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ABSTRACT

Given a database of bit strings A1, . . . , Am ∈ {0, 1}n, a fundamental data struc-
ture task is to estimate the distances between a given query B ∈ {0, 1}n with
all the strings in the database. In addition, one might further want to ensure the
integrity of the database by releasing these distance statistics in a secure manner.
In this work, we propose differentially private (DP) data structures for this type of
tasks, with a focus on Hamming and edit distance. On top of the strong privacy
guarantees, our data structures are also time- and space-efficient. In particular, our
data structure is ϵ-DP against any sequence of queries of arbitrary length, and for
any query B such that the maximum distance to any string in the database is at
most k, we output m distance estimates. Moreover,

• For Hamming distance, our data structure answers any query in Õ(mk +
n) time and each estimate deviates from the true distance by at most
Õ(k/eϵ/ log k);

• For edit distance, our data structure answers any query in Õ(mk2 +
n) time and each estimate deviates from the true distance by at most
Õ(k/eϵ/(log k logn)).

For moderate k, both data structures support sublinear query operations in the
combined size of the query and its output. We obtain these results via a novel
adaptation of the randomized response technique as a bit flipping procedure, ap-
plied to the sketched strings.

1 INTRODUCTION

Estimating string distances is one of the most fundamental problems in computer science and in-
formation theory, with rich applications in high-dimensional geometry, computational biology and
machine learning. The problem could be generically formulated as follows: given a collection of
strings A1, . . . , Am ∈ Σn where Σ is the alphabet, the goal is to design a data structure to preprocess
these strings such that when a query B ∈ Σn is given, the data structure needs to quickly output esti-
mates of ∥Ai−B∥ for all i ∈ [m], where ∥ · ∥ is the distance of interest. Assuming the symbols in Σ
can allow constant time access and operations, a naive implementation would be to simply compute
all the distances between Ai’s and B, which would require O(mn) time. Designing data structures
with o(mn) query time has been the driving research direction in string distance estimations. To
make the discussion concrete, in this work we will focus on binary alphabet (Σ = {0, 1}) and for
distance, we will study Hamming and edit distance. Hamming distance (Hamming, 1950) is one
of the most natural distance measurements for binary strings, with its deep root in error detecting
and correction for codes. It finds large array of applications in database similarity searches (Indyk
& Motwani, 1998; Charikar, 2002; Norouzi et al., 2012) and clustering algorithms (Huang, 1997;
Huang & Ng, 1999).

Compared to Hamming distance, edit distance or the Levenshtein distance (Levenshtein, 1966) could
be viewed as a more robust distance measurement for strings: it counts the minimum number of
operations (including insertion, deletion and substitution) to transform from Ai to B. To see the
robustness compared to Hamming distance, consider Ai = (01)n and B = (10)n, the Hamming
distance between these two strings is n, but Ai could be easily transformed into B by deleting the
first bit and adding a 0 to the end, yielding an edit distance of 2. Due to its flexibility, edit distance
is particularly useful for sequence alignment in computational biology (Wang et al., 2015; Young
et al., 2021; Berger et al., 2021), measuring text similarity (Navarro, 2001; Sidorov et al., 2015) and
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natural language processing, speech recognition (Fiscus et al., 2006; Droppo & Acero, 2010) and
time series analysis (Marteau, 2009; Gold & Sharir, 2018).

In addition to data structures with fast query times, another important consideration is to ensure the
database is secure. Consider the scenario where the database consists of private medical data of m
patients, where each of the Ai is the characteristic vector of n different symptoms. A malicious
adversary might attempt to count the number of symptoms each patient has by querying 0n, or
detecting whether patient i has symptom j by querying ej and 0n where ej is the j-th standard basis
in Rn. It is hence crucial to curate a private scheme so that the adversary cannot distinguish the case
whether the patient has symptom j or not. This notion of privacy has been precisely captured by
differential privacy (Dwork, 2006; Dwork et al., 2006), which states that for neighboring databases,
the output distribution of the data structure query should be close with high probability, hence any
adversary cannot distinguish between the two cases.

Motivated by both privacy and efficiency concerns, we ask the following natural question:

Is it possible to design a data structure to estimate Hamming and edit distance, that are both
differentially private, and time/space-efficient?

We provide an affirmative answer to the above question, with the main results summarized in the
following two theorems. We will use Dham(A,B) to denote the Hamming distance between A and
B, and Dedit(A,B) to denote the edit distance between A and B. We also say a data structure is
ϵ-DP if it provides ϵ-DP outputs against any sequence of queries, of arbitrary length.

Theorem 1.1. Let A1, . . . , Am ∈ {0, 1}n be a database, k ∈ [n] and ϵ > 0, β ∈ (0, 1), then there
exists a randomized algorithm with the following guarantees:

• The data structure is ϵ-DP;

• It perprocesses A1, . . . , Am in Õ(mn) time1;

• It consumes Õ(mk) space;

• Given any query B ∈ {0, 1}n such that maxi∈[m] Dham(Ai, B) ≤ k, it outputs m esti-
mates z1, . . . , zm with |zi −Dham(Ai, B)| = Õ(k/eϵ/ log k) for all i ∈ [m] in Õ(mk + n)
time, and it succeeds with probability at least 1− β.

Theorem 1.2. Let A1, . . . , Am ∈ {0, 1}n be a database, k ∈ [n] and ϵ > 0, β ∈ (0, 1), then there
exists a randomized algorithm with the following guarantees:

• The data structure is ϵ-DP;

• It perprocesses A1, . . . , Am in Õ(mn) time;

• It consumes Õ(mn) space;

• Given any query B ∈ {0, 1}n such that maxi∈[m] Dedit(Ai, B) ≤ k, it outputs m estimates
z1, . . . , zm with |zi −Dedit(Ai, B)| = Õ(k/eϵ/(log k logn)) for all i ∈ [m] in Õ(mk2 + n)
time, and it succeeds with probability at least 1− β.

Before diving into the details, we would like to make several remarks regarding our data structure
results. Note that instead of solving the general Hamming distance and edit distance problem, we
impose the assumption that the query B has the property that for any i ∈ [m], ∥Ai − B∥ ≤ k.
Such an assumption might seem restrictive at its first glance, but under the standard complexity
assumption Strong Exponential Time Hypothesis (SETH) (Impagliazzo & Paturi, 2001; Impagliazzo
et al., 2001), it is known that there is no O(n2−o(1)) time algorithm for exact or even approximate
edit distance (Belazzougui & Zhang, 2016; Chakraborty et al., 2016a;b; Naumovitz et al., 2017;
Rubinstein et al., 2019; Rubinstein & Song, 2020; Goldenberg et al., 2020; Jin et al., 2021; Boroujeni
et al., 2021; Kociumaka et al., 2021; Bhattacharya & Kouckỳ, 2023; Kouckỳ & Saks, 2024). It
is therefore natural to impose assumptions that the query is “near” to the database in pursuit of

1Throughout the paper, we will use Õ(·) to suppress polylogarithmic factors in m,n, k and 1/β.
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faster algorithms (Ukkonen, 1985; Myers, 1986; Landau & Vishkin, 1988; Goldenberg et al., 2019;
Kociumaka & Saha, 2020; Goldenberg et al., 2023). In fact, assuming SETH, O(n+k2) runtime for
edit distance when m = 1 is optimal up to sub-polynomial factors (Goldenberg et al., 2023). Thus,
in this paper, we consider the setting where maxi∈[m] ∥Ai − B∥ ≤ k for both Hamming and edit
distance and show how to craft private and efficient mechanisms for this class of distance problems.

Regarding privacy guarantees, one might consider the following simple augmentation to any fast
data structure for Hamming distance: compute the distance estimate via the data structure, and add
Laplace noise to it. Since changing one coordinate of the database would lead to the Hamming
distance change by at most 1, Laplace mechanism would properly handle this case. However, our
goal is to release a differentially private data structure that is robust against potentially infinitely
many queries, and a simple output perturbation won’t be sufficient as an adversary could simply
query with the same B, average them to reduce the variance and obtain a relatively accurate estimate
of the de-noised output. To address this issue, we consider the differentially private function release
communication model (Hall et al., 2013), where the curator releases an ϵ-DP description of a function
ê(·) that is ϵ-DP without seeing any query in advance. The client can then use ê(·) to compute ê(B)
for any query B. This strong guarantee ensures that the client could feed infinitely many queries to
ê(·) without compromising the privacy of the database.

There are several prior works study related problems, such as (Kim et al., 2021) for n-grams ex-
traction and (Steiner, 2024) for pattern matching. These algorithms do not release a private data
structure, thus the quality of queries would degrade as more and more queries are served. (Bernar-
dini et al., 2025) provides a private data structure for substring and document counting, which is an
orthogonal direction to our setting.

Organization. Section 2 presents preliminaries. Section 3 introduces our new DP Hamming dis-
tance data structure and its theoretical analysis. Section 4 introduces our new DP edit distance data
structure and its theoretical analysis. Lastly, Section 5 provides concluding remarks. Section A
discusses related work. We discuss limitations of our work in Section B and future directions in C.
In Section D we provide the proofs for Hamming distance data structure and E for edit distance.

2 PRELIMINARY

Let E be an event, we use 1[E] to denote the indicator variable if E is true. Given two length-n bit
strings A and B, we use Dham(A,B) to denote

∑n
i=1 1[Ai ̸= Bi]. We use Dedit(A,B) to denote

the edit distance between A and B, i.e., the minimum number of operations to transform A to B
where the allowed operations are insertion, deletion and substitution. We use ⊕ to denote the XOR
operation. For any positive integer n, we use [n] to denote the set {1, 2, · · · , n}. We use Pr[·], E[·]
and Var[·] to denote probability, expectation and variance respectively. We say two database D1 and
D2 are neighboring if there exists one i ∈ [n] such that D1(Ai) and D2(Ai) differ by one bit.

2.1 CONCENTRATION BOUNDS

We will mainly use two concentration inequalities in this paper.
Lemma 2.1 (Chebyshev’s Inequality). Let X be a random variable with 0 < Var[X] < ∞. For
any real number t > 0,

Pr[|X − E[X]| > t] ≤ Var[X]

t2
.

Lemma 2.2 (Hoeffding’s Inequality). Let X1, . . . , Xn with ai ≤ Xi ≤ bi almost surely. Let
Sn =

∑n
i=1 Xi, then for any real number t > 0,

Pr[|Sn − E[Sn]| > t] ≤ 2 exp(− 2t2∑n
i=1(bi − ai)2

).

2.2 DIFFERENTIAL PRIVACY

Differential privacy (DP) is the key privacy measure we will be trying to craft our algorithm to
possess. In this paper, we will solely focus on pure DP (ϵ-DP).
Definition 2.3 (ϵ-Differential Privacy). We say an algorithm A is ϵ-differentially private (ϵ-DP) if
for any two neighboring databases D1 and D2 and any subsets of possible outputs S, we have

Pr[A(D1) ∈ S] ≤ eϵ · Pr[A(D2) ∈ S],

where the probability is taken over the randomness of A.
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Since we will be designing data structures, we will work with the function release communication
model (Hall et al., 2013) where the goal is to release a function that is ϵ-DP against any sequence of
queries of arbitrary length.
Definition 2.4 (ϵ-DP Data Structure). We say a data structure A is ϵ-DP, if A is ϵ-DP against any
sequence of queries of arbitrary length. In other words, the curator will release an ϵ-DP description
of a function ê(·) without seeing any query in advance.

Finally, we will be utilizing the post-processing property of ϵ-DP.
Lemma 2.5 (Post-Processing). Let A be ϵ-DP, then for any deterministic or randomized function g
that only depends on the output of A, g ◦ A is also ϵ-DP.

3 DIFFERENTIALLY PRIVATE HAMMING DISTANCE DATA STRUCTURE

To start off, we introduce our data structure for differentially private Hamming distance. In partic-
ular, we will adapt a data structure due to (Porat & Lipsky, 2007): this data structure computes a
sketch of length Õ(k) bit string to both the database and query, then with high probability, one could
retrieve the Hamming distance from these sketches. Since the resulting sketch is also a bit string, a
natural idea is to inject Laplace noise on each coordinate of the sketch. Since for two neighboring
databases, only one coordinate would change, we could add Laplace noise of scale 1/ϵ to achieve
ϵ-DP. However, this approach has a critical issue: one could show that with high probability, the
magnitude of each noise is roughly O(ϵ−1 log k), aggregating the k coordinates of the sketch, this
leads to a total error of O(ϵ−1k log k). To decrease this error to O(1), one would have to choose
ϵ = k log k, which is too large for most applications.

Instead of Laplace noise, we present a novel scheme that flips each bit of the sketch with certain
probability. Our main contribution is to show that this simple scheme only produces an error of
O(e−ϵ/ log kk). To appreciate the significance, by denoting t := (log k)/ϵ, we see that the Laplace
mechanism has an error of O(t−1k), whereas our error is only O(e−1/tk), which is exponentially
small! In what follows, we will describe a data structure when the database is only one string A and
with constant success probability, and we will discuss how to extend it to m bit strings, and how to
boost the success probability to 1− β for any β > 0. We summarize the main result below.
Theorem 3.1. Given a string A of length n. There exists an ϵ-DP data structure DPHAMMINGDIS-
TANCE (Algorithm 1), with the following operations

• INIT(A ∈ {0, 1}n): It takes a string A as input. This procedure takes O(n log k+k log3 k)
time.

• QUERY(B ∈ {0, 1}n): for any B with z := Dham(A,B) ≤ k, QUERY(B) outputs a value
z̃ such that |z̃ − z| = Õ(k/eϵ/ log k) with probability 0.99, and the result is ϵ-DP. This
procedure takes O(n log k + k log3 k) time.

To achieve the results above, we set parameters M1 = O(log k),M2 = O(k),M3 = O(log2 k) in
Algorithm 1. We divide the proof of Theorem 3.1 into the following subsections:

3.1 TIME COMPLEXITY

Note that both the initializing and query run ENCODE (Algorithm 1) exactly once, we show that the
running time of ENCODE is O(n log k).
Lemma 3.2. Given M1 = O(log k), the running time of ENCODE (Algorithm 1) is O(n log k).

Proof. In ENCODE, for each character in the input string, the algorithm iterates M1 times. Therefore
the total time complexity is O(n ·M1) = O(n log k).

3.2 PRIVACY GUARANTEE

Next we prove our data structure is ϵ-DP.
Lemma 3.3. Let A and A′ be two strings that differ on only one position. Let A(A) and A(A′) be
the output of INIT (Algorithm 1) given A and A′. For any output S, we have:

Pr[A(A) = S] ≤ eϵ · Pr[A(A′) = S].

We defer the proof to Appendix D.
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Algorithm 1 Differential Private Hamming Distance Query

1: data structure DPHAMMINGDISTANCE ▷ Theorem 3.1
2: members
3: M1,M2,M3 ∈ N+

4: h(x) : [2n]→ [M2] ▷ h and g are public random hash function
5: g(x, i) : [2n]× [M1]→ [M3]
6: Si,j,c ∈ {0, 1}M1×M2×M3 for all i ∈ [M1], j ∈ [M2], c ∈ [M3] ▷ S represents the sketch
7: end members
8:
9: procedure ENCODE(A ∈ {0, 1}n, n) ▷ Lemma 3.2

10: S∗
i,j,c ← 0 for all i, j, c

11: for p ∈ [n] do
12: for i ∈ [M1] do
13: j ← h(2(p− 1) +Ap)
14: c← g(2(p− 1) +Ap, i)
15: S∗

i,j,c ← S∗
i,j,c ⊕ 1

16: end for
17: end for
18: return S∗

19: end procedure
20:
21: procedure INIT(A ∈ {0, 1}n, n ∈ N+, k ∈ N+, ϵ ∈ R+) ▷ Lemma 3.3
22: M1 ← 10 log k
23: M2 ← 2k
24: M3 ← 400 log2 k
25: S ← ENCODE(A,n)
26: Flip each Si,j,c with independent probability 1/(1 + eϵ/(2M1))
27: end procedure
28:
29: procedure QUERY(B ∈ {0, 1}n) ▷ Lemma 3.7
30: SB ←ENCODE(B,n)

31: return 0.5 ·
∑M2

j=1 maxi∈[M1](
∑M3

c=1 |Si,j,c − SB
i,j,c|)

32: end procedure
33: end data structure

3.3 UTILITY GUARANTEE

The utility analysis is much more involved than privacy and runtime analysis. We defer the proofs
to the appendix, while stating key lemmas.

We first consider the distance between sketches of A and B without the random flipping process.
Let E(A), E(B) be ENCODE(A) and ENCODE(B). We prove with probability 0.99, Dham(A,B) =

0.5 ·
∑M2

j=1 maxi∈[M1](
∑M3

c=1 |E(A)i,j,c − E(B)i,j,c|). Before we present the error guarantee, we
will first introduce two technical lemmas. We let T = {p ⊆ [n] | Ap ̸= Bp} denote the set of “bad”
coordinates. Then we prove that for each coordinate in the sketch, the number of bad coordinates is
bounded.
Lemma 3.4. Define set T := {p ∈ [n] | Ap ̸= Bp}. Define set Tj := {p ⊆ T | h(p) = j}. When
M2 = 2k, with probability 0.99, for all j ∈ [M2], we have |Tj | ≤ 10 log k, i.e.,

Pr[∀j ∈ [M2], | |Tj | ≤ 10 log k] ≥ 0.99.

The next lemma shows that with high probability, the second level hashing g will hash bad coordi-
nates to distinct buckets.
Lemma 3.5. When M1 = 10 log k,M2 = 2k,M3 = 400 log2 k, with probability 0.98, for all
j ∈ [M2], there is at least one i ∈ [M1], such that all values in {g(2(p − 1) + Ap, i) | p ∈
Tj}

⋃
{g(2(p− 1) +Bp, i) | p ∈ Tj} are distinct.

With these two lemmas in hand, we are in the position to prove the error bound before the random
bit flipping process.

5
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Lemma 3.6. Let E(A), E(B) be the output of ENCODE(A) and ENCODE(B). With probability
0.98, Dham(A,B) = 0.5 ·

∑M2

j=1 maxi∈[M1](
∑M3

c=1 |E(A)i,j,c − E(B)i,j,c|).

Our final result provides utility guarantees for Algorithm 1.

Lemma 3.7. Let z be Dham(A,B), z̃ be the output of QUERY(B)(Algorithm 1). With probability
0.98, |z − z̃| = O(k log3 k/eϵ/ log k).

Proof. From Lemma 3.6, we know with probability 0.98, when ϵ → ∞ (i.e. without the random
flip process), the output of QUERY(B) (Algorithm 1) equals the exact hamming distance.

We view the random flip process as random variables. Let random variables Ri,j,c be 1 with proba-
bility 1/(1 + eϵ/M1), or 0 with probability 1− 1/(1 + eϵ/M1). So we have

|z̃ − z| =
M2∑
j=1

max
i∈[M1]

(

M3∑
c=1

Ri,j,c) ≤
M2∑
j=1

M1∑
i=1

(

M3∑
c=1

Ri,j,c),

where the second step follows from maxi ≤
∑

i when all the summands are non-negative.

Therefore, the expectation of z̃ − z is:

E[|z̃ − z|] = M1M2M3 · E[Ri,j,c] = k log3 k · 1

(1 + eϵ/ log k)
= O(

k log3 k

eϵ/ log k
),

where the last step follows from simple algebra. The variance of z̃ − z is:

Var[|z̃ − z|] = M1M2M3 · Var[Ri,j,c] = k log3 k · 1

(1 + eϵ/ log k)
· (1− 1

(1 + eϵ/ log k)
).

Using Chebyshev’s inequality (Lemma 2.1), we have

Pr[|z̃ − z| ̸∈ O(
k log3 k

eϵ/ log k
)] ≤ 0.01.

Thus we complete the proof.

Remark 3.8. We will show how to generalize Theorem 3.1 to m bit strings, and how to boost the
success probability to 1−β. To boost the success probability, we note that individual data structure
succeeds with probability 0.99, we could take log(1/β) independent copies of the data structure,
and query all of them. By a standard Chernoff bound argument, with probability at least 1 − β, at
least 3/4 fraction of these data structures would output the correct answer, hence what we could do
is to take the median of these answers. These operations blow up both INIT and QUERY by a factor
of log(1/β) in its runtime. Generalizing for a database of m strings is relatively straightforward:
we will run the INIT procedure to A1, . . . , Am, this would take O(mn log k + mk log3 k) time.
For each query, note we only need to ENCODE the query once, and we can subsequently compute
the Hamming distance from the sketch for m sketched database strings, therefore the total time for
query is O(n log k + mk log3 k). It is important to note that as long as k log3 k < n, the query
time is sublinear in the combined size of the query and its output. Finally, we could use the success
probability boosting technique described before, that uses log(m/β) data structures to account for
a union bound over the success of all distance estimates.

4 DIFFERENTIALLY PRIVATE EDIT DISTANCE DATA STRUCTURE

Our algorithm for edit distance follows from the dynamic programming method introduced by
(Ukkonen, 1985; Landau et al., 1998; Landau & Vishkin, 1988; Myers, 1986). We note that a
key procedure in these algorithms is a subroutine to estimate longest common prefix (LCP) between
two strings A and B and their substrings. We design an ϵ-DP data structure for LCP based on our
ϵ-DP Hamming distance data structure. Due to space limitation, we defer the details of the DP-LCP
data structure to Appendix E. In the following discussion, we will assume access to a DP-LCP data
structure with the following guarantees:

Theorem 4.1. Given a string A of length n. There exists an ϵ-DP data structure DPLCP (Algo-
rithm 3 and Algorithm 4) supporting the following operations

6
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• INIT(A ∈ {0, 1}n): It preprocesses an input string A. This procedure takes O(n(log k +
log log n)) time.

• INITQUERY(B ∈ {0, 1}n): It preprocesses an input query string B. This procedure take
O(n(log k + log log n)) time.

• QUERY(i, j): Let w be the longest common prefix of A[i : n] and B[j : n] and w̃ be
the output of QUERY(i, j), With probability 1 − 1/(300k2), we have: 1). w̃ ≥ w; 2).
E[Dham(A[i : i+w̃], B[j : j+w̃])] = O((log k+log log n)/eϵ/(log k logn)). This procedure
takes O(log2 n(log k + log log n)) time.

We will be basing our edit distance data structure on the following result, which achieves the optimal
dependence on n and k assuming SETH:
Lemma 4.2 ((Landau et al., 1998)). Given two strings A and B of length n. If the edit distance
between A and B is no more than k, there is an algorithm which computes the edit distance between
A and B in time O(k2 + n).

We start from a naive dynamic programming approach. Define D(i, j) to be the edit distance be-
tween string A[1 : i] and B[1 : j]. We could try to match A[i] and B[j] by inserting, deleting and
substituting, which yields the following recurrence:

D(i, j) = min

{
D(i− 1, j) + 1, if i > 0;
D(i− 1, j − 1) + 1, if j > 0;
D(i− 1, j − 1) + 1[A[i] ̸= B[j]], if i, j > 0.

The edit distance between A and B is then captured by D(n, n). When k < n, for all D(i, j) such
that |i − j| > k, because the length difference between A[1 : i] and B[1 : j] is greater than k,
D(i, j) > k. Since the final answer D(n, n) ≤ k, those positions with |i − j| > k won’t affect
D(n, n). Therefore, we only need to consider the set {D(i, j) : |i− j| ≤ k}.
For d ∈ [−k, k], r ∈ [0, k], we define F (r, d) = maxi{i : D(i, i + d) ≤ r} and let LCP(i, j)
denote the length of the longest common prefix of A[i : n] and B[j : n]. The algorithm of (Landau
et al., 1998) defines EXTEND(r, d) := F (r, d) + LCP(F (r, d) + 1, F (r, d) + d+1). Then we have
the recurrence relation:

F (r, d) = max

{ EXTEND(r − 1, d) + 1, if r − 1 ≥ 0;
EXTEND(r − 1, d− 1), if d− 1 ≥ −k, r − 1 ≥ 0;
EXTEND(r − 1, d+ 1) + 1, if d+ 1, r + 1 ≤ k.

The edit distance between A and B equals minr{r : F (r, 0) = n}.
To implement LCP, (Landau et al., 1998) uses a suffix tree data structure with initialization time
O(n) and query time O(1), thus the total time complexity is O(k2 + n). In place of their suffix tree
data structure, we use our DP-LCP data structure (Theorem 4.1). This leads to Algorithm 2.
Theorem 4.3. Given a string A of length n. There exists an ϵ-DP data structure DPEDITDISTANCE
(Algorithm 2) supporting the following operations:

• INIT(A ∈ {0, 1}n): It preprocesses an input string A. This procedure takes O(n(log k +
log log n)) time.

• QUERY(B ∈ {0, 1}n): For any query string B with w := Dedit(A,B) ≤ k, QUERY

outputs a value w̃ such that |w − w̃| ≤ Õ(k/eϵ/(log k logn)) with probability 0.99. This
procedure takes O(n(log k+ log log n)+ k2 log2 n(log k+ log log n)) = Õ(k2 +n) time.

Again, we divide the proof into runtime, privacy and utility.

4.1 TIME COMPLEXITY

We prove the time complexity of INIT and QUERY respectively.
Lemma 4.4. The running time of INIT (Algorithm 2) is O(n(log k + log log n)).

Proof. The INIT runs DPLCP.INIT. From Theorem 4.1, the init time is O(n(log k+log log n)).
Lemma 4.5. QUERY (Algorithm 2) runs in time O((n+ k2 log n)(log k + log log n)).

Proof. The QUERY runs DPLCP.QUERYINIT once and DPLCP.QUERY k2 times. From Theo-
rem 4.1, the query time is O(n(log k + log log n) + k2 log2 n(log k + log log n)).
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Algorithm 2 Differential Private Edit Distance

1: data structure DPEDITDISTANCE ▷ Theorem 4.3
2: procedure INIT(A ∈ {0, 1}n, n ∈ N+, k ∈ N+, ϵ ∈ R) ▷ Lemma 4.4
3: DPLCP.INIT(A,n, k, ϵ) ▷ Algorithm 3
4: end procedure
5:
6: procedure EXTEND(F, i, j)
7: return F (i, j) + DPLCP.QUERY(F (i, j), F (i, j) + j) ▷ Algorithm 4
8: end procedure
9:

10: procedure QUERY(B,n, k) ▷ Lemma 4.5 and 4.8
11: DPLCP.QUERYINIT(B,n, k) ▷ Algorithm 3
12: F (0, 0)← DPLCP.QUERY(0, 0)
13: for i from 1 to k do
14: for j ∈ [−k, k] do
15: F (i, j)← max(F (i, j), EXTEND(i− 1, j)) ▷ Algorithm 4
16: if j − 1 ≥ −k then
17: F (i, j)← max(F (i, j), EXTEND(i− 1, j − 1)) ▷ Algorithm 4
18: end if
19: if j + 1 ≤ k then
20: F (i, j)← max(F (i, j), EXTEND(i− 1, j + 1)) ▷ Algorithm 4
21: end if
22: end for
23: if F (i, 0) = n then
24: return i
25: end if
26: end for
27: end procedure
28: end data structure

4.2 PRIVACY GUARANTEE

Lemma 4.6. The data structure DPEDITDISTANCE (Algorithm 2) is ϵ-DP.

Proof. The data structure only stores a DPLCP(Algorithm 3, 4). From Theorem 4.1 and the post-
processing property (Lemma 2.5), it is ϵ-DP.

4.3 UTILITY GUARANTEE

Before analyzing the error of the output of QUERY (Algorithm 2), we first introduce a lemma:

Lemma 4.7. Let A,B be two strings. Let LCP(i, d) be the length of the true longest common prefix
of A[i : n] and B[i+ d : n]. For i1 ≤ i2, d ∈ [−k, k], we have i1 + LCP(i1, d) ≤ i2 + LCP(i2, d).

Proof. Let w1 = LCP(i1, d), w2 = LCP(i2, d). Then for j ∈ [i1, i1 + w1 − 1], A[j] = B[j + d].
On the other side, w2 is the length of the longest common prefix for A[i2 : n] and B[i2 + d : n]. So
A[i2 + w2] ̸= B[i2 + w2 + d]. Therefore, (i2 + w2) /∈ [i1, i1 + w1 − 1]. Since i2 + w2 ≥ i2 ≥ i1,
we have i2 + w2 ≥ i1 + w1.

Lemma 4.8. Let r̃ be the output of QUERY (Algorithm 2), r be the true edit distance Dedit(A,B).
With probability 0.99, we have |r − r̃| = O(k(log k + log log n)/(1 + eϵ/(log k logn))).

Proof. We divide the proof into two parts. In part one, we prove that with probability 0.99, r̃ ≤ r. In
part two, we prove that with probability 0.99, r− r̃ = O(k(log k+ log log n)/(1+ eϵ/(log k logn))).
In Theorem 4.1, with probability 1 − 1/(300k2), DPLCP.QUERY satisfies two conditions. Our
following discussion supposes all DPLCP.QUERY satisfies the two conditions. There are 3k2 LCP
queries, by union bound, the probability is at least 0.99.
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Part I. If no noise is added to guarantee differential privacy (using original LCP function instead
of our DPLCP data structure), the dynamic programming method outputs the true edit distance. We
define F ′(i, j) as the dynamic programming array F without privacy guarantee, EXTEND′(i, j) be
the result of EXTEND(i, j) without privacy guarantee. Then we prove that for all i ∈ [0, k], j ∈
[−k, k], F (i, j) ≥ F ′(i, j) holds true.

We prove the statement above by math induction on i. For i = 0, F (0, 0) = F ′(0, 0) = 0. Suppose
for i− 1, F (i− 1, j) ≥ F ′(i− 1, j), then for i,

F (i, j) = max

{ EXTEND(i− 1, j) + 1, if i− 1 ≥ 0;
EXTEND(i− 1, j − 1), if j − 1 ≥ −k, i− 1 ≥ 0;
EXTEND(i− 1, j + 1) + 1, if j + 1, i+ 1 ≤ k, i− 1 ≥ 0.

For EXTEND(i− 1, j), we have

EXTEND(i− 1, j) = F (i− 1, j) + DPLCP.QUERY(F (i− 1, j), F (i− 1, j) + j)

≥ F (i− 1, j) + LCP(F (i− 1, j), F (i− 1, j) + j)

≥ F ′(i− 1, j) + LCP(F ′(i− 1, j), F ′(i− 1, j) + j)

= EXTEND′(i− 1, j)

The second step is because in QUERY (Theorem 4.1), w̃ ≥ w. The third step follows from
F (i− 1, j) ≥ F ′(i− 1, j) and Lemma 4.7. Thus, F (i, j) = maxj2∈[j,j−1,j+1]{EXTEND(i, j2)} ≥
maxj2∈[j,j−1,j+1]{EXTEND’(i, j2)} = F ′(i, j). Since r̃ = min{r̃ : F (r̃, 0) = n}, r = min{r :
F ′(r, 0) = n}, we have F (r, 0) ≥ F ′(r, 0) = n. Therefore r̃ ≤ r.

Part II. Let G(L,R, j) := Dedit(A[L : R], B[L + j, R + j]). In this part, we prove that the edit
distance G(1, F (i, j), j) ≤ i · (1 +O((log k + log log n)/(1 + eϵ/(log k logn)))) by induction on i.

For i = 0, F (0, 0) = LCP (A,B). The statement holds true. Suppose for i − 1, G(1, F (i −
1, j), j) ≤ (i− 1) · (1+O((log k+ log log n)/(1+ eϵ/(log k logn)))), then we prove this holds for i.

Because F (i, j) = maxj2∈[j,j−1,j+1]{EXTEND(i, j2)}, there is some j2 ∈ {j, j − 1, j + 1}
such that F (i, j) = F (i − 1, j2) + DPLCP.QUERY(F (i − 1, j2), F (i − 1, j2) + j2). Let
Q := DPLCP.QUERY(F (i− 1, j2), F (i− 1, j2) + j2). Therefore

G(1, F (i, j), j) ≤ G(1, F (i− 1, j2) +Q, j2) + 1

≤ G(1, F (i− 1, j2), j2) +G(F (i− 1, j2), F (i− 1, j2) +Q, j2) + 1

≤ G(1, F (i− 1, j2), j2) + 1 +O((log k + log log n)/(1 + eϵ/(log k logn)))

≤ i · (1 +O((log k + log log n)/(1 + eϵ/(log k logn))))

The third step follows from Theorem 4.1, and the fourth step follows from the induction hypothesis.
Therefore, r = G(1, F (r̃, 0), 0) ≤ r̃ · (1+O((log k+log log n)/(1+eϵ/(log k logn)))) and the proof
is completed.

Remark 4.9. To the best of our knowledge, this is the first edit distance algorithm, based on noisy
LCP implementations. In particular, we prove a structural result: if the LCP has query (additive)
error δ, then we could implement an edit distance data structure with (additive) error O(kδ). Com-
pared to standard relative error approximation, additive error approximation for edit distance is
relatively less explored (see e.g., (Bringmann et al., 2022) for using additive approximation to solve
the gap edit distance problem). We hope this structural result sheds light on additive error edit
distance algorithms.

5 CONCLUSION

We study the differentially private Hamming distance and edit distance data structure problem in the
function release communication model. This type of data structures are ϵ-DP against any sequence
of queries of arbitrary length. For Hamming distance, our data structure has query time Õ(mk+ n)

and error Õ(k/eϵ/ log k). For edit distance, our data structure has query time Õ(mk2 + n) and error
Õ(k/eϵ/(log k logn)). While the runtime of our data structures (especially edit distance) is nearly-
optimal, it is interesting to design data structures with better utility in this model.
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Appendix
LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.

A RELATED WORK

Differential Privacy. Differential privacy is a ubiquitous notion for protecting the privacy of
database. (Dwork et al., 2006) first introduced this concept, which characterizes a class of algorithms
such that when inputs are two neighboring datasets, with high probability the output distributions are
similar. Differential privacy has a wide range of applications in general machine learning (Chaudhuri
& Monteleoni, 2008; Williams & McSherry, 2010; Jayaraman & Evans, 2019; Triastcyn & Faltings,
2020; Ponomareva et al., 2023), training deep neural networks (Abadi et al., 2016; Bagdasaryan
et al., 2019), computer vision (Zhu et al., 2020; Luo et al., 2021; Torkzadehmahani et al., 2019),
natural language processing (Yue et al., 2021; Weggenmann & Kerschbaum, 2018), large language
models (Gao et al., 2023; Yu et al., 2022), label protect (Yang et al., 2022), multiple data release (Wu
et al., 2022), n-gram extraction (Kim et al., 2021), federated learning (Sun et al., 2023; Song et al.,
2023a) and peer review (Ding et al., 2022). In recent years, differential privacy has been playing an
important role for data structure design, both in making these data structures robust against adaptive
adversary (Beimel et al., 2022; Hassidim et al., 2022; Song et al., 2023b; Cherapanamjeri et al.,
2023) and in the function release communication model (Hall et al., 2013; Huang & Roth, 2014;
Wang et al., 2016; Aldà & Rubinstein, 2017; Coleman & Shrivastava, 2021; Wagner et al., 2023;
Backurs et al., 2024; Liu et al., 2024). (Steiner, 2024) studied the pattern matching problem under
differential privacy setting. (Bernardini et al., 2025) provided a differentially private algorithm for
substring and document counting. (Zhao et al., 2022) studied the how to build differential private
algorithm for linear sketch. (Aumüller et al., 2020) proposed an algorithm for jaccard similarity
estimation.

Hamming Distance and Edit Distance. Given bit strings A and B, many distance measurements
have been proposed that capture various characteristics of bit strings. Hamming distance was first
studied by Hamming (Hamming, 1950) in the context of error correction for codes. From an al-
gorithmic perspective, Hamming distance is mostly studied in the context of approximate nearest-
neighbor search and locality-sensitive hashing (Indyk & Motwani, 1998; Charikar, 2002). When
it is known that the query B has the property Dham(A,B) ≤ k, (Porat & Lipsky, 2007) shows
how to construct a sketch of size Õ(k) in Õ(n) time, and with high probability, these sketches pre-
serve Hamming distance. Edit distance, proposed by Levenshtein (Levenshtein, 1966), is a more
robust notion of distance between bit strings. It has applications in computational biology (Wang
et al., 2015; Young et al., 2021; Berger et al., 2021), text similarity (Navarro, 2001; Sidorov et al.,
2015) and speech recognition (Fiscus et al., 2006; Droppo & Acero, 2010). From a computational
perspective, it is known that under the Strong Exponential Time Hypothesis (SETH), no algorithm
can solve edit distance in O(n2−o(1)) time, even its approximate variants (Belazzougui & Zhang,
2016; Chakraborty et al., 2016a;b; Naumovitz et al., 2017; Rubinstein et al., 2019; Rubinstein &
Song, 2020; Goldenberg et al., 2020; Jin et al., 2021; Boroujeni et al., 2021; Kociumaka et al.,
2021; Bhattacharya & Kouckỳ, 2023; Kouckỳ & Saks, 2024). Hence, various assumptions have
been imposed to enable more efficient algorithm design. The most related assumption to us is that
Dedit(A,B) ≤ k, and in this regime various algorithms have been proposed (Ukkonen, 1985; My-
ers, 1986; Landau & Vishkin, 1988; Goldenberg et al., 2019; Kociumaka & Saha, 2020; Goldenberg
et al., 2023). Under SETH, it has been shown that the optimal dependence on n and k is O(n+ k2),
up to sub-polynomial factors (Goldenberg et al., 2023).

B LIMITATIONS

Our proposed differentially private (DP) data structures focus specifically on Hamming and edit dis-
tances, which, while fundamental, do not generalize to other distance metrics such as Euclidean or
Jaccard similarity. Extending our techniques to these metrics remains an open challenge. Further-
more, the efficiency of our approach relies on the assumption that the maximum distance between
the query and any string in the database is bounded by k, which may not hold for datasets with
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highly diverse bit strings. Although our data structures support sublinear query time for moder-
ate k, the query time grows with k, potentially limiting scalability for large k in high-dimensional
datasets. Additionally, while the privacy guarantees are strong (ϵ-DP for arbitrary query sequences),
the constants involved in our error bounds may be non-negligible in practical scenarios, especially
for smaller privacy budgets (ϵ).

C FUTURE WORK

We plan to explore extending our framework to broader metrics, improving scalability for large k,
and tightening the constants in our error bounds for enhanced practical utility.

We currently lack a formal lower bound proof that precisely matches our upper bound result. We
suspect this gap arises from a technical issue in the existing analysis of the algorithm. Any im-
provement in the error would likely require entirely new ideas. The relatively large additive error
stems from our use of sketching: each sketch requires at least Ω̃(k) bits, and our method adds in-
dependent noise to each bit, resulting in an additive error of Õ(k/eϵ). Independent noise appears
unavoidable, since the number of possible query strings grows exponentially with k and each sketch
dimension behaves independently. For this reason, we do not see a path to improving beyond the
current additive error of Õ(k/eϵ).

D PROOFS FOR HAMMING DISTANCE DATA STRUCTURE

In this section, we include all proof details in Section 3.

D.1 PROOF OF LEMMA 3.3

Proof of Lemma 3.3. Let E(A), E(A′) be ENCODE(A) and ENCODE(A′). Let #(E(A) = S) be
the number of the same bits between E(A) and S, #(E(A) ̸= S) be the number of the different bits
between E(A) and S. Then the probability that the random flip process transforms E(A) into S is:

Pr[A(A) = S] = (
1

1 + eϵ/(2M1)
)#(E(A) ̸=S)(

eϵ/(2M1)

1 + eϵ/(2M1)
)#(E(A)=S)

=
(eϵ/(2M1))#(E(A)=S)

(1 + eϵ/(2M1))n

Since for each position, ENCODE changes at most M1 bits, and A and A′ only have one different
position. Therefore there are at most 2M1 different bits between E(A) and E(A′). So we have

Pr[A(A) = S]

Pr[A(A′) = S]
≤ (eϵ/(2M1))|#(E(A)=S)−#(E(A′)=S)|

≤ (eϵ/(2M1))2M1

= eϵ

Thus we complete the proof.

D.2 PROOF OF LEMMA 3.4

Proof of Lemma 3.4. h is a hash function randomly drawn from all functions [2n] → [M2]. For
certain j, h(p) = j for all p are independent random variables, each of them equals 1 with probability
1/M2, or 0 with probability 1− 1/M2. So we have

Pr[|Tj | ≥ 10 log k] = Pr[
∑
p∈T

[h(p) = j] ≥ 10 log k]

=

|T |∑
d=10 log k

(
|T |
d

)
(
1

M2
)d(1− 1

M2
)|T |−d

≤
|T |∑

d=10 log k

|T |!
d!(|T | − d)!

(
1

M2
)d
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≤
|T |∑

d=10 log k

|T |d

d!
(
1

M2
)d

≤
|T |∑

d=10 log k

1

d!
(
1

2
)d

≤ 1

(10 log k)!

|T |∑
d=10 log k

(
1

2
)d

≤ 1

200k
The fifth step follows from that fact that |T | ≤ k,M2 = 2k.

Therefore, by union bound over all j ∈ [M2], we can show

Pr[∀j ∈ [M2], |Tj | < 10 log k] ≥ 1− 2k · ( 1

200k
)

= 0.99.

Thus, we complete the proof.

D.3 PROOF OF LEMMA 3.5
Proof of Lemma 3.5. g is a hash function randomly drawn from all functions [2n]× [M1]→ [M3].
For every single i ∈ [M1], define event Ei as the event that the 2|Tj | values in {g(2(p − 1) +
Ap, i) | p ∈ Tj}

⋃
{g(2(p− 1) +Bp, i) | p ∈ Tj} are mapped into distinct positions.

Pr[Ei] =

2|Tj |∏
c=1

(1− c

M3
)

≥ 1−
2|Tj |∑
c=1

c

M3

= 1− 2|Tj |(|Tj + 1|)
M3

> 1− 2(10 log2 k)

400 logk

= 0.5

The fourth step follows from Lemma 3.4. It holds true with probability 0.99.

For different i ∈ [M1], Ei are independent. Therefore, the probability that all Ei are false is
(0.5)M1 < 1/(1000k). By union bound, the probability that for every j ∈ [M2] there exists at
least one i such that Ei is true is at least

1−M2 · 0.5M1 ≥ 1−M2/(1000k) ≥ 0.98.

D.4 PROOF OF LEMMA 3.6
Proof of Lemma 3.6. From Lemma 3.5, for all j, there is at least one i, such that the set {g(2(p −
1) + Ap, i)|p ∈ Tj}

⋃
{g(2(p − 1) + Bp, i)|p ∈ Tj} contains 2|Tj | distinct values. Therefore,

for that i, E(A)i,j,1∼M3 and E(B)i,j,1∼M3 have exactly 2|Tj | different bits. For the rest of i,
the different bits of E(A)i,j,1∼M3 and E(B)i,j,1∼M3 is no more than 2|Tj |. So we have 0.5 ·∑M2

j=1 maxi∈[M1](
∑M3

c=1 |E(A)i,j,c − E(B)i,j,c|) = 0.5 ·
∑M2

j=1 2|Tj | = |T | = Dham(A,B).

E DIFFERENTIALL PRIVATE LONGEST COMMON PREFIX
We design an efficient, ϵ-DP longest common prefix (LCP) data structure in this section. Specifi-
cally, for two positions i and j in A and B respectively, we need to calculate the maximum l, so
that A[i : i + l] = B[j : j + l]. For this problem, we build a differentially private data structure
(Algorithm 3 and Algorithm 4). The main contribution is a novel utility analysis that accounts for
the error incurred by differentially private bit flipping.
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Algorithm 3 Differential Private Longest Common Prefix, Part 1

1: data structure DPLCP ▷ Theorem 4.1
2: members
3: TA

i,j , T
B
i,j for all i ∈ [log n], j ∈ [2i]

4: ▷ Ti,j represents the hamming sketch (Algorithm 1) of the interval [i · n/2j , (i+ 1) · n/2j ]
5: end members
6:
7: procedure BUILDTREE(A ∈ {0, 1}n, n ∈ N+, k ∈ N+, ϵ ∈ R) ▷ Lemma E.3
8: M1 ← log k + log log n+ 10, M2 ← 1, M3 ← 10, ϵ′ ← ϵ/ log n
9: for i from 0 to log n do

10: for j from 0 to 2i − 1 do
11: T ∗

i,j ← DPHAMMINGDISTANCE.INIT(A[j ·n/2i : (j+1) ·n/2i],M1,M2,M3, ϵ
′)

12: ▷ Algorithm 1
13: end for
14: end for
15: return T ∗

16: end procedure
17:
18: procedure INIT(A ∈ {0, 1}n, n ∈ N+, k ∈ N+, ϵ ∈ R) ▷ Lemma E.1
19: TA ←BUILDTREE(A,n, k, ϵ)
20: end procedure
21:
22: procedure QUERYINIT(B ∈ {0, 1}n, n ∈ N+, k ∈ N+) ▷ Lemma E.1
23: TB ←BUILDTREE(B,n, k, 0)
24: end procedure
25:
26: procedure INTERVALSKETCH(T, pl ∈ [n], pr ∈ [n])
27: Divide the interval [pl, pr] into O(log n) intervals. Each of them is stored on a node of the

tree T .
28: Retrieve the Hamming distance sketches of these nodes as S1, S2, . . . , St.
29: Initialize a new sketch S ← 0 with the same size of the sketches above.
30: for every position w in the sketch S do
31: S[w]← S1[w]⊕ S2[w]⊕ S3[w]⊕ ...⊕ St[w]
32: end for
33: return S
34: end procedure
35:
36: procedure SKETCHHAMMINGDISTANCE(SA, SB ∈ RM1×M2×M3 ) ▷ Lemma E.4 and E.5
37: Let M1,M2,M3 be the size of dimensions of the sketches SA and SB .
38: return 0.5 ·

∑M2

j=1 maxi∈[M1](
∑M3

c=1 |SA
i,j,c − SB

i,j,c|)
39: end procedure
40: end data structure

E.1 TIME COMPLEXITY

We prove the running time of the three operations above.
Lemma E.1. The running time of INIT and INITQUERY (Algorithm 3) are O(n log n(log k +
log log n))

Proof. From Lemma 3.2, the running time of building node Ti,j is O((n/2i)M1). Therefore the
total building time of all nodes is

logn∑
i=0

2i−1∑
j=0

(n/2i)M1 =

logn∑
i=0

2i · (n/2i)M1 = O(n log n(log k + log log n)).

Thus, we complete the proof.

Lemma E.2. The running time of QUERY (Algorithm 4) is O(log2 n(log k + log log n)).
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Algorithm 4 Differential Private Longest Common Prefix, Part 2

1: data structure DPCLP ▷ Theorem 4.1
2: procedure QUERY(i ∈ [n], j ∈ [n]) ▷ Lemma E.2 and E.6
3: L← 0, R← n
4: while L ̸= R do
5: mid← ⌈L+R

2 ⌉
6: SA ← INTERVALSKETCH(TA, i, i+mid) ▷ Algorithm 3
7: SB ← INTERVALSKETCH(TB , j, j +mid) ▷ Algorithm 3
8: threshold← 1.5M1M3/(1 + eϵ/(log k logn))
9: if SKETCHHAMMINGDISTANCE(SA, SB) ≤ threshold then ▷ Algorithm 3

10: L← mid
11: else
12: R← mid− 1
13: end if
14: end while
15: return L
16: end procedure
17: end data structure

Proof. In QUERY (Algorithm 4), we use binary search. There are totally log n checks. In each
check, we need to divide the interval into log n intervals and merge their sketches of size M1M2M3.
So the time complexity is O(log2 n(log k + log log n)).

E.2 PRIVACY GUARANTEE

Lemma E.3. The data structure DPLCP (Algorithm 3 and Algorithm 4) is ϵ-DP.

Proof. On each node, we build a hamming distance data structure DPHAMMINGDISTANCE that is
(ϵ/ log n)-DP. For two strings A and A′ that differ on only one bit, since every position is in at most
log n nodes on the tree, for any output S, the probability

Pr[BUILDTREE(A) = S]

Pr[BUILDTREE(A′) = S]
≤ (eϵ/ logn)logn = eϵ

Thus we complete the proof.

E.3 UTILITY GUARANTEE

Before analyzing the error of the query, we first bound the error of SKETCHHAMMINGDISTANCE
(Algorithm 3).

Lemma E.4. We select M1 = log k + log log n + 10,M2 = 1,M3 = 10 for DPHAMMINGDIS-
TANCE data structure in BUILDTREE(Algorithm 3). Let z be the true hamming distance of the
two strings A[i : i + mid] and B[i : i + mid]. Let z̃ be the output of SKETCHHAMMINGDIS-
TANCE(Algorithm 3). When ϵ = +∞(without the random flip process), then we have

• if z = 0, then with probability 1, z̃ = 0.

• if z ̸= 0, then with probability 1− 1/(300k2 log n), z̃ ̸= 0.

Proof. Our proof follows from the proof of Lemma 3.6. We prove the case of z = 0 and z ̸= 0
respectively.

When z = 0, it means the string A[i : i + mid] and B[i : i + mid] are identical. Therefore, the
output of the hash function is also the same. Therefore, the output SA and SB from INTERVALS-
KETCH(Algorithm 3) are identical. Then z̃ = 0.

When z ̸= 0, define set Q := {p ∈ [mid] | A[i + p − 1] ̸= B[j + p − 1]} as the positions where
string A and B are different. |Q| = z. Note that M1 = log k + log log n+ 10,M2 = 1,M3 = 10,
SA, SB ∈ {0, 1}M1×M2×M3 . For every i′ ∈ [M1], the probability that SA

i′ and SB
i′ are identical is
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the probability that all c ∈ [M3] is mapped exactly even times from the position set Q. Formally,
define event E as [∀j′, |{p ∈ Q | g(p) = j′}| mod 2 = 0]. Define another event E′ as there is only
one position mapped odd times from set Q1∼z−1. Then the probability equals

Pr[E] =Pr[E′] · Pr[E|E′]

≤ Pr[E|E′]

= 1/M3

The last step is because Pr[E|E′] is the probability that g(Qz) equals the only position that mapped
odd times. There are totally M3 positions and the hash function g is uniformly distributed, so the
probability is 1/M3.

For different i′ ∈ [M1], the event E are independent. So the total probability that z′ ̸= 0 is the
probability that for at least one i′, event E holds true. So the probability is 1 − (1/M3)

M1 =
1− (1/10)log k+log logn+10 > 1− 1/(300k2 log n).

Lemma E.5. Let M1 = log k + log log n + 10,M2 = 1,M3 = 10. Let z be the true hamming
distance of the two strings A[i : i+mid] and B[i : i+mid]. Let z̃ be the output of SKETCHHAM-
MINGDISTANCE(Algorithm 3). With the random flip process with DP parameter ϵ, we have:

• When z = 0, with probability 1 − 1/(300k2 log n), z̃ < (1 + o(1))M1M3/(1 +
eϵ/(log k logn)).

• When z > 3M1M3/(1 + eϵ/(log k logn)), with probability 1 − 1/(300k2 log n), z̃ > (2 −
o(1))M1M3/(1 + eϵ/(log k logn)).

Proof. In the random flip process in DPHAMMINGDISTANCE (Algorithm 1,3), the privacy param-
eter ϵ′ = ϵ/ log n. We flip each bit of the sketch with independent probability 1/(1 + eϵ/ logn log k).
Then we prove the case of z = 0 and z > 3M1M3/(1 + eϵ/(log k logn)) respectively.

When z = 0, similar to the proof of Lemma 3.7, we view the flipping operation as random variables.
Let random variable Ri,j,c be 1 if the sketch SA

i,j,c is flipped, otherwise 0. From Lemma E.4, SA

and SB are identical. Then we have

|z − z̃| = max
i∈[M1]

M3∑
c=1

Ri,j,c

≤
M1∑
i=1

M3∑
c=1

Ri,j,c

Since Ri,j,c are independent Bernoulli random variables, using Hoeffding’s inequality (Lemma 2.2),
we have

Pr[|
M1×M3∑

i=1

Ri,j,c −M1M3 E[Ri,j,c]| > L] ≤ e−2L2/(M1×M3)

When L = M1

√
M3,

Pr[|
M1×M3∑

i=1

Ri,j,c −M1M3 E[Ri,j,c]| > L] ≤e−2M2
1M3/(M1M3)

≤ e−2(log k+log logn)

≤ 1/(300k2 log n)

Thus we complete the z = 0 case.

When z > 3M1M3/(1 + eϵ/(log k logn)), the proof is similar to z = 0. With probability
1 − 1/(300k2 log n), we have |z − z̃| < (1 + o(1))M1M3/(1 + eϵ/(log k logn)). Thus z̃ >
(2− o(1))M1M3/(1 + eϵ/(log k logn)).
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Lemma E.6. Let w̃ be the output of QUERY(i, j) (Algorithm 4), w be the longest common prefix
of A[i : n] and B[j : n]. With probability 1 − 1/(300k2), we have: 1.w̃ ≥ w. 2. Dham(A[i :
i+ w̃], B[j : j + w̃]) ≤ 3M1M3/(1 + eϵ/(log k logn)).

Proof. In QUERY(i, j) (Algorithm 4), we use a binary search to find the optimal w. In binary
search, there are totally log n calculations of SKETCHHAMMINGDISTANCE. Define threshold :=
1.5M1M3/(1 + eϵ/(log k logn)). Define a return value of SKETCHHAMMINGDISTANCE is good if:
1). when z = 0, z̃ < threshold. 2). when z > 2 · threshold, z̃ < threshold. z and z̃ are defined in
Lemma E.5.

Therefore, by Lemma E.5, each SKETCHHAMMINGDISTANCE is good with probability at least
1 − 1/(k2 log n). There are log n SKETCHHAMMINGDISTANCE in the binary search, by union
bound, the probability that all of them are good is at least 1− 1/(300k2).

When all answers for SKETCHHAMMINGDISTANCE are good, from the definition of binary search,
for any two positions L,R such that Dham(A[i : i+L], B[j, j+L]) = 0, Dham(A[i : i+R], B[j, j+
R]) ≥ 2 · threshold, we have L ≤ w̃ ≤ R. Next, we prove w ≤ w̃ and Dham(A[i : i + w̃], B[j :
j + w̃]) ≤ 3M1M3/(1 + eϵ/(log k logn)) respectively.

w is the true longest common prefix of A[i : n] and B[j : n], so we have Dham(A[i : i+L], B[j, j+
L]) = 0. Let L = w, we have w = L ≤ w̃.

Let R be the minimum value that Dham(A[i : i + R], B[j : j + R]) ≥ 2 · threshold. Because
Dham(A[i : i+R], B[j, j +R]) is monotone for R, and w̃ ≤ R, we have Dham(A[i : i+ w̃], B[j :
j + w̃]) ≤ Dham(A[i : i+R], B[j : j +R]) = 2 · threshold = 3M1M3/(1 + eϵ/(log k logn)).

Thus we complete the proof.
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