17.06/31.92

Encoder First 32.72/10.94/25.38 34.49/12.26/27.05 37.23/14.34/29.31

Layer Index
CNN/DailyMail 38.89/16.49/25.85 39.36/16.87/26.29 39.81/17.19/26.57 40.47/17.75/26.88 41.12/18.29/27.54

Encoder First 39.27/16.84/26.26 39.53/17.05/26.45 39.89/17.36/26.73

Table 14. Rouge-1/Rouge-2/Rouge-L of Bart-Large fine-tuned with LoftQ. Higher scores indicate better task performance.
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