
gRNAde: Geometric Deep Learning for
3D RNA inverse design

Anonymous Author(s)
Affiliation
Address
email

Abstract

Computational RNA design tasks are often posed as inverse problems, where1

sequences are designed based on adopting a single desired secondary structure2

without considering 3D geometry and conformational diversity. We introduce3

gRNAde, a geometric RNA design pipeline operating on 3D RNA backbones to4

design sequences that explicitly account for structure and dynamics. Under the5

hood, gRNAde is a multi-state Graph Neural Network that generates candidate6

RNA sequences conditioned on one or more 3D backbone structures where the7

identities of the bases are unknown. On a single-state fixed backbone re-design8

benchmark of 14 RNA structures from the PDB identified by Das et al. [2010],9

gRNAde obtains higher native sequence recovery rates (56% on average) compared10

to Rosetta (45% on average), taking under a second to produce designs compared11

to the reported hours for Rosetta. We further demonstrate the utility of gRNAde on12

a new benchmark of multi-state design for structurally flexible RNAs, as well as13

zero-shot ranking of mutational fitness landscapes in a retrospective analysis of a14

recent RNA polymerase ribozyme structure. Open source code and tutorials are15

available at: anonymous.4open.science/r/geometric-rna-design16

1 Introduction17

Why RNA design? Historical efforts in computational drug discovery have focussed on designing18

small molecule or protein-based medicines that either treat symptoms or counter the end stages19

of disease processes. In recent years, there is a growing interest in designing new RNA-based20

therapeutics that intervene earlier in disease processes to cut off disease-causing information flow21

in the cell [Damase et al., 2021, Zhu et al., 2022]. Notable examples of RNA molecules at the22

forefront of biotechnology today include mRNA vaccines [Metkar et al., 2024] and CRISPR-based23

genomic medicine [Doudna and Charpentier, 2014]. Of particular interest for structure-based design24

are ribozymes and riboswitches in the untranslated regions of mRNAs [Mandal and Breaker, 2004,25

Leppek et al., 2018]. In addition to coding for proteins (such as the spike protein in the Covid vaccine),26

naturally occurring mRNAs contain riboswitches that are responsible for cell-state dependent protein27

expression of the mRNA. Riboswitches act by ‘switching’ their 3D structure from an unbound28

conformation to a bound one in the presence of specific metabolites or small molecules. Rational29

design of riboswitches will enable translation to be dependent on the presence or absence of partner30

molecules, essentially acting as ‘on-off’ switches for highly targeted mRNA therapies in the future31

[Felletti et al., 2016, Mustafina et al., 2019, Mohsen et al., 2023].32

Challenges of RNA modelling. Despite the promises of RNA therapeutics, proteins have instead33

been the primary focus in the 3D biomolecular modelling community. Availability of a large number34

of protein structures from the PDB combined with advances in deep learning for structured data35

[Bronstein et al., 2021, Duval et al., 2023] have revolutionized protein 3D structure prediction [Jumper36
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Figure 1: The gRNAde pipeline for 3D RNA inverse design. gRNAde is a generative model for
RNA sequence design conditioned on backbone 3D structure(s). gRNAde processes one or more RNA
backbone graphs (a conformational ensemble) via a multi-state GNN encoder which is equivariant to
3D roto-translation of coordinates as well as conformer order, followed by conformer order-invariant
pooling and autoregressive sequence decoding.

et al., 2021] and rational design [Dauparas et al., 2022, Watson et al., 2023]. Applications of deep37

learning for computational RNA design are underexplored compared to proteins due to paucity of38

3D structural data [Schneider et al., 2023]. Most tools for RNA design primarily focus on secondary39

structure without considering 3D geometry [Churkin et al., 2018] and use non-learnt algorithms for40

aligning 3D RNA fragments [Han et al., 2017, Yesselman et al., 2019], which can be restrictive due41

to the hand-crafted nature of the heuristics used.42

In addition to limited 3D data for training deep learning models, the key technical challenge is that43

RNA is more dynamic than proteins. The same RNA can adopt multiple distinct conformational44

states to create and regulate complex biological functions [Ganser et al., 2019, Hoetzel and Suess,45

2022, Ken et al., 2023]. Computational RNA design pipelines must account for both the 3D geometric46

structure and conformational flexibility of RNA to engineer new biological functions.47

Our contributions. This paper introduces gRNAde, a geometric deep learning-based pipeline for48

RNA inverse design conditioned on 3D structure, analogous to ProteinMPNN for proteins [Dauparas49

et al., 2022]. As illustrated in Figure 1, gRNAde generates candidate RNA sequences conditioned50

on one or more backbone 3D conformations, enabling both single- and multi-state fixed-backbone51

sequence design.52

We demonstrate the utility of gRNAde for the following design scenarios:53

• Improved performance and speed over Rosetta. We compare gRNAde to Rosetta [Leman54

et al., 2020], the state-of-the-art physically based tool for 3D RNA inverse design, for single-55

state fixed backbone design of 14 RNA structures of interest from the PDB identified by Das56

et al. [2010]. We obtain higher native sequence recovery rates with gRNAde (56% on average)57

compared to Rosetta (45% on average). Additionally, gRNAde is significantly faster than Rosetta58

for inference; e.g. sampling 100+ designs in 1 second for an RNA of 60 nucleotides on an A10059

GPU, compared to the reported hours for Rosetta.60

• Enables multi-state RNA design, which was previously not possible with Rosetta. gRNAde61

with multi-state GNNs improves sequence recovery over an equivalent single-state model on62

a benchmark of structurally flexible RNAs, especially for surface nucleotides which undergo63

positional or secondary structural changes.64

• Zero-shot learning of RNA fitness landscape. In a retrospective analysis of mutational fitness65

landscape data for an RNA polymerase ribozyme [McRae et al., 2024], we show how gRNAde’s66

perplexity, the likelihood of a sequence folding into a backbone structure, can be used to67

rank mutants based on fitness in a zero-shot/unsupervised manner and outperforms random68

mutagenesis for improving fitness over the wild type in low throughput scenarios.69
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2 The gRNAde pipeline70

2.1 The 3D RNA inverse folding problem71

Figure 1 illustrates the RNA inverse folding problem: the task of designing new RNA sequences72

conditioned on a structural backbone. Given the 3D coordinates of a backbone structure, machine73

learning models must generate sequences that are likely to fold into that shape. The underlying74

assumption behind inverse folding (and rational biomolecule design) is that structure determines75

function [Huang et al., 2016]. To the best of our knowledge, gRNAde is the first explicitly multi-state76

inverse folding pipeline, allowing users to design sequences for backbone conformational ensembles77

(a set of 3D backbone structures) as opposed to a single structure.78

2.2 RNA conformational ensembles as geometric multi-graphs79

Featurization. The input to gRNAde is an RNA to be re-designed. For instance, this could be a80

set of PDB files with 3D backbone structures for the given RNA (a conformational ensemble) and81

the corresponding sequence of n nucleotides. As shown in Appendix Figure 11, gRNAde builds a82

geometric graph representation for each input structure:83

1. We start with a 3-bead coarse-grained representation of the RNA backbone, retaining the84

coordinates for P, C4’, N1 (pyrimidine) or N9 (purine) for each nucleotide [Dawson et al., 2016].85

This ‘pseudotorsional’ representation describes RNA backbones completely in most cases while86

reducing the size of the torsional space to prevent overfitting [Wadley et al., 2007].87

2. Each nucleotide i is assigned a node in the geometric graph with the 3D coordinate x⃗i ∈ R388

corresponding to the centroid of the 3 bead atoms. Random Gaussian noise with standard89

deviation 0.1Å is added to coordinates during training to prevent overfitting on crystallisation90

artifacts, following Dauparas et al. [2022]. Each node is connected by edges to its 32 nearest91

neighbours as measured by the pairwise distance in 3D space, ∥x⃗i − x⃗j∥2.92

3. Nodes are initialized with geometric features analogous to the featurization used in protein93

inverse folding [Ingraham et al., 2019, Jing et al., 2020]: (a) forward and reverse unit vectors94

along the backbone from the 5’ end to the 3’ end, (x⃗i+1 − x⃗i and x⃗i − x⃗i−1); and (b) unit95

vectors, distances, angles, and torsions from each C4’ to the corresponding P and N1/N9.96

4. Edge features for each edge from node j to i are initialized as: (a) the unit vector from the97

source to destination node, x⃗j − x⃗i; (b) the distance in 3D space, ∥x⃗j − x⃗i∥2, encoded by 3298

radial basis functions; and (c) the distance along the backbone, j − i, encoded by 32 sinusoidal99

positional encodings.100

Multi-graph representation. As described in the previous section, given a set of k (conformer)101

structures in the input conformational ensemble, each RNA backbone is featurized as a separate102

geometric graph G(k) = (A(k),S(k), V⃗ (k)) with the scalar features S(k) ∈ Rn×f , vector features103

V⃗ (k) ∈ Rn×f ′×3, and A(k), an n× n adjacency matrix. For clear presentation and without loss of104

generality, we omit edge features and use f , f ′ to denote scalar/vector feature channels.105

The input to gRNAde is thus a set of geometric graphs {G(1), . . . ,G(k)} which is merged into what we106

term a ‘multi-graph’ representation of the conformational ensemble, M = (A,S, V⃗ ), by stacking the107

set of scalar features {S(1), . . . ,S(k)} into one tensor S ∈ Rn×k×f along a new axis for the set size108

k. Similarly, the set of vector features {V⃗ (1), . . . , V⃗ (k)} is stacked into one tensor V⃗ ∈ Rn×k×f ′×3.109

Lastly, the set of adjacency matrices {A(1), . . . ,A(k)} are merged via a union ∪ into one single joint110

adjacency matrix A.111

2.3 Multi-state GNN for representation learning on conformational ensembles112

The gRNAde model, illustrated in Appendix Figure 12, processes one or more RNA backbone graphs113

via a multi-state GNN encoder which is equivariant to 3D roto-translation of coordinates as well as to114

the ordering of conformers, followed by conformer order-invariant pooling and sequence decoding.115

We describe each component in the following sections.116

Multi-state GNN encoder. When representing conformational ensembles as a multi-graph, each117

node feature tensor contains three axes: (#nodes, #conformations, feature channels). We perform118
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message passing on the multi-graph adjacency to independently process each conformer, while119

maintaining permutation equivariance of the updated feature tensors along both the first (#nodes)120

and second (#conformations) axes. This works by operating on only the feature channels axis and121

generalising the PyTorch Geometric [Fey and Lenssen, 2019] message passing class to account for122

the extra conformations axis; see Appendix Figure 14 and the pseudocode for details.123

We use multiple rotation-equivariant GVP-GNN [Jing et al., 2020] layers to update scalar features124

si ∈ Rk×f and vector features v⃗i ∈ Rk×f ′×3 for each node i:125

mi, m⃗i :=
∑
j∈Ni

MSG
(
(si, v⃗i) , (sj , v⃗j) , eij

)
, (1)

s′i, v⃗
′
i := UPD

(
(si, v⃗i) , (mi, m⃗i)

)
, (2)

where MSG, UPD are Geometric Vector Perceptrons, a generalization of MLPs to take tuples of126

scalar and vector features as input and apply O(3)-equivariant non-linear updates. The overall GNN127

encoder is SO(3)-equivariant due to the use of reflection-sensitive input features (dihedral angles)128

combined with O(3)-equivariant GVP-GNN layers.129

Our multi-state GNN encoder is easy to implement in any message passing framework and can be130

used as a plug-and-play extension for any geometric GNN pipeline to incorporate the multi-state131

inductive bias. It serves as an elegant alternative to batching all the conformations, which we found132

required major alterations to message passing and pooling depending on downstream tasks.133

Conformation order-invariant pooling. The final encoder representations in gRNAde account for134

multi-state information while being invariant to the permutation of the conformational ensemble. To135

achieve this, we perform a Deep Set pooling [Zaheer et al., 2017] over the conformations axis after the136

final encoder layer to reduce S ∈ Rn×k×f and V⃗ ∈ Rn×k×f ′×3 to S′ ∈ Rn×f and V⃗ ′ ∈ Rn×f ′×3:137

S′, V⃗ ′ :=
1

k

k∑
i=1

(
S[: , i], V⃗ [: , i]

)
. (3)

A simple sum or average pooling does not introduce any new learnable parameters to the pipeline and138

is flexible to handle a variable number of conformations, enabling both single-state and multi-state139

design with the same model.140

Sequence decoding and loss function. We feed the final encoder representations after pooling,141

S′, V⃗ ′, to autoregressive GVP-GNN decoder layers to predict the probability of the four possible base142

identities (A, G, C, U) for each node/nucleotide. Decoding proceeds according to the RNA sequence143

order from the 5’ end to 3’ end. gRNAde is trained in a self-supervised manner by minimising a144

cross-entropy loss (with label smoothing value of 0.05) between the predicted probability distribution145

and the ground truth identity for each base. During training, we use autoregressive teacher forcing146

[Williams and Zipser, 1989] where the ground truth base identity is fed as input to the decoder at147

each step, encouraging the model to stay close to the ground-truth sequence.148

Sampling. When using gRNAde for inference and designing new sequences, we iteratively sample149

the base identity for a given nucleotide from the predicted conditional probability distribution,150

given the partially designed sequence up until that nucleotide/decoding step. We can modulate the151

smoothness or sharpness of the probability distribution by using a temperature parameter.152

2.4 Evaluation metrics for designed sequences153

In principle, inverse folding models can be sampled from to obtain a large number of designed154

sequences for a given backbone structure. Thus, in-silico metrics to determine which sequences are155

useful and which ones to prioritise in wet lab experiments are a critical part of the overall pipeline. We156

currently use the following metrics to evaluate gRNAde’s designs, visualised in Appendix Figure 13:157

• Native sequence recovery, which is the average percentage of native (ground truth) nucleotides158

correctly recovered in the sampled sequences. Recovery is the most widely used metric for159

biomolecule inverse design [Dauparas et al., 2022] but can be misleading in the case of RNAs160

where alternative nucleotide base pairings can form the same structural patterns.161

• Secondary structure self-consistency score, where we ‘forward fold’ the sampled sequences162

using a secondary structure prediction tool (we used EternaFold [Wayment-Steele et al., 2022])163
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and measure the average Matthew’s Correlation Coefficient (MCC) to the groundtruth secondary164

structure, represented as a binary adjacency matrix. MCC values range between -1 and +1,165

where +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse166

prediction. This measures how well the designs recover base pairing patterns.167

• Tertiary structure self-consistency scores, where we ‘forward fold’ the sampled sequences168

using a 3D structure prediction tool (we used RhoFold [Shen et al., 2022]) and compute the169

average RMSD, TM-score and GDT_TS to the groundtruth C4’ coordinates to measure how170

well the designs recover global structural similarity and 3D conformations.171

• Perplexity, which can be thought of as the average number of bases that the model is selecting172

from for each nucleotide. Formally, perplexity is the average exponential of the negative173

log-likelihood of the sampled sequences. A perfect model would have perplexity of 1, while174

a perplexity of 4 means that the model is making random predictions (the model outputs a175

uniform probability over 4 possible bases). Perplexity does not require a ground truth structure176

to calculate, and can also be used for ranking sequences as it is the model’s estimate of the177

compatibility of a sequence with the input backbone structure.178

Significance and limitations. Self-consistency metrics, termed ‘designability’ (eg. scRMSD≤2Å),179

as well as perplexity have been found to correlate with experimental success in protein design180

[Watson et al., 2023]. While precise designability thresholds are yet to be established for RNA,181

pairs of structures with TM-score≥0.45 or GDT_TS≥0.5 are known to correspond to roughly the182

same fold [Zhang et al., 2022]. Another major limitation for in-silico evaluation of 3D RNA design183

compared to proteins is the relatively worse state of structure prediction tools [Schneider et al., 2023].184

3 Experimental Setup185

3D RNA structure dataset. We create a machine learning-ready dataset for RNA inverse design186

using RNASolo [Adamczyk et al., 2022], a novel repository of RNA 3D structures extracted from187

solo RNAs, protein-RNA complexes, and DNA-RNA hybrids in the PDB. We used structures at188

resolution ≤4.0Å resulting in 4,223 unique RNA sequences for which a total of 12,011 structures189

are available (RNASolo date cutoff: 31 October 2023). Dataset statistics are available in Appendix190

Figure 15, illustrating the diversity of our dataset in terms of sequence length, number of structures191

per sequence, as well as structural variations among conformations per sequence.192

Structural clustering. In order to ensure that we evaluate gRNAde’s generalization ability to novel193

RNAs, we cluster the 4,223 unique RNAs into groups based on structural similarity. We use US-align194

[Zhang et al., 2022] with a similarity threshold of TM-score >0.45 for clustering, and ensure that195

we train, validate and test gRNAde on structurally dissimilar clusters (see next paragraph). We also196

provide utilities for clustering based on sequence homology using CD-HIT [Fu et al., 2012], which197

leads to splits containing biologically dissimilar clusters of RNAs.198

Splits to evaluate generalization. After clustering, we split the RNAs into training (∼4000 samples),199

validation and test sets (100 samples each) to evaluate two different design scenarios:200

1. Single-state split. This split is used to fairly evaluate gRNAde for single-state design on a201

set of RNA structures of interest from the PDB identified by Das et al. [2010], which mainly202

includes riboswitches, aptamers, and ribozymes. We identify the structural clusters belonging to203

the RNAs identified in Das et al. [2010] and add all the RNAs in these clusters to the test set204

(100 samples). The remaining clusters are randomly added to the training and validation splits.205

2. Multi-state split. This split is used to test gRNAde’s ability to design RNA with multiple206

distinct conformational states. We order the structural clusters based on median intra-sequence207

RMSD among available structures within the cluster1. The top 100 samples from clusters with208

the highest median intra-sequence RMSD are added to the test set. The next 100 samples are209

added to the validation set and all remaining samples are used for training.210

Validation and test samples come from clusters with at most 5 unique sequences, in order to ensure211

diversity. Any samples that were not assigned clusters are directly appended to the training set. We212

1For each RNA sequence, we compute the pairwise C4’ RMSD among all available structures. We then
compute the median RMSD across all sequences within each structural cluster.
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Figure 2: gRNAde compared to Rosetta for single-state design. (a) We benchmark native sequence
recovery of gRNAde, Rosetta, FARNA and ViennaRNA on 14 RNA structures of interest identified by
Das et al. [2010]. gRNAde obtains higher native sequence recovery rates (56% on average) compared
to Rosetta (45%). (b) Sequence recovery per sample for Rosetta and gRNAde, shaded by gRNAde’s
perplexity for each sample. gRNAde’s perplexity is correlated with native sequence recovery for
designed sequences. Full results are available in Appendix Table 2.

also directly add very large RNAs (> 1000 nts) to the training set, as it is unlikely that we want to213

design very large RNAs. We exclude very short RNA strands (< 10 nts).214

Evaluation metrics. For a given data split, we evaluate models on the held-out test set by designing215

16 sequences (sampled at temperature 0.1) for each test data point and computing averages for each of216

the metrics described in Section 2.4: native sequence recovery, structural self-consistency scores and217

perplexity. We employ early stopping by reporting test set performance for the model checkpoint for218

the epoch with the best validation set recovery. Standard deviations are reported across 3 consistent219

random seeds for all models.220

Hyperparameters. All models use 4 encoder and 4 decoder GVP-GNN layers, with 128 scalar/16221

vector node features, 64 scalar/4 vector edge features, and drop out probability 0.5, resulting in222

2,147,944 trainable parameters. All models are trained for a maximum of 50 epochs using the Adam223

optimiser with an initial learning rate of 0.0001, which is reduced by a factor 0.9 when validation224

performance plateaus with patience of 5 epochs. Ablation studies of key modelling decisions are225

available in Appendix Table 1.226

4 Results227

4.1 Single-state RNA design benchmark228

We set out to compare gRNAde to Rosetta, a state-of-the-art physically based toolkit for biomolecular229

modelling and design [Leman et al., 2020]. We reproduced the benchmark setup from Das et al.230

[2010] for Rosetta’s fixed backbone RNA sequence design workflow on 14 RNA structures of231

interest from the PDB, which mainly includes riboswitches, aptamers, and ribozymes (full listing in232

Table 2). We trained gRNAde on the single-state split detailed in Section 3, explicitly excluding the233

14 RNAs as well as any structurally similar RNAs in order to ensure that we fairly evaluate gRNAde’s234

generalization abilities vs. Rosetta.235

gRNAde improves sequence recovery over Rosetta. In Figure 2, we compare gRNAde’s native236

sequence recovery for single-state design with numbers taken from Das et al. [2010] for Rosetta,237

FARNA (a predecessor of Rosetta), and ViennaRNA (the most popular 2D inverse folding method).238

gRNAde has higher recovery of 56% on average compared to 45% for Rosetta, 32% for FARNA, and239

27% for ViennaRNA. See Appendix Table 2 for per-RNA results.240

gRNAde is significantly faster than Rosetta. In addition to superior sequence recovery, gRNAde241

is significantly faster than Rosetta for high-throughout design pipelines. Training gRNAde from242

scratch takes roughly 2–6 hours on a single A100 GPU, depending on the exact hyperparameters.243

Once trained, gRNAde can design hundreds of sequences for backbones with hundreds of nucleotides244
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Design 1:
perplexity: 1.310
recovery: 0.591 (27 edits)
sc2D = 0.923, scRMSD = 1.384
scTM = 0.831, scGDT = 0.830

Design 2:
perplexity: 1.382
recovery: 0.409 (37 edits)
sc2D = 0.922, scRMSD = 2.125
scTM = 0.687, scGDT = 0.678

Design 3:
perplexity: 1.425
recovery: 0.515 (30 edits)
sc2D = 0.923, scRMSD = 3.213
scTM = 0.512, scGDT = 0.526

Figure 3: Cherry-picked designs for Guanine riboswitch aptamer (PDB: 4FE5). We show the
RhoFold-predicted 3D structure in colour overlaid on the groundtruth structure in grey. Designs
recover the base pairing patterns and tertiary structure of the RNA, as measured by high self-
consistency score. gRNAde’s perplexity is correlated well with 3D self-consistency scores and can
be useful for ranking designs. More design visualisations are available in Appendix C.

in ∼1 second with GPU acceleration. On the other hand, Rosetta takes order of hours to produce245

a single design due to performing expensive Monte Carlo optimisations2. Deep learning methods246

like gRNAde are arguably easier to use since no expert customization is required and setup is easier247

compared to Rosetta [Dauparas et al., 2022], potentially making RNA design more broadly accessible.248

gRNAde’s perplexity correlates with sequence and structural recovery. In Figure 2b, we plot249

native sequence recovery per sample for Rosetta vs. gRNAde, shaded by gRNAde’s average perplexity250

for each sample. Perplexity is an indicator of the model’s confidence in its own prediction (lower251

perplexity implies higher confidence) and appears to be correlated with native sequence recovery.252

Additionally, visualisations of gRNAde’s designs for a riboswitch in Figure 3 show that perplexity253

is also correlated with structural self-consistency scores. In the subsequent Section 4.3, we further254

demonstrate the utility of gRNAde’s perplexity for zero-shot ranking of RNA fitness landscapes.255

4.2 Multi-state RNA design benchmark256

Structured RNAs often adopt multiple distinct conformational states to perform biological functions257

[Ken et al., 2023]. For instance, riboswitches adopt at least two distinct functional conformations: a258

ligand bound (holo) and unbound (apo) state, which helps them regulate and control gene expression259

[Stagno et al., 2017]. If we were to attempt single-state inverse design for such RNAs, each backbone260

structure may lead to a different set of sampled sequences. It is not obvious how to select the261

input backbone as well as designed sequence when using single-state models for multi-state design.262

gRNAde’s multi-state GNN, descibed in Section 2.3, directly ‘bakes in’ the multi-state nature of263

RNA into the architecture and designs sequences explicitly conditioned on multiple states.264

In order to evaluate gRNAde’s multi-state design capabilities, we trained equivalent single-state and265

multi-state gRNAde models on the multi-state split detailed in Section 3, where the validation and266

test sets contain progressively more structurally flexible RNAs as measured by median RMSD among267

multiple available states for an RNA.268

Multi-state gRNAde boosts sequence recovery. In Figure 4a, we compared a single-state variant269

of gRNAde with otherwise equivalent multi-state models (with up to 3 and 5 states, respectively) in270

terms of native sequence recovery. Multi-state variants show marginal improvements, overall. As a271

caveat, it is worth noting that multi-state models consume more GPU memory than an equivalent272

single-state model during mini-batch training (approximate peak GPU usage for max. number of273

states = 1: 12GB, 3: 28GB, 5: 50GB on a single A100 with at most 3000 total nodes in a mini-batch).274

2While we have not run Rosetta ourselves, we note that its documentation states that “runs on RNA backbones
longer than ∼ten nucleotides take many minutes or hours”.
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(b) Per-nucleotide recovery vs. structural flexibility measures

Figure 4: Multi-state design benchmark. (a) Multi-state gRNAde show marginal improvement
over an equivalent single-state model in terms of average per-sample sequence recovery over all test
RNAs. (b) When plotting sequence recovery per-nucleotide, multi-state gRNAde improves over a
single-state model for structurally flexible regions of RNAs, as characterised by nucleotides that tend
to undergo changes in base pairing (left), nucleotides with greater average solvent accessible surface
area (centre), and nucleotides with higher average RMSD (right) across multiple states. Marginal
histograms in blue show the distribution of values. We plot performance for one consistent random
seed across all models; collated results and ablations are available in Appendix Table 1.

Improved recovery in structurally flexible regions. In Figure 4b, we evaluated gRNAde’s275

multi-state sequence recovery at a fine-grained, per-nucleotide level. Multi-state GNNs improve276

sequence recovery over the single-state variant on structurally flexible nucleotides, as characterised277

by undergoing changes in base pairing/secondary structure, higher average RMSD between 3D278

coordinates across states, and larger solvent accessible surface area.279

4.3 Zero-shot ranking of RNA fitness landscape280

Lastly, we explored the use of gRNAde as a zero-shot ranker of mutants in RNA engineering281

campaigns. Given the backbone structure of a wild type RNA of interest as well as a candidate set of282

mutant sequences, we can compute gRNAde’s perplexity of whether a given sequence folds into the283

backbone structure. Perplexity is inversely related to the likelihood of a sequence conditioned on a284

structure, as described in Section 2.4. We can then rank sequences based on how ‘compatible’ they285

are with the backbone structure in order to select a subset to be experimentally validated in wet labs.286

Retrospective analysis on ribozyme fitness landscape. A recent study by McRae et al. [2024]287

determined a cryo-EM structure of a dimeric RNA polymerase ribozyme at 5Å resolution3, along288

with fitness landscapes of ∼75K mutants for the catalytic subunit 5TU and ∼48K mutants for the289

scaffolding subunit t1. We design a retrospective study using this data of (sequence, fitness value)290

pairs where we simulate an RNA engineering campaign with the aim of improving catalytic subunit291

fitness over the wild type 5TU sequence.292

We consider various design budgets ranging from hundreds to thousands of sequences selected for293

experimental validation, and compare 4 unsupervised approaches for ranking/selecting variants: (1)294

random choice from all ∼75,000 sequences; (2) random choice from all 449 single mutant sequences;295

(3) random choice from all single and double mutant sequences (as sequences with higher mutation296

order tend to be less fit); and (4) negative gRNAde perplexity (lower perplexity is better). For each297

design budget and ranking approach, we compute the expected maximum change in fitness over the298

wild type that could be achieved by screening as many variants as allowed in the given design budget.299

We run 10,000 simulations to compute confidence intervals for the 3 random baselines.300

gRNAde outperforms random baselines in low design budget scenarios. Figure 5 illustrates the301

results of our retrospective study. At low design budgets of up to hundreds of sequences, which are302

relevant in the case of a low throughput fitness screening assay, gRNAde outperforms all random303

baselines in terms of the maximum change in fitness over the wild type. The top 10 mutants as ranked304

by gRNAde contain a sequence with 4-fold improved fitness, while the top 200 leads to a 5-fold305

improvement. Note that gRNAde is used zero-shot here, i.e. it was not fine-tuned on any assay data.306

3This RNA was not present in gRNAde’s training data, which contains structures at ≤4.0Å resolution.
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Figure 5: Retrospective study of gRNAde for ranking ribozyme mutant fitness. Using the
backbone structure and mutational fitness landscape data from an RNA polymerase ribozyme [McRae
et al., 2024], we retrospectively analyse how well we can rank variants at multiple design budgets
using random selection vs. gRNAde’s perplexity for mutant sequences conditioned on the backbone
structure (catalytic subunit 5TU). Note that gRNAde is used zero-shot here, i.e. it was not fine-tuned
on any assay data. For stochastic strategies, bars indicate median values, and error bars indicate
the interquartile range estimated from 10,000 simulations per strategy and design budget. At low
throughput design budgets of up to ∼500 sequences, selecting mutants using gRNAde outperforms
random baselines in terms of the expected maximum improvement in fitness over the wild type. In
particular, gRNAde performs better than single site saturation mutagenesis, even when all single
mutants are explored (total of 449 single mutants, 10,493 double mutants for the catalytic subunit
5TU in McRae et al. [2024]). See Appendix Figure 10 for results on scaffolding subunit t1.

Perspective. Overall, it is promising that gRNAde’s perplexity correlates with experimental307

fitness measurements out-of-the-box (zero-shot) and can be a useful ranker of mutant fitness in308

our retrospective study. In realistic design scenarios, improvements could likely be obtained by309

fine-tuning gRNAde on a low amount of experimental fitness data. For example, latent features from310

gRNAde may be finetuned or used as input to a prediction head with supervised learning on fitness311

landscape data. This study acts as a sanity check before committing to wet lab validation of gRNAde312

designs. We see random mutagenesis and directed evolution-based approaches as complementary to313

de-novo design and inverse folding approaches like gRNAde. Random mutagenesis can be thought314

of as local exploration around a wild type sequence, optimising fitness within an ‘island’ of activity.315

Structure-based design approaches are akin to global jumps in sequence space, with the potential to316

find new islands further away from the wild type [Huang et al., 2016].317

5 Conclusion318

We introduce gRNAde, a geometric deep learning pipeline for RNA sequence design conditioned319

on one or more 3D backbone structures. gRNAde is superior to the physically based Rosetta for 3D320

RNA inverse folding in terms of performance, inference speed, and ease of use. Further, gRNAde321

enables explicit multi-state design for structurally flexible RNAs which was previously not possible322

with Rosetta. gRNAde’s perplexity correlates with native sequence and structural recovery, and323

can be used for zero-shot ranking of mutants in RNA engineering campaigns. To the best of our324

knowledge, gRNAde is also the first geometric deep learning architecture for multi-state biomolecule325

representation learning; the model is generic and can be repurposed for other learning tasks on326

conformational ensembles, including multi-state protein design.327

Limitations. Key avenues for future development of gRNAde include supporting multiple interacting328

chains, accounting for partner molecules with RNAs, and supporting negative design against undesired329

conformations. We discuss practical tradeoffs to using gRNAde in real-world RNA design scenarios330

in Appendix B, including limitations due to the current state of 3D RNA structure prediction tools.331
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A Related Work469

We attempt to briefly summarise recent developments in RNA structure modelling and design, with470

an emphasis on deep learning-based approaches.471

RNA inverse folding. Most tools for RNA inverse folding focus on secondary structure without472

considering 3D geometry [Churkin et al., 2018, Runge et al., 2019] and approach the problem from473

the lens of energy optimisation [Ward et al., 2023]. Rosetta fixed backbone re-design [Das et al.,474

2010] is the only energy optimisation-based approach that accounts for 3D structure. Deep neural475

networks such as gRNAde can incorporate 3D structural constraints and are orders of magnitude476

faster than optimisation-based approaches; this is particularly attractive for high-throughput design477

pipelines as solving the inverse folding optimisation problem is NP hard [Bonnet et al., 2020].478

RNA structure design. Inverse folding models for protein design have often been coupled with479

backbone generation models which design structural backbones conditioned on various design480

constraints [Watson et al., 2023, Ingraham et al., 2023, Didi et al., 2023]. Current approaches for481

RNA backbone design use classical (non-learnt) algorithms for aligning 3D RNA motifs [Han et al.,482

2017, Yesselman et al., 2019], which are small modular pieces of RNA that are believed to fold483

independently. Such algorithms may be restricted by the use of hand-crafted heuristics and we plan484

to explore data-driven generative models for RNA backbone design in future work.485

RNA structure prediction. There have been several recent efforts to adapt protein folding486

architectures such as AlphaFold2 [Jumper et al., 2021] and RosettaFold [Baek et al., 2021] for RNA487

structure prediction [Li et al., 2023b, Wang et al., 2023, Baek et al., 2024]. A previous generation of488

models used GNNs as ranking functions together with Rosetta energy optimisation [Watkins et al.,489

2020, Townshend et al., 2021]. None of these architectures aim at capturing conformational flexibility490

of RNAs, unlike gRNAde which represents RNAs as multi-state conformational ensembles. Neither491

can structure prediction tools be used for RNA design tasks as they are not generative models.492

RNA language models. Self-supervised language models have been developed for predictive and493

generative tasks on RNA sequences, including general-purpose models such as RNA FM [Chen494

et al., 2022] and RiNaLMo [Penic et al., 2024] as well as mRNA-specific CodonBERT [Li et al.,495

2023a]. RNA sequence data repositories are orders of magnitude larger than those for RNA structure496

(eg. RiNaLMo is trained on 36 million sequences). However, standard language models can only497

implicitly capture RNA structure and dynamics through sequence co-occurence statistics, which498

can pose a chellenge for designing structured RNAs such as riboswitches, aptamers, and ribozymes.499

RibonanzaNet [He et al., 2024] represents a recent effort in developing structure-informed RNA500

language models by supervised training on experimental readouts from chemical mapping, although501

RibonanzaNet cannot be used for RNA design. Inverse folding methods like gRNAde are language502

models conditioned on 3D structure, making them a natural choice for structure-based design.503

Comparison to contemporaneous work. Concurrently, Tan et al. [2023] also developed a deep504

learning-based 3D RNA inverse folding model. We want to emphasize that this is independent work,505

but for completeness we include a discussion on key differences to gRNAde:506

• Methodology:507

– New capabilities: gRNAde enables explicit multi-state design to generate sequences508

conditioned on multiple backbone structures, which is not possible with Rosetta nor Tan509

et al. [2023]’s approach. We have also demonstrated the utility of gRNAde’s perplexity for510

zero-shot ranking of mutants in RNA engineering campaigns.511

– Decoding: gRNAde uses an autoregressive decoder with rotation-equivariant GNN layers,512

while Tan et al. [2023] use a non-autoregressive (one-shot) decoder with rotation-invariant513

layers. In our ablation study (Appendix D), we found autoregressive decoding to show514

significantly higher 2D and 3D self-consistency scores than non-autoregressive decoding,515

even though non-autoregressive decoding lead to higher sequence recovery. Autoregressive516

decoding is more expressive and can condition predictions at each decoding step on past517

predictions, while one-shot decoders sample from independent probability distributions for518

each nucleotide. We find autoregressive decoding to be a better inductive bias for predicting519

base pairing and base stacking interactions that are drivers of RNA structure [Vicens and520

Kieft, 2022]. For instance, G-C and A-U pairs can often be swapped for one another, but521

non-autoregressive decoding does not capture such paired constraints.522
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• Evaluation:523

– Evaluation metrics: Tan et al. [2023] focus on measuring native sequence recovery, only.524

We have additionally introduced structural self-consistency metrics at the 2D and 3D level,525

which have been shown to better correlate with experimental success in protein design.526

– Perplexity: We found gRNAde’s perplexity to be correlated with sequence and structural527

recovery, as well as demonstrated its utility for zero-shot ranking of mutants in RNA528

engineering. On the other hand, Tan et al. [2023] do not report perplexity and claim that529

perplexity is an unsuitable metric for RNA design.530

– Data splitting: While both studies use structural clustering to evaluate generalisation to531

structurally dissimilar RNAs, Tan et al. [2023]’s test splits are determined randomly. Our532

experiments use currated test splits from Das et al. [2010] to fairly compare gRNAde533

to physically based Rosetta, as well as split based on structural flexibility to benchmark534

multi-state design.535

• Usage and reproducibility: We release open source training and inference code as well as model536

checkpoints to enable complete reproducibility. We also release Colab notebooks and detailed537

tutorials to make gRNAde broadly applicable and useful in real-world RNA design campaigns.538

At present, it is not possible to reproduce the results in Tan et al. [2023] or compare to gRNAde539

directly as no training code is available.540

B FAQs on using gRNAde541

How to chose the number of states to provide as input to gRNAde? In general, this would depend542

on the design objective. For instance, designing riboswitches may necessitate multi-state design,543

while a single-state pipeline may be more sensible for locking an aptamer into its bound conformation544

[Yesselman et al., 2019]. Note that it may be possible to benefit from multi-state gRNAde models545

even when performing single-state design by using slightly noised variations of the same backbone546

structure as an input conformational ensemble.547

How to prioritise or chose amongst designed sequences? We have currently provided 3 types548

of evaluation metrics: native sequence recovery, structural self-consistency scores and perplexity,549

towards this end. We suspect that recovery may not be the ideal choice, except for design scenarios550

where we require certain regions of the RNA sequence to be conserved or native-like. Self-consistency551

scores may provide an overall more holistic evaluation metric as they accounts for alternative base552

pairings which still lead to similar structures as well as better capture the recovery of structural motifs553

responsible for functionality. However, structural self-consistency scores inherit the limitations of554

the structure prediction methods used as part of their computation. For instance, computing the self-555

consistency score between an RNA backbone and its own native sequence provides an upper bounds556

on the maximum score that designs can obtain under a given structure prediction method. Lastly,557

gRNAde’s perplexity estimates the likelihood of a sequence given a backbone and can be useful for558

ranking designs and mutants in RNA engineering campaigns (especially for design scenarios where559

structure prediction tools are not performant).560

In real-world design scenarios, we can pair gRNAde with another machine learning model (an561

‘oracle’) for ranking or predicting the suitability of designed sequences for the objective (for instance,562

binding affinity or some other notion of fitness). We hope to conduct further experimental validation563

of gRNAde designs in the wet lab in order to better understand these tradeoffs.564

Why not average single-state logits over multiple states for multi-state design? ProteinMPNN565

[Dauparas et al., 2022] proposes to average logits from multiple backbones for multi-state protein566

design. Here is a simple example to highlight issues with such an approach: Consider two states A567

and B, and choice of labels X, Y, and Z. For state A: X, Y, Z are assigned probabilities 75%, 20%,568

5%. For state B: X, Y, Z are assigned probabilities 5%, 20%, 75%. Logically, label Y is the only one569

that is compatible with both states. However, averaging the probabilities would lead to label X or Z570

being more likely to be sampled in designs. As an alternative, gRNAde is based on multi-state GNNs571

which can take as input one or more backbone structures and generate sequences conditioned on the572

conformational ensemble directly.573

14



C 3D Visualisation of gRNAde Designs574
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(b) self-consistency GDT_TS

Figure 6: 3D self-consistency scores for 3 representative RNAs from Das et al. [2010]. We use
RhoFold to ‘forward fold’ 100 designs sampled at temperature = 0.5 and plot self-consistency TM-
score and GDT_TS. Each dot corresponds to one designed sequence and is coloured by gRNAde’s
perplexity (normalised per RNA). Designs with lower relative perplexity generally have higher
3D self-consistency and can be considered more ‘designable’. Dotted lines represent TM-score
and GDT_TS thresholds of 0.45 and 0.50, repsectively. Pairs of structures scoring higher than the
threshold correspond to roughly the same fold.

Design 1:
GGCAAGUAAUCCCUACGCUAUG
GGUAGGGAGUCUCAGCAGUGAC
CCGUAAAGUUACUACCUUGCCC
perplexity: 1.3097
recovery: 0.5909 (27 edits)
sc2D = 0.9227
scRMSD = 1.3839
scTM = 0.8309
scGDT = 0.8295

Design 2:
CGGUGGUAAGCCCAACGCUAGG
GGUUGGGCGUCUCAGCACAGUC
CCGUAAAGAUUGUACCCACCGG
perplexity: 1.3815
recovery: 0.4091 (37 edits)
sc2D = 0.9227
scRMSD = 2.1249
scTM = 0.6874
scGDT = 0.6780

Design 3:
AGCAAGUAAUGCCAUCGCUAUG
GGAUGGUAGUGUCAGCACUGAC
CCUUAAAGUUAGUACCUUGCUU
perplexity: 1.4247
recovery: 0.5152 (30 edits)
sc2D = 0.9227
scRMSD = 3.2131
scTM = 0.5118
scGDT = 0.5265

Figure 7: Cherry-picked designs for Guanine riboswitch aptamer (PDB: 4FE5, sequence:
GGACAUAUAAUCGCGUGGAUAUGGCACGCAAGUUUCUACCGGGCACCGUAAAUGUCCGACUAUGUCC).
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Design 1:
GGGGCUCCGGCGACGCAGUCGAAAG
CCCAGCAGUACCAAGCCUCAGGGGA
AACUUUGAGGUGGCCUAACAAAGGA
UACGGUAAUAAGCUGCGGGAAAAGG
UUGUAAGCCGGAGCGAAGACCUAAG
GCACCGCUUUUGGCGGUGCUAUGGU
UGAAGUUAA
perplexity: 1.2462
recovery: 0.7170 (44 edits)
sc2D = 0.8301
scRMSD = 5.4562
scTM = 0.6481
scGDT = 0.4465

Design 2:
GGGGUACCGGCGACGCAGUCGAAUG
CCCUGUGGUACCAAGCCCCGGGGGA
AACUUCGGGGUGGCCUUACCAAGGA
CACGGUAAUAAGCCACGGGAAAUGG
UUGUAAGCCGGUCCGAAGCCCUAAG
GCCGCGCUUUGGGCGCGGCUAUGGG
UGAAGGCAA
perplexity: 1.3273
recovery: 0.6226 (58 edits)
sc2D = 0.6896
scRMSD = 6.7239
scTM = 0.6300
scGDT = 0.4513

Design 3:
GAGGCCACGGCAACGCAGUCUAACG
CCCUGUGGUACCAAGUCUUAGGAGA
AAUUUUAAGAUGGCCUAAUAAAGGA
UAUGGUAAUAAGCCACGGGAAAAGG
UUGUAAGACGUGACGAAGUCCUAAG
GCCACAGUUUUGCUGUGGCUAUGGA
UGGAGUACA
perplexity: 1.3204
recovery: 0.7044 (45 edits)
sc2D = 0.7922
scRMSD = 8.8211
scTM = 0.4582
scGDT = 0.2909

Figure 8: Cherry-picked designs for Tetrahymena Ribozyme P4-P6 domain (PDB: 2R8S, se-
quence: GGAAUUGCGGGAAAGGGGUCAACAGCCGUUCAGUACCAAGUCUCAGGGGAAACUUUGAGAUGGCCUUGCAAAGGGU
AUGGUAAUAAGCUGACGGACAUGGUCCUAACACGCAGCCAAGUCCUAAGUCAACAGAUCUUCUGUUGAUAUGGAUGCAGUUCA).

Design 1:
GUCAAACGCAGCCGAAA
GCGCGAUAGUCCCAGGAA
perplexity = 1.6237
recovery = 0.4571 (16 edits)
sc2D = -0.0074
scRMSD = 3.9505
scTM = 0.2597
scGDT = 0.4786

Design 2:
GGCAAACGCGGCCGAAA
GCGCGUGAGUCCCCGGAC
perplexity = 1.6630
recovery = 0.4857 (16 edits)
sc2D = -0.0099
scRMSD = 3.3549
scTM = 0.2526
scGDT = 0.5000

Design 3:
CGUAGUCGGAGCCGAAG
GGCCGUUAGUCCCAGGAG
perplexity = 1.7020
recovery = 0.4000 (17 edits)
sc2D = 0.4035
scRMSD = 16.4102
scTM = 0.0319
scGDT = 0.0571

Figure 9: Cherry-picked designs for Vitamin B12 binding aptamer (PDB: 1ET4, sequence:
GGAACCGGUGCGCAUAACCACCUCAGUGCGAGCAA).
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Table 1: Ablation study and aggregated benchmark results for gRNAde. We report metrics averaged
over 100 test sets samples and standard deviations across 3 consistent random seeds. The percentages
reported in brackets for the 3D self-consistency scores are the percentage of designed samples within
the ‘designability’ threshold values (scRMSD≤2Å, scTM≥0.45, scGDT≥0.5).

Self-consistency metrics
Max. Max. train Perplexity Native seq. 2D – EternaFold 3D – RhoFold

Split #states Model GNN length (↓) recovery (↑) scMCC (↑) scRMSD (↓) scTM-score (↑) scGDT_TS (↑)

Si
ng

le
-s

ta
te

sp
lit

1 AR Equiv 500 1.77±0.07 0.438±0.01 0.624±0.07 13.01±1.18 (0.5%) 0.21±0.0 (14.3%) 0.22±0.0 (12.7%)
1 AR Equiv 1000 1.73±0.08 0.453±0.01 0.648±0.01 13.10±0.58 (1.0%) 0.20±0.0 (10.8%) 0.21±0.0 (10.6%)
1 AR Equiv 2500 1.41±0.01 0.493±0.01 0.633±0.03 11.76±0.91 (1.4%) 0.27±0.0 (28.8%) 0.27±0.0 (28.0%)
1 AR Equiv 5000 1.29±0.02 0.530±0.01 0.585±0.03 11.70±0.56 (1.3%) 0.26±0.0 (24.8%) 0.25±0.0 (20.1%)

1 AR Inv 5000 1.32±0.04 0.549±0.00 0.612±0.02 11.50±0.64 (1.9%) 0.28±0.0 (32.1%) 0.28±0.0 (26.2%)

1 NAR Inv 5000 1.54±0.04 0.571±0.00 0.430±0.02 14.26±0.51 (1.3%) 0.19±0.0 (15.9%) 0.18±0.0 (12.7%)
1 NAR Equiv 5000 1.46±0.06 0.584±0.00 0.473±0.02 13.04±0.88 (1.3%) 0.23±0.0 (24.0%) 0.22±0.0 (17.9%)

3 AR Equiv 5000 1.23±0.05 0.539±0.01 0.620±0.01 11.47±1.05 (2.5%) 0.28±0.0 (31.4%) 0.28±0.0 (27.2%)
5 AR Equiv 5000 1.25±0.01 0.539±0.02 0.596±0.03 11.90±1.00 (2.9%) 0.27±0.0 (31.6%) 0.26±0.0 (26.4%)

Groundtruth sequence prediction baseline: - 1.000±0.00 0.686±0.00 5.23±0.07 (27.9%) 0.56±0.0 (68.7%) 0.55±0.0 (68.7%)
Random sequence prediction baseline: - 0.251±0.00 0.012±0.00 24.40±0.34 (0.0%) 0.04±0.0 (0.0%) 0.02±0.0 (0.0%)

ViennaRNA 2D-only baseline: - 0.259±0.00 0.611±0.00 20.34±0.10 (0.0%) 0.07±0.0 (0.6%) 0.07±0.0 (1.1%)

M
ul

ti-
st

at
e

sp
lit

1 AR Equiv 500 1.87±0.06 0.445±0.01 0.603±0.03 13.08±0.20 (3.5%) 0.10±0.0 (1.2%) 0.25±0.0 (20.7%)
1 AR Equiv 1000 1.84±0.01 0.447±0.01 0.580±0.01 13.02±0.56 (2.3%) 0.09±0.0 (0.9%) 0.25±0.0 (20.4%)
1 AR Equiv 2500 1.73±0.04 0.480±0.02 0.567±0.01 12.83±0.05 (3.4%) 0.10±0.0 (1.9%) 0.26±0.0 (21.2%)
1 AR Equiv 5000 1.68±0.03 0.455±0.01 0.569±0.02 12.88±0.20 (4.1%) 0.11±0.0 (1.6%) 0.26±0.0 (22.6%)

1 AR Inv 5000 1.72±0.01 0.463±0.01 0.559±0.03 13.09±0.27 (4.1%) 0.10±0.0 (2.2%) 0.27±0.0 (23.0%)

1 NAR Inv 5000 2.01±0.04 0.457±0.01 0.461±0.01 14.06±0.23 (3.2%) 0.08±0.0 (1.7%) 0.23±0.0 (16.5%)
1 NAR Equiv 5000 1.89±0.06 0.432±0.01 0.423±0.01 13.63±0.27 (3.6%) 0.09±0.0 (1.2%) 0.24±0.0 (18.3%)

3 AR Equiv 5000 1.60±0.03 0.467±0.03 0.561±0.03 13.31±0.38 (3.4%) 0.10±0.0 (2.6%) 0.24±0.0 (19.0%)
5 AR Equiv 5000 1.55±0.04 0.473±0.01 0.549±0.03 13.48±0.79 (3.3%) 0.10±0.0 (3.0%) 0.24±0.0 (20.2%)

Groundtruth sequence prediction baseline: - 1.000±0.00 0.570±0.01 9.78±0.13 (10.3%) 0.16±0.0 (11.7%) 0.36±0.0 (36.7%)
Random sequence prediction baseline: - 0.249±0.00 0.128±0.00 21.15±0.21 (0.9%) 0.02±0.0 (0.0%) 0.09±0.0 (3.3%)

ViennaRNA 2D-only baseline: - 0.258±0.00 0.601±0.00 15.47±0.20 (2.4%) 0.05±0.0 (0.2%) 0.19±0.0 (15.2%)

A
ll

da
ta 1 AR Equiv 5000 1.23±0.01 0.733±0.00 0.627±0.02 8.10±0.28 (20.7%) 0.42±0.0 (46.1%) 0.41±0.0 (43.0%)

2 AR Equiv 5000 1.21±0.01 0.783±0.01 0.629±0.03 8.40±0.09 (19.1%) 0.42±0.0 (47.8%) 0.41±0.0 (41.7%)
3 AR Equiv 5000 1.19±0.01 0.787±0.01 0.606±0.02 7.88±0.68 (20.5%) 0.43±0.0 (47.4%) 0.42±0.0 (44.0%)
5 AR Equiv 5000 1.15±0.01 0.811±0.01 0.617±0.02 7.51±0.30 (20.7%) 0.45±0.0 (50.2%) 0.44±0.0 (46.7%)

D Ablation Study575

Table 1 presents an ablation study as well as aggregated benchmark for various configurations of576

gRNAde. Key takeaways are highlighted below. Note that all results in the main paper are reported577

for models trained on the maximum length of 5000 nucleotides using autoregressive decoding and578

rotation-equivariant GNN layers, as this lead to the lowest perplexity values.579

Max. train RNA length Limiting the maximum length of RNAs used for training can be seen580

as ablating the use of ribosomal RNA families (which are thousands of nucleotides long and form581

complexes with specialised ribosomal proteins). We find that training on only short RNAs fewer than582

1000s of nucleotides leads to worse sequence recovery and 3D self-consistency scores, even though it583

improves 2D self-consistency across both evaluation splits. This suggests that tertiary interactions584

learnt from ribosomal RNAs can generalise to other RNA families to some extent (large ribosomal585

RNAs were excluded from test sets).586

GNN We ablated whether the internal representations of the GVP-GNN are rotation invariant or587

equivariant. Equivariant GNNs are theoretically more expressive [Joshi et al., 2023] and we do find588

them more capable at fitting the training distribution (as shown by lower perplexity). However, we do589

not find significant differences in terms of other performance metrics across different GNN layers.590

Model ‘AR’ implies autoregressive decoding (described in Section 2.3, uses 4 encoder and 4591

decoder layers), while ‘NAR’ implies non-autoregressive, one-shot decoding using an MLP (uses 8592

encoder layers). Across both evaluation splits, AR models show significantly higher self-consistency593

scores than NAR, even though NAR lead to higher sequence recovery. AR is more expressive and594

can condition predictions at each decoding step on past predictions, while one-shot NAR samples595

from independent probability distributions for each nucleotide. Thus, AR is a better inductive bias596

for predicting base pairing and base stacking interactions that are drivers of RNA structure [Vicens597

and Kieft, 2022]. For instance, G-C and A-U pairs can often be swapped for one another, but598

non-autoregressive decoding does not capture such paired constraints.599
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Max. #states We evaluate the impact of increasing the maximum number of states as input to600

gRNAde. Multi-state models marginally improve native sequence recovery as well as structural601

self-consistency scores over an equivalent single state variant, even for the single-state benchmark602

where the multi-state model is being used with only one state as input. This suggests that seeing603

multiple states during training can be useful for gRNAde’s performance even for single-state design604

tasks.605

Non-learnt baselines. We report the performance of two non-learnt baselines to contextualise606

gRNAde’s performance: for each test sample, simply predicting the groundtruth sequence back607

and predicting a random sequence. Structural self-consistency scores for the Groundtruth baseline608

provides a rough upper bounds on the maximum score that any gRNAde designs can theoretically609

obtain given the current state of 2D/3D structure predictors being used. gRNAde always performs610

better than the random baseline and often reaches 2D self-consistency scores close to the upper bound.611

Both 2D and 3D self-consistency scores are inherently limited by the performance of the structure612

prediction methods used.613

2D inverse folding baseline. We additionally report results for ViennaRNA’s 2D-only inverse614

folding method to further demonstrate the utility of 3D inverse folding. ViennaRNA has improved615

2D self-consistency scores over gRNAde but fails to capture tertiary interactions in its designs, as616

evident by poor recovery and 3D self-consistency scores similar to the random baseline.617

Split. Single- and multi-state splits are described in Section 3; the multi-state split is relatively harder618

than the single-state split based on overall reduced performance for all baselines and models. Models619

trained on ‘All data’ use all RNASolo samples for training, solely for the purpose of releasing the best620

possible gRNAde checkpoints for real-world usage. Evaluation metrics for ‘All data’ are reported on621

the single-state test set.622
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E Additional Results623

Table 2: Full results for Figure 2 comparing gRNAde to Rosetta, FARNA and ViennaRNA for
single-state design on 14 RNA structures of interest identified by Das et al. [2010]. Rosetta and
FARNA recovery values are taken from Das et al. [2010], Supplementary Table 2.

ViennaRNA FARNA Rosetta gRNAde (single-state)
PDB ID Description Recovery Recovery Recovery Recovery Perplexity 2D self-cons.

1CSL RRE high affinity site 0.25 0.20 0.44 0.5719 1.2812 0.8644
1ET4 Vitamin B12 binding RNA aptamer 0.25 0.34 0.44 0.6250 1.3457 -0.0135
1F27 Biotin-binding RNA pseudoknot 0.30 0.36 0.37 0.3437 1.6203 0.4523
1L2X Viral RNA pseudoknot 0.24 0.45 0.48 0.4721 1.3181 0.5692
1LNT RNA internal loop of SRP 0.33 0.27 0.53 0.5843 1.4337 0.1379
1Q9A Sarcin/ricin domain from E.coli 23S rRNA 0.27 0.40 0.41 0.5044 1.3411 0.0597
4FE5 Guanine riboswitch aptamer 0.29 0.28 0.36 0.5300 1.3824 0.9116
1X9C All-RNA hairpin ribozyme 0.26 0.31 0.50 0.5000 1.3905 0.6630
1XPE HIV-1 B RNA dimerization initiation site 0.27 0.24 0.40 0.7037 1.2177 0.7768
2GCS Pre-cleavage state of glmS ribozyme 0.25 0.26 0.44 0.5078 1.3053 0.4062
2GDI Thiamine pyrophosphate-specific riboswitch 0.25 0.38 0.48 0.6500 1.2363 -0.0251
2OEU Junctionless hairpin ribozyme 0.23 0.30 0.37 0.9519 1.0913 0.7768
2R8S Tetrahymena ribozyme P4-P6 domain 0.27 0.36 0.53 0.5689 1.1881 0.7281
354D Loop E from E. coli 5S rRNA 0.28 0.35 0.55 0.4410 1.4938 0.0430

Overall recovery: 0.27 0.32 0.45 0.5682

1st best (fit.: 3.41)
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Figure 10: Retrospective study of gRNAde for ranking ribozyme mutant fitness (t1 subunit).
Using the backbone structure and mutational fitness landscape data from an RNA polymerase
ribozyme [McRae et al., 2024], we retrospectively analyse how well we can rank variants at multiple
design budgets using random selection vs. gRNAde’s perplexity for mutant sequences conditioned on
the backbone structure (scaffolding subunit t1). gRNAde performs better than single site saturation
mutagenesis, even when all single mutants are explored (total of 403 single mutants, 17,027 double
mutants for the scaffolding subunit t1 in McRae et al. [2024]). See Section 4.3 for results on catalytic
subunit 5TU and further discussions.
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F Additional Figures624

Figure 11: RNA backbone featurization.625

Figure 12: gRNAde model architecture.626

Figure 13: In-silico evaluation metrics for gRNAde.627

Figure 14: Multi-graph tensor representation of RNA conformational ensembles.628

Listing 1: Pseudocode for multi-state GNN encoder layer.629

Figure 15: RNASolo data statistics.630
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Figure 11: gRNAde featurizes RNA backbone structures as 3D geometric graphs. Each RNA
nucleotide is a node in the graph, consisting of 3 coarse-grained beads for the coordinates for P, C4’,
N1 (pyrimidines) or N9 (purines) which are used to compute initial geometric features and edges to
nearest neighbours in 3D space. Backbone chain figure adapted from Ingraham et al. [2019].
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Figure 12: gRNAde model architecture. One or more RNA backbone geometric graphs are encoded
via a series of SE(3)-equivariant Graph Neural Network layers [Jing et al., 2020] to build latent
representations of the local 3D geometric neighbourhood of each nucleotide within each state.
Representations from multiple states for each nucleotide are then pooled together via permutation
invariant Deep Sets [Zaheer et al., 2017], and fed to an autoregressive decoder to predict a probabilities
over the four possible bases (A, G, C, U). The probability distribution can be sampled to design
a set of candidate sequences. During training, the model is trained end-to-end by minimising a
cross-entropy loss between the predicted probability distribution and the true sequence identity.
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Figure 13: In-silico evaluation metrics for gRNAde designed sequences. We consider (1) sequence
recovery, the percentage of native nucleotides recovered in designed samples, (2) self-consistency
scores, which are measured by ‘forward folding’ designed sequences using a structure predictor
and measuring how well 2D and 3D structure are recovered (we use EternaFold and RhoFold for
2D/3D structure prediction, respectively). We also report (3) perplexity, the model’s estimate of the
likelihood of a sequence given a backbone.
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Figure 14: Multi-graph tensor representation of RNA conformational ensembles, and the asso-
ciated symmetry groups acting on each axis. We process a set of k RNA backbone conformations
with n nodes each into a tensor representation. Each multi-state GNN layer updates the tensor while
being equivariant to the underlying symmetries; pseudocode is available in Listing 1. Here, we show
a tensor of 3D vector-type features with shape n× k × 3. As depicted in the equivariance diagram,
the updated tensor must be equivariant to permutation Sn of n nodes for axis 1, permutation Sk of k
conformers for axis 2, and rotation SO(3)/O(3) of the 3D features for axis 3.
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1 class MultiGVPConv(MessagePassing):
2 ’’’GVPConv for handling multiple conformations ’’’
3

4 def __init__(self , ...):
5 ...
6

7 def forward(self , x_s , x_v , edge_index , edge_attr):
8

9 # stack scalar feats along axis 1:
10 # [n_nodes , n_conf , d_s] -> [n_nodes , n_conf * d_s]
11 x_s = x_s.view(x_s.shape [0], x_s.shape [1] * x_s.shape [2])
12

13 # stack vector feat along axis 1:
14 # [n_nodes , n_conf , d_v , 3] -> [n_nodes , n_conf * d_v *3]
15 x_v = x_v.view(x_v.shape [0], x_v.shape [1] * x_v.shape [2]*3)
16

17 # message passing and aggregation
18 message = self.propagate(
19 edge_index , s=x_s , v=x_v , edge_attr=edge_attr)
20

21 # split scalar and vector channels
22 return _split_multi(message , d_s , d_v , n_conf)
23

24 def message(self , s_i , v_i , s_j , v_j , edge_attr):
25

26 # unstack scalar feats:
27 # [n_nodes , n_conf * d] -> [n_nodes , n_conf , d_s]
28 s_i = s_i.view(s_i.shape [0], s_i.shape [1]//d_s , d_s)
29 s_j = s_j.view(s_j.shape [0], s_j.shape [1]//d_s , d_s)
30

31 # unstack vector feats:
32 # [n_nodes , n_conf * d_v *3] -> [n_nodes , n_conf , d_v , 3]
33 v_i = v_i.view(v_i.shape [0], v_i.shape [1]//( d_v*3), d_v , 3)
34 v_j = v_j.view(v_j.shape [0], v_j.shape [1]//( d_v*3), d_v , 3)
35

36 # message function for edge j-i
37 message = tuple_cat ((s_j , v_j), edge_attr , (s_i , v_i))
38 message = self.message_func(message) # GVP
39

40 # merge scalar and vector channels along axis 1
41 return _merge_multi (* message)
42

43 def _split_multi(x, d_s , d_v , n_conf):
44 ’’’
45 Splits a merged representation of (s, v) back into a tuple.
46 ’’’
47 s = x[..., :-3 * d_v * n_conf ].view(x.shape [0], n_conf , d_s)
48 v = x[..., -3 * d_v * n_conf :]. view(x.shape [0], n_conf , d_v , 3)
49 return s, v
50

51 def _merge_multi(s, v):
52 ’’’
53 Merges a tuple (s, v) into a single ‘torch.Tensor ‘,
54 where the vector channels are flattened and
55 appended to the scalar channels.
56 ’’’
57 # s: [n_nodes , n_conf , d] -> [n_nodes , n_conf * d_s]
58 s = s.view(s.shape[0], s.shape [1] * s.shape [2])
59 # v: [n_nodes , n_conf , d, 3] -> [n_nodes , n_conf * d_v *3]
60 v = v.view(v.shape[0], v.shape [1] * v.shape [2]*3)
61 return torch.cat([s, v], -1)

Listing 1: PyG-style pseudocode for a multi-state GVP-GNN layer. We update node features for
each conformer independently while maintaining permutation equivariance of the updated feature
tensors along both the first (no. of nodes) and second (no. of conformations) axes.
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(a) Sequence length. The dataset is long-tailed
in terms of RNA sequence length, with many
short sequences including aptamers, riboswitches,
ribozymes, and tRNAs (fewer than 200 nucleotides).
The dataset also includes several longer ribosomal
RNAs (thousands of nucleotides).
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(b) Number of structures per sequence. The dataset
covers a wide range of RNA conformation ensembles,
with on average 3 structures per sequence. There
are multiple structures available for 1,547 sequences.
The remaining 2,676 sequences have one correspond-
ing structure.
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(c) Average pairwise RMSD per sequence. For
1,547 sequences with multiple structures, there is
significant structural diversity among conformations.
On average, the pairwise C4’ RMSD among the set
of structures for a sequence is greater than 1Å.
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(d) Bivariate distribution for sequence length vs.
avg. RMSD. The joint plot illustrates how structural
diversity (measured by avg. pairwise RMSD) varies
across sequence lengths. We notice similar structural
variations regardless of sequence length.

Figure 15: RNASolo data statistics. We plot histograms to visualise the diversity of RNAs available
in terms of (a) sequence length, (b) number of structures available per sequence, as well as (c)
structural variation among conformations for those RNA that have multiple structures. The bivariate
distribution plot (d) for sequence length vs. average pairwise RMSD illustrates structural diversity
regardless of sequence lengths.
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