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Abstract—The analysis of periodic processes is an important
area of signal analysis. We introduce an algorithm (EQUIMEA),
which analyses multi-period data sets and can be applied to the
analysis of periodic processes with a single generator and the
deinterleaving and analysis of processes with multiple generators.
We address both theory and computation by finishing with
a computational study, demonstrating how the continuants of
different periods affect the efficiency of the algorithm.

I. INTRODUCTION

A fundamental problem in Harmonic Analysis and Signal
Processing is the analysis of point processes. Is it possible
to identify one (or several) periodic generator(s)? If there
are several, can we deinterleave the signals? We present an
algorithm (with theoretical justification) that answers these
questions. This works on all periodic point processes, but
in particular, when the standard tools, e.g., Wiener’s Pe-
riodogram, break down. The procedure is computationally
straightforward, stable with respect to noise, and converges
quickly. In the case of a single generator, a preliminary
algorithm uses number theory in novel ways to extract the
underlying period by modifying the Euclidean algorithm to
determine the period from a sparse set of noisy measurements
[5], [6], [12]. The elements of the set are the noisy occurrence
times of a periodic event with (perhaps very many) missing
measurements. Variations on equidistribution theory lead to
a procedure that can be applied to the deinterleaving and
analysis of processes with multiple generators. The proposed
algorithms are computationally straightforward and converge
quickly. The preliminary algorithm is justified by a theorem
that shows, for a set of randomly chosen positive integers, the
probability that they do not all share a common prime factor
approaches one quickly as the cardinality of the set increases.
The theorem is in essence a probabilistic interpretation of the
Riemann Zeta Function.

II. SINGLE GENERATOR CASE: THE MEA

We first analyze a single periodic pulse train, getting an
estimate of the underlying period. This estimate, while not
maximum likelihood, is used as initialization in a three-step
algorithm that achieves the Cramer-Rao bound for moderate
noise levels, as shown by comparing Monte Carlo results
with the Cramer-Rao bounds [5], [6], [12]. The data sets
arise in radar pulse repetition interval (PRI) analysis, in bit
synchronization in communications, in biomedical applica-
tions, and other scenarios. We assume our data is a finite set
of real numbers S = {sj}nj=1 , with sj = kjτ + ϕ + ηj ,

where τ (the period) is a fixed positive real number, the kj’s
are non-repeating positive integers, ϕ (the phase) is a real
random variable uniformly distributed over the interval [0, τ),
and the ηj’s are zero-mean independent identically distributed
(iid) error terms. We assume that the ηj’s have a symmetric
probability density function (pdf), and that |ηj | < τ

2 for all j.
We develop an algorithm for isolating the period of the process
from this set, which we shall assume is (perhaps very) sparse.
In the noise-free case our basic algorithm, given below, is
equivalent to the Euclidean algorithm and converges with very
high probability given only n = 10 data samples, independent
of the number of missing measurements. We assume that the
original data set is in descending order, i.e., sj ≥ sj+1. Let
τ̂ denote the value the algorithm gives for τ , and let “←−”
denote replacement, e.g., “a ←− b” means that the value of
the variable a is to be replaced by the current value of the
variable b.

The Modified Euclidean Algorithm (MEA)

Initialize: Set iter = 0.
1.) [Adjoin 0 after first iteration.] If iter > 0, then S ←−
S ∪ {0}.
2.) [Form the new set with elements (sj − sj+1).] Set sj ←−
(sj − sj+1).
3.) Sort the elements in descending order.
4.) [Eliminate noise.] If 0 ≤ sj ≤ η0, then S ←− S \ {sj}.
5.) The algorithm terminates if S has only one element s1.
Declare τ̂ = s1. If not, then set
iter←− (iter+ 1). Go to (1.).

Here, 0 < η0 < τ is a noise threshold. Noise-free simu-
lation examples demonstrate successful estimation of τ for
n = 10 with 99.99% of the possible measurements missing.
The algorithm is based on several theoretical results. First,
we can modify the basic Euclidean algorithm, allowing a
reformulation using subtraction rather than division. Given a
set {k1τ, . . . , knτ} with gcd γ, where γ = τ gcd(k1, . . . , kn),
we say that the elements in the set are commensurate to γ.
The number γ serves as the fundamental unit for the set. Every
element in the set can be expressed as a multiple of γ. For
example, the elements of the set { 12 ,

5
4 , 2} are commensurate

to 1
4 . If no such fundamental unit exists, we call the elements

of the set incommensurate. All finite sets of rational numbers
are commensurate. Add a single irrational number to the set
and this new set is incommensurate. The standard Euclidean
algorithm involves repeated division. In our problem, we are



dealing with numbers that are essentially “noisy integers.”
Remainder terms could be noise and thus could be non-zero
numbers arbitrarily close to zero. Subsequent iterations in the
procedure may involve dividing by such small values, resulting
in arbitrarily large numbers. Thus, the standard algorithm is
unstable under perturbation by noise. However, the algorithm
may be changed so that the process of subtraction replaces
division as follows:
gcd(k1, . . . , kn) = gcd((k1 − k2), . . . , (kn−1 − kn), kn) .

We have shown that our procedure almost surely con-
verges to the period by proving the following result. The
Riemann Zeta Function is defined on the complex half plane
{z ∈ C : ℜ(z) > 1} by ζ(z) =

∑∞
n=1 n

−z . Euler
demonstrated the connection of ζ with number theory by
showing that ζ(z) =

∏∞
j=1

1
1−(pj)−z , ℜ(z) > 1 , where P =

{p1, p2, p3, . . .} = {2, 3, 5, . . .} is the set of all prime numbers.
In the following, we let P{·} denote probability, card{·}
denote the cardinality of the set {·}, and let {1, . . . , ℓ}n denote
the sublattice of positive integers in Rn with coordinates c
such that 1 ≤ c ≤ ℓ. Therefore, Nn(ℓ) = card{(k1, . . . , kn) ∈
{1, . . . , ℓ}n : gcd(k1, . . . , kn) = 1} is the number of relatively
prime elements in {1, . . . , ℓ}n. Two different proofs of this
result may be found in [5], [6].

Theorem II.1. Let Nn(ℓ) = card{(k1, . . . , kn) ∈
{1, . . . , ℓ}n : gcd(k1, . . . , kn) = 1} . For n ≥ 2, we have
that

lim
ℓ→∞

Nn(ℓ)

ℓn
= [ζ(n)]−1 . (II.1)

We have that [ζ(n)]−1 −→ 1 quickly as n increases. In fact,
the rate of convergence is exponential – limω→∞[ζ(ω)]−1 =
1 , converging to 1 from below faster than (1 − 21−ω). This
estimate shows that the algorithm produces the period in the
noise-free case with as few as 10 elements.

III. MULTIPLE GENERATOR CASE: THE EQUIMEA

The analysis of the multi-periodic case uses the MEA
procedure as the “engine” of a larger algorithm. Our data
model is the union of M copies of our previous datasets,
each with different periods or “generators” Γ = {τi}, kij’s
and phases. Let τ = maxi{τi}. Then our data is S =⋃M

i=1{ϕi+kijτi+ηij}ni
j=1 , where ni is the number of elements

from the ith generator, {kij} is a linearly increasing sequence
of natural numbers with missing observations, ϕi is a random
variable uniformly distributed in [0, τi), and the ηij’s are zero-
mean iid Gaussian with standard deviation 3σij < τ/2. We
think of the data as events from M periodic processes, and
represent it, after reindexing, as S = {αl}Nl=1. We difference as
in the MEA, but we compute all of the differences. We repeat
this m times, and saving the elements from each iteration.
We form a union of all of these data elements. The relative
primeness of data generated by one generator will “fill in” the
missing elements for that generator, whereas the data from two
different generators will become “Weyl flat.” The number of
times m that this process is applied is determined experimen-
tally. Assuming only minimal knowledge of the range of {τi},

namely bounds TL, TU such that 0 < TL ≤ τi ≤ TU , we phase
wrap the data by the mapping Φρ(αl) =

〈
αl

ρ

〉
= αl

ρ −
⌊
αl

ρ

⌋
,

where ρ ∈ [TL, TU ], and ⌊·⌋ is the floor function. Thus ⟨·⟩ is
the fractional part, and so Φρ(αl) ∈ [0, 1).

Definition III.1. A sequence of real random variables {xj} ⊂
[0, 1) is essentially uniformly distributed in the sense of Weyl
if given a, b, 0 ≤ a < b < 1, 1

ncard{1 ≤ j ≤ n : xj ∈
[a, b]} −→ (b− a) as n −→∞ almost surely.

We recall Weyl’s Theorem

Theorem III.2 (Weyl). Given a fixed irrational number γ,
then for every a, b such that 0 ≤ a < b < 1,

lim
n→∞

1

n
card{1 ≤ k ≤ n : a ≤ ⟨kγ⟩ ≤ b} = (b− a) . (III.1)

For our variation of Weyl’s Theorem, we assume that for
each i, {kij} is a linearly increasing infinite sequence of nat-
ural numbers with missing observations such that kij −→ ∞
as j −→∞. We must make this assumption because the result
is only approximately true for a finite length sequence.

Theorem III.3. For almost every (a.e.) choice of ρ (in the
sense of Lebesgue measure) Φρ(αl) is essentially uniformly
distributed in the sense of Weyl.

Proof. Let ρ ∈ [TL, TU ], ⌊·⌋ be the floor function, and ⟨·⟩ be
the fractional part. The mapping

Φρ(sl) =

〈
sl
ρ

〉
=

sl
ρ
−
⌊
sl
ρ

⌋
, (III.2)

is a measurable and measure-preserving mapping into [0, 1).

Claim . For a.e. choice of ρ, Φρ is ergodic.
Proof of Claim. Normalize [TL, TU ) to [0, 1) Let X be a
absolutely and square Lebesgue integrable random variable,
i.e., X ∈ L1 ∩ L2. Therefore, we can expand X in a Fourier
series

X(t) =
∑
n∈Z

X̂[n] exp(iπnt) , (III.3)

with the Fourier coefficients X̂[n] given by

X̂[n] =

∫ 1

0

X(t) exp(−iπnt) dt . (III.4)

Then
X(Φρ(t)) =

∑
n∈Z

X̂[n] exp(iπnt/ρ) . (III.5)

For X to be invariant,

X̂[n](1− exp(iπnt/ρ)) = 0 for all n (III.6)

for a.e. t. This implies either

X̂[n] = 0 or exp(iπnt/ρ) = 1 . (III.7)

But since ρ is irrational a.e., by Weyl’s Equidistribution
Theorem,

exp(iπnt/ρ) ̸= 1 (III.8)

on a set of full measure. □



Moreover, the set of ρ’s for which this is not true are rational
multiples of {τi}. Since Q is a countable set and a finite union
of countable sets is countable, the set of rational multiples
of {τi} is countable, and therefore a set of measure zero.
Thus, except for those values, Φρ(sl) is essentially uniformly
distributed in [0, 1). The values at which Φρ(sl) = 0 almost
surely are ρ ∈ {τi/n : n ∈ N}, which is a set of measure zero.
These values of ρ cluster at zero, but spread out for lower
values of n. The equidistribution of Φρ(sl) for a.e. ρ leads to
a “flat” range [0, η0] for S for ρ ̸∈ {τi/n : n ∈ N} . Given that
we have to produce an answer in finite time, and therefore,
have to terminate, we pre-set a noise floor η0 and two degree
of accuracy parameters, Eβ and Eη . The first, Eβ , sets a “Weyl
equidistribution floor,” while Eη sets an iterative convergence
baseline. The convergence rate of the algorithm is related to
η0, Eβ and Eη . At each step, the data is sorted in descending
order Siter = {sl}Nl=1 = {s1, . . . , sN} . We phase wrap the
data by computing modulus of the spectrum, i.e., compute
|Speciter(τ)| = |

∑N
l=1 e

(2πisl/τ)| . The values of |Speciter(τ)|
will have peaks at the periods τi and their harmonics (τi)/k.
The “noise-like” behavior of Φρ(αl) for a.e. ρ leads to a
“flat” range [0, E ] for S for ρ ̸∈ {τi/n : n ∈ N}. In turn,
this gives the following. Let i0 denote the index of the most
prolific generator. We then isolate the data generated by τi0 by
convolution with a pulse train of width τi0 , and subtract it out
of the original data. We then repeat the process, terminating
when we have the empty set. We refer to this as the EQUIMEA
algorithm.

The EQUIMEA Algorithm

Initialize: Sort the elements of S in descending order. Form
the new set with elements (sl− sl+1). Set sl ←− (sl− sl+1).
Set iter = 1, i = 1, η0, Eβ , and Eη .
1.) [Adjoin 0.] Siter ←− S ∪ {0}.
2.) [Sort.] Sort the elements of Siter in descending order.
3.) [Compute all differences.] Set Siter =

⋃
(sj − sk) with

sj > sk.
4.) [Eliminate noise.] If 0 ≤ sj ≤ η0, then S ←− S \ {sj}.
5.) [Adjoin previous iteration.] Form Siter ←− Siter∪Siter−1,
sort and reindex.
6.) [Compute spectrum.] Compute |Speciter(τ)| =
|
∑N

l=1 e
(2πisl/τ)| .

7.) [Threshold.] Choose the rightmost peak. Label it as τiter.
8.) [Test.] If |Speciter(τiter)| > Eβ and |τiter−τiter−1| < Eη ,
declare τ̂i = τiter.
If not, iter←− (iter+ 1). Go to 1.).
9.) [Remove τi and harmonics.] Given τi, remove it and
its harmonics |Speciter(τ)| for τ̂i/m, m ∈ N. Label as
Notchiter(τ).
10.) [Recompute frequency notched spectrum.] Compute
|Speciter(τ)− Notchiter(τ)| .
11.) [Threshold.] If |Speciter(τ) − Notchiter(τ)| ≤ Eβ
algorithm terminates. Else, let i←− i+ 1. Go to step 7.).

We then have to deinterleave the data. We use a standard
discrete matched filtering algorithm, correlating a known de-
layed signal (a “template”) with an unknown signal to detect

Fig. 1. Two Periods Original Data

Fig. 2. Two Periods EQUIter2 Spectrum

the presence of the template in the unknown signal. Here,
our known signal has the form

∑
k∈Z δ(t − kτi) , a pulse

train of period τi with no missing observations, and our
unknown signal consists of those elements of the original data
S generated by all of the underlying periods Γ = {τi}.

Given the original data and the set of generating periods
{τ1, . . . , τn}, convolve the data with

∑
k∈Z δ(t − kτ1) . This

convolution will identify the elements in the original data set
S that are generated by the generating period τ1. Call these
elements Sτ1 . Let S2 = S\Sτ1 . Convolve S2 with

∑
k∈Z δ(t−

kτ2) . This convolution will identify the elements in the data
set S2 that are generated by the generating period τ2. Call
these elements Sτ2 . Let S3 = S\Sτ2 . Repeat the process for τ3
up to τn. This process deinterleaves the data into components
generated by individual generators τi.

We now demonstrate the algorithm. The data in Figure 1 has
two underlying periods equaling 1 and φ = (1+

√
5)/2, with

90% of the information randomly removed, and 10% jitter
noise. Figure 2 shows the |Siter| after two iterations. The two
periods are clearly visible as outside nodes. The original data
deinterleaved (red – 1, green – φ) is in Figure 3.

Fig. 3. Two Periods Deinterleaved



IV. THEORY VS. COMPUTATION

This brings up two important points. First, if two underlying
processes have commensurate (or even equal) periods, the
EQUIMEA will first capture the largest of the periods (or the
period). It is highly probable that the two or more events will
not have the same phase. This data can then be separated by
the deinterleaving process.

The second point is more subtle, and leads to a discussion of
computability. The strengths of the signals |Speciter| is reliant
on the fact that the generators are incommensurate, and so
the differences of data elements (φi + kijτi + ηij) − (φi′ +
ki′j′τi′ + ηi′j′) , for i ̸= i′, are incommensurate to τi and τi′ .
These data elements in |Speciter| become “Weyl flat.” But this
is a function of the degree of the accuracy of the computation,
the ergodicity of the periods relative to each other, and, if
applicable, to Diophantine approximations of the periods. We
note that very deep work of Katok, Stepin, Margulis, et al.
[9], [10] addresses this.

The data in Figure 1 had two underlying periods equaling 1
and φ = (1 +

√
5)/2, with 90% of the information randomly

removed and 10% jitter noise. Figure 2 shows |Speciter| after
two iterations. By proceeding right to left, one can easily
see the two underlying periods. Each will reinforce the data
elements from the specific generator, allowing the elements to
be extracted. The algorithm “backfilled” the multiples of 1 and
φ = (1 +

√
5)/2, while the data from two different periods

became “Weyl flat.” There was not only a sufficient amount
of data, but also, the ergodicity of the periods relative to each
other, played a role in making the periods stand out against the
“flat“ data. Ergodicity can be demonstrated with two numbers
– φ = 1+

√
5

2 and L =
∑

1/10k!. Here, φ, the Golden Mean,
is poorly approximated by rationals, whereas L is a Liouville
number, a transcendental well approximated by rationals.
Definition : A real number β is a Liouville number, denoted by
β ∈ L, if β is irrational and if for every integer m ≥ 2, there
exists integers p, q with q ≥ 2 such that |β − p/q| < 1/|q|m.

Liouville developed L as a special class of transcendentals.
The algebraic irrationals are not a subset L. The complement
of L includes poorly approximated by rationals. The Golden
Mean φ = (1 +

√
5)/2 is the least rapidly approximated, and

this is seen in its continuant [1; 1]. In contrast, the continuant
of L is [0; 9, 11, 99, . . .], with gaps between increasingly
large sequences of 9’s. In terms of their approximation by
rationals, φ and L are quite different. |Speciter| will become
“Weyl flat” considerably more quickly for φ than L. The
ergodicity of the periods relative to each other, plays a role
in making the periods stand out against the “flat” data. In this
sense, although Weyl’s theorem holds for all irrationals, its
“numerical erogdicity” is a function of the continuants, and
where these continuants are situated between φ and L. This
is evident in the following numerical computation. We plot
exp(2πinτj) for τ1 = φ = 1+

√
5

2 and τ2 = L =
∑

1/10k!.
In Figure 4, we see the ergodicity of φ, essentially filling the
circle with only 300 points. In contrast, Figure 5 shows that
L at first seems to follow the distribution of τ = 11/100, and,

Fig. 4. φ 300 dots

Fig. 5. L 3000 dots

even after 3000 points, has noticeable gaps. But L is irrational,
and therefore, by Weyl’s Theorem, the points will eventually
fill in. Numerically, they do so, albeit at a much slower rate.

However, encountering an element of L is unlikely.

Theorem IV.1. L has Lebesgue measure zero.

In fact, L has σ-dimensional Hausdorff measure zero for all
σ > 0.
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