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Abstract

Scientific discovery of novel drug assets requires rigorous reasoning over the
complex interplay of biomedical entities. By integrating multi-modal entities,
biomedical knowledge graphs (KGs) have emerged as powerful resources for tasks
such as identifying targets and uncovering mechanisms of drug action. However,
effective reasoning over those KGs is often limited by their incompleteness and
noisy information, hindering reliable downstream tasks. To address this challenge,
we propose BioMedReasoner, a modular reasoning framework that performs KG
completion as a precursor to interpretable multi-hop reasoning. Our approach
builds on Neural Bellman-Ford Networks (NBFNet) that formulates link prediction
as a path-based relational learning problem, enabling interpretable multi-hop pre-
dictions for biomedical applications. We evaluated BioMedReasoner on PrimeKG,
a publicly available large-scale multi-modal biomedical KG, and demonstrated its
effectiveness in KG completion and downstream reasoning. As a proof of concept,
we focus on genes associated with inflammatory bowel disease (IBD), including
the JAK family, TNF-a, IL17A, and IL17RA. By extracting paths connecting
the genes to IBD and to their biological processes and molecular functions, and
supplying these paths to a large language model (LLM) while withholding gene
names, we show that interpretable graph paths enable biological reasoning and
assessment of gene suitability as therapeutic targets. These results highlight the
potential of path-based, interpretable biomedical KG reasoning to guide early-stage
drug discovery.

*Correspondence: gsingh@bmedx.com; Tommaso.Andreani @sanofi.com

Published in the Al for Science workshop (NeurIPS 2025).



1 Introduction

Rapid advances in artificial intelligence have impacted various scientific fields, including the discovery
of novel drug assets that require rigorous reasoning over the complex interplay of biomedical entities.
To capture these interconnections across multi-modal data, biomedical knowledge graphs (KGs)
have emerged as powerful resources. Constructed from large-scale biomedical corpora as tuples of
factual information [3]], KGs enable the modelling of complex biological processes and support a
wide range of downstream applications [32], including drug discovery [43], drug combination effects
[19], and precision therapeutics [14]. Despite their promise, extracting meaningful and interpretable
insights from biomedical KGs remains a challenge, as it requires both completeness and robustness
to noise. In practice, these criteria are barely satisfied, particularly in evolving KGs, which are
prone to conflicting or imprecise knowledge [31,40]]. Consequently, KG completion has become an
indispensable step for enhancing KG representations and enabling reliable reasoning.

KG completion is a fundamental task in relational learning aimed at predicting links between entities,
thereby recovering latent information and uncovering novel facts [3} 37, 42]]. A broad range of
approaches have been proposed, leveraging geometric, algebraic, and analytical perspectives [4]].
Inspired by algebraic formulations, numerous methods operate in predefined vector spaces to enable
structural learning over large-scale relational data, often instantiated through variants of graph neural
networks (GNNs) [30,47, [13]]. Such methods have achieved promising results in pharmacological
tasks, including drug repurposing [17, 18] and synthetic lethality prediction [46, [6].

Recent efforts have explored enhancing KG reasoning by unifying relational learning with large
language models (LLMs). For example, BioBridge [39] introduced a bridge module that aligns
heterogeneous node modalities to support the search for cross-modal similarity, which can then serve
as a contextual input for LLM prompts. Although effective for multi-modal integration, this approach
offers limited interpretability with respect to graph elements (e.g., paths, subgraphs), diminishing
its utility for in-depth analysis. G-Retriever [L6] further advanced this direction by contextualizing
graphs for LLMs through retrieval-augmented generation (RAG), extracting subgraphs relevant to a
user prompt. However, its applicability has not yet been demonstrated in biomedical domains, where
deep reasoning is required to address complex and interdependent entities.

In this preliminary work, we propose BioMedReasoner (Fig.[I)), a modular framework for interpretable
multi-hop biomedical reasoning. We formulate multi-hop reasoning as path-driven relational learning
using Neural Bellman-Ford Networks (NBFNet) [47]. This design enables (i) KG completion
on biomedical KGs, (ii) extraction of path-level interpretations, and (iii) enhanced reasoning by
integrating large language models with contextualized paths via retrieval-augmented generation
(RAG). We evaluated our framework on PrimeKG [3]], a publicly available large-scale biomedical
KG encompassing diverse biomedical entities and relationships. As a proof of concept, we focus on
inflammatory bowel disease (IBD), analyzing key genes such as the JAK family, TNF-«, IL17A, and
IL17RA. Our framework identifies association paths linking these genes to IBD and their biological
processes and molecular functions, which are further provided as auxiliary context to an LLM with
the gene name withheld, enabling reasoning on questions such as gene suitability as therapeutic
targets. By providing interpretable paths, BioMedReasoner allows pharmaceutical researchers to
understand the mechanistic rationale behind predicted associations, prioritize targets with higher
confidence, and generate biologically grounded hypotheses that can guide early-stage drug discovery.

2 Proposed Method

KG Completion We represent a biomedical KG as G = (V,£,R), where nodes u € V are
connected through edges (u, r,v) € &, each labeled with a relation type » € R. Following NBFNet
[47], we address link prediction by estimating the probability p(u, ¢, v), which denotes the likelihood
of a triple connecting a source entity u and a target entity v under a query relation g. We further
denote the corresponding representation as h, (u, v), initialized as

hi=(u,v) = fr(u,q,v), YveV, (1)

where ¢ denotes the current layer index, and fz is an indicator function 1(u = v) * q that initializes
the node features of u with the relation embedding q. These features are then iteratively updated
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Figure 1: Overview of BioMedReasoner in addressing multi-hop reasoning over biomedical KG.

across successive layers through message-passing operations, as defined in Egs. 2)—(3).

mf;(x,r, v) = fm (hgfl(x,v);eq(a:,r,v)), YV (z,7,0) € E(v) 2)
h (u,v) = fa({mg(z,r,0)} U{hi=(u,0)}) ()

Here, fa denotes the message function, which maps two inputs—i.e., the intermediate pair features
hﬁ_l (x,v) and the associated edge features e,(x, r, v)—into an embedding space using a chosen

relation operator [3}42,134], producing the message mg(x, r,v). The final representations are then
further aggregated via a permutation-invariant aggregation function f 4 [7]].

To address the link prediction task, we estimate the conditional probability p(v|u, ¢) using Eq.@),
where fy is a feed-forward network followed by a sigmoid activation . All model parameters are
then optimized by minimizing the negative log-likelihood over positive and negative samples, as
formalized in Eq.(3).

p(vlu,q) = o(fo(hg(u,v))) @

n 1
L= —IOg p(U, q, 1)) - Zi:l Elog(l - p(uiv qvvg)) (5)

Multi-hop Path-based RAG To enhance our model’s reasoning capabilities and generate inter-
pretable insights that span multiple hops from the source node, we adopt a path-based RAG approach.
Following NBFNet [47]], we define fp as a path visualization function to identify the paths contribut-
ing to the prediction of a triple p(u, ¢, v). This is achieved by estimating the importance of each
path—computed via automatic differentiation—and subsequently applying beam search to select the
top- K most relevant paths. Formally, the multi-hop path formulation is defined as:

{q)zﬁvﬂwk}gzl = fP(an;'U), (6)

where ®}7" represents the k-th path and wy, as its corresponding weight. We removed the paths
containing a reverse triple of any of their constituent triples. In addition, for each triple, only the path
with the highest weight was retained, while all other paths were excluded from subsequent analyses.
Next, we used a frozen LLM as the downstream reasoning module within our framework, adopting
RAG to infer responses y, as shown in Eq. (7). In particular, along with a prompt, we provided a
set of biomedical auxiliary context, including: (i) an association score P between a gene and a
disease, computed from its predicted reciprocal rank (i.e., the inverse of the rank position assigned
to the correct target entity, giving higher scores when the true entity is ranked closer to the top); (ii)
paths @¢—P connecting the gene to the disease; and (iii) paths @¢ 7B ®F—7MF connecting the
gene to biological processes and molecular functions, respectively.

y = LLM(prompt; aG*}D’ (I’G%D’ @G*)BP’ @G*)MF)' 7



3 Experimental Results

Dataset and Data Preprocessing To evaluate the effectiveness of our proposed framework, we
utilized PrimeKG [3] as the publicly available heterogeneous biomedical KG commonly used in the
literature. Following the dataset filtering procedure of BioBridge [39], we selected heterogeneous
nodes including genes/proteins, drugs, diseases, biological processes, molecular functions, and
cellular components. This results in 84,981 nodes and 3,904,610 triples. The dataset is further split
into training, validation, and test sets with 80:10:10 ratio. For specific biomedical case studies on
IBD, we hold out triples connecting selected well-studied genes (e.g., JAK1, JAK2, JAK3, TYK?2,
TNF-«, IL17A, IL17RA) to IBD and its subtypes according to the MONDO ontology’| We also hold
out the drugs that target these genes and indicated in IBD and its subtypes to avoid any information
leakage.

Implementation Details We followed overall NBFNet configuration as our backbone for
our proposed BioMedReasoner in performing KG completion. Specifically, we employed 6 layers
of message-passing operations, each with 8 hidden dimensions. The message function fa, was
implemented using DistMult [42], and the aggregation function f4 used principal neighborhood
aggregation (PNA) [[7]]. The feed-forward network fy was fixed at 16 hidden dimensions with ReLU
activations. All model parameters were optimized using the Adam optimizer with a learning rate of
0.005 for 5 epochs. Training and inference were conducted on 8 NVIDIA HGX H100 GPUs, each
with 80GB memory. For reasoning with LLMs, we employed OpenAl GPT-5 [44] and provide the
detailed system prompt used for the reasoning case studies in Appendix

KG Completion with BioMedReasoner We evaluated BioMedReasoner on PrimeKG to assess its
ability to complete missing links. The model demonstrates strong performance across standard evalu-
ation metrics (e.g., mean rank (MR), mean reciprocal rank (MRR), and Hits@K with K € {1, 3,10}),
as shown in Fig. 2] These results underscore the effectiveness of path-based relational reasoning in
addressing KG incompleteness, surpassing traditional knowledge graph embedding models such as
TransE and DistMult [42]], and further validate our choice of NBFNet as the backbone model,
which has been shown to outperform a range of conventional KG embedding approaches in prior work
[47]. We also provide a granular breakdown of BioMedReasoner’s performance in predicting links
between genes and other node types existed in the dataset, including diseases, molecular functions,
biological processes, and cellular components (see Table 2]in Appendix [A).
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Figure 2: KG completion performances of BioMedReasoner that utilized NBFNet as backbone on
testing set of PrimeKG compared againts TransE and DistMult.
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Case Study: Genes Associated with IBD As a proof of concept, we applied BioMedReasoner
to predict association of selected genes with IBD and present an association heatmap, as presented
in Fig. [3]in Appendix [A] TNF-« exhibits the strongest predicted association with IBD, consistent
with extensive clinical evidence [45,36]]. Members of the JAK family rank next, aligning with their
well-established therapeutic relevance [29, |10} 8]. Compared to TNF-« and the JAK family, IL17A
and IL17RA show weaker associations, in line with clinical findings regarding their involvement in
IBD [20,135]]. Finally, we also include LRRK1, a gene primarily associated with rare bone disorders
rather than IBD [28]]. These predictions support the biological plausibility of BioMedReasoner’s
outputs and highlight its capability to prioritize therapeutically relevant targets to some extent.

Table 1: Case studies of path-based reasoning of BioMedReasoner related to JAK1 and IL17A genes.
Case Study: JAK1

e Association Assessment:
Strong

e Paths JAK1 — IBD:
Context (PROTEIN, ppi, PTPN2) — (PTPN2, associated with, IBD)
(PROTEIN, ppi, JAK3) — (JAK3, ppi, PTPN2) — (PTPN2, associated with, IBD)

o Paths JAK1 — GO Terms:
(PROTEIN, ppi, PTPN2) — (PTPN2, ppi, STAT3) — (STAT3, ppi, TSHR) —
(TSHR, interacts with, cell surface receptor signaling pathway) —
(cell surface receptor signaling pathway, parent-child, cytokine-mediated signaling pathway) —
(cytokine-mediated signaling pathway, parent-child, interleukin-9-mediated signaling pathway)

Context Reference Ferrao et al., [11]; Lees et al., [24]; Sugamura et al., [33]; Habib et al., [15]

Response [...] Advantages:
Dense network proximity to an IBD-associated node
Inhibition could dampen overactive cytokine/JAK-STAT signaling,
Connections to protein phosphorylation and kinase activity suggest
it sits at a signaling control point where inhibition may
yield broad anti-inflammatory effects. [...]

[...] Disadvantages:
Participation in interleukin-10-mediated signaling indicates potential
to disrupt regulatory cytokine signaling,
risking immune dysregulation if inhibited. [...]

Response Reference Pérez-Jeldres et al., [27]; Pattinson et al., [26]

Case Study: IL17A

e Association Assessment:
Weak

e Paths IL17A — IBD:
Context (PROTEIN, ppi~!, TRAF6) — (TRAF6, ppi, RIPK2) — (RIPK2, associated with~!, IBD)

o Paths IL17A — GO Terms:
(PROTEIN, interacts with, immune response) —
(immune response, parent-child, adaptive immune response)

(PROTEIN, ppi, TRAF6) — (TRAF6, ppi, UCHL1) —
(UCHLI, interacts with, cell population proliferation) —
(cell population proliferation, parent-child, epithelial cell proliferation) —
(epithelial cell proliferation, parent-child, keratinocyte proliferation)

Context Reference Yan et al., [41]; Lee et al., [23]; Datta et al., [9]; Wang et al., [38]

Response [...] Advantages:
The protein connects to IL-17/IL-17A-mediated
and broader cytokine-mediated signaling [...]

[...] Disadvantages:
Links to epithelial/keratinocyte proliferation
suggest a role in epithelial biology;
inhibition may hinder mucosal repair. [...]

Response Reference Kuwabara et al., [22]; Gaffen [12]; Lee et al., [23]




Case Study: Path Interpretability and Biological Context Beyond link predictions, BioMedRea-
soner extracted interpretable multi-hop paths linking genes (JAK1 and IL17A) to IBD, and to their
known biological processes and molecular functions (Table[T) as defined in the Gene Ontology (GO)
resource [2, [1]]. Incorporating the GO terms provides biological and functional context, enabling
mechanistic interpretation of the predicted associations and supporting reasoning about why a gene
may influence disease. Moreover, by supplying these paths to a large language model (GPTS) while
withholding gene names, we facilitated biologically informed reasoning regarding gene target suit-
ability. For detailed LLM responses along with the input context, please refer to the dedicated case
study subsections in Appendices|C|and D]

4 Limitations and future Works

While our results highlight the potential of BioMedReasoner for interpretable biomedical reasoning,
several limitations remain. First, the current knowledge graph lacks important node types that could
enhance interpretability and biological relevance. For example, the clinical failure of anti-IL17A
therapies in inflammatory bowel disease is closely linked to Th17 cells and vé T cells [23], and
incorporating such cell-specific knowledge would provide a richer mechanistic basis for reasoning.

Second, our current implementation of NBFNet relies exclusively on graph structure and does not
leverage rich node or edge features. Integrating representations from biological foundation models,
such as AlphaFold2 [21] or ESM [25] for protein structure and function, together with drug—target
binding information, could enable more mechanistic reasoning. Such integration may help explain
clinically observed differences, such as why Etanercept (targeting TNF-«) is ineffective in IBD,
whereas Adalimumab and Infliximab (also targeting TNF-a) demonstrate efficacy.

Third, while LLMs can reason over contextualized paths, their outputs remain sensitive to prompt
design and underlying model biases, raising challenges for robustness and reproducibility. Addressing
these limitations may require improved prompting strategies, alignment techniques, and systematic
evaluation of LLM-based reasoning.

Finally, our evaluation was limited to single-disease case studies. Broader validation across multiple
disease domains will be necessary to establish generalization. Future directions include enhanced
path-ranking strategies, multi-modal data integration, and rigorous benchmarking to strengthen both
the interpretability and predictive reliability of biomedical reasoning frameworks.

5 Conclusion

In this preliminary work, we introduced BioMedReasoner, a modular framework for interpretable
multi-hop reasoning over biomedical knowledge graphs. By integrating Neural Bellman-Ford Net-
works for path-driven relational learning with retrieval-augmented generation using large language
models, our approach enables both knowledge graph completion and extraction of path-level explana-
tions. We applied our framework to PrimeKG through case studies on IBD, where BioMedReasoner
predicted strong associations for TNF-«, followed by JAK family members, whereas IL17A and
IL17RA exhibited weaker links, consistent with evidence reported in the literature. We further
extracted interpretable paths connecting these genes to IBD and to their Gene Ontology biological
processes, and provided these paths as context to an LLM to evaluate target suitability. These
results demonstrate how path-based reasoning can generate explanatory narratives that bridge struc-
tured biomedical knowledge with natural language reasoning. Beyond IBD, the modular design of
BioMedReasoner makes it readily adaptable to diverse biomedical applications, including disease co-
morbidity prediction, biomarker discovery, and guiding precision medicine strategies, while offering
interpretable insights that can increase confidence and translational value in pharmaceutical research.
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A Additional Analysis

We further analyzed the KG completion performance by grouping results according to unique triple
types, as presented in Table[2} In addition, we performed an auxiliary analysis of association scores
between the preselected genes and IBD subtypes, as shown in the heatmap in Fig.[3]

Table 2: Performance breakdown on the test set by unique triple type (i.e., head type, edge type, tail
type) with respect to genes. Specifically, Gene — Disease triples involve the association_with
relation, while all other triples use the interacts_with relation.

Metric Gene — Disease Gene — Bio. Proc. Gene — Mol. Func. Gene — Cell Comp.
MRR 0,247 0,047 0,195 0,174
Hits@1 0,199 0,025 0,178 0,053
Hits@3 0,262 0,050 0,179 0,244
Hits@10 0,343 0,087 0,229 0,405
Association Heatmap
0.008
iBD{ 0.00316 0.00183 0.00044 0.00018 0.007
0.006
) 0.005
® co{ 0.00437 0.00180 0.00053 0.00028
° - 0.004
[a]
- 0.003
- 0.002
uc{ 0.00353 0.00221 0.00053 0.00017 0.001
JAK Family TNF-a IL17A IL17RA LRRK1

Gene/Protein

Figure 3: Association scores heatmap of preselected genes and IBD sub-types estimated by reciprocal
rank with both directions of link predictions. IBD: Inflammatory Bowel Disease, CD: Crohn’s

Disease, UC: Ulcerative Colitis.

10



B System Prompt

The prompt for prompting language models to answer whether the given target is suitable for IBD.
prompt — nnn

You are a biomedical research assistant with expertise in genetics, disease
mechanisms, and drug target discovery. Your task is to evaluate whether
inhibiting a given protein is a promising therapeutic target for treating
Inflammatory Bowel Disease (IBD).

You will be provided with:

1. Predicted gene-disease association strength.
2. Knowledge graph nodes/paths connecting the gene/protein to IBD.

3. Knowledge graph nodes/paths connecting the gene/protein to its known
Gene Ontology (GO) terms describing the biological processes (BP),
and molecular functions (MF).

Your task:

Interpret the evidence (association strength, KG paths, GO terms).

2. Assess whether the gene has a therapeutic role in IBD that could be
modulated by inhibition based on the evidence. Note that inhibition
means reducing or blocking the gene/protein’s activity.

3. Provide a structured answer with:

Advantages: Arguments that support inhibiting the protein as a
therapeutic strategy for IBD.

Disadvantages: Arguments against inhibiting the protein as a
therapeutic strategy for IBD.

Overall assessment: Based on the advantages and disadvantages,
provide 3-5 bullet points summarizing whether inhibiting the protein
is a promising therapeutic target for IBD. Keep them short and
concise.

Please note strong association does not guarantee therapeutic relevance,
and weak association does not rule it out. Ground your judgement
completely based on the information provided. Do not make up any
information or use prior knowledge.

nnn
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C Case Study: JAK1

We report both LLM response and the corresponding paths connecting JAK1 with IBD, and with its
biological processes and molecular functions as the input context.

C.1 LLM response

Advantages:

Very strong predicted association with IBD.

Dense network proximity to an IBD-associated node: direct protein-protein
interaction with PTPN2 (which is associated with inflammatory bowel disease),
plus multiple converging paths via JAK3/KPNA1l to PTPN2.

Extensive involvement in cytokine-mediated signaling (direct links to
STAT1/STAT2/STAT3, JAK3, IL27RA, IFNLR1, OSMR; GO: cytokine-mediated
signaling pathway; receptor signaling via JAK-STAT; multiple
interleukin-mediated pathways including IL-2/4/6/7/9/10/15;
interferon-gamma-mediated signaling). Inhibition could dampen overactive
cytokine/JAK-STAT signaling.

Connections to protein phosphorylation and kinase activity suggest it
sits at a signaling control point where inhibition may yield broad
anti-inflammatory effects.

Disadvantages:

Strong linkage to antiviral pathways (GO: response to virus; type I and type
III interferon signaling), implying inhibition may impair antiviral defense
and increase infection risk.

Participation in interleukin-10-mediated signaling indicates potential

to disrupt regulatory cytokine signaling, risking immune dysregulation if
inhibited.

Evidence to IBD is indirect in the KG (through PTPN2 association rather than
a direct association for the protein itself), leaving causality uncertain.

GO links to cell adhesion and protein localization to cell-cell junctions
suggest possible effects on epithelial barrier functions if inhibited.

Broad roles in receptor signaling via JAK-STAT and protein phosphorylation
imply pleiotropic on-target effects and safety concerns.

Overall assessment:

Biologically plausible target: inhibition could suppress
cytokine/JAK-STAT-driven immune signaling connected to IBD pathways.

Network evidence is strong but indirect; the link to IBD relies on proximity
to PTPN2 rather than a direct association.

High risk of broad immunosuppression, including dampening antiviral
interferon pathways and multiple interleukin pathways.

Potential epithelial barrier and systemic signaling liabilities from wide
pathway involvement.

Overall, inhibition could be promising only with careful strategy to
avoid broad pathway suppression; current evidence suggests notable safety
trade-offs and the need for more direct IBD-specific validation.
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C.2 Paths connecting JAK1 — IBD

Path #0: (PROTEIN IN QUESTION, ppi, PTPN2) — (PTPN2, associated with, inflammatory
bowel disease)

Path #1: (PROTEIN IN QUESTION, ppi~t, PTPN2) — (PTPN2, associated with,
inflammatory bowel disease)

Path #2: (PROTEIN IN QUESTION, ppi, PTPN2) — (PTPN2, associated with™',
inflammatory bowel disease)

Path #3: (PROTEIN IN QUESTION, ppi ', PTPN2) — (PTPN2, associated with™!,
inflammatory bowel disease)

Path #4: (PROTEIN IN QUESTION, ppi_l, JAK3
associated with, inflammatory bowel disease

) — (JAK3, ppi, PTPN2) — (PTPN2,

)
Path #5: (PROTEIN IN QUESTION, ppi~*, JAK3) — (JAK3, ppi~', PTPN2) — (PTPN2,

)

)

associated with, inflammatory bowel disease

Path #6: (PROTEIN IN QUESTION, ppi~ !, JAK3) — (JAK3, ppi, PTPN2) — (PTPN2,
associated with™', inflammatory bowel disease)

Path #7: (PROTEIN IN QUESTION, ppi~', JAK3) — (JAK3, ppi~', PTPN2) — (PTPN2,
associated with™', inflammatory bowel disease)

Path #8: (PROTEIN IN QUESTION, ppi, JAK3) — (JAK3, ppi, PTPN2) — (PTPN2,
associated with, inflammatory bowel disease)

Path #9: (PROTEIN IN QUESTION, ppi~', JAK3) — (JAK3, ppi~!, KPNA1) — (KPNAL,
ppi~ !, PTPN2) — (PTPN2, associated with, inflammatory bowel disease)

Path #10: (PROTEIN IN QUESTION, ppi ', JAK3) — (JAK3, ppi, KPNA1) — (KPNA1, ppi !,
PTPN2) — (PTPN2, associated with, inflammatory bowel disease)

C.3 Paths connecting JAK1 — GO terms

Path #0: (PROTEIN IN QUESTION, ppi, TGFBR2) — (TGFBR2, interacts with, ATP binding)

Path #1: (PROTEIN IN QUESTION, ppi, MDK) (MDK, ppi, STAT1) — (STAT1, interacts
with, CCR5 chemokine receptor binding)

Path #2: (PROTEIN IN QUESTION, ppi, MDK) (MDK, ppi, JOSD2) — (JOSD2, ppi, LRTOMT)
— (LRTOMT, interacts with, developmental process) — (developmental process,
parent-child, cellular developmental process) — (cellular developmental process,
parent-child, cell differentiation)

Path #3: (PROTEIN IN QUESTION, ppi, MDK) (MDK, ppi, JOSD2) — (JOSD2, ppi, LRTOMT)
— (LRTOMT, interacts with, developmental process) — (developmental process,
parent-child, cellular developmental process) — (cellular developmental process,
parent-child, cell differentiation)

Path #4: (PROTEIN IN QUESTION, ppi, EIF2AK2) — (EIF2AK2, interacts with, response
to virus) — (response to virus, parent-child, cellular response to virus)

Path #5: (PROTEIN IN QUESTION, ppi, EIF2AK2) — (EIF2AK2, ppi, RPLPO) — (RPLPO,
ppi, RPS14) — (RPS14, ppi, RPS154) — (RPS15A, interacts with, response to virus) —
(response to virus, parent-child, cellular response to virus)

Path #6: (PROTEIN IN QUESTION, ppi, EIF2AK2) — (EIF2AK2, ppi, RPLPO) — (RPLPO,
ppi, TBP) (TBP, ppi, TNF) — (TNF, interacts with, response to virus) — (response to
virus, parent-child, cellular response to virus)

Path #7: (PROTEIN IN QUESTION, ppi, IL27RA) — (IL27RA, interacts with, cell
surface receptor signaling pathway) — (cell surface receptor signaling pathway,
parent-child, cytokine-mediated signaling pathway)

Path #8: (PROTEIN IN QUESTION, ppi, IFNLR1) — (IFNLR1, interacts with,
cytokine-mediated signaling pathway)

Path #9: (PROTEIN IN QUESTION, ppi, STAT1) — (STAT1, interacts with,
cytokine-mediated signaling pathway)
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Path #10: (PROTEIN IN QUESTION, ppi, OSMR) — (OSMR, interacts with,
cytokine-mediated signaling pathway)

Path #11: <PROTEIN IN QUESTION, ppi, IL27RA) — <IL27RA, interacts with,
cytokine-mediated signaling pathway)

Path #12: (PROTEIN IN QUESTION, ppi, STAT3) — (STAT3, interacts with, growth
hormone receptor signaling pathway) — (growth hormone receptor signaling pathway,
parent-child, growth hormone receptor signaling pathway via JAK-STAT)

Path #13: (PROTEIN IN QUESTION, ppi, JAK3) — (JAK3, interacts with, enzyme linked
receptor protein signaling pathway) — (enzyme linked receptor protein signaling
pathway, parent-child, transmembrane receptor protein tyrosine kinase signaling
pathway) — (transmembrane receptor protein tyrosine kinase signaling pathway,
parent-child, growth hormone receptor signaling pathway) — (growth hormone receptor
signaling pathway, parent-child, growth hormone receptor signaling pathway via
JAK-STAT)

Path #14: (PROTEIN IN QUESTION, interacts with, cytokine-mediated
signaling pathway) — (cytokine-mediated signaling pathway, parent-child,
interferon-gamma-mediated signaling pathway)

Path #15: <PROTEIN IN QUESTION, ppi, IFNLR1) — <IFNLR1, interacts with,
cytokine-mediated signaling pathway) — (cytokine-mediated signaling pathway,
parent-child, interleukin-10-mediated signaling pathway)

Path #16: (PROTEIN IN QUESTION, ppi, UBC) — (UBC, interacts with,
cytokine-mediated signaling pathway) — (cytokine-mediated signaling pathway,
parent-child, interleukin-10-mediated signaling pathway)

Path #17: (PROTEIN IN QUESTION, ppi, TEC) — (TEC, interacts with,
cytokine-mediated signaling pathway) — (cytokine-mediated signaling pathway,
parent-child, interleukin-10-mediated signaling pathway)

Path #18: <PROTEIN IN QUESTION, interacts with, cytokine-mediated
signaling pathway) — (cytokine-mediated signaling pathway, parent-child,
interleukin-10-mediated signaling pathway)

Path #19: (PROTEIN IN QUESTION, ppi, TSHR) — (TSHR, interacts with, cell

surface receptor signaling pathway) — (cell surface receptor signaling pathway,
parent-child, cytokine-mediated signaling pathway) — (cytokine-mediated signaling
pathway, parent-child, interleukin-10-mediated signaling pathway)

Path #20: (PROTEIN IN QUESTION, interacts with, cytokine-mediated
signaling pathway) — (cytokine-mediated signaling pathway, parent-child,
interleukin-15-mediated signaling pathway)

Path #21: (PROTEIN IN QUESTION, ppi, STAT1) — (STAT1, ppi, IL27RA) — (IL27RA,
interacts with, cell surface receptor signaling pathway) — (cell surface
receptor signaling pathway, parent-child, cytokine-mediated signaling pathway)
— (cytokine-mediated signaling pathway, parent-child, interleukin-15-mediated
signaling pathway)

Path #22: (PROTEIN IN QUESTION, ppi, EIF2AK2) — (EIF2AK2, ppi, TIRAP) —
(TIRAP, interacts with, cell surface receptor signaling pathway) — (cell surface
receptor signaling pathway, parent-child, cytokine-mediated signaling pathway)
— (cytokine-mediated signaling pathway, parent-child, interleukin-15-mediated
signaling pathway)

Path #23: (PROTEIN IN QUESTION, ppi, SOCS1) — (SOCS1, ppi, TIRAP) — (TIRAP,
interacts with, cell surface receptor signaling pathway) — (cell surface
receptor signaling pathway, parent-child, cytokine-mediated signaling pathway)
— (cytokine-mediated signaling pathway, parent-child, interleukin-15-mediated
signaling pathway)

Path #24: <PROTEIN IN QUESTION, interacts with, cytokine-mediated
signaling pathway) — (cytokine-mediated signaling pathway, parent-child,
interleukin-2-mediated signaling pathway)

Path #25: (PROTEIN IN QUESTION, ppi, STAT1) — (STAT1, ppi, IL27RA) — (IL27RA,
interacts with, cell surface receptor signaling pathway) — (cell surface
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receptor signaling pathway, parent-child, cytokine-mediated signaling pathway) —
(cytokine-mediated signaling pathway, parent-child, interleukin-2-mediated signaling
pathway)

Path #26: (PROTEIN IN QUESTION, ppi, JAK3) — (JAK3, interacts with,
interleukin-4-mediated signaling pathway)

Path #27: (PRDTEIN IN QUESTION, interacts with, cytokine-mediated
signaling pathway) — (cytokine-mediated signaling pathway, parent-child,
interleukin-6-mediated signaling pathway)

Path #28: (PROTEIN IN QUESTION, ppi, STAT1) — (STAT1, ppi, IL27RA) — (IL2T7RA,
interacts with, cell surface receptor signaling pathway) — (cell surface

receptor signaling pathway, parent-child, cytokine-mediated signaling pathway) —
(cytokine-mediated signaling pathway, parent-child, interleukin-6-mediated signaling
pathway)

Path #29: (PROTEIN IN QUESTION, ppi, EIF2AK2) — (EIF2AK2, ppi, TIRAP) —

(TIRAP, interacts with, cell surface receptor signaling pathway) — (cell surface
receptor signaling pathway, parent-child, cytokine-mediated signaling pathway) —
(cytokine-mediated signaling pathway, parent-child, interleukin-6-mediated signaling
pathway)

Path #30: (PROTEIN IN QUESTION, ppi, SOCS3) — (SOCS3, ppi, MAPK8IP1) — (MAPKSIP1,
ppi, SPAG6) — (SPAG6, ppi, SH2B2) — (SH2B2, interacts with, cytokine-mediated
signaling pathway) — (cytokine-mediated signaling pathway, parent-child,
interleukin-6-mediated signaling pathway)

Path #31: (PRDTEIN IN QUESTION, interacts with, cytokine-mediated
signaling pathway) — (cytokine-mediated signaling pathway, parent-child,
interleukin-7-mediated signaling pathway)

Path #32: <PROTEIN IN QUESTION, interacts with, cytokine-mediated
signaling pathway) — (cytokine-mediated signaling pathway, parent-child,
interleukin-9-mediated signaling pathway)

Path #33: (PROTEIN IN QUESTION, ppi, STAT1) — (STAT1, ppi, IL27RA) — (IL27RA,
interacts with, cell surface receptor signaling pathway) — (cell surface

receptor signaling pathway, parent-child, cytokine-mediated signaling pathway) —
(cytokine-mediated signaling pathway, parent-child, interleukin-9-mediated signaling
pathway)

Path #34: (PROTEIN IN QUESTION, ppi, PTPN2) — (PTPN2, ppi, STAT3) — (STAT3,
ppi, TSHR) — (TSHR, interacts with, cell surface receptor signaling pathway)
— (cell surface receptor signaling pathway, parent-child, cytokine-mediated
signaling pathway) — (cytokine-mediated signaling pathway, parent-child,
interleukin-9-mediated signaling pathway)

Path #35: (PROTEIN IN QUESTION, ppi, TEC) (TEC, ppi, VAV1) — (VAV1, ppi, TUBB)

— (TUBB, interacts with, cellular process) — (cellular process, parent-child,

signal transduction) — (signal transduction, parent-child, intracellular signal
transduction)

Path #36: (PROTEIN IN QUESTION, ppi, TEC) — (TEC, interacts with, intracellular
signal transduction)

Path #37: (PROTEIN IN QUESTION, ppi, PTPN6) — (PTPN6, interacts with,
intracellular signal transduction)

Path #38: (PROTEIN IN QUESTION, ppi, HAVCR2) — (HAVCR2, interacts with, metal ion
binding)

Path #39: (PROTEIN IN QUESTION, ppi, TEC) — (TEC, interacts with, non-membrane
spanning protein tyrosine kinase activity)

Path #40: (PROTEIN IN QUESTION, ppi, PTPN6) — (PTPN6, ppi, SYK) — (SYK, interacts
with, non-membrane spanning protein tyrosine kinase activity)

Path #41: (PROTEIN IN QUESTION, ppi, EIF2AK2) — (EIF2AK2, interacts with,
non-membrane spanning protein tyrosine kinase activity)
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Path #42: (PROTEIN IN QUESTION, ppi, MDK) — (MDK, interacts with, positive
regulation of cell adhesion) — (positive regulation of cell adhesion, parent-child,
positive regulation of cell-cell adhesion) — (positive regulation of cell-cell
adhesion, parent-child, positive regulation of homotypic cell-cell adhesion)

Path #43: (PROTEIN IN QUESTION, ppi, PRKAA1l) — (PRKAA1l, interacts with, positive
regulation of cellular protein localization) — (positive regulation of cellular
protein localization, parent-child, positive regulation of protein localization to
nucleus)

Path #44: (PROTEIN IN QUESTION, ppi, MAP3K5) — (MAP3K5, ppi, PIK3R1) — (PIK3R1,
ppi, PRKAA1l) — (PRKAA1l, interacts with, positive regulation of cellular protein
localization) — (positive regulation of cellular protein localization, parent-child,
positive regulation of protein localization to nucleus)

Path #45: (PROTEIN IN QUESTION, ppi, UBC) — (UBC, ppi, ARHGEF18) — (ARHGEF18,
interacts with, protein localization to cell-cell junction)

Path #46: (PROTEIN IN QUESTION, ppi, RACK1) — (RACK1, interacts with, protein
phosphatase binding)

Path #47: (PROTEIN IN QUESTION, ppi, SHOC2) — (SHOC2, interacts with, protein
phosphatase binding)

Path #48: (PROTEIN IN QUESTION, ppi, MAP3K5) — (MAP3K5, interacts with, protein
phosphatase binding)

Path #49: (PROTEIN IN QUESTION, ppi, TEC) — (TEC, interacts with, protein
phosphorylation)

Path #50: <PROTEIN IN QUESTION, ppi, TEC> (TEC, ppi, WAS> — <WAS, ppi, NCK2> (NCK2,
ppi, PKP4) — (PKP4, ppi, MKNK1) — (MKNK1, interacts with, protein phosphorylation)

Path #51: (PROTEIN IN QUESTION, ppi, TGFBR2) — (TGFBR2, interacts with, protein
phosphorylation)

Path #52: <PROTEIN IN QUESTION, ppi, MAP3K5) — <MAP3K5, interacts with, protein
kinase activity) — (protein kinase activity, parent-child, protein tyrosine kinase
activity)

Path #53: (PROTEIN IN QUESTION, ppi, STAT1) — (STAT1, interacts with, receptor
signaling pathway via JAK-STAT)

Path #54: (PROTEIN IN QUESTION, ppi, SOCS3) — (SOCS3, interacts with, receptor
signaling pathway via JAK-STAT)

Path #55: (PROTEIN IN QUESTION, ppi, SLC15A1) — (SLC15A1, ppi, OPA3) — (OPA3,
interacts with, response to stimulus) — (response to stimulus, parent-child,
response to chemical) — (response to chemical, parent-child, response to
antibiotic)

Path #56: (PROTEIN IN QUESTION, ppi, MDK) (MDK, ppi, STAT1) — (STAT1, interacts
with, type I interferon signaling pathway)

Path #57: (PROTEIN IN QUESTION, ppi, UBC) — (UBC, interacts with,
cytokine-mediated signaling pathway) — (cytokine-mediated signaling pathway,
parent-child, type III interferon signaling pathway)

Path #58: (PROTEIN IN QUESTION, ppi, IL27RA) — (IL27RA, interacts with, cell
surface receptor signaling pathway) — (cell surface receptor signaling pathway,
parent-child, cytokine-mediated signaling pathway) — (cytokine-mediated signaling
pathway, parent-child, type III interferon signaling pathway)

Path #59: (PROTEIN IN QUESTION, ppi, IFNLR1) — (IFNLR1, interacts with,
cytokine-mediated signaling pathway) — (cytokine-mediated signaling pathway,
parent-child, type III interferon signaling pathway)

Path #60: (PROTEIN IN QUESTION, ppi, TEC) — (TEC, interacts with,
cytokine-mediated signaling pathway) — (cytokine-mediated signaling pathway,
parent-child, type III interferon signaling pathway)
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Path #61: (PROTEIN IN QUESTION, interacts with, cytokine-mediated signaling
pathway) — (cytokine-mediated signaling pathway, parent-child, type III interferon
signaling pathway)

Path #62: (PROTEIN IN QUESTION, ppi, STAT2) — (STAT2, interacts with,
ubiquitin-like protein ligase binding) — (ubiquitin-like protein ligase binding,
parent-child, ubiquitin protein ligase binding)

Path #63: (PROTEIN IN QUESTION, ppi, STAT1) — (STAT1, interacts with,
ubiquitin-like protein ligase binding) — (ubiquitin-like protein ligase binding,
parent-child, ubiquitin protein ligase binding)

Path #64: (PROTEIN IN QUESTION, ppi, MDM2) — (MDM2, interacts with, ubiquitin
protein ligase binding)
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D Case Study: IL17A

We report both LLM response and the corresponding paths connecting IL17A with IBD, and with its
biological processes and molecular functions as the input context.

D.1 LLM response
Advantages:

* Biologic plausibility: The protein connects to IL-17/IL-17A-mediated and
broader cytokine-mediated signaling (via IL17RA/IL17RC and TRAF3IP2), which
drive pro-inflammatory cytokine outputs (links to positive regulation
of IL-6, IL-12, IL-16 via PELI1/PARK7). Inhibition could dampen these
inflammatory cascades.

* Network centrality to immune activation: Multiple PPIs with TRAF6 and
downstream adapters place the protein within innate/adaptive immune response
pathways relevant to mucosal inflammation.

e Indirect disease linkage: A path to IBD exists through TRAF6 -+ RIPK2 (RIPK2
associated with IBD), providing a mechanistic bridge between the protein and
an established IBD signaling axis.

Disadvantages:

* Weak and indirect disease association: The only IBD link is via TRAF6 -
RIPK2; there is no direct association of the protein itself with IBD.

* Potential loss of host defense: The protein is connected to defense
responses to bacteria (including Gram-negative) and fungi (via NOD2/TRAF6
and MALT1 paths). Inhibition could impair mucosal antimicrobial defense.

¢ Possible barrier/repair effects: Links to epithelial/keratinocyte
proliferation suggest a role in epithelial biology; inhibition may hinder
mucosal repair.

¢ Broad signaling involvement: Extensive connections to cell surface receptor
signaling (including IL-17 and Notch pathway edges) and protein dimerization
suggest wide immunologic roles, raising safety concerns if inhibited.

Overall assessment:
¢ Evidence supports involvement in IL-17-driven inflammatory signaling, so

inhibition could reduce pro-inflammatory cytokines.

* However, association with IBD is weak and only indirect; therapeutic
relevance is uncertain.

* Strong ties to antibacterial/antifungal defense and epithelial biology raise
safety risks if inhibited.

* Overall, this appears a low-priority IBD target for inhibition pending
disease-specific functional validation in intestinal models and patient
tissues.
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D.2 Paths connecting IL17A — IBD

Path #0: (PROTEIN IN QUESTION, ppi ', TRAF6) — (TRAF6, ppi, RIPK2) — (RIPK2,
associated with™', inflammatory bowel disease)

D.3 Paths connecting IL17A — GO terms

Path #0: (PROTEIN IN QUESTION, ppi, IL17RA) — (IL17RA, interacts with, cell
surface receptor signaling pathway) — (cell surface receptor signaling pathway,
parent-child, Notch signaling pathway)

Path #1: (PROTEIN IN QUESTION, ppi, TRAF3IP2) — (TRAF3IP2, ppi, IL17RA) — (IL17RA,
interacts with, cell surface receptor signaling pathway) — (cell surface receptor
signaling pathway, parent-child, Notch signaling pathway)

Path #2: (PROTEIN IN QUESTION, interacts with, immune response) — (immune response,
parent-child, adaptive immune response)

Path #3: (PROTEIN IN QUESTION, ppi, DPP8) — (DPP8, interacts with, immune response)
— (immune response, parent-child, adaptive immune response)

Path #4: (PROTEIN IN QUESTION, ppi, TRAF6> — (TRAFG, interacts with, cellular
response to cytokine stimulus) — (cellular response to cytokine stimulus,
parent-child, cellular response to interleukin-1)

Path #5: (PROTEIN IN QUESTION, ppi, TRAF6) — (TRAF6, ppi, NOD2) — (NOD2, interacts
with, defense response to bacterium) — (defense response to bacterium, parent-child,
defense response to Gram-negative bacterium)

Path #6: (PROTEIN IN QUESTION, ppi, TRAF6) — (TRAF6, ppi, NOD2) — (NOD2, interacts
with, defense response) — (defense response, parent-child, defense response to
other organism) — (defense response to other organism, parent-child, defense
response to bacterium) — (defense response to bacterium, parent-child, defense
response to Gram-negative bacterium)

Path #7: (PROTEIN IN QUESTION, ppi, TRAF6) — (TRAF6, ppi, MALT1) — (MALT1,
interacts with, response to fungus) — (response to fungus, parent-child, defense
response to fungus)

Path #8: (PROTEIN IN QUESTION, interacts with, immune response) — (immune response,
parent-child, defense response to other organism) — (defense response to other
organism, parent-child, defense response to fungus)

Path #9: (PROTEIN IN QUESTION, ppi, IL17RA) — (IL17RA, ppi, LYZL1) — (LYZL1,
interacts with, metabolic process) — (metabolic process, parent-child, organic
substance metabolic process) — (organic substance metabolic process, parent-child,
macromolecule metabolic process) — (macromolecule metabolic process, parent-child,
gene expression)

Path #10: (PROTEIN IN QUESTION, interacts with, immune response) — (immune
response, parent-child, defense response to other organism) — (defense response
to other organism, parent-child, innate immune response)

Path #11: (PROTEIN IN QUESTION, interacts with, cytokine-mediated
signaling pathway) — (cytokine-mediated signaling pathway, parent-child,
interleukin-17-mediated signaling pathway)

Path #12: (PROTEIN IN QUESTION, ppi, IL17RA) — (IL17RA, interacts with, cell
surface receptor signaling pathway) — (cell surface receptor signaling pathway,
parent-child, cytokine-mediated signaling pathway) — (cytokine-mediated signaling
pathway, parent-child, interleukin-17-mediated signaling pathway)

Path #13: <PROTEIN IN QUESTION, interacts with, cytokine-mediated
signaling pathway) — (cytokine-mediated signaling pathway, parent-child,
interleukin-17A-mediated signaling pathway)

Path #14: (PROTEIN IN QUESTION, ppi, IL17RA) — (IL17RA, interacts with, cell
surface receptor signaling pathway) — (cell surface receptor signaling pathway,
parent-child, cytokine-mediated signaling pathway) — (cytokine-mediated signaling
pathway, parent-child, interleukin-17A-mediated signaling pathway)
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Path #15: (PROTEIN IN QUESTION, ppi, TRAF6) (TRAF6, ppi, UBC) — (UBC, ppi,
TNFRSF25) — (TNFRSF25, interacts with, cell surface receptor signaling pathway)
— (cell surface receptor signaling pathway, parent-child, cytokine-mediated
signaling pathway) — (cytokine-mediated signaling pathway, parent-child,
interleukin-17A-mediated signaling pathway)

Path #16: (PROTEIN IN QUESTION, ppi, TRAF6) (TRAF6, ppi, UBC) — (UBC, ppi,
TNFRSF10B) — (TNFRSF10B, interacts with, cell surface receptor signaling pathway)
— (cell surface receptor signaling pathway, parent-child, cytokine-mediated
signaling pathway) — (cytokine-mediated signaling pathway, parent-child,
interleukin-17A-mediated signaling pathway)

Path #17: (PROTEIN IN QUESTION, ppi, TRAF6) (TRAF6, ppi, UBC) — (UBC, ppi,
IFITM1) — (IFITM1, interacts with, cell surface receptor signaling pathway)
— (cell surface receptor signaling pathway, parent-child, cytokine-mediated
signaling pathway) — (cytokine-mediated signaling pathway, parent-child,
interleukin-17A-mediated signaling pathway)

Path #18: (PROTEIN IN QUESTION, ppi, TRAF6) (TRAF6, ppi, UBC) — (UBC, ppi,
PIP4K2B) — (PIP4K2B, interacts with, cell surface receptor signaling pathway)
— (cell surface receptor signaling pathway, parent-child, cytokine-mediated
signaling pathway) — (cytokine-mediated signaling pathway, parent-child,
interleukin-17A-mediated signaling pathway)

Path #19: (PROTEIN IN QUESTION, ppi, TRAF6) (TRAF6, ppi, UBC) — (UBC, ppi, FADD) —
(FADD, interacts with, cell surface receptor signaling pathway) — (cell surface
receptor signaling pathway, parent-child, cytokine-mediated signaling pathway)

— (cytokine-mediated signaling pathway, parent-child, interleukin-17A-mediated
signaling pathway)

Path #20: (PROTEIN IN QUESTION, ppi, TRAF6) — (TRAF6, ppi, UCHL1) — (UCHL1,
interacts with, cell population proliferation) — (cell population proliferatiom,
parent-child, epithelial cell proliferation) — (epithelial cell proliferationm,
parent-child, keratinocyte proliferation)

Path #21: <PROTEIN IN QUESTION, ppi, TRAF6> — (TRAF6, ppi, PELI1> — (PELI1,
interacts with, positive regulation of cytokine production) — (positive regulation
of cytokine production, parent-child, positive regulation of interleukin-12
production)

Path #22: (PROTEIN IN QUESTION, ppi, TRAF6) — (TRAF6, ppi, PELI1) — (PELI1,
interacts with, positive regulation of cytokine production) — (positive regulation
of cytokine production, parent-child, positive regulation of interleukin-16
production)

Path #23: (PROTEIN IN QUESTION, ppi, TRAF6) — (TRAF6, ppi, PARK7) — (PARK7,
interacts with, positive regulation of gene expression) — (positive regulation
of gene expression, parent-child, positive regulation of cytokine production) —
(positive regulation of cytokine production, parent-child, positive regulation of
interleukin-16 production)

Path #24: (PROTEIN IN QUESTION, ppi, TRAF6) — (TRAF6, ppi, PELI1) — (PELI1,
interacts with, positive regulation of cytokine production) — (positive regulation
of cytokine production, parent-child, positive regulation of interleukin-6
production)

Path #25: (PROTEIN IN QUESTION, ppi, TRAF6) — (TRAF6, interacts with, protein
binding) — (protein binding, parent-child, protein dimerization activity) —
(protein dimerization activity, parent-child, protein heterodimerization activity)

Path #26: (PROTEIN IN QUESTION, ppi, LONP2) — (LONP2, interacts with, protein
binding) — (protein binding, parent-child, protein dimerization activity) —
(protein dimerization activity, parent-child, protein heterodimerization activity)

Path #27: (PROTEIN IN QUESTION, ppi, TRAF3IP2) — (TRAF3IP2, ppi, FBXWil) —
(FBXW11l, interacts with, protein binding) — (protein binding, parent-child, protein
dimerization activity) — (protein dimerization activity, parent-child, protein
heterodimerization activity)
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Path #28: (PROTEIN IN QUESTION, interacts with, protein binding) — (protein
binding, parent-child, protein dimerization activity) — (protein dimerization
activity, parent-child, protein homodimerization activity)

Path #29: (PROTEIN IN QUESTION, ppi, IL17RC) — (IL17RC, interacts with, protein
binding) — (protein binding, parent-child, protein dimerization activity) —
(protein dimerization activity, parent-child, protein homodimerization activity)

Path #30: (PROTEIN IN QUESTION, ppi, IL17RC) — (IL17RC, ppi, DISP1) — (DISP1,
interacts with, protein binding) — (protein binding, parent-child, protein
dimerization activity) — (protein dimerization activity, parent-child, protein
homodimerization activity)

Path #31: (PROTEIN IN QUESTION, ppi, IL17RC) — (IL17RC, ppi, DISP1) — (DISP1,
interacts with, protein binding) — (protein binding, parent-child, protein
dimerization activity) — (protein dimerization activity, parent-child, protein
homodimerization activity)
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