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Abstract
Recent years have witnessed growing interest in
semi-implicit variational inference (SIVI) meth-
ods due to their ability to rapidly generate sam-
ples from complex distributions. However, since
the likelihood of these samples is non-trivial to
estimate in high dimensions, current research
focuses on finding effective SIVI training rou-
tines. Although unbiased implicit variational in-
ference (UIVI) has largely been dismissed as
imprecise and computationally prohibitive be-
cause of its inner MCMC loop, we revisit this
method and show that UIVI’s MCMC loop can
be effectively replaced via importance sampling
and the optimal proposal distribution can be
learned stably by minimizing an expected forward
Kullback–Leibler divergence without bias. Our
refined approach demonstrates superior perfor-
mance or parity with state-of-the-art methods on
established SIVI benchmarks.

1. Introduction
Bayesian inference, such as sampling-based or variational
inference, is an important foundation for constructing uncer-
tainty quantification measures for machine learning models.
In variational inference (VI), samples are generated from a
target distribution function pz with the associated random
variable z, which can only be evaluated but not directly
sampled from and is possibly unnormalized. This could be,
e.g., a Bayesian posterior distribution or the canonical dis-
tribution w.r.t. a physical system. For this, a family Qz over
distributions with a tractable sampling procedure is chosen,
and a divergence measure D where D quantifies the dis-
similarity between two distributions. The target distribution
pz can then be approximated by finding q∗z ∈ Qz which is
closest to pz w.r.t. D, i.e., q∗z ∈ argminqz∈Qz D(qz, pz).
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Figure 1. We sample from a semi-implicit distribution q(z) by
sampling from the latent distribution p(ϵ) and subsequently from
the conditional distribution q(z|ϵ). The simple distributions p(ϵ)
and q(z|ϵ) can induce a complicated distribution q(z) and conse-
quently a potentially even more complicated reverse conditional
distribution q(ϵ|z). AISIVI learns a mass-covering representation
τ(ϵ|z) of q(ϵ|z) to estimate ∇z log q(z) in high dimensions.

1.1. Implicit Variational Inference

In contrast to VI, where we assume that qz ∈ Qz is an
explicit distribution, i.e., we can evaluate qz, for implicit VI
(IVI) we have no direct access to qz and can only produce
samples from qz , i.e., qz is an implicit distribution. Rep-
resentative examples of explicit and implicit distributions
are normalizing flows (NFs) and neural samplers, which
transform a random variable via an arbitrary neural network
(NN), respectively. While NFs can be trained stably, they
are known to smooth out sharp target distributions. In con-
trast, neural samplers can model highly complex and sharp
distributions but are notoriously hard to train. This naturally
suggests combining them.
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Semi-implicit variational inference (SIVI; Yin & Zhou,
2018) offers a compromise between VI and IVI. Since we
sample from semi-implicit distribution qz by sampling the
parameters y of an explicit distribution1 qz|y from an im-
plicit distribution qy, its representative capabilities come
close to those of an implicit distribution, but qz of a semi-
implicit distribution can be estimated in a principle manner.

More formally, assuming that the target z ∼ pz is a con-
tinuous random variable taking values in Z ⊆ RdZ where
dZ ∈ N, we approximate its probability density function
via an uncountable mixture of densities s.t.

qz(z) = Ey∼qy

[
qz|y(z|y)

]
. (1)

For SIVI, the random variable y taking values in Y ⊆ RdY

where dY ∈ N is drawn via a neural sampler, i.e.,

ϵ ∼ pϵ ⇒ y = fϕ(ϵ) (2)

where ϵ is a latent random variable taking values in E ⊆
RdE where dE ∈ N and fϕ : E → Y is a NN with parame-
ters ϕ ∈ Rdϕ where dϕ ∈ N. Consequently, since every ϕ
defines qz, the distribution family Qz is also parametrized
by the NN parameters ϕ. With Eq. 1 and Eq. 2, we also
directly get that

qz(z) = Eϵ∼pϵ

[
qz|ϵ(z|ϵ)

]
(3)

where qz|ϵ(z|ϵ) = qz|y(z|fϕ(ϵ)).

1.2. Our Contributions

In this work, we focus on the efficient estimation of the
score gradient ∇z log qz , which enables us to train SIVI
models even in high dimensions. For this, we propose using
importance sampling (IS) with an adaptively informed
proposal distribution τϵ|z modeled by a conditional normal-
izing flow (CNF). We show that τϵ|z = qϵ|z debiases our
score gradient estimate and propose a stable training routine
of the CNF via an expected forward Kullback-Leibler
divergence. Our contribution advances both mathematical
insights of SIVI and contributes two new algorithms.

2. Background and Missed Opportunities
2.1. Reparametrizable Semi-implicit Distributions

In this work, we assume2 that the reparametrization trick
(Kingma & Welling, 2014) is applicable to qz|y , i.e., there

1usually a common, unimodal distribution such as, e.g., a nor-
mal distribution

2We could even lessen our assumption by only assuming that
implicit reparametrization gradients can be computed (Figurnov
et al., 2018), but this is not the focus of this paper.

exist a random variable η taking values in H ⊂ RdH where
dH ∈ N and a differentiable function g : Y ×H → Z s.t.

ϵ,η ∼ pϵ,η ⇒ g(fϕ(ϵ),η)︸ ︷︷ ︸
=:hϕ(ϵ,η)

∼ qz (4)

where pϵ,η is the joint distribution of the independent ran-
dom variables ϵ and η which does not depend on ϕ. From
this, it directly follows that

Ez∼qz [aϕ(z)] = Eϵ,η∼pϵ,η [aϕ(hϕ(ϵ,η))] (5)

where aϕ(z) : Z → R is a differentiable function
with parameters ϕ. Hence, under our assumptions, the
reparametrization trick can be applied to qz .

2.2. Path gradient estimator and DKL minimization

We choose to minimize the reverse Kullback-Leibler diver-
gence DKL, i.e.,

DKL(qz∥pz) = Ez∼qz

[
log

(
qz(z)

pz(z)

)]
. (6)

On the one hand, one of the main advantages of DKL is that
if we can evaluate qz we can compute unbiased estimates
of the gradients w.r.t. the parameters ϕ of qz, which is
especially useful when stochastic gradient descent methods
are employed to minimize the objective. On the other hand,
the reverse DKL is known to underestimate the variance if
the variational distribution qz is not sufficiently expressive
(Andrade, 2024). However, for SIVI, this is rarely relevant,
as the variational distribution qz is highly expressive due to
its implicit nature.

Since qz is amenable to the reparametrization trick, we can
follow Roeder et al. (2017) to formulate a low-variance
gradient estimator of DKL, the so-called path gradient esti-
mator

∇ϕDKL(qz∥pz) =

Eϵ,η∼pϵ,η

[
∇z (log qz(z)− log pz(z))

∣∣∣
z=hϕ(ϵ,η)

· ∇ϕhϕ(ϵ,η)
]
.

(7)

While this result also appeared in the context of SIVI as an
intermediate result in Titsias & Ruiz (2019), its far-reaching
implications were not discussed since this expression was
not of interest for the authors’ final derivation (see Sec-
tion 2.3). Not only does the path gradient estimator in Eq. 7
reduce the variance of the gradient estimation, but it also
vastly reduces the computational demand in contrast to the
reparametrization trick, for which we would need to esti-
mate the gradient

∇ϕ log qz(hϕ(ϵ,η)) =

∇ϕ log
[
Eϵ̃∼pϵ

[
qz|y(hϕ(ϵ,η)|fϕ(ϵ̃)

]]
.

(8)
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This simple observation leads to a surprisingly well-
performing approach, which we will introduce in Section 3.

2.3. Unbiased Implicit Variational Inference

The problematic term of the path gradient estimator in Eq. 7
is the score gradient ∇z log qz(z), for which no analytical
expression exists. Titsias & Ruiz (2019) proved for UIVI
that

Eϵ∼qϵ|z

[
∇z log qz|ϵ(z|ϵ)

]
= ∇z log qz(z), (9)

i.e., if we can produce samples from the intractable con-
ditional distribution qϵ|z, we can compute an unbiased es-
timate of the score gradient ∇z log qz(z). Titsias & Ruiz
(2019) propose to sample z, ϵ ∼ qz,ϵ and use MCMC with
target distribution3 qϵ|z. The MCMC chains are initialized
at ϵ because it already stems from the stationary distribution
qϵ|z. However, we can not use ϵ directly since this would
violate the independence assumption, which is needed for an
unbiased estimate in Eq. 9. Therefore, MCMC has to run as
long as the sample produced by the i-th chain ϵ′i is indepen-
dent of ϵ. Titsias & Ruiz (2019) argue that only a few steps
of MCMC are needed since the chains are already initialized
at the stationary distribution. However, as it can be seen in
Figure 1, qϵ|z is likely multimodal with regions of vanishing
probability potentially occurring between the modes due
to the implicit and possibly very complicated nature of qz.
In such cases, very long chains would be needed to effec-
tively break the dependence between ϵ and ϵ′i, rendering
the already computationally intensive method as prohibitive.
Furthermore, note that the number of chains cannot reduce
the bias introduced by the prevailing dependence between ϵ
and ϵ′i.

In light of these observations, we propose a novel method
in Section 3 to fix the encountered shortcomings.

2.4. Conditional Normalizing Flows

Normalizing flows (NF; see, e.g., Papamakarios et al., 2021)
leverage the change of variable method to model complex
distributions by repeatedly transforming a random variable
stemming from a simple error distribution. More specifi-
cally, for a random variable u taking values in U ⊆ RdU

where dU ∈ N and a differentiable and invertible transfor-
mation Tθ : U → U with parameters θ ∈ Θ ∈ R it holds
that

u ∼ pu, ϵ = Tθ(u) ⇒ ϵ ∼ qϵ,

qϵ(ϵ) = pu(T
−1
θ (ϵ))

∣∣∣det JT−1
θ

(ϵ)
∣∣∣ (10)

3We know qϵ|z up to a normalizing constant, i.e., qz,ϵ, which
suffices for MCMC

where JT−1
θ

is the Jacobian of the inverse function of Tθ. A
conditional NF (CNF) is a differentiable map Tθ : U×Z →
U, (ϵ, z) 7→ Tθ(ϵ, z) such that for every z ∈ Z it holds that
Tθ(·, z) is a NF.

A plethora of different NFs have been proposed over the
last years. In this work, we use affine coupling layers as in-
troduced in RealNVP (Dinh et al., 2017) because sampling
and evaluating their likelihood is equally computationally
efficient, and they can be scaled up to high dimensions (An-
drade, 2024). Specifically, we use a conditional variant of
affine coupling layers similar to one introduced in Lu &
Huang (2020). While this is a natural choice, other combi-
nations could provide additional performance gains as also
discussed in Section 6.

3. Method
Starting from Eq. 7 we can rewrite the problematic score
term, i.e.,

∇z log qz(z) = ∇z log
[
Eϵ∼pϵ

[
qz|ϵ(ϵ)

]]
. (11)

Thus, a straightforward Monte Carlo (MC) estimator of the
score gradient is

sMC,k(z) = ∇z log

(
1

k

k∑
i=1

qz|ϵ(z|ϵi)

)
, (12)

where (z, ϵ1) ∼ qz,ϵ and ϵi
i.i.d.∼ pϵ, i = 2, . . . , k. This is a

consistent estimator of the score gradient ∇z log qz(z) and
for large k its bias

Eϵi∼pϵ [∇zsMC,k(z)]−∇z log (qz(z)) ≈

−∇z

(
Vϵ∼pϵ

[
qz|ϵ(z|ϵ)

]
2(k − 1) · qz(z)2

)
(13)

(see Appendix A.1 for the proof). Note that including ϵ1
introduces additional bias but strongly reduces the variance
since ϵ1 ∼ qϵ|z. A closely related estimator was derived in
Molchanov et al. (2019), but their estimator is purely based
on the reparametrization trick and does not benefit from the
advantages discussed in Section 2.2 and Section 3.2.

Although we would expect that for high dimensions, the
contribution of qz|ϵ(z|ϵi) resulting from uninformed ϵi to
be nearly negligible to our estimator, sMC,k performs sur-
prisingly well.

Based on the previous observation, we devise a new impor-
tance sampling (IS) version of Eq. 11, given as follows:

∇z logqz(z) =

∇z log

(
E

ϵ∼τϵ|z̃

[
pϵ(ϵ)qz|ϵ(z|ϵ)

τϵ|z̃(ϵ|z̃)

]) ∣∣∣∣∣
z̃=z

.
(14)
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The idea of enhancing SIVI with importance sampling was
also proposed by Sobolev & Vetrov (2019), but their ap-
proach is more expensive than ours due to the joint optimiza-
tion of the proposal distribution and the SIVI model, ren-
dering more expressive conditional models, such as CNFs,
infeasible in practice.

Importance Sampling Estimator Based on Eq. 14, we
can estimate ∇z log qz(z) using the following score gradi-
ent estimator

sIS,k(z) = ∇z log

(
1

k

k∑
i=1

pϵ(ϵi)qz|ϵ(z|ϵi)
τϵ|z̃(ϵi|z̃)

)∣∣∣∣∣
z̃=z

, (15)

where ϵi ∼ τϵ|z, i = 1, . . . , k. We show in Appendix A.2
that this estimator is consistent when supp(qϵ|z) ⊂
supp(τϵ|z). To also make this estimator efficient, we need
to generate samples τϵ|z and evaluate their likelihood ef-
ficiently. A suitable option in this case is to model τϵ|z
with a sequence of conditional affine coupling layers (see
Section 2.4).

Since we optimize τϵ|z and qz alternately, we are interested
in the optimal τϵ|z for a fixed qz. This leads us to the fol-
lowing proposition:

Proposition 3.1. Choosing τϵ|z = qϵ|z debiases our pro-
posed score gradient estimate sIS,k, i.e.,

Eϵi∼qϵ|z∇z log

(
1

k

k∑
i=1

pϵ(ϵi)qz|ϵ(z|ϵi)
qϵ|z̃(ϵi|z̃)

)∣∣∣∣∣
z̃=z

= ∇z log qz(z).

(16)

We prove Proposition 3.1 in Section 3.1. Hence, we propose
to learn τϵ|z by minimizing the expected forward Kullback-
Leibler divergence Ez∼qz

[
DKL(qϵ|z∥τϵ|z)

]
, for which we

can estimate its gradient w.r.t. to the parameters θ of the NF
without bias since

∇θEz∼qz

[
DKL(qϵ|z∥τϵ|z)

]
(17)

= Ez∼qzEϵ∼qϵ|z∇θ log

(
qϵ|z(ϵ|z)
τϵ|z(ϵ|z)

)
(18)

= −Ez,ϵ∼qz,ϵ∇θ log τϵ|z(ϵ|z) (19)

which holds because qz,ϵ does not depend on θ. The follow-
ing proposition assures the validity of our procedure:

Proposition 3.2. Minimizing Ez∼qz

[
DKL(qϵ|z∥τϵ|z)

]
is

equivalent to minimizing DKL(qz,ϵ∥τϵ|z · qz).

This follows from the fact that

Ez∼qz

[
DKL(qϵ|z∥τϵ|z)

]
(20)

= Ez∼qzEϵ∼qϵ|z log

(
qϵ|z(ϵ|z)
τϵ|z(ϵ|z)

)
(21)

= Ez,ϵ∼qz,ϵ log

(
qz,ϵ(z, ϵ)

τϵ|z(ϵ|z)qz(z)

)
(22)

= DKL(qz,ϵ∥τϵ|z · qz) (23)

From this, assuming that τϵ|z is sufficiently flexible, it di-
rectly follows that at the global optimum τ∗ϵ|z of the expected
forward DKL it holds that

qz,ϵ = τ∗ϵ|z · qz ⇒ τ∗ϵ|z =
qz,ϵ
qz

= qϵ|z. (24)

Being of particular importance for understanding our find-
ing, we also include the proof of Proposition 3.1 in the
following.

3.1. Proof of Proposition 3.1

First note that

pϵ(ϵi)

qϵ|z(ϵi|z)
=

pϵ(ϵi)qz(z)

pϵ(ϵi)qz|ϵ(z|ϵi)
=

qz(z)

qz|ϵ(z|ϵi)
. (25)

With this, we get that

Eϵi∼qϵ|z∇z log

(
1

k

k∑
i=1

pϵ(ϵi)qz|ϵ(z|ϵi)
qϵ|z̃(ϵi|z̃)

)∣∣∣∣∣
z̃=z

(26)

= Eϵi∼qϵ|z

 1
k

∑k
i=1

pϵ(ϵi)
qϵ|z(ϵi|z)

∇zqz|ϵ(z|ϵi)
1
k

∑k
i=1

pϵ(ϵi)
qϵ|z(ϵi|z)

qz|ϵ(z|ϵi)

 (27)

=

1
k

∑k
i=1 Eϵi∼qϵ|z

[
pϵ(ϵi)

qϵ|z(ϵi|z)
∇zqz|ϵ(z|ϵi)

]
1/k

∑k
i=1 qz(z)

(28)

=

∑k
i=1 Eϵi∼qϵ|z

[
qz(z)qz|ϵ(z|ϵi)

qz|ϵ(z|ϵi)
∇z log qz|ϵ(z|ϵi)

]
k · qz(z)

(29)

=
1

k

k∑
i=1

Eϵi∼qϵ|z

[
∇z log qz|ϵ(z|ϵi)

]
(30)

Eq. 9
= ∇z log qz(z). (31)

3.2. Training Under Memory Constraints

One of the main advantages of our proposed score gradi-
ent estimators sMC,k and sIS,k is that increasing k, i.e., the
number of samples ϵi, does not increase the computational
cost of backpropagation w.r.t. the parameters of our SIVI
model ϕ because we follow the path gradient. This insight
motivates the following procedure, which allows us to train
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our SIVI models with constant memory requirements inde-
pendent of k.

First, note that both our score gradient estimators can be
written s.t.

s(z) = ∇zℓ(z, z̃)

∣∣∣∣∣
z̃=z

with (32)

ℓ(z, z̃) = log

(
1

k

k∑
i=1

w(ϵi|z̃)qz|ϵ(z|ϵi)

)
, (33)

where choosing w(ϵi|z̃) = 1 or w(ϵi|z̃) = pϵ(ϵi)
qϵ|z̃(ϵi|z̃)

results
in sMC,k and sIS,k, respectively. Since evaluating qϵ|z̃(ϵi|z̃)
is computationally non-intensive because of the inner neural
sampler, we could, in principle, process very large ϵ batches.
However, since our memory is constrained, we need a way
to aggregate score gradient estimators computed on different
ϵ batches.

Efficient Aggregation on Batch Level Assume we have
computed the score gradient estimates s1, s2 with associated
log probability density estimates ℓ1, ℓ2 of the ϵi batches of
sizes j · b and b, respectively, with j, b ∈ N. Then, we show
in Appendix A.3 that if we aggregate these estimates s.t.

ℓ3(z, z̃) = logaddexp (ℓ1(z, z̃) + log j, ℓ2(z, z̃))

− log(j + 1),
(34)

and

s3(z) = α1s1(z) + α2s2(z) with

α1 = exp

(
ℓ1(z, z̃)− ℓ3(z, z̃) + log

j

j + 1

)
,

α2 = exp (ℓ2(z, z̃)− ℓ3(z, z̃)− log(j + 1))

(35)

then s3 and ℓ3 are the corresponding estimates of the com-
bined ϵi batches.

Also, note that we keep most of our operations in the log
space to make the procedure numerically stable. For ex-
ample, we use the logaddexp(ℓ1, ℓ2) operation, which al-
lows to numerically stable compute log(exp(ℓ1)+exp(ℓ2)),
and the logsumexp trick to compute ℓ1 and ℓ2 themselves.
Applying this algorithm iteratively allows us to process an
arbitrarily large number of samples ϵi while keeping the
memory requirement constant. As a direct consequence,
we note that our score gradient estimation is completely
parallelizable.

3.3. Algorithms

Following the previous findings, we propose two new algo-
rithms for SIVI.

Algorithm 1 BSIVI
Input: target density pz , batch size m, number of latent
samples k with k > m, SIVI model hϕ

i = 1, . . . ,m, j = 1, . . . , k
repeat

ϵj ∼ pϵ,ηj ∼ pη
zi = hϕ(ϵi,ηi)

si = ∇zi
logsumexp

({
log qz|ϵ(zi|ϵj)

}
j=1,...,k

)
qi = stop gradient(si) · zi
loss = 1/m

∑m
i=1(qi − log pz(zi))

ϕ = opt(loss,ϕ)
until ϕ has converged

3.3.1. BSIVI

As a new baseline method, we propose base SIVI (BSIVI),
which minimizes the reverse Kullback-Leibler divergence
DKL(qz∥pz) by following the path gradient of Eq. 7. For
the score gradient ∇z log qz we plug-in sMC,k(z). This
method exploits the fact that we can rapidly sample from
a SIVI model, and sMC,k can be computed with constant
memory independent of k as discussed in Section 3.2. The
algorithm is summarized in Algorithm 1. We use BSIVI
to ablate the use of importance sampling, which our main
method is built upon.

3.3.2. AISIVI

Furthermore, we propose adaptively informed SIVI
(AISIVI), which alternates between minimizing the ex-
pected forward KL divergence Ez∼qz

[
DKL(qϵ|z∥τϵ|z)

]
and the reverse KL divergence DKL(qz∥pz) by following
the path gradient of Eq. 7. For the score gradient ∇z log qz ,
we plug-in sIS,k(z), which uses τϵ|z as the proposal distri-
bution. This alternating training is possible since sIS,k(z)
is a consistent estimator of the score gradient for any τϵ|z
with supp(qϵ|z) ⊂ supp(τϵ|z). Since the forward DKL is
mass covering, we can expect that the support assumption is
always fulfilled. This means, in contrast to UIVI, we do not
need exact4 samples from qϵ|z and the bias and variance of
our estimate decreases5 with increasing k. Also, sampling
from the CNF τϵ|z is comparatively cheap, and the samples
are guaranteed to be independent.

4. Related Literature
Yin & Zhou (2018) propose to use semi-implicit distribu-
tions for VI and train their models by sandwiching the
ELBO. Titsias & Ruiz (2019) introduce another objective
based on ELBO and derive an associated unbiased gradient

4However, we can greatly reduce the bias the better we match
qϵ|z with τϵ|z

5This is not the case for UIVI regarding the number of chains
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Algorithm 2 AISIVI
Input: target density pz , batch size m, number of latent
samples k, SIVI model hϕ, CNF τϵ|z
i = 1, . . . ,m, j = 1, . . . , k
repeat
ϵi ∼ pϵ,ηi ∼ pη
zi = hϕ(ϵi,ηi)
lossflow = −1/m

∑m
i=1 log τϵ|z(ϵi|zi)

θ = opt(lossflow,θ)

ϵi,j ∼ τϵ|z(·|zi)
logwi,j = log pϵ(ϵi,j)− log τϵ|z(ϵi,j |zi)
log w̃i,j = stop gradient(logwi,j)
log q̃z|ϵ(zi|ϵi,j) = log w̃i,j + log qz|ϵ(zi|ϵi,j)
si = ∇zi

logsumexp
({

log q̃z|ϵ(zi|ϵi,j)
}
j=1,...,k

)
qi = stop gradient(si) · zi
loss = 1/m

∑m
i=1(qi − log pz(zi))

ϕ = opt(loss,ϕ)
until ϕ has converged

estimator, which, however, depends on expensive MCMC
simulations. Sobolev & Vetrov (2019) also improved upon
Yin & Zhou (2018) by introducing an importance sam-
pling distribution; however, using expressive models such as
CNFs remains infeasible for their approach. In recent years,
new approaches based on different objectives have been
proposed that seem to outperform methods based on the
ELBO. Yu & Zhang (2023) propose minimizing the Fisher
divergence, but their minimax formulation proves difficult
to train compared to the standard minimization problems
mentioned above.

Building upon Yu & Zhang (2023), Cheng et al. (2024) use
the kernel Stein discrepancy as the training objective, which
turns the minimax problem into a standard minimization
problem. We will refer to their method as KSIVI. Lim &
Johansen (2024) proposed Particle Semi-Implicit Variational
Inference (PVI), which is a particle approximation of a
Euclidean-Wasserstein gradient flow. Both Cheng et al.
(2024) and Lim & Johansen (2024) showed strong empirical
evidence supporting their methods.

While beyond the scope of this work, we note that SIVI
has been successfully extended to multilayer architectures,
yielding improved performance as demonstrated by Yu et al.
(2023).

Beyond SIVI, another line of research explores variational
inference with fully implicit distributions (Mescheder et al.,
2017; Shi et al., 2018; Feng et al., 2017). These methods
often encounter training challenges, such as instability in-
troduced by adversarial learning or density-ratio estimation.

Another related direction performs inference directly in

Figure 2. Histograms based on 100000 samples produced by the
true distribution, AISIVI, and BSIVI

function space (Sun et al., 2019; Ma et al., 2019; Pielok et al.,
2023). These approaches frequently incorporate implicit
inference mechanisms within their frameworks.

Several approaches have improved variational inference
by incorporating importance sampling. IWAE (Burda
et al., 2016) introduces a tighter bound through multiple
importance-weighted samples, while NVI (Zimmermann
et al., 2021) extends this idea using nested objectives to learn
better proposal distributions. Our work builds on this line by
integrating importance sampling into the SIVI framework
to improve expressivity and stability.

5. Experiments
In the following, we analyze the performance of our pro-
posed methods AISIVI and BSIVI under different data sce-
narios. We start by comparing our two methods on well-
known toy examples that serve as a first sanity check (Sec-
tion 5.1). We then compare our methods with the state-of-
the-art methods KSIVI and PVI on a 22-dimensional prob-
lem in the context of a Bayesian logistic regression model
(Section 5.2, which serves as another common benchmark
example for SIVI. Finally, we move to a 100-dimensional
problem related to a conditioned diffusion process (Sec-
tion 5.3). We implemented AISIVI and BSIVI in PyTorch
(Paszke et al., 2019). All experiments are performed on
a Linux-based server A5000 server with 2 GPUs, 24GB
VRAM, and Intel Xeon Gold 5315Y processor with 3.20
GHz.
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Table 1. DKL(p, q) of different toy examples (rows) using the two
proposed methods (columns).

NAME ↓ AISIVI (DKL) ↓ BSIVI (DKL)

BANANA 0.0853 0.3022
MULTIMODAL 0.0044 0.0017
X-SHAPE 0.0072 0.0034

5.1. Toy examples

First, we train BSIVI and AISIVI on the three common
two-dimensional test densities Banana, X-Shape, and Multi-
modal as proposed by Cheng et al. (2024). Their respective
definitions can be found in Table 3 in the Appendix B. For
both methods, we use the same NN architecture and train
them for 4000 iterations. For the NF of AISIVI, we use 6
conditional affine coupling layers.

Results It can be seen in Figure 2 that AISIVI and BSIVI
can capture the three densities nearly equally well. Only for
the Banana benchmark, AISIVI outperforms BSIVI notably
(Table 1).

5.2. Bayesian Logistic Regression

Next, we perform a Bayesian logistic regression on the
WAVEFORM6 dataset as proposed by Yin & Zhou (2018).
For the target variables yi ∈ {0, 1}, i = 1, . . . , N with N =
400 and the feature vectors xi ∈ R21, the log-likelihood is
given by

log p(y1,...,N | x1,...,N ,β) =

N∑
i=1

yi(1,x
⊤
i )β − log

(
1 + exp

(
(1,x⊤

i )β
))

,

where β ∈ R22 is the variable we want to infer. We set
the prior distribution of β to a normal distribution, i.e.,
p(β) = N (0, α−1I) with α = 0.01. In line with Cheng
et al. (2024), we estimate the ground truth by simulating par-
allel stochastic gradient Langevin dynamics (SGLD Welling
& Teh, 2011) for 400,000 iterations, 1000 samples, and a
step size of 0.0001. We use the same NN architecture for
all methods and use the best hyperparameters for PVI and
KSIVI proposed by the respective authors for this bench-
mark. We train AISIVI and BSIVI for 10,000 iterations
and use ϵi batch sizes of 9182 and 91,820 respectively. The
large batch size of BSIVI is possible and computationally
feasible because of the considerations discussed in Sec-
tion 3.2. All methods use a batch size m = 128 the latent
dimension is set to 10, i.e., ϵ ∈ R10. For the NF of AISIVI,
we use 16 conditional affine coupling layers. We use the

6https://archive.ics.uci.edu/ml/
machine-learningdatabases/waveform

Table 2. KSIVI serves as the gold standard, with AISIVI reaching
it in 10K iterations. The other SIVI variants are compared based
on their estimated log marginal likelihood, given a comparable
computational budget to AISIVI. The log marginal likelihood is
estimated using 1000 high-quality SGLD samples, while each
variant’s estimate is computed using 60,000 samples,

METHOD ↑ LOG ML TRAINING TIME [S] ITERATIONS

KSIVI 74521 0.6K 100K

AISIVI 74062 1.4K 10K
IWHVI 67667 1.5K 10K
BSIVI 60556 1.5K 10K
PVI 53121 1.4K 10K
UIVI 40207 1.5K 10K

full batch for the score gradient computation of the target
density.

Results The marginal and pairwise density estimates in
Figure 3 highlight that all methods perform nearly equally
well since no systematic over- or underestimation of the
variance can be observed. We also compare with the ground
truth all pairwise correlation coefficients of β given by

ρi,j =
cov

(
β(i),β(j)

)√
cov

(
β(i),β(i)

)
cov

(
β(j),β(j)

) , i ̸= j, (36)

where β(i) is a vector containing the i-th coordinate of all
β samples.

The scatter plot in Figure 4 provides a visual summary of
the correlation coefficients and the relation between those of
different IVI methods and the ones of SGLD as considered
ground truth. The results illustrate that PVI and KSIVI
exhibit a slightly reduced spread compared to our proposed
methods, indicating a marginally better fit. However, overall,
the performance of all methods remains comparable.

5.3. Conditioned Diffusion Process

We adopt the Bayesian inference setting proposed in Cheng
et al. (2024), which is based on the Langevin stochastic
differential equation (SDE):

dxt = 10xt(1− x2
t )dt+ dwt, 0 ≤ t ≤ 1, (37)

where x0 = 0 and wt is a one-dimensional standard Brown-
ian motion. This SDE models the motion of a particle in an
energy potential with Brownian fluctuations (Detommaso
et al., 2018).

Following (Cheng et al., 2024), we discretize the SDE using
the Euler-Maruyama scheme with a step size ∆t = 0.01,
yielding a 100-dimensional latent variable

x = (x∆t, x2∆t, . . . , x100∆t),

7

https://archive.ics.uci.edu/ml/machine-learningdatabases/waveform
https://archive.ics.uci.edu/ml/machine-learningdatabases/waveform


Revisiting Unbiased Implicit Variational Inference

Figure 3. Comparision of marginal and pairwise density estimates of β(1),β(2),β(3) where the SGLD estimates are marked in black

Figure 4. Scatter plot of every pairwise correlation coefficient ρi,j
between the estimates and SGLD.

which gives rise to the prior distribution pprior(x). The
observations are perturbed at 20 time points, given by

y = (y5∆t, y10∆t, . . . , y100∆t),

where

y5k∆t ∼ N (x5k∆t, σ
2), 1 ≤ k ≤ 20 (38)

with σ = 0.1, defining the likelihood function p(y|x).
Given y, our goal is to infer the posterior

p(x|y) ∝ pprior(x)p(y|x). (39)

To approximate the posterior, we reapply the approach in
(Cheng et al., 2024) by running a long-run parallel stochastic

gradient Langevin dynamics (SGLD) simulation with 1000
independent particles, a step size of 0.0001, and 100,000
iterations to generate 1000 ground truth samples.

For this benchmark, we also include IWHI to ablate the ef-
fect of their joint training approach compared to our sequen-
tial training. For their method, we use a conditional Gaus-
sian model, where the conditional parameters are predicted
by a neural network, as their joint training setup makes more
complex conditional models—such as continuous normal-
izing flows (CNFs)—infeasible. Additionally, we evaluate
against UIVI to compare our importance sampling-based en-
hancement with their original MCMC-based approach. For
all methods, we use the same NN architecture. For KSIVI,
we use the hyperparameters proposed by the authors for
this benchmark. For PVI, we use 100 particles. To ensure
a fair comparison, we fixed the outer batch size (number
of sampled z) for all SIVI methods and adjusted the inner
batch size (number of sampled ϵ) until we achieved approx-
imately the same iterations per second as AISIVI. The ϵi
batch sizes for AISIVI, BSIVI, and IWHI are 256, 40960,
and 7000, respectively. The latent dimension is 100 for all
SIVI variants. For the NF of AISIVI, we use 32 conditional
affine coupling layers.

Results The results of the experiment is depicted in Fig-
ure 5. We observe that KSIVI and AISIVI are closest to
SGLD while UIVI, PVI, and BSIVI tend to underestimate
the variability of the process. In Table 2, we report the
estimated log marginal likelihoods of the SIVI variants
along with their associated training times. Notably, only
our method, AISIVI, approaches the performance of the
state-of-the-art KSIVI. While IWHI also performs well, it
does not match AISIVI, highlighting the benefits of a more
expressive proposal model. For UIVI, we were limited to an
inner batch size of 2 due to computational constraints, which
led to noticeably weaker performance. Nevertheless, this

8
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Figure 5. Approximations of KSIVI, PVI, IWHVI, UIVI, AISIVI, and BSIVI for the discretized conditioned diffusion process are shown.
The red dots represent the observations, the magenta line the ground truth estimated via parallel SGLD, and the blue line the estimated
posterior mean. The shaded region shows the 95 marginal posterior confidence interval at each discretization step

comparison shows that AISIVI successfully adapts UIVI’s
core ideas in a way that makes them more computationally
efficient and competitive.

6. Conclusion
In this paper, we proposed a novel SIVI framework, AISIVI,
which revitalizes the ELBO as the training objective. This
is possible because the bias and variance of the ELBO gradi-
ents can be severely reduced by using importance sampling
and the optimal proposal distribution can be stably learned
with a CNF. We provided the respective efficient Monte
Carlo gradient estimators. The numerical experiments sup-
port the efficiency and effectiveness claim of AISIVI.

In particular, our experiments on the high-dimensional diffu-
sion example suggest that it can be beneficial not to rely on
a kernel method, which is known to be scalable to very large
dimensions. Our method thus represents an easy-to-use and
scalable alternative to current state-of-the-art SIVI methods
with on-par performance.

Limitations and Outlook

This work marks an initial attempt to integrate the strengths
of semi-implicit distributions and normalizing flows. How-
ever, given the numerous normalizing flow frameworks,
certain alternative combinations may lead to improved per-
formance. Future research could explore these possibilities
to identify more effective configurations. While our method
shows on par performance with current state-of-the-art SIVI

methods, a suitable combination could further notably en-
hance performance.

Additionally, the proposed method does not inherently of-
fer exploration capabilities, which may limit its ability to
model multi-modal distributions. However, note that we can
always combine a temperature annealing strategy (Rezende
& Mohamed, 2015) with our approach, but a more princi-
pled procedure would be desirable. While this limitation
is common in related work, addressing it in future research
could enhance the applicability of AISIVI.

Impact Statement
This paper presents work whose goal is to advance the field
of machine learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Andrade, D. Stabilizing training of affine coupling lay-

ers for high-dimensional variational inference. Machine
Learning: Science and Technology, 5, 12 2024. doi:
10.1088/2632-2153/ad9a39.

Burda, Y., Grosse, R. B., and Salakhutdinov, R. Impor-
tance weighted autoencoders. In Bengio, Y. and LeCun,
Y. (eds.), 4th International Conference on Learning Rep-
resentations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings, 2016. URL

9



Revisiting Unbiased Implicit Variational Inference

http://arxiv.org/abs/1509.00519.

Cheng, Z., Yu, L., Xie, T., Zhang, S., and Zhang, C.
Kernel semi-implicit variational inference. In Forty-
first International Conference on Machine Learning,
2024. URL https://openreview.net/forum?
id=w5oUo0LhO1.

Detommaso, G., Cui, T., Spantini, A., Marzouk, Y., and
Scheichl, R. A stein variational newton method. In
Proceedings of the 32nd International Conference on
Neural Information Processing Systems, NIPS’18, pp.
9187–9197, Red Hook, NY, USA, 2018. Curran Asso-
ciates Inc.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density
estimation using real NVP. In International Confer-
ence on Learning Representations, 2017. URL https:
//openreview.net/forum?id=HkpbnH9lx.

Feng, Y., Wang, D., and Liu, Q. Learning to draw samples
with amortized stein variational gradient descent. In Eli-
dan, G., Kersting, K., and Ihler, A. (eds.), Proceedings of
the Thirty-Third Conference on Uncertainty in Artificial
Intelligence, UAI 2017, Sydney, Australia, August 11-15,
2017. AUAI Press, 2017. URL http://auai.org/
uai2017/proceedings/papers/206.pdf.

Figurnov, M., Mohamed, S., and Mnih, A. Implicit
reparameterization gradients. In Bengio, S., Wallach,
H., Larochelle, H., Grauman, K., Cesa-Bianchi, N.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.
cc/paper_files/paper/2018/file/
92c8c96e4c37100777c7190b76d28233-Paper.
pdf.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. In Bengio, Y. and LeCun, Y. (eds.), 2nd Interna-
tional Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Conference
Track Proceedings, 2014. URL http://arxiv.org/
abs/1312.6114.

Lim, J. N. and Johansen, A. M. Particle semi-implicit
variational inference. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?
id=p3gMGkHMkM.

Lu, Y. and Huang, B. Structured output learning with con-
ditional generative flows. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial Intel-
ligence Conference, IAAI 2020, The Tenth AAAI Sym-
posium on Educational Advances in Artificial Intelli-

gence, EAAI 2020, New York, NY, USA, February 7-
12, 2020, pp. 5005–5012. AAAI Press, 2020. doi:
10.1609/AAAI.V34I04.5940. URL https://doi.
org/10.1609/aaai.v34i04.5940.

Ma, C., Li, Y., and Hernandez-Lobato, J. M. Variational
implicit processes. In Chaudhuri, K. and Salakhutdinov,
R. (eds.), Proceedings of the 36th International Confer-
ence on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pp. 4222–4233. PMLR, 09–
15 Jun 2019. URL https://proceedings.mlr.
press/v97/ma19b.html.

Mescheder, L., Nowozin, S., and Geiger, A. Adversarial
variational bayes: unifying variational autoencoders and
generative adversarial networks. In Proceedings of the
34th International Conference on Machine Learning -
Volume 70, ICML’17, pp. 2391–2400. JMLR.org, 2017.

Molchanov, D., Kharitonov, V., Sobolev, A., and Vetrov, D.
Doubly semi-implicit variational inference. In Chaud-
huri, K. and Sugiyama, M. (eds.), Proceedings of the
Twenty-Second International Conference on Artificial In-
telligence and Statistics, volume 89 of Proceedings of
Machine Learning Research, pp. 2593–2602. PMLR, 16–
18 Apr 2019. URL https://proceedings.mlr.
press/v89/molchanov19a.html.

Owen, A. B. Monte Carlo theory, methods and examples.
https://artowen.su.domains/mc/, 2013.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed,
S., and Lakshminarayanan, B. Normalizing flows for
probabilistic modeling and inference. J. Mach. Learn.
Res., 22(1), January 2021. ISSN 1532-4435.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Advances
in Neural Information Processing Systems 32, pp. 8024–
8035. Curran Associates, Inc., 2019.

Pielok, T., Bischl, B., and Rügamer, D. Approximate
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A. Proofs
For the proofs, we assume that the objects of interest are sufficiently regular s.t. we can change the order of integration,
summation, and differentiation.

A.1. sMC,k is a consistent estimator and its bias approximation

We approximate the bias of sMC,k(z) = ∇z log
(

1
k

∑k
i=1 qz|ϵ(z|ϵi)

)
by using the delta method. First we note for

large k that sMC,k(z) ≈ ∇z log

(
1

k − 1

k∑
i=2

qz|ϵ(z|ϵi)

)
︸ ︷︷ ︸

=:s̃MC,k(z)

. With the second-order Taylor approximation around qz(z) =

Eϵi∼pϵ

[
1
k

∑k−1
i=2 qz|ϵ(z|ϵi)

]
we get that

log

(
1

k − 1

k∑
i=2

qz|ϵ(z|ϵi)

)
≈ log (qz(z)) +

1
k−1

∑k
i=2 qz|ϵ(z|ϵi)− qz(z)

qz(z)
−

(
1

k−1

∑k
i=2 qz|ϵ(z|ϵi)− qz(z)

)2
2 · qz(z)2

. (40)

From this, it follows that

Eϵi∼pϵ

[
log

(
1

k − 1

k∑
i=2

qz|ϵ(z|ϵi)

)]
≈ log (qz(z))−

Vϵ∼pϵ

[
qz|ϵ(z|ϵ)

]
2(k − 1) · qz(z)2

. (41)

Consequently, we get for large k that

Eϵi∼pϵ [∇zsMC,k(z)]−∇z log (qz(z)) ≈ Eϵi∼pϵ

[
∇z s̃MC,k(z)

]
−∇z log (qz(z)) (42)

≈ −∇z

(
Vϵ∼pϵ

[
qz|ϵ(z|ϵ)

]
2(k − 1) · qz(z)2

)
, (43)

which, in general, is non-zero.

To prove the consistency of sMC,k, we observe since log is a continuous function that

lim
k→∞

sMC,k = ∇z log

(
lim
k→∞

1

k

k∑
i=1

qz|ϵ(z|ϵi)

)
a.s.
= ∇z log

(
Eϵ∼pϵ

[
qz|ϵ(z|ϵ)

])
= ∇z log (qz(z)) , (44)

i.e.,

P
(

lim
k→∞

sMC,k = ∇z log (qz(z))

)
= 1. (45)

A.2. sIS,k is a consistent estimator

To prove the consistency of sIS,k, we observe since log is a continuous function that

lim
k→∞

sIS,k = ∇z log

(
lim
k→∞

1

k

k∑
i=1

pϵ(ϵ)qz|ϵ(z|ϵi)
τϵ|z̃(ϵi|z̃)

)∣∣∣∣∣
z̃=z

a.s.
= ∇z log

(
Eϵi∼τϵ|z

[
pϵ(ϵ)qz|ϵ(z|ϵi)

τϵ|z̃(ϵi|z̃)

]) ∣∣∣∣∣
z̃=z

. (46)

For a valid proposal distribution, it must hold that τϵ|z must be non-zero where pϵ · qz|ϵ = qz,ϵ is greater than zero (Owen,
2013). Consequently, the support of τϵ|z must also contain the support of qϵ|z =

qz,ϵ

qz
. In this case

lim
k→∞

sIS,k
a.s.
= ∇z log (qz(z)) , i.e., P

(
lim
k→∞

sIS,k = ∇z log (qz(z))

)
= 1. (47)
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A.3. s3 gives the correct score gradient estimator regarding all ϵi samples

Assume we got a ϵ batch of size (j + 1) · b and have computed the following estimators

s1(z) = ∇zℓ1(z, z̃)
∣∣∣
z̃=z

with (48)

ℓ1(z, z̃) = log

(
1

j · b

j·b∑
i=1

w(ϵi|z̃)qz|ϵ(z|ϵi)

)
, (49)

s2(z) = ∇zℓ2(z, z̃)
∣∣∣
z̃=z

with (50)

ℓ2(z, z̃) = log

1

b

(j+1)·b∑
i=j·b+1

w(ϵi|z̃)qz|ϵ(z|ϵi)

 . (51)

These estimates can be aggregated such that

ℓ3(z, z̃) = logaddexp (ℓ1(z, z̃) + log j, ℓ2(z, z̃))− log(j + 1), (52)

= log

 1

(j + 1) · b

(j+1)·b∑
i=1

w(ϵi|z̃)qz|ϵ(z|ϵi)

 , (53)

s3(z) = α1s1(z) + α2s2(z) with (54)

α1 = exp

(
ℓ1(z, z̃)− ℓ3(z, z̃) + log

j

j + 1

)
, (55)

α2 = exp (ℓ2(z, z̃)− ℓ3(z, z̃)− log(j + 1)) . (56)
(57)

For the score gradient estimate, it follows that

s3 =
1

exp (ℓ3(z, z̃))
∇z

j

j + 1
exp (ℓ1(z, z̃))

∣∣∣
z̃=z

+
1

exp (ℓ3(z, z̃))
∇z

1

j + 1
exp (ℓ2(z, z̃))

∣∣∣
z̃=z

(58)

=
1

exp (ℓ3(z, z̃))
∇z exp (ℓ3(z, z̃))

∣∣∣
z̃=z

(59)

= ∇zℓ3(z, z̃)
∣∣∣
z̃=z

. (60)

B. Implementation Details
Table 3 summarizes the details for the toy example discussed in Section 5.1.

Table 3. Densities of the toy examples

NAME DENSITY PARAMETERS

BANANA z = (ν1, ν
2
1 + ν2 + 1)⊤, ν ∼ N (0,Σ) Σ =

[
1 0.9
0.9 1

]
MULTIMODAL z ∼ 0.5N (z| µ1, I) + 0.5N (z| µ2, I) µ1 = (−2, 0)⊤, µ2 = (2, 0)⊤

X-SHAPE z ∼ 0.5N (z| 0,Σ1) + 0.5N (z| 0,Σ2) Σ1 =

[
2 1.8
1.8 2

]
,Σ2 =

[
2 −1.8

−1.8 2

]
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