
Improving Diversity of Commonsense Generation by
Large Language Models via In-Context Learning

Anonymous ACL submission

Abstract

Generative Commonsense Reasoning (GCR)001
requires a model to reason about a situation002
using commonsense knowledge, while generat-003
ing coherent sentences. Although the quality of004
the generated sentences is crucial, the diversity005
of the generation is equally important because006
it reflects the model’s ability to use a range007
of commonsense knowledge facts. Large Lan-008
guage Models (LLMs) have shown proficiency009
in enhancing the generation quality across var-010
ious tasks through in-context learning (ICL)011
using given examples without the need for any012
fine-tuning. However, the diversity aspect in013
LLM outputs has not been systematically stud-014
ied before. To address this, we propose a simple015
method that diversifies the LLM generations,016
while preserving their quality. Experimental017
results on three benchmark GCR datasets show018
that our method achieves an ideal balance be-019
tween the quality and diversity. Moreover, the020
sentences generated by our proposed method021
can be used as training data to improve diversity022
in existing commonsense generators.023

1 Introduction024

Commonsense reasoning is the ability to make logi-025

cal deductions about concepts encountered in daily026

life, and is considered as a critical property of intel-027

ligent agents (Davis and Marcus, 2015). Concepts028

are mental representations of classes and are ex-029

pressed using words in a language (Liu et al., 2023).030

Given the inputs, the GCR task requires a model031

to generate a high quality sentence that is gram-032

matical and adheres to commonsense, evaluated by033

its similarity to a set of human-written reference034

sentences covering the same set of concepts (Lin035

et al., 2020).036

Often there exists multiple relationships between037

a given set of concepts, leading to alternative rea-038

soning paths that take diverse view points. For ex-039

ample, given the four concepts dog, frisbee, throw040

and catch, different sentences can be generated as041

Figure 1: Example sentences generated that cover a
given set of concepts from the CommonGen (Lin et al.,
2020) dataset. The model is required to generate com-
monsense bearing and coherent sentences containing
all of the input concepts. The responses shown at the
bottom (in green ) are considered by human annotators

to be more diverse than those at the top (in red ).

shown in Figure 1. Although all sentences shown in 042

Figure 1 are grammatical, the bottom set expresses 043

diverse view points (e.g. from the dog’s as well as 044

the man’s) compared to the set at the top. Apart 045

from the generation quality, diversity is also an 046

important factor in text generation because the low- 047

diversity texts tend to be dull, repetitive or biased 048

towards a particular view point (Tevet and Berant, 049

2021). Diversity is an important consideration in 050

many Natural Language Generation (NLG) appli- 051

cations, such as story generation (Li et al., 2018), 052

paraphrase generation (Gupta et al., 2018), and 053

GCR (Yu et al., 2022; Liu et al., 2023). Existing 054

methods promote diversity through special decod- 055

ing strategies, such as nucleus sampling (Holtzman 056

et al., 2019), or encoding interventions such as ran- 057

dom noise injection (Gupta et al., 2018) or Mixture 058

of Experts (MoE) approaches (Shen et al., 2019). 059

We propose In-Context Diversification (ICD), a 060

computationally-efficient and accurate method to 061

improve the diversity in GCR, where the sentences 062

are generated from a pre-trained LLM, and strikes 063

a fine-balance between the output diversity and 064

quality. ICD uses an ICL approach to increase the 065

diversity of the sentences generated by an LLM, 066

while maintaining the quality of the generation. 067

ICD is a two-step process where it first lets an 068
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LLM to freely generate high-quality sentences that069

are grammatical, commonsense bearing and cover070

all the given input concepts. Next, ICD uses a user-071

specified diversity metric to evaluate the diversity072

of the generated sentences. If the diversity is low,073

ICD provides feedback to the LLM, instructing it074

to generate more diverse sentences considering the075

already generated sentences.076

Given that ICD is using LLMs to generate di-077

verse sentences via ICL and without updating the078

parameters of the LLMs, an interesting and open079

question is whether an LLM can accurately judge080

the diversity of a given set of sentences, covering081

a common set of concepts. To answer this ques-082

tion, we conduct an experiment where we instruct083

GPT3.5-turbo to judge the diversity of the set of084

input sentences according to a five-scale grading085

system, and convert the predicted grades into bi-086

nary judgements (i.e. diverse vs. non-diverse). We087

compare the LLM-assigned grades against those by088

a group of human annotators, and find a moderate-089

level (Cohen’s Kappa of 0.409) agreement between090

human vs. LLM judgements, demonstrating that091

LLMs can indeed be instructed to obtain diversity092

judgements for GCR tasks.093

We evaluate ICD on three GCR tasks/datasets:094

CommonGen (Lin et al., 2020), ComVE (Wang095

et al., 2020), and DimonGen (Liu et al., 2023). We096

find that our proposed ICD balances diversity and097

quality appropriately, improving their harmonic098

mean by at least 6% over that of a default base-099

line. Moreover, the sentences generated by ICD100

can be used as training data to improve diversity101

in a Seq2Seq model (Sutskever et al., 2014; Lewis102

et al., 2020), producing results that are comparable103

to the models that are trained on knowledge graphs104

or human-written text corpora (Liu et al., 2021;105

Fan et al., 2020; Li et al., 2021). An anonymised106

version of the source code is submitted to ARR and107

will be made public upon paper acceptance.108

2 Related Work109

Diverse Text Generation. A variety of methods110

have been proposed to enhance the diversity of111

NLG. Sampling-based decoding is an effective112

method to increase the generation diversity. Holtz-113

man et al. (2019) proposed nucleus sampling to114

generate diverse content at the generation stage.115

Truncated sampling (Fan et al., 2018) prunes and116

then samples the tokens based on the probability117

distribution. Furthermore, Shen et al. (2019) pro-118

posed an MoE approach to diversify translation 119

outputs. Moreover, incorporating external corpora 120

in the MoE further promotes diversity, such as by 121

using a knowledge graph (Yu et al., 2022; Hwang 122

et al., 2023) or by a collection of retrieved sen- 123

tences (Liu et al., 2023). Although LLMs have re- 124

ported superior performance in numerous Natural 125

Language Processing (NLP) tasks (Touvron et al., 126

2023; OpenAI, 2023b,a), to the best of our knowl- 127

edge, diversifying their generations in common- 128

sense reasoning with ICL has not been explored in 129

prior work on GCR. 130

In-Context Learning. Recent studies demon- 131

strate that LLMs can exhibit robust few-shot per- 132

formance on a variety of downstream tasks through 133

ICL (Brown et al., 2020). ICL is a technique for 134

instructing an LLM using one or more examples 135

for a particular text generation task. The generated 136

text is conditioned on both the input as well as the 137

instruction prompt. Wang et al. (2023) show that 138

in ICL, label words in the demonstration examples 139

function as anchors, which aggregate semantic in- 140

formation to their word representations in the shal- 141

low (closer to the input) layers, while providing 142

that information to the final predictions performed 143

by the deeper (closer to the output) layers. In con- 144

trast to fine-tuning-based methods, ICL is computa- 145

tionally lightweight because it does not update the 146

parameters of the LLM. Therefore, ICL is an attrac- 147

tive method when integrating task-specific knowl- 148

edge to an LLM by simply changing the prompt 149

and the few-shot examples (Dong et al., 2022). 150

3 In-context Diversification 151

We consider the problem of generating a set of 152

diverse sentences that express commonsense rea- 153

soning, either by covering a set of given concepts 154

(in CommonGen and DimonGen) or by providing 155

an explanation for a given counterfactual statement 156

(in ComVE). Formally, given a sequence (a set 157

of concepts or a statement) X = {x1, . . . , xm}, 158

the goal of GCR is to generate a set of grammati- 159

cally correct and commonsense bearing sentences 160

Y = {y1, . . . , yn}, where yi is the i-th output 161

generated by the model with probability p(yi|X ). 162

Moreover, we require that the generated sentences 163

{y1, . . . , yn} to be lexically as well as semantically 164

diverse. 165
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Figure 2: An example of default and diversi-
fied prompts is shown for an instance selected from the
CommonGen dataset. Here, the default prompt shown
in Figure 2a is taken from Li et al. (2023). Few-shot
examples are included in each prompt where [SRC]
denotes the set of input concepts and [TGT] the cor-
responding sentences in CommonGen. For a given set
of [INPUT] concepts, the LLM is then required to gen-
erate sentences at the slot [OUTPUT]. As shown in
Figure 2b, ICD uses the diversified prompt, which oper-
ates in two steps. Step 1 generates a set of [N] sentences,
[PRV]. We check for the diversity among the sentences
in [PRV], and if it is low, we use the prompt in Step 2
to generate the final set of sentences.

3.1 Sentence Generation166

To explain our proposed ICD, let us consider GCR167

on CommonGen, where we must generate a set of168

sentences Y , such that each sentence contains all of169

the input concepts X as shown in Figure 2a. Given170

an LLM, we can design a prompt that contains a171

task-specific instruction and one or more examples172

containing the input concepts (denoted by [SRC] in173

Figure 2) and the corresponding human-written sen-174

tences containing all given input concepts (denoted175

by [TGT]) to instruct the LLM to generate output176

sentences Y (denoted by [OUTPUT]) for a given177

set of input concepts X (denoted by [INPUT]). We178

refer to a prompt of this nature as a default prompt,179

and the corresponding set of generated sentences180

by Sdef .181

Note that the default prompt does not necessar-182

ily guarantee that the generated set of sentences183

will be diverse and an LLM could return sentences184

that are highly similar to each other. To address this185

issue, we propose a diversified prompt as shown186

in Figure 2b. Specifically, the diversified prompt187

operates in two steps. In Step 1, we require that188

the LLM generate N number of sentences that are189

different, in addition to being coherent and com-190

monsense bearing. Next, we use a suitable diversity191

metric to evaluate the level of diversity among the192

generated set of sentences. If the diversity of the193

Algorithm 1 In-Context Diversification (ICD)
Input: Generated sets of sentences Sdef and Sdiv, respec-

tively from default and diversified prompts, the number
of desired output sentences N , and a diversity metric f .

Output: Output set of sentences S∗

1: S∗ ← ∅
2: α ← 0
3: for S ∈ (S−

def ∪ Sdiv) do
4: if (|S| == N) ∧ (f(S) ≥ α) then
5: α← f(S)
6: S∗ ← S
7: end if
8: end for
9: return S∗

generated sentences is low, in Step 2, we show 194

those sentences to the LLM and instruct it to gen- 195

erate sentences that are different to those. As the 196

criteria for triggering Step 2, we check whether the 197

exact same sentence has been generated multiple 198

times by the LLM during Step 1. The final set of 199

generated sentences is denoted by Sdiv. 200

3.2 Diversity-based Sampling 201

Because of the limited availability of human- 202

written reference sentences for evaluating GCR 203

models, there exists a trade-off between quality 204

vs. diversity when generating sentences for GCR 205

tasks.1 Simply maximising for diversity often leads 206

to generations that do not cover the input concepts 207

in a natural way. For example, a randomly se- 208

lected set of sentences would be highly diverse, 209

yet unlikely to capture the input concept sets. On 210

the other hand, if we force an LLM to generate 211

sentences that contain all of the input concepts, it 212

might find difficult to generate semantically diverse 213

sentences and resort to trivial lexical or syntactic 214

diversity tricks such as morphological inflections 215

or word-order permutations. 216

To address this issue, we propose a diversity- 217

based sampling method shown in Algorithm 1. 218

Consider that the default prompt provides a set 219

Sdef of sentences that have not been optimised for 220

diversity (likely to have a higher quality), while 221

on the other hand the diversified prompt provides 222

a set Sdiv of sentences that are further refined for 223

diversity (likely to have a higher diversity). We 224

wish to find a set of sentences that simultaneously 225

satisfies the following criteria: (a) must contain 226

exactly N number of sentences, as specified by 227

the user, and (b) must have a high diversity score, 228

measured using a user-specified diversity metric 229

f(∈ R≥0). We formalise this as a subset search 230

1This trade-off is further empirically verified in § 5.1.

3



problem, where we compute the union Sdef ∪ Sdiv231

and search for the subset S∗ that jointly satisfies232

those criteria following the procedure detailed in233

Algorithm 1. Although the total number of subsets234

of size N is
(|Sdef∪Sdiv|

N

)
, it is sufficiently small for235

the values of N(N ≤ 6) in our GCR tasks, which236

makes this subset search fast in practice.237

4 Experimental Settings238

4.1 Tasks and Datasets239

We evaluate ICD on three GCR tasks as follows.240

Constrained Commonsense Reasoning: In Com-241

monGen (Lin et al., 2020) benchmark, a model is242

required to generate a sentence covering a given set243

of concepts such that background commonsense244

knowledge associated with the input concepts is245

reflected. This dataset contains 3.5K distinct con-246

cept sets (train = 32651, dev = 993, and test =247

1497) with corresponding human written sentences248

(train = 67389, dev = 4018, and test = 6042). Each249

instance contains on average 3-5 input concepts.250

Commonsense Explanation Reasoning:251

ComVE (Wang et al., 2020) is part of the SemEval252

2020 commonsense validation task, where for a253

given counterfactual statement, a model is required254

to generate an explanation providing a reason255

describing why the statement is nonsensical. This256

dataset contains 10K (train = 8532, dev = 476, and257

test = 992) examples, where each example contains258

three reference outputs.259

Diversified GCR: DimonGen (Liu et al., 2023)260

involves generating diverse sentences that describe261

the relationships between two given concepts. It is262

a challenging task because it requires generating263

reasonable scenarios for a given pair of concepts264

without any context. This dataset contains 17109265

instances (train = 15263, dev = 665, test = 1181),266

where each instance has 3-5 references.267

4.2 Evaluation Metrics268

We measure both the quality and diversity of the269

sentences generated by models using the metrics270

described next.271

4.2.1 Quality Metrics272

We compare a generated sentence by a model273

against a set of human-written references to eval-274

uate the quality of the generation using several275

metrics: BLEU (Papineni et al., 2002) measures276

n-gram precision against human reference texts,277

SPICE (Anderson et al., 2016) measures the seman- 278

tic propositional overlap between two sentences, 279

and BERTScore (Zhang et al., 2020) uses contextu- 280

alised word embeddings to measure the semantic 281

similarity between tokens in two sentences. In 282

alignment with prior works (Yu et al., 2022; Liu 283

et al., 2023; Hwang et al., 2023), when multiple 284

candidate sentences are generated for a test case, 285

we select the highest-scoring candidate for evaluat- 286

ing quality. 287

4.2.2 Diversity Metrics 288

Pairwise Diversity: We use self-BLEU (Zhu 289

et al., 2018) to measure n-gram overlap among sen- 290

tences within each generated set. The metric com- 291

putes the average sentence-level similarity between 292

all pairwise combinations of the generations in the 293

generation set. Note that unlike BLEU, self-BLEU 294

does not require human generated references for 295

measuring diversity. We use self-BLEU3/4 (corre- 296

sponding to n = 3 and 4) in our experiment. Lower 297

self-BLEU scores indicate higher lexical diversity. 298

Corpus Diversity: To measure the variety within 299

our generated text corpus, we employ Distinct- 300

k (Li et al., 2016), which calculates the ratio of 301

unique k-grams to the total number of k-grams. 302

This metric is particularly useful for adjusting the 303

bias of LLMs toward generating longer sequences, 304

ensuring that diversity is not artificially inflated by 305

the sentence length. Additionally, we use Entropy- 306

k to evaluate the distributional uniformity of k- 307

gram occurrences, considering word frequencies 308

for a more nuanced view of diversity. Higher 309

Distinct-k and Entropy-k scores indicate higher 310

diversity. 311

Semantic Diversity: All previously described 312

diversity metrics are limited to evaluating lexi- 313

cal diversity. To measure diversity at a semantic 314

level, we propose self-cosSim, which is the aver- 315

age pairwise cosine similarity between generated 316

sentences, computed using sentence embeddings 317

obtained from SimCSE (Gao et al., 2021). Like- 318

wise, we define the self-BERTScore as a diver- 319

sity metric that averages the BERTScores for all 320

generated sentence pairs. Lower self-cosSim and 321

self-BERTScore values indicate higher semantic 322

diversity. 323

4.2.3 Combined Metrics 324

We would prefer GCR models that have both high 325

quality and high diversity. To incoporate both as- 326
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pects into a single metric, we compute the Har-327

monic Mean between (a) the self-BLEU-4 as the328

diversity metric, and (b) BERTScore as the quality329

metric. As discussed in § 3.2, there exists a trade-330

off between quality and diversity in GCR. There-331

fore, the harmonic mean is suitable when averaging332

quality and diversity scores.2333

Alihosseini et al. (2019) proposed Fréchet BERT334

Distance (FBD) as a joint metric for simultaneously335

measuring both the quality and diversity of NLG.336

FBD is inspired by the Fréchet Inception Distance337

(FID), proposed by Heusel et al. (2017), for mea-338

suring the quality of image generation. Specifically,339

FBD computes the pooler output3 of a sentence as340

its embedding (Devlin et al., 2019) and represents341

a set of sentences using the mean vector and the342

covariance matrix computed from their sentence343

embeddings. Next, Wasserstein-2 distance is com-344

puted between the set of reference sentences and345

the set of generated sentences, which captures both346

the distance between the means as well as variance347

in the distributions. Lower FBD scores indicate348

high combined performance.349

4.3 Implementation Details350

We use GPT3.5-turbo and Vicuna-13b-v1.54 as351

LLMs with temperature set to 1.1 in our experi-352

ments. By using two LLMs with significantly dif-353

fering number of parameters and by including, Vi-354

cuna, an open source LLM, we plan to improve the355

reliability and reproducibility of our results. Max356

response length is set to 25 tokens. The inference357

times for CommonGen, ComVE and DimonGen358

datasets are respectively 5-6, 2-3 and 1-2 hours.359

The cost of running ICD with GPT3.5-turbo are360

ca. $6, $4 and $4 respectively for CommonGen,361

ComVE and DimonGen datasets. On the other362

hand, the costs of fine-tuning on GPT3.5-turbo363

are much higher at $58.8 for CommonGen, $24.7364

for ComVE and $32.0 for DimonGen. Moreover,365

fine-tuning with LoRA (Hu et al., 2022) with rank366

of 8 and alpha of 16 on Vicuna takes ca. 34 hours.367

We use BART-large5 for MoE-based models. We368

use the GPT3.5-turbo to generate sentences for369

2Any diversity and quality metric could be combined for
computing the harmonic mean. We use self-BLEU-4 and
BERTScore due to their reliability shown in preliminary eval-
uations.

3The last layer’s hidden-state of the first token of the se-
quence is further processed by a Linear layer and a Tanh
activation function.

4https://huggingface.co/lmsys/vicuna-13b-v1.5
5https://huggingface.co/facebook/bart-large

the CommonGen train/dev/test sets using the de- 370

fault, diversified and for ICD. For model train- 371

ing, we use the Adam optimiser (Kingma and Ba, 372

2015) with a batch size of 64, a learning rate of 373

3e-5 and a beam size of 5. All of the MoE-based 374

models are trained for 20 epochs and required to 375

generate k = 3 sentences. All experiments, except 376

with GPT3.5-turbo, are conducted on a single RTX 377

A6000 GPU. 378

5 Results and Discussion 379

5.1 Commonsense Generation 380

We compare the commonsense generations made 381

by ICD against those using the default and di- 382

versified prompts. For this purpose, we use 383

GPT3.5-turbo as the LLM and use the same 10 384

few-shot examples in all prompts for ICL. Further 385

templates of the default and diversified prompts 386

used for each task are given in Appendix B. To 387

assess the impact of ICL, we compare against fine- 388

tune method, wherein GPT3.5-turbo is fine-tuned 389

on the entire training set in each dataset. Specif- 390

ically, we use multiple human-written sentences, 391

available in the training data for the three datasets 392

to separately fine-tune the models for each task. It 393

is noteworthy that the fine-tune method uses a sub- 394

stantially larger dataset for training (e.g., 67,389 395

sentences from CommonGen) compared to the 10 396

examples used by the ICL-based approaches. We 397

use self-BLEU-3 as the diversity metric f in Algo- 398

rithm 1 for ICD in this evaluation. The outcomes, 399

presented in Table 1, highlight the diversity and 400

quality metrics of these methods across the Com- 401

monGen, ConVE, and DimonGen datasets. Addi- 402

tionally, a human baseline is introduced to evaluate 403

the diversity of sentences written by humans, where 404

we pair-wise compare the human-written sentences 405

for each input in the instances in the benchmark 406

datasets using diversity metrics. Note that however, 407

the human baseline must not be considered as an 408

upper-bound for diversity because there are only 409

a smaller number of human-written sentences per 410

instance in the benchmark datasets. 411

From Table 1, we see that fine-tune generates 412

sentences that have high semantic and corpus diver- 413

sity, and outperforms the human baseline. How- 414

ever, recall that fine-tune requires a much larger 415

training set and is computationally costly compared 416

to all ICL-based methods. Moreover, we see that 417

ICD can strike a good balance between quality 418

and diversity in the sentences generated. Among 419
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Semantic Diversity ⇓ Corpus Diversity ⇑ Pairwise Diversity ⇓ Quality ⇑ Combined

self-cosSim self-BERTScore Entropy-4 Distinct-4 self-BLEU-3 self-BLEU-4 BLEU-3 BLEU-4 SPICE BERTScore Harmonic ⇑ FBD ⇓

CommonGen

Human 67.3 60.6 10.9 91.0 25.4 17.6 - - - - - -
Fine-tune 64.7 55.9 11.4 91.1 26.9 17.9 41.2 32.1 30.3 64.2 72.1 51.9

default 88.6 85.1 10.6 62.8 70.0 63.9 50.4 40.8 31.0 70.1 47.7 55.6
diversified 72.9 62.3 11.4 86.7 34.9 26.4 37.6 28.8 27.6 61.8 67.2 54.9
ICD 72.4 60.1 11.4 90.3 24.4 16.0 41.8 32.7 28.6 64.9 73.2 50.8

ComVE

Human 62.7 47.0 9.6 96.1 12.4 8.1 - - - - - -
Fine-tune 55.0 34.0 9.9 97.4 7.7 4.8 23.4 16.0 31.1 49.3 65.0 48.8

default 82.2 66.0 10.0 78.5 42.1 35.9 22.8 15.9 34.3 50.4 56.4 55.2
diversified 71.2 48.5 10.2 91.0 18.1 12.8 20.6 13.8 31.2 48.4 62.2 53.5
ICD 67.4 41.9 10.2 91.6 8.3 4.7 21.1 14.2 32.2 49.0 64.7 54.1

DimonGen

Human 56.8 47.0 10.1 85.6 14.7 8.7 - - - - - -
Fine-tune 43.4 33 10.4 98.7 6.8 3.4 17.7 10.7 15.5 42 58.5 51.6

default 75.7 71.3 10 83.2 43.4 37.3 15.9 9.5 16.4 44.5 52.1 68.2
diversified 57.1 46.9 10.5 95.9 11.2 6.5 11.4 6.4 15.2 39.9 55.9 69.0
ICD 56.7 45.7 10.4 96.3 6.5 3.5 13.2 7.6 15.4 41.7 58.2 68.0

Table 1: Diversity and quality scores on CommonGen, ComVE and DimonGen with GPT3.5-turbo LLM. Best
results on each task for each metric are shown in italics, while the best performing ICL results are shown in bold.

Method SCS ⇓ SBS ⇓ SB-3⇓ BLEU-3⇑ SPICE⇑ HM ⇑ FBD ⇓

Fine-tune 59.6 49.9 22.8 35.8 27.6 69.9 52.4

Default 82.2 73.8 52.9 44.6 29.1 60.2 56.2
Diversified 59.1 53.3 23.6 32.6 24.3 68.6 53.2
ICD 59.3 49.8 11.3 34.2 25.5 73.4 51.0

Table 2: GCR on CommonGen using Vicuna-13b. ICD
uses self-BLEU-3. Here, SCS: self-CosSim, SBS: self-
BERTScore, SB-3: self-BLEU3, HM: Harmonic Mean.
Best results for each metric are shown in italics, while
the best performing ICL results are shown in bold.

the ICL-based methods, ICD achieves the best di-420

versity scores on all diversity metrics in all three421

datasets. It also exhibits higher diversity compared422

against the human-written references. Moreover,423

ICD outperforms default and diversified accord-424

ing to the Combined metrics. ICD also achieves a425

Harmonic Mean comparable to that of the fine-tune426

baseline. Although default reports the best qual-427

ity scores, it has low diversity, and is consistently428

outperformed by diversified and ICD on diversity429

metrics. On the other hand, diversified generally430

scores lower on the quality metrics. Compared to431

default and diversified, ICD enhances generation432

diversity while maintaining a satisfactory level of433

quality. Note that fine-tune is not an ICL setting434

(the focus of this paper) and is included only as a435

baseline to demonstrate the level of performance436

that can be achieved by fine-tuning on a much437

larger dataset. Despite this ICD outperforms fine-438

tune on the Pairwise Diversity in three datasets,439

and Combined metrics in the CommonGen dataset.440

As an open source alternative LLM to441

Method SCS ⇓ SBS ⇓ SB-3⇓ BLEU-3⇑ SPICE⇑ HM ⇑ FBD ⇓

self-BLEU-3 72.4 60.1 24.4 41.8 28.6 73.2 50.8
self-CosSim 68.8 62.5 34.5 42.0 28.8 68.9 50.8
self-BERTScore 71.3 56.3 29.2 40.0 28.0 70.3 51.1

Table 3: Comparing the effect of using different di-
versity metrics, f , in Algorithm 1 for ICD. We use
GPT3.5-turbo as the LLM and the best results on Com-
monGen dataset are in bold. Here, SCS: self-CosSim,
SBS: self-BERTScore, SB-3: self-BLEU3, HM: Har-
monic Mean.

GPT3.5-turbo, we repeat this evaluation with 442

Vicuna-13b (Zheng et al., 2023) in Table 2. 443

The same 10 few-shot examples as used with 444

GPT3.5-turbo are used in this experiment for the 445

ICL-based methods. Table 2 reconfirms ICD’s abil- 446

ity to balance both quality and diversity according 447

to the Combined metrics (i.e. Harmonic Mean and 448

FBD) on this dataset. Interestingly, we see that 449

methods that use Vicuna-13b to be more diverse 450

compared to those that use GPT3.5-turbo, while 451

the latter showing better generation quality. 452

In Table 3, we use different diversity metrics as f 453

in Algorithm 1 to study the effect on text generation 454

of ICD. We see that self-BLUE-3 and self-CosSim 455

perform similarly across both diversity and quality 456

metrics. Therefore, any of those diversity metrics 457

can be used with ICD to obtain comparable per- 458

formance. We see that self-BERTScore shows a 459

slightly lower performance, except when measured 460

against itself (i.e. SBS), which indicates some level 461

of over-fitting to the diversity metric being used. 462
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Semantic Diversity ⇓ Corpus Diversity ⇑ Pairwise Diversity ⇓ Quality ⇑ Combined

self-cosSim self-BERTScore Entropy-4 Distinct-4 self-BLEU-3 self-BLEU-4 BLEU-3 BLEU-4 SPICE BERTScore Harmonic Mean ⇑ FBD ⇓

KG-BART - - - - - - 42.1 30.9 32.7 - - -
EKI-BART - - - - - - 46.0 36.1 33.4 - - -
KFCNet-w/o FC - - - - - - 50.2 42.0 35.9 - - -
KFCNet - - - - - - 57.3 51.5 39.1 - - -

MoE 89.3 81.9 9.7 61.6 63.1 56.6 49.0 38.5 33.5 70.6 53.8 61.7
MoKGE 88.7 80.6 9.9 65.2 60.4 53.6 48.8 38.4 33.1 70.3 55.9 60.8

default+MoE 90.8 84.2 9.7 61.2 65.6 58.8 51.8 41.3 34.7 73.1 52.7 61.9
diversified+MoE 85.3 79.9 9.8 63.2 58.3 52.6 51.4 41.4 34.6 71.6 57.0 54.5
ICD+MoE 90.4 82.3 9.8 64.9 58.4 50.5 53.2 43.1 35.4 73.8 59.3 62.5

Table 4: Downstream evaluation of the LLM-generated sentences. Top block methods use human-generated
resources for training, while the ones in the bottom block are trained on LLM-generated sentences. MoE approaches
are shown in the middle block and bottom blocks. BART-large is used as the generator for MoE-based methods.
Best results for each metric is shown in bold, while the best performing MoE for quality is shown in underline.

Figure 3: Human vs. GPT3.5 diversity ratings for ran-
domly sampled sets of sentences generated by ICD. Co-
hen’s κ = 0.409 indicates a moderate agreement.

5.2 Downstream Evaluation463

The experiments presented in § 5.1 show the abil-464

ity of our proposed ICD to generate diverse and465

commonsense bearing sentences. Therefore, an466

important question with practical implications is467

whether we can use the sentences generated by ICD468

as additional training data to improve both diversity469

and quality of previously proposed models on the470

GCR task, which could be seen as a downstream471

(extrinsic) evaluation.472

For this purpose we select the MoE (Shen et al.,473

2019), which diversifies the generation by select-474

ing outputs from a mixture of experts. Each expert475

is assigned a randomly generated sequence of to-476

kens, which is used as a prefix for all inputs sent477

to that expert. For each input, an expert is selected478

according to the value of a latent variable, which479

is trained using the hard-EM algorithm. We fol-480

low Liu et al. (2023) and train three experts that481

retrieve sentences from the collection of sentences482

generated by ICD for concept sets in the Common-483

Gen train split (210846 sentences in total). We use484

BART-large (Lewis et al., 2020) as the base model,485

which has shown to produce high quality common- 486

sense generations (Zhang et al., 2023) as the gen- 487

erator for all experts (see Appendix A for further 488

details). We denote this method by ICD+MoE. 489

As baselines for comparisons, we repeat the 490

above process using the sentences generated by 491

default and diversified, which we denote re- 492

spectively as default+MoE and diversified+MoE 493

in Table 4. Moreover, we compare the perfor- 494

mance against two previously proposed MoE mod- 495

els: MoE (Shen et al., 2019) and MoKGE (Yu 496

et al., 2022). MoE relies solely on the base model, 497

whereas MoKGE requires each expert to use dif- 498

ferent sets of concepts from the ConceptNet (Speer 499

et al., 2017) knowledge graph (KG). Because Yu 500

et al. (2022) do not evaluate their MoKGE method 501

on CommonGen, we ran their original implementa- 502

tion6 on CommonGen and report results in Table 4. 503

All previously proposed GCR methods are exclu- 504

sively trained using human-created data (e.g. sen- 505

tences written by human and/or manually compiled 506

KGs such as ConceptNet), whereas the methods 507

described thus far in this section are trained on 508

sentences generated by an LLM (GPT3.5-turbo). 509

Therefore, to evaluate the feasibility of using LLM- 510

generated sentences for training GCR models, we 511

include the following previously proposed GCR 512

models that are trained using a combination of cor- 513

pora and KGs: KG-BART (Liu et al., 2021),EKI- 514

BART (Fan et al., 2020) and KFCNet (Li et al., 515

2021). For KFCNet, we present its two results – 516

KFCNet w/o FC, which relies only on sentences 517

including the input concepts, without further pro- 518

cessing, and KFCNet, which additionally ranks 519

candidates and adds contrastive modules for the 520

encoder and the decoder (Li et al., 2021). However, 521

note that those methods do not consider diversifica- 522

6https://github.com/DM2-ND/MoKGE
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Figure 4: Sentences generated by default prompt and ICD against those by humans on CommonGen and ComVE
test instances. ICD generates more diverse and high quality sentences than default.

tion, and do not report performance using diversity523

metrics. Therefore, we report only their published524

results for generation quality in Table 4.525

From Table 4 we see that diversified+MoE al-526

ways outperforms the original MoE in all diver-527

sity metrics, which shows that sentences generated528

from LLMs can be used to diversify MoE-based529

GCR. ICD+MoE closely matches the performance530

of diversified+MoE on diversity metrics, while531

consistently outperforming both diversified+MoE532

and default+MoE on quality metrics. In partic-533

ular, the quality metrics reported by ICD+MoE534

(underlined in Table 4) are competitive against535

those obtained by the models that are trained on536

human-compiled resources (in the top block), ex-537

cept against KFCNet. This finding hints at potential538

improvement gains for GCR by using hybrid train-539

ing resources that combine both human-compiled540

and LLM-generated data, which we highlight as an541

interesting future research direction.542

5.3 Diversity-Awareness of LLMs543

Given that we use LLMs to produce diverse gener-544

ations via ICL, it remains an open and interesting545

question whether an LLM would agree with hu-546

mans on the diversity of a given set of sentences. To547

answer this question, we use randomly selected 210548

sentences (35 sets, each containing 6 sentences)549

generated by ICD (using self-BLEU-3 as the di-550

versity metric) for the input concept sets in the551

CommonGen dataset. We instruct GPT3.5-turbo552

to rate the diversity of a given set of sentences553

according to five diversity ratings 1-5 with 1 be-554

ing highly similar, while 5 being highly diverse.7555

We provide the same instruction as the annotation556

guidelines for eight human-annotators, who are557

7Detailed prompt templates are shown in Appendix B.

graduate students in NLP. To reduce the subjec- 558

tive variability in human judgements, we average 559

and then normalise the ratings following the Likert 560

scale. 561

In Figure 3, we plot the GPT-assigned ratings 562

against those by humans. We further split the rat- 563

ings into high vs. low diversity ratings depending 564

on whether the rating is greater or lesser than 3. The 565

majority of the data points are distributed along the 566

diagonal quadrants and a Cohen’s Kappa of 0.409 567

indicating a moderate level of agreement between 568

GPT and human ratings for diversity. 569

The generated sentences using the de- 570

fault prompt, ICD and the human references in 571

CommonGen and ComVE datasets for a single test 572

instance are shown in Figure 4. From Figure 4 573

we see that the sentences generated using the 574

default prompt often results in significant token 575

overlap, thereby lowering the diversity. On the 576

other hand, ICD generates both lexically and 577

semantically diverse sentences, covering the the 578

diverse viewpoints in the human references. 579

6 Conclusion 580

We proposed, ICD, an ICL-based method for 581

achieving the optimal balance between diversity 582

and quality in text generation via LLMs. Our ex- 583

periments, conducted on three GCR tasks, demon- 584

strate that ICD significantly improves the diver- 585

sity without substantially compromising the quality. 586

Furthermore, we found that by training on the sen- 587

tences generated by ICD, we can improve diversity 588

in previously proposed GCR methods. 589

7 Limitations 590

This study primarily focuses on the generation of 591

English sentences using pre-trained LLMs, a limi- 592
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tation shaped by the datasets we employed. Specif-593

ically, we used the ComVE (Wang et al., 2020),594

CommonGen (Lin et al., 2020) and DimonGen (Liu595

et al., 2023) datasets, which are well-regarded for596

evaluating diversified commonsense reasoning in597

English. Therefore, our evaluation of the gener-598

ation quality was limited to English, which is a599

morphologically limited language. Future research600

could expand this scope to include multilingual pre-601

trained models, thereby encompassing a broader602

linguistic spectrum.603

Our approach is primarily geared towards opti-604

mizing the trade-off between diversity and quality605

in text generation. Consequently, we maintained606

consistent default instructions across all experi-607

ments, adopting the standard commonsense genera-608

tion prompts used in Li et al. (2023) as our default609

instructions.610

We conducted our experiments using both a611

closed model (i.e. GPT3.5-turbo) as well as an612

open-source one (i.e. Vicuna-13b-v1.5) to pro-613

mote the reproducibility of our results, which are re-614

ported using multiple public available benchmarks.615

However, there exist many other LLMs with vary-616

ing numbers of parameters and trained on different617

corpora. Therefore, we consider it is important to618

evaluate our proposed method on a broad range619

of LLMs to verify the generalisability of our pro-620

posed method. However, conducting such a broad621

analysis can be computationally costly and expen-622

sive. For example, although GPT-4 is known to623

have superior text generation capabilities, it incurs624

substantially greater costs (being 30 times more625

expensive than GPT3.5-turbo at the current pric-626

ing). Nevertheless, ICD is adaptable and could be627

extended to other LLMs.628

8 Ethical Considerations629

In this work, we did not create or release any man-630

ually annotated data. Our work is based on the631

publicly available datasets, CommonGen, ComVE,632

and DimonGen. To the best of our knowledge, no633

ethical issues have been reported for those datasets.634

Therefore, we do not foresee any data-related ethi-635

cal issues arising from our work.636

However, LLMs are known to generate re-637

sponses that may reflect societal biases and po-638

tentially harmful content. We have not veri-639

fied whether the GPT3.5-turbo and Vicuna-13b640

LLMs that we use in our experiments have similar641

problems. Therefore, it is important to test on exist-642

ing benchmarks for social biases and harmful gen- 643

erations before the proposed method is deployed 644

to diversify existing GCR methods used by human 645

users. 646

To elicit human judgements of diversity for the 647

sentences generated by ICD, we use annotators 648

who are familiar working with LLMs. It is possible 649

that their subjective (and possibly biased) view- 650

points might have influenced the ratings provided. 651

Therefore, will be important to conduct the evalua- 652

tion involving a group of annotators with different 653

backgrounds to validate the findings reported in 654

this analysis. 655
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Supplementary Appendix 876

A Mixture of Experts 877

Given an input x, its corresponding LLM-generated 878

sentences are divided into three random subsets. 879

For each subset Gi = {gi1, ..., gik}, alongside the 880

input x, we concatenate their token sequences with 881

a separate latent variable zi, resulting in the final 882

input xfi . The zi is a randomly initialised sequence 883

of tokens. 884

xfi = zi[CLS]x[SEP ]gi1[SEP ]...gik (1) 885

We train the model using the hard Expectation- 886

Maximization (EM) approach, where during the 887

E-step, for each xfi and its corresponding target 888

ytargeti , we identify the input that yields the highest 889

probability as the best training example, with θ 890

representing the generator model parameters: 891

The model is trained using hard-EM by assign- 892

ing full responsibility to the expert with the largest 893

joint probability. In the E-step, for each input xfini 894

and target ytgti , choose the best input with the high- 895

est probability, to construct the training examples, 896

where θ is the model’s parameters. 897

ytgti = argmax
yj

p(yj |xfi ; θ) (2) 898

Subsequently, in the M-step, we use these selected 899

training examples to fine-tune the generator models. 900

During inference, we input all diversified, context- 901

aware inputs into the generator model to yield a 902

range of diverse outputs. 903

B LLM Prompt Templates 904

Figure 5 shows the templates that are used for the 905

two GCR tasks: CommonGen and ConVE. The 906

default prompt is adapted from Li et al. (2023) 907

and are task-specific. On the other hand, the di- 908

versified prompt modifies the default prompt by 909

appending a task-independent instruction that first 910

11



checks whether the diversity of the sentences gener-911

ated in Step 1 is low, and if presents the generated912

sentences to the LLM and re-prompts it to generate913

more diverse set of sentences.914

We use GPT3.5-turbo to predict the diversity of915

a given set of sentences using the prompt shown in916

Figure 6. This prompt uses five diversity categories917

(i.e. very similar, somewhat similar, neutral, some-918

what diverse, and highly diverse) with increasing919

diversity with their definitions. Next, the set of920

sentences to be evaluated for their diversity is pre-921

sented. Finally, the expected output format of the922

predictions is described at the end of the prompt.923

As recommended by Chen et al. (2023), we do924

not require the LLM to provide reasons for its pre-925

dictions because it sometimes forces the model to926

focus on the reason generation than the prediction.927

After the LLM’s evaluation, the classification928

are mapped to values from 1 to 5 where 1 being929

highly similar to 5 being highly diverse. For each930

sentences set, we request the LLM to perform the931

evaluation three times and take the average score.932

C Human Evaluation933

As human-annotators, we recruited eight gradu-934

ate students from the department of computer sci-935

ence who specialise in NLP and fluent speakers936

in English. We provided the human annotators937

with the same set of instructions as we provided to938

the LLMs. The annotators were allowed deviate939

from the provided instructions when handling edge940

cases. Apart from the instruction in Figure 6, we941

also instruct the human annotators to focus on the942

diversity, and not so much on their commonsense943

quality, which we evaluate separately using semi-944

automatic metrics by comparing against human-945

written reference sentences in the evaluation bench-946

marks. Moreover, we informed the annotators that947

their evaluations would be used in a comparative948

analysis with the scores generated by an LLM.949

D Addional Generation Examples950

We show additional sentences generated by our951

proposed methods for the CommonGen, ComVE952

and DimonGen datasets in the Table 5.953

12



CommonGen

Keyword branch ground climb tree jump

Sentences The squirrel leaped from one branch to another, skillfully maneuvering its way up the tree without touching the ground.
A squirrel climbs up a tree branch, jumps onto the ground, and starts to climb another tree.
The cat tried to climb the tree, but it fell off the branch and landed on the ground.
The monkey enjoyed swinging from branch to branch and would occasionally jump down to the ground.
A squirrel jumps from a tree branch to the ground and climbs up another tree.
A monkey climbs up a tree branch and jumps down to the ground.

Keyword sit front table food laugh

Sentences A couple sits at a table in front, enjoying their meal and sharing laughter.
A group of friends sit in front of a table filled with delicious food, laughing and enjoying each other’s company.
Friends gather around a table, sitting in the front, while they eat and share laughter.
People sit in front of a table, laughing while enjoying their food.
Colleagues sit together at a table, eating and laughing as they enjoy their meal.
Friends sit in front of a table, enjoying good food and laughing together.

ComVE

Statement She parachuted into the grocery store from a plane.

Explanation Parachuting is not a typical mode of transportation for grocery shopping.
Grocery stores are not designed to accommodate parachute landings.
It is highly unlikely for someone to parachute into a grocery store from a plane.

Statement You can drive after drinking.

Explanation Driving under the influence of alcohol is a serious offence and can result in accidents or harm to oneself or others.
You should never drink and drive as it impairs your judgment and reaction time.
It is illegal and extremely dangerous to drive after consuming alcohol.

DimonGen

Keyword cloud mountain

Sentences As we climbed the mountain, the clouds grew thicker, obscuring our view.
The mountain stood tall and majestic, with clouds swirling around its peaks.
The mountain peak pierced through the clouds, reaching towards the sky.

Keyword race victory

Sentences The underdog pulled off an unexpected victory in the race, leaving the favorite trailing behind.
With a burst of speed and determination, the runner sprinted towards the finish line, securing a triumphant victory.
After a fierce race, the champion celebrated their victory with a crowd cheering and fireworks lighting up the sky.

Table 5: More examples produced by our proposed ICD method on the CommonGen, ComVE and DimonGen
datasets
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(a) Default instructions

(b) Diversified instructions

Figure 5: The templates used by the default and the diversified prompt instructions for the CommonGen/DimonGen
(shown on the left, (a)) and ComVE (shown on the right, (b)) tasks. Few-shot examples are included in each prompt
where [SRC] denotes the set of input concepts and [TGT] the corresponding sentences in CommonGen. For a given
set of [INPUT] concepts, the LLM is then required to generate sentences at the slot [OUTPUT].
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Figure 6: The instructions provided to GPT3.5-turbo for predicting the diversity of a given set of sentences.
Diversity is predicted according to five categories: very similar, somewhat similar, neutral, somewhat diverse, and
highly diverse. Definitions of the categories are included within the instructions. Next, the set of sentences to be
evaluated for their diversity is presented. Finally, the expected output format of the predictions is described at the
end of the prompt. As recommended by Chen et al. (2023), we do not require the LLM to provide reasons for its
predictions because it sometimes forces the model to focus on the reason generation than the prediction.
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