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Abstract

Data collection is often difficult in critical fields such as medicine, physics, and
chemistry, yielding typically only small tabular datasets. However, classification
methods tend to struggle with these small datasets, leading to poor predictive per-
formance. Increasing the training set with additional synthetic data, similar to data
augmentation in images, is commonly believed to improve downstream tabular clas-
sification performance. However, current tabular generative methods that learn ei-
ther the joint distribution p(x, y) or the class-conditional distribution p(x | ) often
overfit on small datasets, resulting in poor-quality synthetic data, usually worsening
classification performance compared to using real data alone. To solve these chal-
lenges, we introduce TabEBM, a novel class-conditional generative method using
Energy-Based Models (EBMs). Unlike existing tabular methods that use a shared
model to approximate all class-conditional densities, our key innovation is to create
distinct EBM generative models for each class, each modelling its class-specific
data distribution individually. This approach creates robust energy landscapes, even
in ambiguous class distributions. Our experiments show that TabEBM generates
synthetic data with higher quality and better statistical fidelity than existing methods.
When used for data augmentation, our synthetic data consistently leads to improved
classification performance across diverse datasets of various sizes, especially small
ones. Code is available at https://github.com/andreimargeloiu/TabEBM.

1 Introduction

Many scientific domains within medicine,
physics, and chemistry often rely on intricate
and challenging data acquisition procedures [5,
50, 4, 32, 76, 12] that typically render small-
size tabular datasets [5, 46]. Using these to
train machine learning models that can aid in
tasks such as disease diagnosis [52, 37], ma-
terial property prediction [35], and chemical
compound classification [11], can lead to poor
performance [74, 52, 37]. In the case of learn-
ing tasks which leverage image and text data, a
standard remedy to address performance issues
due to data scarcity is employing data augmen-
tation techniques [72, 73, 60, 71] that generate
additional synthetic samples from existing data.
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Figure 1: Evaluation of TabEBM and other
state-of-the-art tabular generative methods
across six key metrics (larger area indicates bet-
ter performance). The results demonstrate that
TabEBM excels in data augmentation (utility), with
a larger area than all other methods.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).
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Figure 2: An overview of TabEBM. We learn distinct class-specific Energy-Based Models (EBMs)
By (x) and Eeq(x) exclusively on the points of their respective class. Each EBM approximates a
class-conditional distribution p(x|y). TabEBM allows synthetic data generation by sampling from
the estimated distributions for each class p(x|y = blue) and p(x|y = red).

However, applying data augmentation to tabular data introduces additional challenges, as tabular
datasets are often very diverse and lack explicit symmetries [8], such as rotations or translations seen
in images. Consequently, existing tabular data augmentation methods often yield mixed results and
can even degrade model performance [51, 71, 48], hindering their widespread adoption.

Tabular augmentation typically involves training generative models to approximate either the joint
distribution p(x, y) [85, 24] or the class-conditional distribution p(x|y) [85, 42, 83, 47, 48]. A key
challenge of joint distribution methods is maintaining the original training label distribution, as
sampling from such generators can produce label distributions that deviate from the original and even
fail to generate data for specific classes (see Appendix C for an example). These issues compromise
the effectiveness of data augmentation [51] by undermining the label accuracy and distribution. On the
other hand, while class-conditional models that learn p(x|y) preserve the stratification of the original
data, they often employ a shared model to represent all class-conditional densities. This, however, can
lead to overfitting, particularly in imbalanced datasets where the model may prioritise more frequent
classes [21], ignoring unique features needed for generating label-invariant samples. Additionally, in
datasets with limited data, this can lead to mode collapse [68, 70], where the model does not effectively
capture the diversity of each class [70], and thus tends to perform poorly in a multi-class setting.

To address the challenges of class-conditional tabular generation, we introduce TabEBM (Figure 2),
a new method for tabular data augmentation utilising Energy-Based Models (EBMs). Our method
introduces two innovations: (i) Distinct class-specific models: TabEBM constructs a collection of
individual models — one for each class — which, by design, enables learning distinct marginal distri-
butions for the inputs associated with each class. This, in turn, enables performing data augmentation
while maintaining the original label distribution. (ii) Generative models: we build novel class-specific
generators that produce high-quality synthetic data even from extremely few samples. Specifically,
we create a surrogate binary classification task for each class and fit it with a pre-trained tabular
in-context classifier. We then convert the binary classifier into an EBM, a generative model, without
additional training. Using class-specific EBMs makes the energy landscape more robust to class
overlaps, compared to using a single shared EBM to approximate the class-conditional distribution.

Our contributions can be summarised as:

* Technical: We propose TabEBM, which is the first generative method to create class-specific
EBMs, learning the marginal distribution for each class separately.

* Empirical: We present the first comprehensive analysis of tabular data augmentation across
different dataset sizes and use cases beyond predictive performance. Our analysis compares
TabEBM with eight leading tabular generative models across various datasets, demonstrating
that TabEBM consistently improves data augmentation performance on small datasets, while our
generated data demonstrates better statistical fidelity and privacy-preserving properties (Figure 1).

e Library: We release TabEBM as an open-source library, available at https://github.com/
andreimargeloiu/TabEBM. Our library enables off-the-shelf data generation and data augmenta-
tion on any tabular dataset without requiring training. Further details are available in Appendix B.5.
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2 TabEBM

Notation. We address classification problems with C' classes, denoted by Y = {1,2,...,C}. Let
{(x®, y;)})¥, represent a dataset of N samples, each being a D-dimensional vector x(*) € R, with
a corresponding label y; € ). For each class ¢ € ), we define X, = {x(i) | y; = c} as the subset of
samples labelled with class c. Let fp(-) denote a classifier. The expression fy(x)[y] represents the
(unnormalised) logit assigned to the class y for the input x.

2.1 Preliminaries on Energy-Based Models

An Energy-Based Model (EBM) [43] defines a probability density function py(x) through an energy
function F(x). Specifically, the model posits that p(x) oc e~ ), where F(x) represents the
unnormalised negative log-density of the input x. In this framework, lower energy values correspond
to higher probability densities. This relationship allows EBMs to model distributions by learning to
assign lower energy to more probable configurations of x and higher energy to less probable ones.

An important observation is that energy-based models can utilise the same model architectures as
standard classification models [29]. Typically, the logits fp(x)[y] from a classification model define a
discriminative distribution through the softmax function, expressed as py (y|x) = softmax(fo(x)[y]).
Intriguingly, these same logits can be reinterpreted to define an energy-based model for the joint dis-
tribution p(x, y). This is achieved by setting the energy function to F(x,y) = — f¢(x). Furthermore,
the energy function for the marginal distribution p(x) is obtained by marginalising over p(x,y),
resulting in £(x) = —LogSumExp,, fo(x)[y/].

Such an energy-based model, trained with EBM-specific protocols on multiple classes, is typically
used as a classifier, as demonstrated on several computer vision tasks in [29]. In contrast, in this work
our focus is the opposite: we propose employing trained classifiers, one for each specific class, as a
generative energy-based model for the class-conditional distributions p(x|y). We apply our TAbEBM
method for generative tasks on tabular data.

2.2 Distinct Class-Specific Energy-Based Models

TabEBM is a class-conditional generative model p(x|y) implemented using a set of EBMs,
{E1(x), Ea(x), ..., Ec(x)}. Our approach assumes that the class-conditional density p(x|y = ¢) is
best modelled using its class-specific data X,. Thus, for each class ¢, we construct a class-specific
EBM, E.(x), using only the data from that class, X, such that p(x|y = ¢) x exp(—E.(x)).

We derive each class-specific EBM E.(x) by training a classifier on
anovel task and reinterpreting its logits. Specifically, for each class c, B
we propose a surrogate binary classification task to determine if a
sample belongs to class ¢ by comparing X, against a set of surrogate
negative samples X °, which we show in Figure 3. Specifically,
we generate the negative samples at the corners of a hypercube
in RP. For each dimension d, the coordinates of a negative sample
are either ag 504 or —alioq, where ay is a fixed constant and _
o4 is the standard deviation of dimension d. For example, in R3,a © real samples X
negative sample might have coordinates [y 501, Ay c0a, —agcog]. |0 ° nesstvesamelesx® @
Placing the negative samples at the corners of a hypercube ensures
they are easily distinguishable from the real data, which is crucial for
an accurate energy function (see Appendix D.1.1). This placement
is also robust to variations in the number and distance of the negative

samples (see Appendices D.1.2 and D.1.3).

Figure 3: The class-specific
energy function E.(x) from
the surrogate binary task,
where the blue region repre-
sents low energy (i.e., high
We create the combined dataset D, for the surrogate binary classi- data density). Placing the neg-

fication task by labelling X, as 1 and Xz as 0: ative samples in a hypercube
distant from the data results in
De = (X, U X", {1}\XCI U {O}IXSEEI) (1) an accurate energy function.

We then train a binary classifier f§(-) on D, and use it to construct the class-specific energy E.(x)
for class c. To do this, we reinterpret the logits { f§(x)[0], f§(x)[1]} of the trained binary classifier
as components of an approximated joint distribution for the surrogate binary task:



exp(f (x)[0])

pc(X;O) = #7 pc(x7 1) = M

A

(Z is the normalisation constant) (2)

Next, we derive the approximated distribution p.(x) by marginalisation:

pc(X) = pc(X, O) +pc(xv ]-)
_ exp(f5(0[0) + exp(f5 (x)[1)
VA
exp (log (exp(f5(x)[0]) + exp(f5(x)[1])))
Z
—log (exp(f4(x)[0]) + exp(f§(x)[1])) (TabEBM class-specific energy)  (3)

— E.(x)

For the binary classifier fg(-) in the surrogate binary classification, we use TabPFN [33], a pre-trained
tabular in-context model. Note that TabPFN is intended for inference only, with no updates to its
parameters (see Section 4 for more details about TabPFN). In this context, “training” the TabPFN
classifier is analogous to the K-Nearest Neighbour algorithm, which simply performs inference
based on a training dataset provided to the model. We apply TabPFN multiple times on separate
datasets {D1,Da, ..., Dc} to obtain multiple classifiers {f1, f7,..., '}, In Section 3.4, we
explore why reinterpreting TabPFN’s logits, trained on our surrogate binary tasks, can be useful
for estimating an energy function. We emphasise that TabEBM is a general method, capable of using
any gradient-based classifier that computes logits (using Equation (3)), and is not limited to TabPFN.

Generating data with TabEBM involves two steps. First, we sample a class ¢ from the
empirical distribution ¢ ~ p(y). Then, we sample a data point x from the conditional distribution
x ~ p(x|y = c¢) approximated by the class-specific energy-based model E.(x), as outlined
in Algorithm 1. We employ Stochastic Gradient Langevin Dynamics (SGLD) [84] to perform this
sampling. SGLD is an efficient method for high-dimensional data, combining stochastic gradient
descent (SGLD) with Langevin dynamics. The update rule for SGLD at each iteration is:

Xpp1 = X¢ — gVE(xt) +e, € ~N(0,nI) @)

where a Gaussian noise term ¢; introduces randomness into the sampling process, enhancing the
exploration of the distribution. In practice, the step size and the noise standard deviations are often
chosen separately, resulting in a biased sampler that allows for faster training. Appendix D.2 further
shows that TabEBM is stable to hyperparameters for the sampling process.

In our method, SGLD performs iterative augmentation. We start by sampling close to real data and
iteratively adjust these synthetic data points, steering them towards regions of higher probability
under the learned energy model. TabEBM enables sampling from any specified class distribution,
including the original class distribution, which is crucial for data augmentation.

Algorithm 1 TabEBM sampling from Class-Specific EBM E.(x)

Input: Training data X for class c, step size agep, Noise scale unoise, initial perturbation o, number of steps 1"
Output: Set of synthetic samples for class ¢

Initialise a surrogate binary classification task and train the model
: Assign new labels to the samples X, from class c, setting them to class 1
. Generate a set of surrogate negative samples X;°¢ and assign them class 0 labels
3: Train a binary classifier f§ on the dataset D, = (X, U X2 {1}1¥l U {0}/¥"])
Synthesise samples using Stochastic Gradient Langevin Dynamics (SGLD)
- Initialise synthetic data points ™" by sampling from N (X., 02,I)
: for each iterationt = 0,1,...,7 — 1 do

Be(x?™) = —log (exp(f5 (™) [0]) + exp(f5 (x2")[1]))
I = X" — e Ve (x™) + N (0, o T)

: end for

: return xf}mh as the generated synthetic data for class ¢

N —




3 Experiments

We evaluate TabEBM by focusing on four research questions:

¢ Data Augmentation Improvement (Q1, Section 3.1): Can TabEBM generate synthetic data that
improves the accuracy of downstream predictors via data augmentation?

« Statistical Fidelity (Q2, Section 3.2): Can TabEBM generate synthetic data with high statistical
fidelity (i.e., with similar distributions to those of real data)?

* Privacy Preservation (Q3, Section 3.3): Can TabEBM generate synthetic data that finds a
competitive trade-off between downstream performance and privacy preservation?

¢ Understanding TabEBM’s energy formulation (Q4, Section 3.4): Why is TabEBM’s class-
specific energy effective, and how do the proposed surrogate tasks influence this?

Datasets. We utilise eight open-source tabular datasets from OpenML [7] across five domains:
Medicine, Chemistry, Engineering, Language and Economics. As TabPFN utilises many small-size
OpenML datasets in its meta-validation [33], it can lead to data leakage when evaluating TabEBM.
Therefore, to provide fair comparisons, we select six additional leakage-free datasets from UCI [22].
These diverse datasets contain 7 to 77 features and 698 to 5500 samples across 2 to 26 classes. Five
datasets contain both numerical and categorical features, while the remaining are numerical only. We
further enlarge the evaluation scope by varying the degrees of data availability (i.e., Neq), leading up
to 33 different test cases for the eight OpenML datasets. Appendix B.1 provides detailed descriptions.

Benchmark generators. We compare TabEBM against eight existing tabular data generation methods
of eight different categories: (i) a standard interpolation method SMOTE [13]; (ii) a Variational
Autoencoders (VAE) based method TVAE [85]; (iii) a Generative Adversarial Networks (GAN)
method CTGAN [85]; (iv) a normalising flow model Neural Spine Flows (NFLOW) [24]; (v) a
diffusion model TabDDPM [42]; (vi) a tree-based method Adversarial Random Forests (ARF) [83];
(vii) a Graph Neural Network (GNN) based method GOGGLE [47]; and (viii) a Prior-Data Fitted
Networks (PFN) based method TabPFGen [48]. Furthermore, we also include a “Baseline” model,
where no data augmentation is applied (i.e., only real data is used to train downstream predictors). In
Appendix B.6, we detail the settings used for TabEBM and all other generators.

Downstream predictors. We select six representative downstream predictors, including three
standard baselines: Logistic Regression (LR) [16], KNN [27] and MLP [28]; two tree-based methods:
Random Forest (RF) [10] and XGBoost [14]; and a PFN method: TabPFN [33].

General experimental setup. For each dataset of N samples, we first split it into stratified train and
test sets. We create large test sets to reduce the likelihood that the model’s performance is accidentally
inflated due to a small, unrepresentative set of samples [69], and thus the test size is computed via
Niest = min (%, 500). The full train set approximates the upper bound of the quality of synthetic
data, and we call this set “oracle”. We subsample the full train set to simulate different levels of
data availability, thus the subset size Ny, varies over {20, 50, 100, 200, 500}. We split each subset
into stratified training and validation sets with a ratio of 4:1. We provide detailed descriptions of
data splitting in Appendix B.2 and preprocessing in Appendix B.3. We repeat the splitting ten times,
summing up to 10 runs per subset size. The reported results are averaged by default over ten runs on
the test sets. When aggregating results across datasets, we use the average distance to the minimum
(ADTM) metric via affine renormalisation between the top-performing and worse-performing
models [30, 54]. We provide the evaluation results averaged over six downstream predictors for a
general conclusion, and the fine-grained numerical results for each predictor are in Appendix D.

Data augmentation setup. Given V., real samples, we first train generators on the real training data
and then generate Ny, synthetic samples. For training the downstream predictors, we expand the real
training split by adding the synthetic samples. The real validation data is used for early stopping, and
the real test set is used for evaluating the predictor’s performance. The optimal Ny, remains an open
problem for tabular data [51, 71, 31]. Prior works [47, 48] mainly use synthetic sets with equivalent
sizes to the real sets (i.e., Nrea = Ngy,). However, we observe that Ny, = Ny, can lead to highly
unstable results, especially on small datasets that we investigate. Recent work has used different
Ny for various generators, such as by applying post-processing [31, 71]. In this work, we want to
provide a head-to-head comparison of the effect of data augmentation across subsampled datasets of
varying sizes Nrea € {20, 50, 100, 200, 500}. Therefore, we perform data augmentation with a large
synthetic set (Ngy, = 500) across all splits, and the synthetic data has the same class distribution as
the real training data. We provide an illustrative figure of the data splitting setup in Appendix B.2.



Table 1: Classification accuracy (%) aggregated over six downstream predictors, comparing data
augmentation on eight real-world tabular datasets with varied real data availability. We report the
mean =+ std balanced accuracy and average accuracy rank across datasets. A higher rank implies
higher accuracy. Note that “N/A” denotes that a specific generator was not applicable, and the rank is
computed with the mean balanced accuracy of other methods. We bold the highest accuracy for each
dataset of different sample size. Our method, TabEBM, consistently outperforms training on real data
alone, and achieves the best overall performance against Baseline and benchmark generators.

Baseline
(Real data)

20| 28.141683 N/A 201841145 220013435 21301051 22120530 24.821055 22401005 33254501 | 33.842400

501 50.7241053 | 54.524850 39.544519 36324717 35371500 35.1141178 41.994s524 37.5341470 54.454796 | 55911641

protein 100 | 67.834 172 | 73.250745 59284720 57.641005 52.5710ss 56.37ross 57.0lusss 51.091166s 71.531087 | 73.31e77
200 | 81.6641018 | 85.654624 76424771 74884820 721041004 75864030 74.074874 73.571674 84.951747 | 86.14 1550

500 | 93491528 | 94731367 92241375 91481443 90441554 90.621563 91791453 91314520 94.871370 | 95.1843.10

20 | 28.30412.00 N/A 21324406 18.191390 17.304303 15354326 21.751276 16.704201 36.724730 | 37.13 160

50| 53.694804 | 55.514743 37.964448 35.09i746 31.941890 35.9911306 40.324670 33.56114020 S55.1111066 | 56.5717.12

fourier 100 | 63.704676 | 64.104689 50.461861 49.261915 44.581840 527941004 S1.134635 419311560 63.864776 | 65.21.1642
200 | 70991488 | 71.431447 62174729 62921787 59.151833 68.051691 62534697 5644110135 71.814535|72.361377

500 | 77.724036 | 77.514260 73294497 74.614480 71741654 T7.0441364 743143440 70611601 77.154257 | 78.201087

20| 66.204426 | 68.594117 66.771264 58.031247 59371174 52724238 61174000 61394639 68.994254 | 69.79125

50| 72.664308 | 72.804308 71.314271 67.994363 62401408 60.7211001 71.624243 66.681600 73.29+353 | 73.78.342

biodeg 100 | 76.691270 | 76.314042 75384206 74.824280 69.501450 68281954 74424038 T1.684370 76.224231 | 76.451308
200 | 80.014266 | 79674256 78114265 78.19+178 75.051468 74434800 779742320 77134301 79.761263 | 80.114233

500 | 82.631243 | 82851103 82131194 82424158 8l.11i323  79.194660 81921228 81244230 82.351221 (82294015

20| 57.514458 | 58324327 57994306 56.61+170 53.894173 55741600 54244008 53.041236 632145386 | 63.27 1545

50| 75.064+1043 | 65.63+400 64.181305 63701610 58901630 65.8511484 61.724330 56.724347 78.67111.79 | 80.501567

steel 100 | 86.87 11249 | 74.614509 70.124576 69.89+553 65.674910 76.0141754 67334515 60.561537 90.581950 | 92.711757
200 | 92904914 | 81974412 78734506 78361698 75901957 8545411505 78.651670 68204530 95.561585 | 96.291464

500 | 97524376 | 92441446 92474366 92421476 88204836 96.341467 90414535 842311000 98.141067 | 98471015

20| 78.754430 | 82184215 74111371 64251620 72.641001 T8.61i357 69.544165 76351508 82424017 | 83.491 60
50| 86.104362 | 87.824341 82.81i3s51 79.631303 80.141390 86.721429 82481205 83.364523 88.144301 | 88.44. 34

Datasets Ny SMOTE TVAE CTGAN NFLOW TabDDPM ARF GOGGLE TabPFGen | TabEBM

At most 10 classes

SOK 100 | 89.07 1371 | 89.99 30 87554005 86.4diss0 84641479 8940125 8732404 874disss 90271333 | 9036455
200 | 90.85:430 | 91751373 90.124s45 89.44140; 88471605 90.761s27 8959153 89.62462 91.56430; | 9171137

. 50| 17.772615 N/A 1230250 120112316 10.141057 1055044 11994227 1546455 N/A [ 23.982573
S energy 100 | 25.941438 N/A 17781475 18.601600 1856163 18844603 1991450 17.65158s N/A | 3124553
3 200 | 35.99.50 N/A 27.65:1112 277741055 28371108 29.50x1033 29.574015 28.95.1040 N/A | 41.2827g6
R ollins 100] 11444077 N/A 838415  Sdliioo  793xi40 1267i216  7.33:110 921123 N/A [13.07 1,5
E S 200 15741373 | 17451346 12.082305 11371100 10744170 1539433 10714137 1430134 N/A | 17.03135
N 50| 72.4011307 | 764011050 55.324620 54.8011297 55.3911065 62274501 55.6511058 62.9411206 N/A | 78901796
S textre 100 | 8242103 | 84351067 66004751 694941093 71781906 76254740 70934071 76.341055 N/A | 86.01 75
200 | 87.54176 | 89291620 7837i603 824417;s 81941630 84.67:1470 8329163 82.53i709 N/A | 89.77 5577

500 | 92961407 | 93.691353 90.09i3s6 91481350 90.50.271 91.531320 91761395 9124356 N/A | 9376564
Averagerank | 3301100| 3034125 6792150 748:1s0  894i070 6394041  694i150 7761203 31051107 | 121igms

3.1 Data Augmentation Improvement (Q1)

We evaluate the effect of using synthetic data for data augmentation by comparing the balanced
accuracy of downstream predictors before and after augmentation. Typically, higher classification
accuracy (i.e., ACCqenerator) and accuracy improvements (i.e., ACCgenerator — ACCgaseline > 0)
demonstrate the effectiveness of the synthetic data for data augmentation.

TabEBM effectively improves downstream performance across sample sizes, especially for
very low-sample-size regimes. Table 1 and Figure 4 (Left) show that TabEBM exhibits competitive
performance in data augmentation, generally achieving the highest downstream accuracy and average
rank across most datasets and sample sizes. Notably, TabEBM is the only generator that consistently
improves performance across sample sizes. A key observation is that most modern benchmark
generators underperform even the Baseline, indicating poor approximated distributions in the
low-sample-size regime. Moreover, TabEBM achieves the largest overall performance improvement
on six leakage-free UCI datasets, further supporting its effectiveness (see Appendix D.5.2 for details).

Furthermore, TabEBM is the most widely applicable method among the top three competitive
generators on the considered datasets: (i) SMOTE requires at least two samples per class for
interpolation, and thus it is not applicable for some datasets, such as the “protein” dataset (Ve = 20);
(i) TabPFGen cannot scale up to more than ten classes, such as the “collins” dataset. In addition,
TabEBM can stabilise downstream performance, especially when real data is very scarce (Nyea = 20):
TabEBM leads to smaller standard deviations than Baseline on seven out of eight datasets.

TabEBM effectively improves downstream performance across any number of classes, especially
for more than ten classes. Figure 4 (Right) shows that TabEBM consistently outperforms the
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Figure 4: Mean normalised balanced accuracy improvement (%) across different sample sizes (Left)
and across datasets with varying numbers of classes (Right). Because TabPFGen is not applicable for
datasets with more than ten classes, we plot short bars at zeros for visual clearance. Positive values
indicate that the generator improves downstream classification performance. TabEBM generally
outperforms benchmark generators across varying sample sizes and number of classes.

Baseline with notable improvements, particularly in datasets with more than ten classes. In contrast,
an increased number of classes tends to cause a performance degradation in the benchmark generators.

TabEBM is robust on imbalanced datasets. For the three binary OpenML datasets (i.e., “biodeg”,
“steel” and “stock”), we adjust the class distribution in the training data to vary the class imbalance,
while keeping the test data fixed. Figure 5 shows that TabEBM consistently outperforms Baseline,
while the other generators exhibit performance degradation as data imbalance increases.

TabEBM is computationally efficient. Figure 6 shows the trade-off between accuracy and the time
needed for generating stratified synthetic data (for data augmentation). We measure the total duration
of (i) training the model and (ii) generating 500 synthetic samples. The results show that TabEBM is
practical, as it achieves higher downstream accuracy with lower time costs.
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Figure 6: Median data augmentation
Figure 5: Mean normalised balanced accuracy im-  time vs. mean normalised balanced ac-
provement (%) on imbalanced datasets. TabEBM curacy. TabEBM achieves higher down-
consistently outperforms the Baseline and other gen-  stream accuracy while typically operating
erators across different levels of data imbalance. 3-30 times faster than most other methods.

3.2 Statistical Fidelity (Q2)

We evaluate the fidelity of synthetic data by measuring the similarity of synthetic data to real
train data and to real frest data (Figure 7). We evaluate this similarity via (i) average inverse of
the Kullback—Leibler Divergence (inverse KL) [17], (ii) p-value of Kolmogorov—Smirnov test (KS
test) [39] and (iii) p-value of Chi-squared test (x? test) [55]. For full numerical results, including
x? test, see Appendix D.6. For all three metrics, a bigger value denotes that synthetic data is more
likely to have the same distribution as real data.

In Figure 7 (al&a2), TabEBM consistently exhibits the highest accuracy and distribution similarity
between real train data and synthetic data, indicating that TabEBM learns the distributions of real
train data better than benchmark generators. In Appendix D.6, we further show that TabEBM remains
the most competitive method in similarity between real test data and synthetic data. This indicates
that TabEBM can extrapolate beyond real train data and thus generate synthetic data from a more
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Figure 7: (al&a2): Median inverse KL and KS test vs. mean normalised balanced accuracy im-
provement (%) between real train data and synthetic data. (b1&b2): Median DCR and J-presence
vs. mean normalised balanced accuracy change (%) between real train data and synthetic data. Note
that “accuracy improvement” is for data augmentation, and “accuracy change” is for data sharing.
Complete results with standard deviations are in Appendix D.4. TabEBM generates high-fidelity
synthetic data that can also be used for privacy preservation.

general distribution that aligns with both train and test data. This extrapolation ability also explains
why TabEBM can outperform Baseline via data augmentation (Section 3.1).

3.3 Privacy Preservation (Q3)

More broadly, data privacy is a critical concern for organisations and governments handling sensitive
data [75]. Privacy-preserving synthetic data allows researchers and practitioners to bypass ethical
and logistical issues while enabling model training and testing [38]. We further explore the use of
TabEBM-generated data for data sharing, where only synthetic data is accessible for downstream
users [75, 89, 86, 23, 42]. In this case, downstream models are trained exclusively on synthetic data.

Specifically, we evaluate synthetic data via three metrics: (i) balanced accuracy of downstream
predictors trained with only synthetic data (i.e., train-on-synthetic, test-on-real [85, 42, 87]); (ii) me-
dian Distance to Closest Record (DCR) [88], where a greater DCR denotes synthetic data is less
likely to be copied from real data; and (iii) d-presense [62], where a smaller value denotes a lower
re-identification risk for real data from synthetic data. Full numerical results are in Appendix D.7.

Figure 7 (b1&b2) shows that TabEBM consistently finds a better trade-off between accuracy and
privacy preservation. Notably, the “train-on-synthetic, test-on-real” scenario poses a greater challenge
for generators in achieving high accuracy because real data is inaccessible for model training and
data augmentation. Despite this difficulty, TAbEBM is the only generator that surpasses the overall
performance of training on real data (i.e., Baseline). The relatively high DCR for TabEBM indicates
that it can extrapolate beyond real train data, aligning with the finding that TabEBM’s synthetic data
is statistically similar to real test data (Section 3.2). These results further suggest that TabEBM learns
the general distribution of real data, and can generate high-quality synthetic data suitable for various
purposes, including privacy preservation.

3.4 Why is TabEBM effective for estimating Energy-Based Models? (Q4)

Having established that TabEBM excels in 15.0
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We found it essential to place the nega- on our surrogate binary tasks at increasing distances
tive samples far from the real data, since from the real data (on “steel”). (Right) The correspond-
TabPFN, which is pre-trained to approxi- ing unnormalised density approximated by TabEBM.
mate Bayesian inference [33], has its confi- TabEBM assigns higher density closer to the real data.



dence influenced by the distance from the training data [53]. Figure 8 (left) shows that TabPFN outputs
high logit values near the real data. As the distance from the real data increases, the logit f(x)[1]
decreases smoothly until the two logits become similar, making the classifier uncertain (because
the class probabilities become equal). Figure 8 (right) shows that TabEBM’s inferred density drops
significantly as the maximum logit decreases, because p.(x) o (exp(f(x)[0]) + exp(f(x)[1])) from
Equation (3). Since SGLD sampling performs gradient ascent on the density, the TabEBM-generated
samples will be close to the real data. These findings are consistent across datasets (see Appendix D.3),
where TabPFN’s logits remain positive, with similar ranges and a relatively constant sum as distance
increases, warranting further investigation. Overall, TabPFN’s distance-based uncertainty is useful
for inferring accurate energy functions within our TabEBM framework. Since TabEBM can be paired
with any other gradient-based classifier that produces logits, we leave these extensions for future work.

4 Discussion & Related Work

Section 3 showed that TabEBM efficiently generates high-fidelity data that can effectively improve
the downstream performance via data augmentation. In Table 2, we further provide a summary
of tabular data generative models analysed from three important perspectives: (i) Training: the
type of distribution that the generators learn (crucial for preserving the original training label
distribution), and the training costs associated with learning; (ii) Generation: do the generators
employ class-specific models (reflecting their capability to capture unique features essential for
label-invariant generation), and do models support stratified generation (crucial for effective data
augmentation); (iii) Practicability: the scalability of the generators with respect to the number
of classes (a common requirement in real-world multi-class tasks), and consistent downstream
performance improvement across different class sizes.

Generative Models for Tabular Data. The common paradigm for tabular data generation is to
adapt Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) [85, 63]. For
instance, TableGAN employs a convolutional neural network to optimise the label quality [63], and
TVAE is introduced in [85] as a variant of VAE for tabular data. However, these methods learn the joint
distribution and thus cannot preserve the stratification of the original data (Appendix C). CTGAN [85]
refines the generation to be class-conditional. The recent ARF [83] is an adversarial variant of random
forest for density estimation, and GOGGLE [47] enhances VAE by learning relational structure with a
Graph Neural Network (GNN). Some recent work focuses on generation with denoising diffusion mod-
els [42, 87, 40, 44]. For instance, TabDDPM [42] demonstrates that diffusion models can approximate
typical distributions of tabular data. Although these class-conditional models can preserve the label
distribution, they struggle to outperform Baseline and standard SMOTE in data augmentation [71, 48].

We attribute the performance degradation in current class-conditional models to their reliance on a
single shared model to approximate all class-conditional densities. For instance, another promising
generative approach uses pre-trained models like Prior-Data Fitted Networks (PFNs), and the recent
TabPFGen [48] adapts such models into one shared class-conditional generator. However, TabPFGen’s
shared generator can lead to inaccurate density estimates, particularly in high-noise and class-
imbalance situations (see examples in Appendix C). As noise increases, TabPFGen’s inferred densities
fluctuate significantly and diverge from the true data distributions. In contrast, TabEBM uses class-
specific EBMs to model each class’s marginal distributions, and the results in Appendix C reveal that
our design choice reduces the impact of noise and data imbalance. TabEBM focuses on approximating
and generating for one class at a time, remaining unaffected by noise from other classes. Overall, our
results demonstrate that TabEBM consistently improves performance across different datasets and
sample sizes, outperforming TabPFGen. Moreover, TabPFGen is limited in usability (e.g., it supports
only up to ten classes), while TabEBM scales to any number of classes.

In a broader context, some recent work attempts to adapt Large Language Models (LLMs) for tabular
data generation [25, 71, 9]. However, data contamination is an inherent issue with such LLM-based
models [19, 36, 18, 49]. As the pre-training data is not typically open-source, these models can have
unfair advantages in downstream tasks (i.e., the full real dataset, including the real test data, may
have been used for pre-training). Therefore, in this paper, we focus on models without support from
LLMs, thus avoiding potential biases from data contamination.

Data Augmentation (DA) for Tabular Data. DA is an omnipresent technique in computer vision
and natural language processing [82, 73, 72, 60, 26, 2]. However, DA for tabular data remains



Table 2: Comparison of the properties between TabEBM and prior tabular generative methods.
TabEBM has novel design rationales of training-free class-specific models, and TabEBM is highly
practicable with wide applicability and consistent accuracy improvement.

| Training | Generation | Practicability

Methods Category Learned . Class-specific ~ Stratified | Unlimited ACC improve ACC improve

distribution Training-free models generation classes (< 10 classes) (> 10 classes)
SMOTE [13] Interpolation N/A v N/A 4 v X X
TVAE [85] VAE p(x,y) X X X v X X
CTGAN [85] GAN p(x | y) X X v v X X
NFLOW [24] Normal. Flows |  p(x,) X X X v X X
TabDDPM [42] Diffusion p(x | y) X X v v X X
ARF [83] Random Forest p(x,y) X X X v X X
GOGGLE [47] GNN p(x|y) X X 4 v X X
TabPFGen [48] PFN p(x | y) v X v X v X
TabEBM (Ours) PEN | px|y) v v v | v v v

underexplored, and existing methods often perform poorly in real-world tasks, sometimes even reduce
performance [51]. Recent studies show that using the same transformations across all classes leads
to varied performance impacts [3, 41], indicating that data augmentation effects are class-specific and
suggesting that different classes may require distinct augmentations. Given the lack of symmetries in
tabular data, we believe this class-dependent effect is even more pronounced. Therefore, we propose
TabEBM as a class-specific generative model to produce tailored augmentations for each class.

Prior-fitted Networks (PFNs) for Tabular Data. Recent work proposes to approximate the posterior
predictive distribution with transformers [59, 33, 61, 79, 20]. PFNs can be adapted for various pur-
poses by pre-training the transformer with corresponding “prior data”, and then it can make in-context
predictions with unseen downstream data. For instance, TabPFN is a variant that is pre-trained on a
prior designed for tabular data [33]. We note that prior data is different to synthetic data in this paper.
Specifically, prior data refers to manually crafted fake data (e.g., y = 2x) with no real-world semantics.
In contrast, synthetic data from generators is expected to have the same semantics as real data. In-
spired by TabPFN’s success in small-size classification tasks, TabEBM converts TabPFN into multiple
EBMs that learn the marginal distribution for each class. The training-free nature of TabPFN enables
TabEBM to generate high-quality tabular data without introducing extra training costs. Additionally,
our class-specific design lets TabEBM surpass TabPFN’s limits and scale to more than ten classes.

Limitations and Future Work. TabEBM is a general method that relies on an underlying binary
classifier, and as such, its strengths and weaknesses are directly tied to this classifier. We used TabPFN
because it is a well-established open-source pre-trained model for tabular data. Therefore, TabEBM
inherits some of TabPFN’s limitations, particularly in scaling to a larger number of features. TabEBM
can handle datasets with over 1000 samples, overcoming TabPFN’s limitation, as it processes one
class at a time. In Appendix D.5.3, we show that TabEBM outperforms other generators on larger
datasets, though the performance gains decrease as the sample size increases. Although we implement
TabEBM with TabPFN in this paper, we stress that TabEBM is compatible with any classifier that
can be adapted into EBMs, as described in Section 2. As foundational models for tabular data evolve
[81], new models capable of handling more features and samples are expected. Integrating them
into TabEBM will enhance its ability to manage high-dimensional datasets, increasing its versatility
and utility. Finally, note that, generators that are limited in modelling multivariate distributions may
still perform well on univariate fidelity metrics, which is a standard approach to evaluating such
models. However, evaluating their ability to learn more complex, high-order, relationships between
features remains an open research question [78], which we leave for future work.

5 Conclusion

We introduced TabEBM, the first tabular data augmentation method that creates class-specific EBM
generators, learning the marginal distribution for each class separately. We also provide the first
comprehensive analysis of tabular data augmentation across various dataset sizes. Our results
demonstrate that TabEBM improves downstream performance through data augmentation on real-
world datasets, outperforming other benchmark generators. The statistical evaluation confirms that
TabEBM generates high-fidelity synthetic data, particularly for small datasets. We release our method
as an open-source library, allowing users to generate data immediately without additional training.
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A Broader Impact Statement

This paper introduces a novel data augmentation approach, TabEBM, that aims to advance the field
of machine learning by addressing challenges in the low-sample-size regime. Furthermore, TabEBM
offers an elegant solution to learning the unique features in generating samples for each class,
leading to high-fidelity synthetic data that can effectively improve downstream performance. These
characteristics can be particularly useful in data-scarce domains like healthcare (e.g., pre-clinical
drug evaluation in early-stage clinical trials [6, 58]). Moreover, we also demonstrate that TabEBM is
readily applicable for privacy-preserving data sharing in high-stake tasks [89, 77].

TabEBM’s impact further extends to enabling broader machine learning applications in data-scarce
domains, for instance, facilitating data analysis in clinical scenarios with limited access to data
collection techniques. Improving the performance of machine learning models in such applications
can further foster the uptake of more sophisticated ML approaches and, ultimately, help improve
the quality of healthcare [1, 15, 57]. TabEBM can further facilitate research and enhance machine
learning accessibility in various communities across societal and scientific domains. To this end,
our work has only been evaluated in a strictly research setting. Further applications of our work in
scenarios with sensitive data bear some risks. As TabEBM is a generative model, training models
with the resulting generated samples can bias the downstream model. Therefore, this risk, together
with other data privacy risks during downstream deployment, must be carefully managed.

B Reproducibility

B.1 Datasets

All eight datasets are publicly available on OpenML [7], and their details are listed in Table 3. To
ensure consistent stratified data-splitting across all datasets, we remove classes with fewer than 10 sam-
ples. For example, the original “energy” dataset contains 14 classes with fewer than 10 samples, which
could result in a validation set lacking samples from these classes, leading to unstratified data splitting.

Table 3: Details of the eight real-world tabular datasets.

Not evaluated in

# Samples per class ~ # Samples per class

Dataset OpenML ID # Samples (IN)  # Features (D) # Classes N/D

TabPFN [33] (Min) (Max)
At most 10 classes
protein 40966 X 1,080 77 8 14.03 105 150
fourier 14 X 2,000 76 10 2632 200 200
biodeg 1494 X 1,055 41 2 2573 356 699
steel 1504 X 1,941 33 2 5882 673 1,268
stock 841 X 950 9 2 10556 462 488
More than 10 classes

energy 1472 X 698 9 23 77.56 10 74
collins 40971 v 970 19 26 51.05 17 80
texture 40499 v 5,500 40 11 137.5 500 500

B.2 Data Splitting
Figure 9 shows the data splitting setup used across all datasets. Note that data sharing (Section 3.3)

shares the same data splitting as data augmentation, except that the “Training set” and “Validation set”
containing real data are no longer used for training the downstream predictors.
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Figure 9: Data splitting strategies for data augmentation for all datasets.

B.3 Data Preprocessing

Following the procedures presented in prior work [54, 30], we perform preprocessing in two steps.
We first compute the required statistics with training data and then transform it. Firstly, we impute the
missing values with the mean value for numerical features and the most mode value for categorical
features. Secondly, we convert the categorical features into numerical features equal to Leave-one-out
Target Statistic [66, 56]. Next, we perform Z-score normalisation for each feature. Specifically,
we compute each feature’s mean and standard deviation in the training data and then transform the
training samples to have a mean of zero and a variance of one for each feature. Finally, we apply the
same transformation to the validation and test data before conducting evaluations.

B.4 Software and Computing Resources

Software implementation. (i) For generators: We implemented TabEBM using PyTorch 1.13 [64],
an open-source deep learning library with a BSD licence. We implemented SMOTE with Imbalanced-
learn [45], an open-source Python library for imbalanced datasets with an MIT licence. For other
benchmark generators, we used their open-source implementations in Synthcity [67], a library for
generating and evaluating synthetic tabular data with an Apache-2.0 license. (ii) For downstream
predictors: We implemented TabPFN with its open-source implementation (https://github.com/
automl/TabPFN). We implemented the other five downstream predictors (i.e., Logistic Regression,
KNN, MLP, Random Forest and XGBoost) with their open-source implementation in scikit-learn [65],
an open-source Python library under the 3-Clause BSD license. (iii) For result analysis and visual-
isation: All numerical plots and graphics have been generated using Matplotlib 3.7 [34], a Python-
based plotting library with a BSD licence. The model architecture was generated using draw.io
(https://github.com/jgraph/drawio), a free drawing software under Apache License 2.0.

We ensure the consistency and reproducibility of experimental results by implementing a uniform
pipeline using PyTorch Lightning, an open-source library under an Apache-2.0 licence. We further
fixed the random seeds for data loading and evaluation throughout the training and evaluation process.
This ensured that TabEBM and all benchmark models were trained and evaluated on the same set of
samples. The experimental environment settings, including library dependencies, are specified in the
open-source library for reference and reproduction purposes.

Computing Resources. We trained 140,000 models for evaluations (including over 35,000 of gen-
erators and over 10,500 for downstream predictors). All our experiments are run on a single machine
from an internal cluster with a GPU Nvidia Quadro RTX 8000 with 48GB memory and an Intel(R)
Xeon(R) Gold 5218 CPU with 16 cores (at 2.30GHz). The operating system was Ubuntu 20.4.4 LTS.
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B.5 TabEBM open-source library

We implemented TabEBM as an extensible library, and the code is available on
https://github.com/andreimargeloiu/TabEBM. For practitioners, it offers an easy-to-use,
domain-agnostic tool that requires no training, making it particularly suitable for data augmen-
tation, especially in small datasets. For researchers, the library includes the complete implementation
of TabEBM, facilitating future extensions and investigations into class-specific energy-based models.

The library has two core functionalities:

1. Generate synthetic data: The library can generate data for augmentation.

from tabebm.TabEBM import TabEBM

tabebm = TabEBM()

augmented_data = tabebm.generate(X_train, y_train, num_samples=100)
% augmented_datal[class_id] = numpy.ndarray of generated data

% for a specific ’’class_id‘‘¢

2. Compute and visualise the energy function: The library allows computation of
TabEBM’s energy function and the unnormalised data density. The demo notebook,
TabEBM_approximated_density.ipynb, shows the TabEBM-inferred densities under con-
ditions of data noise and class imbalance (thus recreating the plots from Appendix C).

B.6 Implementation of Generators

TabEBM. In all our experiments, the surrogate binary classifier in TabEBM is a
pretrained in-context model, TabPFN [33], using the official model weights released
by the authors (https://github.com/automl/TabPFN/raw/main/tabpfn/models_diff/
prior_diff_real_checkpoint_n_O0_epoch_42.cpkt). We use TabPFN with three ensembles.
We use four surrogate negative samples, Xz %, positioned at cg.s = 5 standard deviations from zero,
in random corners of a hypercube in R” (as explained in Section 2.2), distant from any real data. In
Appendix D.1, we show that TAbEBM is robust to the distribution of the negative samples.

We use SGLD [84] for sampling from TabEBM, where the starting points x/"" are initialised

by adding Gaussian noise with zero mean and standard deviation og,¢ = 0.01 to a randomly

selected sample of the specific class, i.e., x2™" ~ N/(X,, 02,,I). For SGLD, we used the following
parameters: step Size oep = 0.1, noise scale angise = 0.01 and number of steps 7' = 200. We found

TabEBM to be robust to the SGLD settings (see Appendix D.2).

TabPFGen. We re-implemented TabPFGen [48] by closely following the original paper since no
official implementation is available. As recommended in [48], the starting points are initialised by
adding Gaussian noise with zero mean and standard deviation of 0.01 to the training points.

SMOTE. We use the open-source implementation of SMOTE from Imbalanced-learn [45], and
the number neighbours k is set within the range of {1,3,5}. When applicable, we always set the
maximum value for nearest neighbours (i.e., & = 5). However, very low-sample-size datasets may
not contain sufficient samples for large k. For instance, the “fourier” dataset (Ve = 20) only has
two samples per class. We set k = 1 to generate synthetic data with SMOTE in these cases.

For the other six benchmark generators, we use their open-source implementations in Synthcity [67].
Following prior studies [87, 80, 71, 48], we use the default settings for all generators.

B.7 Implementation of Downstream Predictors

We implemented TabPFN with its official implementation [33] and the other five downstream
predictors with the scikit-learn library [65]. Following prior studies [80, 71], we use the default
settings for all downstream predictors.
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C Limitations of Existing Generative Methods

We showcase three limitations of current generative models: (1) Appendix C shows that models
approximating the joint distribution p(x, ) may fail to preserve the stratification of the real data
and even fail to generate samples from specific classes. (2) Appendix C evaluates the approximated
class-conditional distributions p(x | y) on data with increasing noise levels, and (3) Appendix C
evaluates the approximated class-conditional distributions p(x | y) on data with increasing class
imbalance.

Real Data

TVAE
20 A

-
v
L

Class Distribution (%)
5

v
L

123456 7 8 91011121314 151617 18 19 20 21 22 23

Class ID
Figure 10: Comparison of class distribution between real data and synthetic data from TVAE. We first
train TVAE on the “energy-efficiency” dataset and then randomly generate 10,000 samples with it.
We highlight the classes where no synthetic samples are generated. TVAE fails to generate samples
for 4 of 23 classes, showing the impracticability to preserve stratification by generative methods that
learn joint distribution p(x, y).
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Real data TabPFGen inferred p(x|y=0) TabPFGen inferred p(x|y=1)  TabEBM (ours) inferred p(x]y=0) TabEBM (ours) inferred p(x|y=1)

(a) Noise level 0.1

TabPFGen inferred p(x|y=1) TabEBM (ours) inferred p(x|y=1)

(b) Noise level 0.25

TabPFGen inferred p(x]y=1) TabEBM (ours) inferred p(x]y=0) TabEBM (ours) inferred p(x|y=1)

(c) Noise level 0.5

TabPFGen inferred p(x|y=1) TabEBM (ours) inferred p(x|y=1)

(d) Noise level 1

TabPFGen inferred p(x|y=1)

(e) Noise level 2

Figure 11: Evaluating the approximated class-conditional distributions on data with increasing noise
levels. Darker blue indicates a higher assigned probability. TabPFGen uses a single shared energy-
based model to infer the class-conditional distribution p(x|y). As noise increases, TabPFGen’s
probability assignments vary significantly and end up assigning very high probabilities that are far
from the real data. For instance, the areas of assigned probability for p(x|y = 1) completely flip
when noise increases from 0.5 to 1. In contrast, our TabEBM uses class-specific energy models,
resulting in robust inferred conditionals. TabEBM performs well even under very high noise (see
p(x]y = 0) for noise level 2), while TabPFGen struggles.
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Real data

TabPFGen inferred p(x]y=0)

TabPFGen inferred p(x]y=1)  TabEBM (ours) inferred p(x|y=0) TabEBM (ours) inferred p(x|y=1)

o+

TabPFGen inferred p(x|y=0)

(a) Class ratio 150:150

TabEBM (ours) inferred p(x]y=0)

TabPFGen inferred p(x|y=1)

TabPFGen inferred p(x]y=0)

(b) Class ratio 50:250

TabEBM (ours) inferred p(x]y=0)

TabEBM (ours) inferred p(x|y=1)

TabPFGen inferred p(x|y=1)

L8 o0,

Real data

TabPFGen inferred p(x]y=0)

(c) Class ratio 25:275

TabPFGen inferred p(x|y=1)

TabEBM (ours) inferred p(x|y=0)

TabEBM (ours) inferred p(x|y=1)

"

(d) Class ratio 10:290

Figure 12: Evaluating the approximated class-conditional distributions on a toy dataset of 300
samples with varying class imbalances. The two clusters maintain their positions. Darker blue
indicates a higher assigned probability. TabPFGen uses a single shared energy-based model to infer
the class-conditional distribution p(x|y). As class imbalance increases, TabPFGen starts assigning
high probability in areas far from the real data, for instance, in the case of p(x|y = 1) for class
ratio 10:290. In contrast, our TabEBM fits class-specific energy models only on the class-wise data
X, = {x | y; = c}. This results in very robust inferred conditional distributions even under heavy
class imbalance (e.g., see that p(x|y = 1) remains relatively constant).
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D Extended Experimental Results

D.1 Ablations on the distribution of the surrogate negative samples

D.1.1 Ablations on placing the negative samples

(A) TabEBM with distant hypercube corners (B) TabEBM with 20% of real samples (C) TabEBM with half the real samples
Real data for one class labeled as "negative samples" (as proposed) labeled as "negative samples" labeled as "negative samples"
o o
o
o
o o
° ®P% o @ ,
° 0 838 % o, o oé.”@ %o.
QO ®® 3 goa:ﬁb ®00 g
00 ° 00
g 8 o I8 3
%6 6 0° % S
0 ® o 0 © %o
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Figure 13: TabEBM energy E.(x) for different choices of negative samples. The blue region
represents low energy, indicating high data density. In (A), TabEBM, with the proposed negative
samples placed in a hypercube far from the data, infers an accurate energy surface, resulting in
generated data close to the real points. In (B), labelling a random subset of the real data as negative
samples leads to a completely inaccurate energy surface. In (C), labelling half of the real points as
negative samples reduces density near the decision boundary, as TabPFN assigns low maximal logit
due to the high uncertainty. In conclusion, placing negative samples far from the real data results in a
robust energy surface.

Appendix D.1.1 shows TabEBM’s energy E.(x) when varying the selection of the negative samples.
TabEBM infers an accurate energy surface with distant negative samples, and the energy surface
becomes inaccurate when negative samples resemble real samples. This occurs because TabPFN is
uncertain when points of different classes are close, affecting its logits magnitude and making them
unsuitable for density estimation.

D.1.2 Varying the number of negative samples
We evaluate the impact of the ratio | X7 ®| : |X..| between the negative samples X, ¢ and the real sam-
ples |X.|. We vary |X;°®| while keeping |X.| fixed, simulating both balanced and highly imbalanced
scenarios. The negative samples are placed in random corners of the hypercube (as described in
Section 2), at five standard deviations in each direction (i.e., agfs% = 5). To ensure reliable outcomes,
we maintained a consistent ratio across all classes, keeping the same proportion of negative samples
for each class.

Table 4 shows the results across six datasets with NV, = 100 real samples, demonstrating that
TabEBM is robust to imbalances in the surrogate binary tasks. The column with | X;°®| = 4 represents
the TabEBM results from the main paper, where four negative samples were placed in the corners (as
described in Section 2). There are negligible differences in performance, and TabEBM consistently
outperforms both the baseline and other generators (as shown in Table 1).
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Table 4: Evaluating the impact of varying the ratio |Xe °| : |X.|. We show the test classification
accuracy performance (%) of TabEBM on data augmentation averaged over six datasets and ten
repeats. TabEBM shows consistent performance and outperforms the baseline, regardless of the
number of negative samples.

Baseline

TabEBM (Real data)
Ratio | X8| : | X,| 0.1 0.2 0.5 1 Fixed | X2 = 4 -
biodeg 76.59:‘:395 76.54:‘:395 76-47j:4‘05 76.81 +3.58 76-451308 76.69:‘:2‘70
steel 92.71:‘:746 92.60:‘:745 92.7917‘50 92,63:{:7'59 92-711757 86.87:‘:12‘4
stock 90.46:‘:349 90‘41:&355 90.5213,52 90«31:!:3.63 90-3613414 89.07:‘:3‘71
energy 31'20i622 31'20i6.22 3O~89i5.83 30«90i6.09 31-24&5453 25-94&4486
collins 13.06i2‘gg 13~02i2.85 13-05i2.89 12~97i2.79 13-07i2451 11-44i2477
texture 85914690 85914690 85.941¢7 86.26i6'72 86.014+736 82.424 1038
Average accuracy 64.99 64.95 64.94 64.98 64.97 62.07

D.1.3 Varying the distance of the negative samples

We assess the effect of varying the distance of negative samples. We use TabEBM with four negative
samples positioned randomly at the corners of the hypercube, as outlined in Section 2 (this corresponds
to the experimental setup from the main paper). The distance of the negative samples, denoted as agfs“’;,
is varied. Table 5 demonstrates that TabEBM remains generally robust to changes in this distance,
with only small performance variations across different datasets. Importantly, using TabEBM for data
augmentation consistently improves performance by approximately 3% compared to the Baseline,
regardless of the distance used.

Table 5: Evaluating the impact of varying the distance of the negative samples . across various
datasets. We show the test classification accuracy performance (%) of TabEBM on data augmentation
averaged over six datasets and ten repeats. TabEBM is robust, and optional tuning of the negative
samples could slightly improve performance.

Baseline

TabEBM (Real data)
Per-dlmenSI‘on distance oy 0.1 02 05 1 2 5 )
of the negative samples
biodeg 76.72;&3_33 76.6213_40 71. 12:&2.60 76.85i3_14 76.50;&3_93 76.4513_08 76.6912.70
steel 93~97i5,76 93-46i6.24 93~00i692 92.60i7,31 92.68i7‘33 92-71i7.57 86.87i12_4
stock 90~42i3.46 90-29i3,6l 90-56i3,46 90~38i3.64 9OA43i3_5(, 90‘36i3,]4 89~07i3.7l
energy 31734621 31424608 31861612 32534506 31.651606 31.244s5s53 25944436
collins 13.03:&2_59 12-92:(:2.60 12-97:{:2.69 13403:!:2.84 13.0812_93 13.0712_51 11.44:{:2.77
texture 85.62i7‘41 85.58i7.49 85~50i7A65 85-05i8.21 85.20i7‘95 86.01i7_36 82.42i10‘3g
Average accuracy 65.25 65.05 65.17 65.07 64.92 64.97 62.07

D.2 Ablations on the sensitivity to the hyperparameters of SGLD sampling

We vary two key hyperparameters of SGLD on the “biodeg” binary dataset with Ny, = 100: the
step size ouep and the noise scale ayise. Table 6 shows that TabEBM remains stable with respect
to these hyperparameters. Note that smaller values of a,0ise are expected to perform better because
SGLD sampling adds noise at each iteration (see Line 7 in Algorithm 1), thus larger values of cpoise
will hinder convergence of the SGLD sampler.
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Table 6: Test classification accuracy (%) of TabEBM (averaged over six downstream predictors)
with different SGLD settings. Increasing aneise (added at each SGLD step) is expected to degrade
performance, as it causes the sampling to diverge further from the real data.

‘ Olstep
‘ 0.1 ‘ 0.3 ‘ 0.5 ‘ 1.0
0.01 | 76.45 | 77.09 | 77.04 | 76.58

0.02 | 76.86 | 76.96 | 76.77 | 76.26
0.05 | 7593 | 75.89 | 75.94 | 75.70

Qipoise

D.3 Distribution of Logits and Unnormalized Density in TabEBM

biodeg fourier steel protein
15.0 15.0 15.0 15.0
12.5 12.5 12.5 12.5
$ 100 $ 100 K $ 100 $ 100 K
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Figure 14: Additional results for Section 3.4. The logit distribution of TabPFN trained on our
surrogate binary tasks across four datasets. Starting from the real samples, random points are selected
at increasing distances (shown on the x-axis). The top row shows the logit distributions for the
surrogate task. Close to the real data, TabPFN outputs a high logit value. As the distance increases,
the logits converge due to increased predictive uncertainty, leading to equal class probabilities
after applying softmax. Notably, across datasets, TabPFN’s logits are always positive, have similar
ranges, and maintain a relatively constant sum as distance increases. The bottom row TabEBM’s
unnormalized density, p.(z) < exp(—F.(z)) = pc(z) o« (exp(f(x)[0]) + exp(f(z)[1])). The
density decreases significantly far from the data, becoming negligible. Because sampling using
SGLD perform gradient ascent on the density, the TabEBM-generated samples will be similar when
using one or both logits.
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D.4 Complete Trade-off Figures with Error Bars
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Figure 15: (al&a2): Median inverse KL and KS test vs. mean normalised balanced accuracy
improvement (%) between real train data and synthetic data. (b1&b2): Median DCR and § —
presence vs. mean normalised balanced accuracy change (%) between real train data and synthetic
data. Note that “accuracy improvement” is for data augmentation, and “accuracy change” is for data
sharing. TabEBM generates high-fidelity synthetic data that can also be used for privacy preservation.
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D.5 Results on Data Augmentation
D.5.1 Results on eight OpenML datasets.

Table 7: Classification accuracy (%) of LR, comparing data augmentation on eight real-world tabular
datasets with varied real data availability. We report the mean =+ std balanced accuracy and average
accuracy rank across datasets. A higher rank implies higher accuracy. Note that “N/A” denotes that a
specific generator was not applicable or the downstream predictor failed to converge, and the rank is
computed with the mean balanced accuracy of other methods. We bold the highest accuracy for each
dataset of different sample sizes. TabEBM achieves the best overall performance against Baseline
and benchmark generators.

Baseline
(Real data)

20 | 36.334304 N/A 22024291 21.044476 1840448  18.774384 25921430 36.614253 38.074125 | 38.014033

50 | 62.144377 | 61434434 37.041279  33.104599 31.254421 23984275 43.644507 54951328 63.004369 | 63.05.1384

protein 100 | 79971324 | 79.534337 61.074506 5544411090 46371410 45554404 56771306 67.2541450 80.541327 | 80.3243 1
200 | 91.534158 | 90.924151 77431275 71271307 66.164431 66374340 70.524517 76304370 91.694166 | 91.344177

500 | 97.8610383 | 97.691080 90.771093 89.0511s50 85.091199 83.581020 88.5511s4 90.641081 97971061 | 97.881036

20 | 4290453 N/A 2246555 16002470 15481370 13581430 22.041440 15801415 4467555 | 43.025514
50 | 60.624164 | 58401105 33421005 31181547 28.70i374 2618135 39.04131 40.001407 60.07:014 | 60361155
fourier 100 | 67.76.1249 | 65.841235 41364085 40.324349 4032155 4144150y 47901374 39784300 67.4041s; | 674414
200 | 73034541 | 71561067 54761346 55.001370 5240435 58.084352 58481205 50981265 70301001 | 72.384301
500 | 77441100 | 76425105 68281512 70.18%150 68.12i16 72361165 T1.54i10s 6948%17 76.52:1 60 | 7750014

20 | 71344563 | 70.101540 70.164575  58.17:500 58.05:001 49.99i55s 62611645 69471600 70.761305 | 71241485
50 | 76.35408s | 75.691305 73.631061 67441353 62.87i730 4944126 4441, T175i527 75.684031 | 76411503
biodeg 100 | 78911140 | 78391153 77.091280 74.891258 68.624501 55.61u3s6 75.62:277 7245133 77.924541 | 78341015
200 | 82.004,47 | 8142513 80.071180 78561345 72.354172  59.061465 78031105 73731200 81241171 | 8143417
500 | 83.831057 | 83741000 81.69:108r 82.121117 78.061213 66.861s543 81471003 77981127 8343108 | 83.10.00s

20 | 63.661593 | 57.884570 60271747 57901445 53.104728 54201699 55411400 53291431 66.8141974 | 67.03 1935

50| 87.91isgs | 69.01660 66.221363 66.221577 57.051s551 57.461848 64.8liges 57204519 93.631478 | 92.20445;

steel 100 | 98.851120 | 82674430 74331385 70491535 65.094730 52771706 67.851404 61.621405 99.241052 | 99211086
200 | 99431053 | 87.184306 82771321 80341203 70494527 729941308 80.2741730 64521216 99454069 | 99.51.1060

500 | 99.751029 | 96.63 1211 94.591008 96.3241s50 84.151260 98.071137 95351006 70.1142s5 99.84.1020 | 99.841020

20 | 77.991440 | 80454308 74211636 59.2041260 72.504700  72.094975 69.041625 80.591350 79.544446 | 80.394342
50 | 80.68+265 | 81.494005 76.414395 72951017 75414600 78441440 76911236 75494531 82371320 | 82.214060

Datasets Nreal SMOTE TVAE CTGAN  NFLOW TabDDPM ARF GOGGLE TabPFGen | TabEBM

At most 10 classes

SOk 100 | 821141y | 83861107 7985107 7847407 76.99i349 80.82i5s57 78.89ir3 7765160 83.67:160 | 8352517

200 | 82.181081 | 84.291119 79241580 79861242 76491137 80214013 78.871246 76911104 83754153 | 84.17 1140

o 50| 22.22453 N/A  10.114220 9.581315  7.704183 8204201 10.514y28 17.104503 N/A | 21.66.41 54

% energy 100 | 24.004230 N/A 13.804523 13.014571 12.144,87  10.794319 15.651040 14.451590 N/A | 28104519

% 200 | 29.371263 N/A 16391265 16564355 16784315 18114171 20.104243 20.925579 N/A | 34381260

S i 00| 142856 NA 10571177 8694107 9594113 1331e167  869:180 12.084156 N/A | 14014055

5 200 | 19.20417; | 19391188 16.031174 11.641176 10971146 17.064151 11314158 17.80412) N/A | 19.334 55
K]

g 50 | 86.5642096 | 86.934077 55.014577 42171636 44.631541 60.0741011 44464663 77.681433 N/A | 88.54., 5

§ texture 100 | 94.074170 | 93.87+180 65361449 60.071651 60.764515  73.16451; 64.691479 84.131197 N/A | 94.38. 124

200 | 96.655105 | 96.535155 75.91ssss 80024513 77075580 86241560 85901075 85944rss N/A | 9653117

500 | 98.031036 | 98.051025 91.874093 92931178 90.01i150 93.921081 94.83:080 91.724149 N/A | 97.75 1042

Average rank | 2364104 | 3451135 6.52:148 7531142 9.081077  7.6linzz 6701147 6.674253 3071181 1924075
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Table 8: Classification accuracy (%) of KNN, comparing data augmentation on eight real-world
tabular datasets with varied real data availability. We report the mean =+ std balanced accuracy and
average accuracy rank across datasets. A higher rank implies higher accuracy. Note that “N/A”
denotes that a specific generator was not applicable or the downstream predictor failed to converge,
and the rank is computed with the mean balanced accuracy of other methods. We bold the highest
accuracy for each dataset of different sample sizes. TabEBM achieves the best overall performance
against Baseline and benchmark generators.

Baseline

Datasets Nieal (Real data) SMOTE TVAE CTGAN NFLOW TabDDPM ARF GOGGLE TabPFGen | TabEBM
20 | 21.341903 N/A 21.784206 21.184420 21304190 22.004270 22.691386 16991345 35781446 | 35. 761437

50 | 36411433 | 55244381 35851250 36.131424 35404427 36771406 36.841405 31.024411 53.384353 | 53.494330

protein 100 | 50.17431; | 7001408 51.971084 50.614315  50.624327 50.631355 50364344 44.70422 67.994043 | 68.27 4251
200 | 65.841575 | 80431044 65.521506 66.051074 66.14154 67.501257 66521316 63.924326 79.944226 | 80.551500

500 | 85.634141 | 90921140 87.0841186 85771143 85514150 86471140 85874163 85.644104 91324009 | 9167411,

20 | 18.064330 N/A 265644090 24.881366 19.804377 19.304353 23424345 18781217 41.081¢56 | 42.781553

50 | 48.004047 | 603867 39.861373 46.8213s5p 43.564345 49.541573 42981080 28.124275 59.504199 | 58.54 1136

fourier 100 | 58.361326 | 66.96.1247 48441414 53941347 53504254 60.804428 52741315 35701240 63.884253 | 65.081247

§ 200 | 68.604255 | 71904000 59.664331 66.541275 65.164071 70224026 64521044 51.244729 70.324194 | 71.08.41 87
§ 500 | 76.90+130 | 77.641107 73.204168 76221162 75724140 78.881158 76541077 63.664249 74304151 | 75.354134
S 20 | 65.231501 | 68.994331 66.631783 56.991is5ss 59911600 55.8514904 58771593 56.621729 67791464 | 69.761 443
N 50 | 71.264313 | 73.194046 70.804214 70.0045092 65904357 73504443 70.234335 65294457 72.084384 | 73.58.4357
g biodeg 100 | 76.124108 | 76.07+174 74.021078 75364018 73241061 77341219 742841000 72.264246 74.564158 | 75.6041 55
- 200 | 78.8612.19 | 79.671168 77311003 78.054307 77.641071 77841060 78.81in66 76.821220 77464168 | 78.464 169
= 500 | 82.594117 | 83.071150 82134121 8217413  82.804128 81.06412 82151133 82104079 79.994176 | 81.014166
20 | 56401448 | 63.954314 59451827 57.044s505 54594581 65464610 56974543 52904376 70.681357 | 69.311402

50 | 73.954476 | 70.24 1344 67.601410 68771285 67.004458 85141576 64.02137; 57.541034 82.094309 | 80.47 1345

steel 100 | 84.704557 | 77.461367 T1.871208 729441462 77.091263 94051384 72.62455; 61.081103 87.774313 | 87.67432
200 | 90.44.55 | 82.464143 80.831065 82731383 85494350 98991075 83381267 609.124256 92.014173 | 92.0641 48

500 | 94.99:109 | 89.97 1088 91341160 92421136 93374103 99711021 92.021505 80.794103 95.084130 | 95.504149

20 | 71.89+437 | 84414528 73.801468 66.3819.10 68.9311049 81.82:833 67.531gs8 71.801499 8441442 | 84.691416

stock 50 | 85.034339 | 89.774199 84324397 83494367 84431004 89341150 8433432 83.641253 89.674183 | 89.6841 87

] 100 | 89.664139 | 92.321099 89.58112 89.611136 89.661101 91401141 89.664210 89.44114 92.024081 | 92471053
200 | 91.65+108 | 93464080 92374108 91554109 91434134 92924100 91144558 91534105 93.154072 | 93.6241 14

© 50 | 10.854176 N/A 10641236  8.221903 8.83 153 8.92455; 9141195 11.864233 N/A | 25.364257
§ energy 100 | 18.60+;83 N/A 13714166 15814150 14.674155 16184175 15714079 17.641068 N/A | 29.821,74
-,% 200 | 26.454149 N/A 20714100 21714323 23404055 23954004 23.094256 27351008 N/A | 35.93, 555
2 collins 100 | 10.594 48 N/A 758+074 7954112 755413 14244048 7424007 87910903 N/A | 15.164 9>
§ i 200 | 15844174 | 19811173 9791144 11214545 12244565 16304154 10964143 12.864150 N/A | 18.05465
E, 50 | 62.964049 | 78.804275 55514369 61.864448 62.084317 61911004 62.674229 56.814208 N/A | 75.57 1267
S oxure 100 | 77161105 | 8605100 6905hings 653 T685iiss T177sis 7670sa0s T264u1 N/A | 84.8341 ¢
200 | 85341118 | 89.071174 81701132 8546.128 84.621100 85944135 85.114120 84.721030 N/A | 894851

500 | 91404160 | 93.144128 89.884144 91404155 91344160 92314160 91464151 9191463 N/A | 93.46.0.66

Average rank | 5151206 | 2701197 7671210 7.0311s5 7274168 4121034 6824176 8421033 3.674196 | 2154175
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Table 9: Classification accuracy (%) of MLP, comparing data augmentation on eight real-world
tabular datasets with varied real data availability. We report the mean = std balanced accuracy and
average accuracy rank across datasets. A higher rank implies higher accuracy. Note that “N/A”
denotes that a specific generator was not applicable or the downstream predictor failed to converge,
and the rank is computed with the mean balanced accuracy of other methods. We bold the highest
accuracy for each dataset of different sample sizes. TabEBM achieves the best overall performance
against Baseline and benchmark generators.

Datasets  Nieal (Rf:‘lsggt‘:g‘ SMOTE TVAE CTGAN NFLOW TabDDPM ARF GOGGLE TabPFGen | TabEBM
20 | 35124250 N/A 2189136 2695:413 24.561505 27304323 27.961451 27.091347 36.19108s | 36.265265

50 | 58114413 | 57241460 40.771350 43.041s543 44.7813070 49431551 46841508 44.781267 58.621441 | 58.75144s8

protein 100 | 76.824333 | 76.784310 62.004321 64.141319 63.241405 69.204275 65.081267 6245132 77.841349 | 77.631369
200 | 89.531234 | 90.28.513 80.281349 81.941255 81.854046 85481207 82.574219 78.044266 90.744213 | 90.48.1006

500 | 98234001 | 98.251078 95.081134 95744005 96.154100 96.0140s6 96.50+087 96.234167 98.5240380 | 98.50+070

20 | 33.66430 N/A 23201554 17.084275 19401403 1832438 2326140 19.644040 37001085 | 35.02:57
50 | 53724167 | 53.024106 37.161308 37.601450 35.141045 40901250 42.8212g3 32661510 55404203 | 55345140
fourier 100 | 62781160 | 61441574 43.684315 48.801066 46.18:306 56521504 52.50i266 37741200 63.00:105 | 63.54) 3
200 | 70.1841g5 | 70.064210 58901256 62361285 58401253 70.084190 62.141200 50921513 71494141 | 71361136
500 | 77.944165 | 77184135 72141170 74301165 71381154 77784126 74321156 67281001 7834117 | 79.301090

20 | 71314513 | 68.841505 66.641527 62.114495 62.614678 52.964420 62.064360 65.814724 72.044512 | 7209445

50 | 76.734316 | 74971251 72.024474 71.831317 67.861602 69.921483 74.031305 71.014078 77074203 | 77114320

biodeg 100 | 79.13.+ 91 | 78204168 76.784279 77.854273 76.0l4288 76.741360 76.081239 76.241245 78.231229 | 79.081203
200 | 8239445 | 81.704122 80431202 79.964235 79924155 80.51i126 79.59+170 80344103 81744136 | 82.244 54

500 | 84.50.061 | 84.501081 83.781151 83.674081 84.134120 84.094084 83.764127 82974121 84374045 | 84.144050

20 | 62.35.4630 | 60.344573 61.631s50 59.09.1425 56991713 60.67i01s 55231300 55781301 6449603 | 64225550
50 | 79.65.4s53 | 68.184316 69.011345 70.301477 6696151, 84041503 64791407 58951165 82.721602 | 82.15157s
steel 100 | 92.18.1503 | 78444367 76371306 76921363 76.50i315 95.831100 71851320 6735155 95.1643,3 | 9541530
200 | 97314163 | 83934183 82424275 8470554 84.061445 98751068 79.661326 78.361385 98.831050 | 98.841067
500 | 99.78.1030 | 91.374226 93.08115 94.82:1ss 9399153 99471044 90341010 96061105 99.81:024 | 99.811024

20 | 83.564350 | 83.624406 77251502 69.901027 72.85i777 80.60i573 69301676 83341335 83.81130, | 83.89140s
50 | 89.57100; | 89711001 82.621340 79351071 81521100 88481015 83361230 88.384241 9023150, | 90.38:57

At most 10 classes

SOk 100 | 90631055 | 9117408 88371240 86605327 83.194377 9065413 88.64111s 9L6linr 9170447 | 91755007
200 | 91.254074 | 92.581001 91.274005 90341160 89.324045 92194078 90.37413 91.894130 92914062 | 92471063

© 50| 24.794176 N/A 12514580 12.614345 8434241 109140y 12454187 2042444 N/A | 24.044 39
% energy 100 | 268615, N/A 16201012 15784250 15701048 17754318 18.16124 20724209 N/A | 29.30125,
N 200 | 33.364208 N/A 22304244 23.004424 23534184 26124178 26284303 33.034333 N/A | 41.27 4503
2 collins 100 | 14.1643; N/A 924171 9164157 9.041179 14034124 8594184 1081468 N/A | 14.07 4158
S 200 | 19354904 | 19.064149 14.624000 13174094 12384156 18.634156 12.4841091 17.654176 N/A | 19.53.4 )44
E 50 | 84.50408; | 84124300 62924400 67.694549 61991358 69.6941460 64451784 69.681353 N/A | 85511559
S texture 100 | 91504134 | 91.574150 74534330 79961437 80361455 85424274 80231248 85.59:149 N/A | 921743
200 | 93.814535 | 94184126 86.574233 90.684155 889741012 90.104226 89.144185 91.664143 N/A | 9435, 57

500 | 96.554063 | 97.211040 94.664117 96274074 94341136 94724061 95.834103 96.494048 N/A | 97.13 4953

Average rank | 300413 | 4061160 7821165 7481150 845513 5554214 7481172 6824057 2674160 1674074
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Table 10: Classification accuracy (%) of RF, comparing data augmentation on eight real-world
tabular datasets with varied real data availability. We report the mean = std balanced accuracy and
average accuracy rank across datasets. A higher rank implies higher accuracy. Note that “N/A”
denotes that a specific generator was not applicable or the downstream predictor failed to converge,
and the rank is computed with the mean balanced accuracy of other methods. We bold the highest
accuracy for each dataset of different sample sizes. TabEBM achieves the best overall performance
against Baseline and benchmark generators.

Datasets  Nyea (ReB;S§2$ SMOTE TVAE CTGAN NFLOW TabDDPM ARF GOGGLE TabPFGen | TabEBM
20 | 28524019 N/A 22741425 24941515 24611045 29.021405 27691375 2576116 32041040 | 3419100

50 | 53401306 | 55.691061 46954313 43911408 43281407 47.931440 44481335 4725148 54.291r57 | 56.851040

protein 100 | 68.131310 | 72.891260 63241175 61194210 59.641345 65.19:32 60.05:1255 65.054300 71472361 | 72572250
200 | 80341235 | 83.601071 78.5linss 75.841161 76.841235 78741224 75.61ine0 79444273 83.361240 | 84.3011 97

500 | 93.01411 | 93.824067 92.861166 91.37x125 93.00410s 92931097 92381000 92.95:002 9449416 | 93.944 13

20 | 35.104456 N/A 19061301 1752108 20781250 1698123 23781312 19.001203 34881503 | 3860566

50 | 64.101550 | 64762400 37204335 32.821456 37781311 51761350 47224435 53.864561 66.921305 | 66.2623 16

fourier 100 | 73.861306 | 73784320 6440155 60.821371 51.64is16 66.14110 58.624373 68.161312 73.131270 | 74841310
g 200 | 78544015 | 79.184100 74861160 4261220 69364061 76421105 T2.88112 76.64x199 82201055 | 79.181208
g 500 | 81.84110; | 82.144140 81024150 81.18%143 80.08116r 81261140 80.28x1s55 80.624150 81.45414s | 83.40% 4
IS 20 | 6111475 | 68.384500 65441550 56291706 58194660 52901474 62334614 63.521720 67.154574 | 67.8245.3
N 50| 68.3814gr | 70.641345 71774000 66781450 61391405 63981365 6878152 70341330 71.381360 | 72121320
§ biodeg 100 | 73.19:045 | 75361056 7498125 72681005 6962135 Thllinzg 7216105 7422003 T585.is | 75.65:15
S 200 | 77.85527) | 78.864107 76421205 76.685277 73434301 76161000 75795049 77421224 79.68:174 | 79.2241 70
< 500 | 81424073 | 82.034102 81.881087 81.71xrss 80.50:121 81431156 81.3411ss 81941055 82.38x13s | 82.10115;
20 | 52771160 | 56.161450 57234307 54.65:340 53751340 51701166 54091436 55504207 57.041307 | 5741106

50 | 59754511 | 62124046 60.651105 58.091175 54.69404s 58.04142 57.67i252 60341200 65074311 | 67741336

steel 100 | 64.971505 | 69.08136) 64461417 61.62:105 58431245 60.53136s 62.71is4s 63.071223 73281330 | 79.631341
200 | 75451306 | 74.71u370 71454215 68.52:350 62.151250 08.101350 67.61c1s 67364163 85.12144s | 88.852510

500 | 90.931253 | 85374236 85.63431a 84.511320 76.121270 89.19:320 8144156 8035i35s 94.351134 | 95.90+ 06

20 | 79471ss3 | 81994440 7794150 72531716 73204005 80991701 72571576 78.101s0; 83.96.1ss7 | 84.73 4346

stock S0 | 87.571260 | 89.695100 86624344 8375143 84281205 88.69151; 84.921500 88.65i2s5 89.35121s | 89.99106

‘ 100 | 91441150 | 91471016 91074205 89.82:1260 89.331100 91331007 90482235 92.001035 92.071125 | 9217214
200 | 93524050 | 93945100 93351105 92.62:100 92771105 93.65:10s 93.08:053 93.87i105 93.65:100 | 93.671107

v 50 | 18.96+140 N/A 16631227 15661245 1481316 14494126 15051306 15.582326 N/A | 27744571
% energy 100 | 30.85:510 N/A 2459152 28591263 27591285 27231230 27.99:1215 25431246 N/A | 4103152
RS 200 | 45.80123 N/A 42104057 41.69135s 4441155 44.58413 41331500 44.6410s4 N/A | 53.87155)
S ofins 100 | 104146 N/A 6751060 8231176 7341145 1284116 6731135 8431004 N/A | 1335414
5 200 | 13755110 | 17565170 10514141 11001137 9851135 1505112 9901070 13404100 N/A | 1651453
s S0 | 7127c100 | 70171350 57414333 62781421 65241450 69451515 62931451 64331357 N/A | 75794307
S toxture 100 | 80401045 | 8038106 65.6314a1 7538i399 11670000 T93lursy 75981256 7730s2m N/A | 8230155,
200 | 84.004;56 | 85.124507 76981225 8444154 8530:106 84.00xi20 83.701205 80024160 N/A | 85921515

500 | 89431050 | 90.175105 88.97:14s 90.00:166 89.99:106 90.17113 9101ii3 88.984 2 N/A | 90774110
Averagerank | 4.36i105 | 3.02i11 6881205 7.82i16  845i10s 6024525 7.85i17 6004155 3124175 138405
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Table 11: Classification accuracy (%) of XGBoost, comparing data augmentation on eight real-world
tabular datasets with varied real data availability. We report the mean = std balanced accuracy and
average accuracy rank across datasets. A higher rank implies higher accuracy. Note that “N/A”
denotes that a specific generator was not applicable or the downstream predictor failed to converge,
and the rank is computed with the mean balanced accuracy of other methods. We bold the highest
accuracy for each dataset of different sample sizes. TabEBM achieves the best overall performance
against Baseline and benchmark generators.

Baseline

Datasets Nreal (Real data) ‘ SMOTE TVAE CTGAN NFLOW TabDDPM ARF GOGGLE TabPFGen TabEBM
20 | 19.704633 N/A 19441411 17324075 18114307 16154350 20714504 17404450  24.004364 | 24184305

50 | 39.014402 | 37684540 33.074418 24381345 23.09:455 30.874s570 34134645 33.621367  39.784603 | 44461497

protein 100 | 57.594369 | 60.164575 49.231551 4333179 37.694s596 48.364408 43.971s45 47.001320 53744704 | 62774535
200 | 74.054002 | 76901496 609.714428 67461430 58291796 69.6814235 63.69163 66.09:1475  73.19:606 | 79251383

500 | 88.894171 | 90.024151  90.104130 89.371181 86.031231 87.294208 90.054270 85.041207  89.664117 | 91.81.;44

20 | 10.00+0.00 N/A  14.644313 13581057 13821414 11.724419 16384336 12341359  23.504156 | 26.78145>

50 | 42104619 | 4340452 343243935 24.681647 17.661460 24.821635 27.741s586 35424751 3560431 | 45.081647

fourier 100 | 54.844575 | 529241560 48224323 36.904is;s 30.36139s 42461413 40281341 48.781436 49.801193 | 549457

3 200 | 63.884335 | 65.341357 58364327 53204526 46.961458 61404412 5210433  56.664267  66.60+424 | 67.681319
é 500 | 74.561197 | 74184010 68.284280 67981007 61.241535 72784254 67.504257 68.281343 N/A | 76.25.33
S 20 | 62954795 | 66511584 62.724560 55241608 59201783 54.65is5s6 62.784s59s 61.0911049 65521608 | 66.64.67
; 50 | 67.961345 | 67.691442 66224570 61.641673 60.721573 57481828 69.484s535 65931498  67.761490 | 67.901327
§ biodeg 100 | 73.88.555 | 72.054475 72.114317 70414360 66.021625 69351466 71.114388 69.034433  72.584291 | 71.054570
< 200 | 76381485 | 74.984315  73.931320 75681415 67.821391 72.584s507 74741004 73844380 75.85i180 | 76741044
< 500 | 78454337 | 79384199 78.884340 80151187 76.721344 77.104296 78.144265 78834221  79.404149 | 7880137
20 | 53124560 | 55641476  53.324725 55364624 52381355 52444408 51344415 50744553 55434557 | 55781453

50| 66.731011 | 60.794550 59514415  54.824423 54794460 59.71469s 57.664s519 558941450  63.784720 | 741811367

steel 100 | 83.174936 | 66951651 61.724650 65124300 60.561437 72.0241047 59.671477 59.0441476  90.524747 | 96.551:66
200 | 95941573 | 81.214s501  73.144545 70.6411067 70261925 74.5040357 745741936 65414670 99.144109 | 99541062

500 | 99.951010 | 97.044014 95271055 894646585 83.25:510 917241534 87.591670 79.5441500 100.00£000 | 100.0010.00

20 | 76421434 | 78924501 674641303 60.561960 73.36:957 77451980 69.151935 70.881gs50  79.82145 | 83441374

stock 50 | 83.714340 | 86231054 84.654444 79311653 762713839 85.704396 81.614197 84981444 87284365 | 8821133
100 | 88.194304 | 89.014207 85.661601 84.681287 82.501373  90.071341 86.091408 84.671720  90.01i346 | 89.664328

200 | 9232135 | 92264033 90.941,05 89.0112s53 88921267 91.364379 91.041146 91424066 91.724077 | 9217415

© 50| 12.054242 N/A  11.604383 1447153 10951463 1021455 12.814051 12344355 N/A | 21.074399
; energy 100 | 29.37. 7> N/A  20.614s39  19.81a4sp 22711615 22274210 22.0243s54  10.011340 N/A | 27934416
g 200 | 44.96435 N/A 3673003 35924545 337lagss 347T3issy 3706152 1881470 N/A | 4095455
2 collins 100 7774221 N/A 7.7640.95 6524116 6.114109 8951190 6214514 5.9641.07 N/A 8.731164
E 200 | 10581057 | 11464011 9431050 9844156 8264175 9801196 8.9010s3  9.79+0s0 N/A | 11724134
; 50| 56724612 | 60991435 45764650 39.501646 43.021612 50224628 43714595  46.21470s N/A| 69114357
§ texture 100 | 68.964259 | 69.77 1463 54954599 55524780 63.231480 65.594360 57.041659 62.0646.11 N/A | 76.351564
200 | 77914108 | 81.55122 70701440 T1.601a10 73761560 77064017 72564400 70311655 N/A | 82.59.5,5

500 | 89.3741;1 | 89.871124 85.064240 86.801205 86.831180 86.524166 85.704275 87.071243 N/A | 89.69+1.10

Average rank | 3641000 | 3451148 6321136 7331519 8.64415 6.304244  6.641018 7.62+184 3445154 | 1621109
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Table 12: Classification accuracy (%) of TabPFN, comparing data augmentation on eight real-world
tabular datasets with varied real data availability. We report the mean = std balanced accuracy and
average accuracy rank across datasets. A higher rank implies higher accuracy. Note that “N/A”
denotes that a specific generator was not applicable or the downstream predictor failed to converge,
and the rank is computed with the mean balanced accuracy of other methods. We bold the highest
accuracy for each dataset of different sample sizes. TabEBM achieves the best overall performance
against Baseline and benchmark generators.

Baseline

Datasets Nreal (Real data) ‘ SMOTE TVAE CTGAN NFLOW TabDDPM ARF  GOGGLE TabPFGen | TabEBM
20 | 27.801457 NA 1921135 20581465 2080143 1889443 23974305 10551161 33421595 | 34631578

50 | 55241346 | 5985455 43581600 3737as0r 34424665 201701745 46024060 13.54442 57.63128 | 58.8810

protein 100 | 74311349 | 80.05:316 68.154554 71.104255 57.894613 59284823 05841303 23.6941040 77.60+403 | 78.264375
200 | 88.6741153 | 91791142 87.051085 86.691285 83.294242 87391295 85491049 T77.631611 90.77+137 | 90.94 1) 46

500 | 97314069 | 97.691077 97511085 97.584i085 96.891062 97441085 97401060 97.351061 97.241030 | 97.28 1062

20 | 30.0646385 N/A  22.004460 20104431 14524396 12224940 21.64159; 14.644304 N/A | 36.5614.96

50 | 53.62447 | 53.08.4334 45821409 37464580 28.784078 227415y 42144300  11.304550 53.154350 | 53.821302

fourier 100 | 64.624414 | 63.66139> 56.68.300 54.784080 45.501450 49.364g51 54744078 21404420 65.951349 | 65.40136

§ 200 | 71.624259 | 70.564361 66481380 66.144400  62.641260 72124064 65.044320 52.184735 69.931309; | 72.48.1308
32 500 | 77.664161 | 77501108 76.80x131 77824124 73904176 79164005 75701011 74364253 77.301042 | 77404108
N 20 | 65.264501 | 68.724450 69.0214537  59.394625  58.281530  50.001000 58.45ig16 S51.80+407 70.681494 | 71181505
; 50 | 75274063 | 74.654328 734414020 70214361  55.684927 50.001000 72.744374 55751745 75.694044 | 75.56132
S biodeg 100 | 78924198 | 77784065 77.271315 77711181 63.5011077  57.504627 77251166 65.871672 78.151145 | 79.004 99
- 200 | 82.59y1g4 | 81421127 80481150 80.19i248 79.161249 80451143 80.88+168 80.661149 82.561165 | 82.58 1100
=< 500 | 85.00.1070 | 84.371075 84401065 84.67100s 84451091 84.584070 84.684+106 83.661067 84.561008 | 84.551002
20 | 56.77 4417 | 559541430 56.031437 55624480 52.524464 50.004000 52394313  50.054017 64.804566 | 65.87 1614

50 | 82344535 | 63424303 62.084260 63.984408 52921470  50.641201 61324455  50.364100 84.7047384 | 86.301673

steel 100 | 97.374137 | 73.064446 71964549 72234415 56341630 80.8742044 09294570 51184304 97494121 | 97.814 49
200 | 98.841070 | 82324083 81.78433 83.244063 82924621 99.351070 86404420 644241135 98.801073 | 98.961071

500 | 99.744020 | 94271030 94934150 96981134 98324100 99.881015 95704150 98.561050 99.771030 | 99.74 1020

20 | 83.181437 | 83.694310 74.011s500 569211650 74991660 78.73+1225 69.641688 73.401485 82951444 | 83811404

stock 50 | 90.014007 | 90.014043 82271430 78914414 78944575 89.684100 83.724050 79.001687 89.951008 | 90154 76
100 | 92391106 | 92.094145 90.751220 89.431329 86.164383 92124516 90171500 89.304133 92124112 | 92.57 1127

200 | 94164092 | 93.991070 93.57+4110 93284150 91.924500 94224150 93.054135  92.074176 94.171080 | 94164107

Average rank 3.08412 | 423123 6124157 629407 842413 612433 654116 8.831146 3124180 | 2231183
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D.5.2 Results on six UCI Datasets

Table 13: Details of the six real-world tabular datasets from UCI.

Not evaluated in # Samples per class  # Samples per class

Dataset UCI ID TabPEN [33] # Samples (V) # Features (D) # Classes N/D (Min) (Max)
clinical 890 v 2,139 23 2 93 521 1,618
support2 880 v 9,105 42 2 217 2,904 6,201
mushroom 73 4 8,124 22 2 369 3916 4,208
auction 713 4 2,043 7 2 292 262 1,781
abalone 1 4 4,153 8 19 519 14 689
statlog 144 4 1,000 20 2 50 300 700

Table 14: Test classification accuracy (%) aggregated over six downstream predictors, comparing data
augmentation on six leakage-free UCI datasets. Note that “N/A” denotes that a specific generator
was not applicable. TabEBM still achieves the best overall performance against benchmark methods.

Datasets

(Nyeat = 100) Baseline SMOTE TVAE CTGAN TabDDPM TabPFGen TabEBM (Ours)
clinical 68.63i5'31 71~07j:4.67 61 -80i2.76 65,21i577 54-03i5436 69.66i3.65 71-20i3.54
support2 64~23j:1,89 65.603:152 60.70i0.90 59. 14:\:188 58.31i174 64.34i1.19 65.28i1.15
mushroom 95.51i2_4g 95.843:1_99 93~75j:1.18 93.26i2_4(, 79.87i2_29 97.05j:1.56 96.82i1_51
auction 51.90:&1,9] 57.35:&1,53 53~09;t().9| 52.351],90 51. 14:&].76 56.8211_2() 57-9711.16
abalone 1 ]~59:E2.69 N/A 8.491].23 77212,67 9.9512443 N/A 13.56:&] 64
statlog 56.22i3'20 57~30j:2,57 53.1 2i1.52 55~55i3A18 53.0712‘95 57.65i2.01 57.85i1.95

D.5.3 Results on larger sample sizes

Table 15: Test classification accuracy (%) aggregated over six downstream predictors, comparing data
augmentation with increased real data availability of the “texture” dataset. Note that “N/A” denotes
that a specific generator was not applicable. On larger datasets, TabEBM still outperforms other
generators, but training on real data alone appears sufficient. This highlights TabEBM’s usefulness in
fields with limited training samples.

Accuracy improvements

Nieal Baseline SMOTE TVAE CTGAN TabDDPM TabPFGen TabEBM (Ours) by TabEBM (%)
50 724041307 | 764041050 55334620 54.80+1297 62.944 1206 N/A 78.90..7 96 +6.50
100 | 824244038 | 84.351967 66.004721 69.494+1003  76.341955 N/A 86.01.7 3¢ +3.59
200 87.544762 | 89294620 78374603 82444715  82.531799 N/A 89.77 1577 +2.23
500 92964407 | 93.694383 90.094356 91484350 91.24435 N/A 93.763.64 +0.80
1000 | 963741217 | 9621053 93.614010  95.361171  94.564 ;50 N/A 96.3042.30 0.07
2000 | 97764116 | 96.841145 96.621124 97.1040ss  97.131071 N/A 97.83 145 +0.07
3000 98.20i0‘(,2 98.28i(]‘g[) 97.6Oi0_73 97.60i0_4] 97-7310_3] N/A 98-3510_9] +0.15
4000 98.5110_33 98.59;&0_55 98.11i0_43 98.00i0_20 98-46;{:0_]4 N/A 98.55;{:0_58 +0.04

D.6 Results on Statistical Fidelity

We aim to provide a fair and coherent comparison between TabEBM and existing methods and thus
we follow the widely adopted evaluation process in prior studies. Specifically, we compute the three
statistical fidelity metrics with the open-source implementations from the well-established benchmark,
Synthcity. We note that the previous studies [87, 67] often operate under the assumption that the issues
associated with multiple comparisons are less pronounced in generating low-dimensional tabular
data, hence correction methods for multiple hypothesis testing are seldom employed. Following
such assumptions, correction methods are not employed in this work. In addition, we would like to
point out the imperfection of widely adopted univariate metrics (i.e., Inverse KL, KS test and test) in
existing work. However, evaluating generators’ ability to capture the joining feature relationships
remains an open research question [78]. We leave this for future work to explore.
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D.6.1 Similarity between Real Train Data and Synthetic Data

Table 16: Inverse KL between real train data and synthetic data on eight real-world tabular
datasets with varied real data availability. We report the mean = std balanced accuracy and average
accuracy rank across datasets. A higher rank implies higher fidelity. Note that “N/A” denotes that a
specific generator was not applicable, and the rank is computed with the mean result of other methods.
We bold the highest result for each dataset of different sample sizes. TabEBM achieves the best
overall performance against benchmark generators.

Datasets ~ Ny | SMOTE ~ TVAE CTGAN NFLOW TabDDPM ARF GOGGLE TabPFGen | TabEBM

20 N/A 0.111001 0204002 0341005 0070001 0221002 0.074000 0464013 | 0774004

50 | 0.884001 0.801002 0.664005s 0871001  0.074000 0.871001 0504004  0.824006 | 0941002

protein 100 0.93:“),01 0.79:&0.02 0.7810'03 0.90:&0.03 0.0710.00 0.9110.01 0.3210‘05 0.9210.02 0.9610,01
200 | 0.95+001 0.75+005 0831003 0931001  0.081001 0.931001 O0.111001 0944001 | 0961001

500 | 0.961000 0.704002 0.871005 0.941000  0.09:000 0951001  0.134001  0.961001 | 0971001

20 N/A 0124005 0.154002 0271004 0501005 0.504003  0.501004  0.971000 | 0.871001

50 |1 0934001 0.79+002 0.664005 0901001  0.071000 0.90+000 0471005  0.871002 | 0.95+001

fourier 100 | 0951001 0.761003 0.814003 0931000  0.071000 0.941001 0.201005  0.941001 | 0.97 1001
200 | 0.97+001 0.61001 0821002 0.95+000  0.09+001 0961000 0.081001  0.971001 | 0981000

500 | 0.971000 0.524003 0901002 0.95:001  0.10001 0971000  0.094000  0.98+000 | 0.98+0.00

20 | 0474004 0431004 0434003 0.501005s 0341003 0.511004 0.374004  0.601007 | 0.871004
0.62:003 0.591002 0.561005s 0.63100s  0.281002 0.65+003 0411003  0.751005 | 0.901002
biodeg 100 | 0.691005 0.661005 0.651005 0.671004  0.301004 0.69:005 0.381004  0.761004 | 0901004
200 | 0.714003 0.654005 0.691002 0.681005  0.291004 0.69:005  0.341001  0.794004 | 0911002
500 | 0.801002 0.68+002 0.731002 0.751002 0261002 0.731002  0.371002  0.8l104 | 0921002

20 | 0454005 0.371003 0404004 0471004  0.174003 0431005 0294005  0.534008 | 0.84+003
50 | 0.704£002 0.571003 0.594004 0.641004  0.134001 0.631001 0234003  0.71i00s | 0911002
steel 100 | 0.714004 0.554002 0.631002 0.671002  0.131001 0.661002  0.204002  0.75+005 | 0921003
200 | 0.751001 0.504004 0.651003 0.701001  0.131002 0.671002  0.1740001  0.774004 | 0931001
500 | 0.75+001 0.514004 0.661004 0.701001  0.141001 0.681001  0.194001  0.80+006 | 0941002

20 | 0.554007 0451007 0434005 0.601005 0241004 0521006 0.351041  0.68:012 | 0.891002
50 |1 0924002 0.731006 0.78+007 0.861005 0371007 0.88+1001  0.321011 0911003 | 0.95+002

At most 10 classes
W
S

stock
stoe 100 | 0.961002 0.67+007 0.831005s 0.91:00s  049:010 0931001 0171004 0951002 | 0971001
200 | 0.981001 0.634004 0.801008 0.921002  0.831000 0951001  0.15£000  0.98:001 | 0.981000
&: energy 100 N/A 0.28i0_07 0'4210.0‘) 0~44i0.05 0~22i0.07 0.41 +0.08 0.16i0_04 N/A 0.8910_01
% 200 N/A 0.303:0_03 0.4310_03 0.4710_09 0.25 +0.06 0.4010_08 0.1 210_04 N/A 0-91j:0.01
S collins 100 N/A 0721002 0.844004 0901002 0444011 09141002  0.284008 N/A | 094,00,
E 200 | 0941001 0.641005 0871004 0924002 0441005 0931001  0.2340.10 N/A | 0.961001
s 50 | 0.89+004 0.744004 0711006 0.88+003  0.10+001 0.88+002  0.45:0.40 N/A| 0.931004
S texture 100 | 0.961001 0.674005s 0.811007 0.91i002  0.111002 0924002  0.221006 N/A | 097 1001
200 | 0964002 0.564004 0.801007 0.931001  0.121001 0.954001  0.084001 N/A | 0.98.0
500 | 0971002 0.631006 0.841004 0931002  0.141001 0.961001  0.111001 N/A | 0981001

Averagerank ‘3.24&1,30 6.76i0_75 5.911]_10 4‘12il.08 8‘42i|>]7 3~97i0.95 8~21i0.89 3~30il.79‘ 1.06i0_24
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Table 17: KS test between real train data and synthetic data on eight real-world tabular datasets
with varied real data availability. We report the mean = std result and average rank across datasets.
A higher rank implies higher fidelity. Note that “N/A” denotes that a specific generator was not
applicable, and the rank is computed with the mean result of other methods. We bold the highest
result for each dataset of different sample sizes. TabEBM achieves the best overall performance
against benchmark generators.

Datasets Nieal ‘ SMOTE TVAE CTGAN NFLOW TabDDPM ARF GOGGLE TabPFGen ‘ TabEBM
20 N/A 0721002 0.75+003 0.8lx001  0.631001 0.801001 0441000  0.841002 | 0.871001

50 | 0904001 0.871000 0.874001 0.89:001  0.624001 0.89+000 0.731002 0914000 | 0.9310.00

protein 100 | 0921000 0.881+001 0.91:000 0911000  0.601001 0.91i000 0.661002  0.94:000 | 0.941000
200 | 0945000 0.874001 0921000 0931000  0.591001 0931000 0.581001  0.951000 | 0951000

500 | 0.951000 0.-831001 0921000 0931000  0.591000 0941000 0.631001  0.951000 | 0961000

20 N/A 0711004 0734002 0.791001  0.854000 0.85+000 0854000 0941000 | 0.90+000

50 | 0924000 0.871000 0.884001 0911000  0.641001 0.901000 0734002  0.931000 | 0941000

fourier 100 0.9410.00 0.87:&0‘01 0.9210_00 0.9310.00 0.63i0,0] 0.9310‘00 0.6210‘02 0.9510.00 0.9510.00

S 200 | 0.951000 0.834001 0921000 0.941000 0.621001 0941000 0.61i003  0.971000 | 0961000
3 500 | 0.961000 0.81i000 0941000 0.95+000  0.624001 0951000 0.631001  0.971000 | 0971000
N 20 | 0.63 4004 0.621004 0.641003 0.64100a 0561004 0.631004 0.651005  0.59+002 | 0.701001
=z 50 | 0.57 4003 0.571003 0594003 0.601003 0481003 0.591003  0.631002  0.611004 | 0.731000
g biodeg 100 | 0.561005 0.55+003 0.57+1003 0.59+003 0461003 0.58+1003  0.59+003  0.59+002 | 0.73+001
= 200 | 0.531001 0.524001 0531002 0.56:002 0431002 0551002  0.551002  0.58+002 | 0.721001
500 | 0.531000 0.504001 0521001 0.55+001 0431001 0.561001  0.561001  0.57x001 | 0.72+001

20 | 0.67£002 0.631002 0.644005 0.661002 0544002 0.651002 0574005  0.671002 | 0.764001

50| 0.694002 0.641003 0.651005 0.671002  05liooz 0.671003 0564002  0.721002 | 0.79+0.01

steel 100 | 0.694002 0.634002 0.651002 0.671001  0.501001 0.654002  0.551002  0.711003 | 0-791001
200 | 0.701001 0.611002 0.661002 0.691001  0.501001 0.651002  0.551001  0.714002 | 0.79+001

500 | 0.701001 0.624002 0.661002 0.681001 0491001 0.651001  0.581001  0.744002 | 0.801001

20 | 0.864002 0.821001 0.824002 0.861001  0.744005 0.861002  0.634007  0.891001 | 0911001

stock 50 | 0924001 0.861+001 0.88+001 0.90+001 0844002 0911001  0.684004 0931001 | 0944000
100 | 0.941001 0.864001 0.901001 09241001  0.884002 0931001  0.631002 0951001 | 0.951001

200 | 0.951001 0.864001 0901001 0.931001 0921001 0941000 0.631001  0.961000 | 0951000

. 50 N/A 070100 0.692006 0731001 0651005 0722001 0.632003 N/A | 0.781001
é energy 100 N/A 0.69i0‘02 0-74i0.01 0-74i0.01 0.69i0,0] 0~74i0.01 0.63i0‘03 N/A 0.81i0,0]
2 200 N/A 0711001 0.741002 0.751001  0.671001 0.75+000 0.631002 N/A | 0.831001
= collins 100 N/A 0.85:1001 0.891001 0.90L001 0.821004 0901001 0.651004 N/A | 0931000
§ T 200 | 0934000 0831002 0.91i001 0924000  0.80£003 0.921000  0.63100s N/A| 0941000
s 50 1 0921001 0.86+001 0.88+001 0901001  0.57+003 0901001 0.71:00s N/A | 0.934001
§ texture 1001 0941001 0864001 0911001 0921000  0.6l40020 0.924001  0.631003 N/A | 0.951000
200 | 0961001 0.83+001 0911001 09341000  0.621001 0.944000  0.60+001 N/A | 0.9610.00

500 | 0971000 0.85+1001 0911001 0.934000  0.611001 0.954000 0.644001 N/A | 0.97 1000

Averagerank | 3911165 6974000 5764100 3974107  8.331105 4151094  7.551020 3214016 | 1151036
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Table 18: x? test between real train data and synthetic data on eight real-world tabular datasets
with varied real data availability. We report the mean = std result and average rank across datasets.
A higher rank implies higher fidelity. Note that “N/A” denotes that a specific generator was not
applicable, and the rank is computed with the mean result of other methods. We bold the highest
result for each dataset of different sample sizes. TabEBM achieves the best overall performance
against benchmark generators.

Datasets Nieal ‘ SMOTE TVAE CTGAN NFLOW TabDDPM ARF GOGGLE TabPFGen ‘ TabEBM
20 N/A 0.021001 0.084003 0.191007  0.024001 0.051003 0.021001  0.33:023 | 0.924007

50 | 0954004 0844005 0.504010 0924004  0.01i000 0981002 0531005  0.634014 | 0.964004

protein 100 | 0.86+006 0.621007 0.531000 0.831010  0.0lto00 0.89:003 0.271007  0.70+010 | 0.911006
200 | 0.804005 0464007 0.461009 0.771005  0.011000 0.761006 0.021002  0.661008 | 0.811008

500 | 0.621006 0.251005 0.361006 0.611004  0.011000 0.571005 0.011000  0.651007 | 0.701005

20 N/A 0.021002 0.054002 0.154005 0374004 0.351005 0364006  1.00+000 | 1.000.00

50 | 0994001 0.871004 0.524010 0974002  0.0lioo0 0.991001 0494006  0.741005 | 0994001

fourier 100 0.96:&0.02 0.75:&0.04 0.6910.07 0.95:&0.02 0.01:&0.00 0.9810‘02 0.16:&0‘05 0.8210.06 0.97:&0.03

] 200 | 0924003 0.41:007 0.591004 0921003  0.01po00 0951002  0.024001 0851005 | 0951003
_‘§ 500 | 0.801006 0.144004 0591006 0.764007  0.0li000 0841004  0.01£000  0.8lio04 | 0.841002
N 20 | 0234006 0211006 0.164004 0281006  0.081004 0.284007 0.121006  0.291010 | 0.71r006
=z 50 1 0.394002 0.331005 0284006 0414007  0.054002 0451005 0151003 0444000 | 0.751006
§ biodeg 100 | 0.35:006 0.264006 0.30+008 0.38+100s  0.04:001 0421005 0.08+1004  0.371013 | 0.671014
= 200 | 0.251006 0.194005s 0241005 0.301007  0.03:001 0311006  0.024000  0.37+006 | 0.59+00s
500 | 0224008 0.104004 0.171005 0.251007  0.021000 0.231006 0.024000  0.264008 | 0.44-+0.00

20 | 0.37£008 0321005 0.321004 0401008  0.041002 040:00s 0.231007  0.34:013 | 0.81100s

50 | 0.68.4002 0.501006 0.51io0s 0.64100s  0.034000 0.671003  0.104005s 0494015 | 0.854006

steel 100 | 0.611000 0.374007 0471008 0.61:00a  0.031000 0.61:007 0.061002  0.514007 | 0.811008
200 | 0.601004 0.234004 0421006 0.601005  0.031000 0.531007 0.021000  0.521007 | 0.771006

500 | 0461006 0.174007 0.351007 0.551006  0.031000 0421004 0.021000 0481010 | 0.69+009

20 | 0564013 0.501012 0404012 0.63100s  0.1lio0s 0.55+012 0434016 0.564020 | 1.00000

stock 50 | 0994003 0.851+010 0.88+013 0.99+003  0.124006 1.001000 0.3lio1a  0.874008 | 0.99+003
100 | 1.001000 0.644014 0.891012 0.99:003  0.164013 1001000  0.13400s 0911010 | 0994003

200 | 0.99+005 0.58+000 0.761020 0.981004  0.71i0220 1001000  0.104000  0.99+003 | 0.99+003

. 50 N/A 0041008 0261000 035:000 0175006 041to1a  0.19:010 N/A | 0.80-005
é energy 100 N/A 0.09:&0‘10 0.3210.12 0.3510.03 0.13:&0.0(, 0.3010‘09 0.06:&0‘07 N/A 0.9210,01
g 200 N/A 015101 0301000 039015 0155007 0284008 0.03:005 N/A | 0965001
S e 100 N/A 061008 0731012 0871005  0.105007 0901008 0201000 N/A | 0.891008
§ 7200 ] 0754000 0.35+010 0.624013 0.761010  0.07+003 0.78+006  0.05+0.04 N/A | 0.80-009
N 50 1 0904012 0794011 0.634014 0941000  0.024000 0.991002 0471013 N/A | 0931012
§ texture 1001 097004 0514013 0671012 0921007 0.024000 0942000 0171008 N/A | 0.97 1006
200 | 0.864011 0.284011 0551016 0.894010  0.021000 0.93+007  0.001001 N/A | 0911008

500 | 0.744017 0.214000 0514008 0.731007  0.021000 0.73+007  0.00000 N/A| 0.8210.12

Averagerank | 3.521103 6.881100 6.031110 3.55:103  8.30+100 2824176 8181083 427416 | 145407
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D.6.2 Similarity between Real Test Data and Synthetic Data

Table 19: Inverse KL between real test data and synthetic data on eight real-world tabular datasets
with varied real data availability. We report the mean = std result and average rank across datasets.
A higher rank implies higher fidelity. Note that “N/A” denotes that a specific generator was not
applicable, and the rank is computed with the mean result of other methods. We bold the highest
result for each dataset of different sample sizes. TabEBM achieves the best overall performance
against benchmark generators.

Datasets Nreal ‘ SMOTE TVAE CTGAN NFLOW TabDDPM ARF GOGGLE TabPFGen ‘ TabEBM
20 N/A 0264004 0264005 0321003  0.094001 0.341003  0.084000  0.354007 | 0.524006

50 | 0.784002 0.821002 0.631006 0.711004  0.084000 0.801003 0524005  0.624004 | 0.75+003

protein 100 0.88;“).02 0.8010.02 0.76:&0'04 0.83:&0.03 0.0810.00 0.8710.02 0.33:&0‘05 0.7810.03 0.8510.02
200 | 0921001 0.75:005 0811003 0911001 0.081000 0.91i001  0.121001  0.894002 | 0.921001

500 | 0.941000 0.684002 0.861002 0.931000 0.084000 0941000 0.131001  0.941000 | 0.951001

20 N/A  0.141002 0.184001 0201001 0214002 021001 02210020  0.241001 | 0481003

50 | 0.844002 0.781005 0.624005 0.771005  0.071000 0.851003 0481006  0.661003 | 0.79+003

fourier 100 | 0911002 0.724005 0.764003 0.881002  0.081000 0.90+001  0.201005s  0.811002 | 0.88+002

g 200 | 0941001 0.58+002 0.791003 0931001 0.09:000 0931001  0.08+001 0901002 | 0931001
g 500 | 0.961000 0.504002 0.881002 0.93:001  0.10x001 0951001  0.094000  0.95:001 | 0961000
N 20 | 0431003 0441004 0411003 041004 0331003 0441005 0361003 0451002 | 0.571003
- 50 | 0.60+005 0.59+004 0.531004 0551004  0.31i003 0571003  04lioos  0.601005 | 0711004
S biodeg 100 | 0.651004 0.654002 0.624003 0.634003  0.3li003 0.644003 0371003  0.654003 | 0774002
= 200 | 0.714002  0.664005 0.661004 0.651003  0.311004 0.681002  0.331002  0.731004 | 0.831002
= 500 | 0.771003 0.644002 0.69+1003 0.721004  0.251003 0.69:005  0.351001  0.761005 | 0.881002
20 | 0474003 0451003 04240020 0441002 0234001 0461004 0374004 0424004 | 0704003

50 | 0.654003 0.59+003 0.584005 0.60+£004  02lioo1 0.631003 0304003  0.624005 | 0.83+003

steel 100 | 0.701002 0.594002 0.621003 0.661005 0214001 0.66:002 0291002  0.724004 | 0.891002
200 | 0.731001 0.554002 0.661002 0.691002 0224001 0.681002  0.25£001  0.75+003 | 0911002

500 | 0.741001 0.554004 0.661002 0.691001 0224001 0.701001  0.274001  0.78+005 | 0931002

20 | 0.504009 0.501000 0.41ioos 0471008 0251004 0.541000 0401013  0.351005 | 0.65+000

stock 50 | 0.80+006 0.681+006 0.68+005 0.761003  0.34+005 0.861004 0331041  0.69:1000 | 0.85+0.05
100 | 0.864004 0.611005 0.731006 0.85100s  0.441007 0.901002  0.1841004  0.841005 | 0911004

200 | 0.921002 0.594005 0.75+007 0.901003  0.67+000 0941001  0.15£000  0.94:003 | 0961002

5 50 N/A 0.261006 0.331006 0.3600s 0.231005 0461010 0.224007 N/A | 0.77 1003
& energy 100 N/A 0-27i0.06 0'4010_08 0~43i0.06 0~22i0.06 0-39i0.08 0.16i0_05 N/A 0.8710_01
% 200 N/A 0.303:0_07 0.4]10_07 0~46j:0.09 0~24j:0.06 0.3910_08 0.1210_04 N/A 0-89j:0.01
S col]ins 100 N/A 0.683:0_()3 0'75j:0.04 0.793:0_03 0~43i0.07 0-813:()_02 0.2810.07 N/A 0~78j:0.02
E 200 | 0.87+002 0.624003 0.811003 0.88+002 0441004 0.881002  0.221000 N/A | 0.87+001
s 50 | 0.821004 0.804004 0.701+005 0.80+007  O.dlioor 0924001 048101 N/A| 0.87 1003
§ texture 100 1 0894000 0.69:+003 079006 0.89x002  0.13x001 0.93:000 0231006 N/A | 0924002
200 | 0.931002 0.584005s 0.791005 0.92:001  0.14001 0951001  0.104002 N/A | 0951001

500 | 0961001 0.641006 0.851004 0931001  0.151001 0.961000 0.121001 N/A | 0971001

Average rank ‘ 2-94il,3l 6~03il.69 5.821]_07 4‘39il.30 8‘48i0>7] 3~00i1.52 8.24i0_94 4~45i1.91 ‘ 1-64i].03
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Table 20: KS test between real test data and synthetic data on eight real-world tabular datasets
with varied real data availability. We report the mean = std result and average rank across datasets.
A higher rank implies higher fidelity. Note that “N/A” denotes that a specific generator was not
applicable, and the rank is computed with the mean result of other methods. We bold the highest
result for each dataset of different sample sizes. TabEBM achieves the best overall performance
against benchmark generators.

Datasets Nieal ‘ SMOTE TVAE CTGAN NFLOW TabDDPM ARF GOGGLE TabPFGen ‘ TabEBM
20 N/A 0.691001 0.721002 0.75£001  0.6lx001 0.741001 0411002 0.771002 | 0.811001

50 | 0.88+001 0.871001 0.874001 0.88:001  0.61i001 0.89:1001 0.731002  0.861001 | 0.88+001

protein 100 | 0901001 0.871001 0.89:001 0901001  0.601001 0.91:001  0.651002  0.89+001 | 0.911001
200 | 0.921001 0.864001 0901001 0.91i001  0.59:001 0921001  0.581001  0.91t001 | 0.921001

500 | 0921000 0.824001 0901000 0911000  0.581001 0921000 0.631000  0.921000 | 0931000

20 N/A 0.671003 0.694002 0.731001 0751001 0.751001  0.754001  0.761001 | 0.811001

50 | 0.894000 0.861+001 0.884001 0.894001  0.641000 0911000 0.734002  0.871001 | 0.894001

fourier 100 0.9210.00 0.85:&0‘01 0.90:&0_00 0.9110.00 0.62i0,0] 0.9210‘00 0.61:&0‘02 0.90:&0.00 0.9110.00

S 200 | 0931000 0.824001 0911001 0931000  0.621001 0931000 0.601003  0.931000 | 0.931000
3 500 | 0.941000 0.804000 0921001 0.931000 0.624001 0941000 0.634001  0.941000 | 0941000
N 20 | 0.61£003 0.611003 0.631003 0.631005  0.551004 0.624003 0.641003  0.561003 | 0.67+002
=z 50 | 0.564003 0.571003 0.584003 0.591003 0484003 0.581003  0.631002  0.591004 | 0.711001
g biodeg 100 | 0.551002 0.55+002 0.57+1003 0.58+002 0461003 0.58+1002  0.59+003  0.58+002 | 0.71+001
= 200 | 0.531001 0.51x002 0531002 0.55:002 0431002 0551002  0.55:t001  0.57x002 | 0.721001
500 | 0.531000 0494001 051001 0.54:001 0431001 0551001  0.561001  0.571001 | 0.72+000

20 | 0.654003 0.621003 0.634005 0.651002 0541001 0.641002 0564005  0.644002 | 0731002

50 | 0.68.4002 0.641003 0.651005 0.671002  05lioor 0.681003 0564005  0.701002 | 0.7710.01

steel 100 | 0.681001 0.634002 0.651001 0.661001  0.501001 0.664002  0.551002  0.701003 | 0.781001
200 | 0.691001 0.61:002 0.661002 0.681002  0.501001 0.651002  0.541001  0.714002 | 0.781001

500 | 0.694+001 0.624002 0.661002 0.681001  0.501001 0.641001  0.581001  0.734002 | 0.79+001

20 | 0.834004 0811004 0.824004 0841004 0741004 0.841004 0.641006  0.83:004 | 0.861004

stock 50 | 0.894002 0.841002 0.874005 0.88+1002  0.83:1002 0.89+002  0.674005  0.88+002 | 0.89+002
100 | 0911002 0.844002 0881002 0.901002  0.874003 0901002  0.624001  0.91i002 | 0911002

200 | 0.921002 0.844002 0.881002 0.90+002 0901002 0911002  0.631001  0.924002 | 0921002

@ 50 N/A 0.694002 0.704003 0.7240.02 0.6410020 0.724001 0.6240.03 N/A | 0.76-00;
é energy 100 N/A 0.69i0‘03 0-74i0.01 0-75i0.01 0.69i0,0] 0~75i0.01 0.64i0‘03 N/A 0.81i0,0]
% 200 N/A 0714001 0.744001 0.75+001 0.671002 0.7640.01 0.6310.02 N/A | 0.831001
= collins 100 N/A 0.831001 0.881001 0.90L001 0.811004 0901001 0.651003 N/A | 0901001
§ T 200 | 091001 0821002 0.901001 091001 0.80£002 0911001 0.631004 N/A | 0931001
s 50 | 0901001 0.871+002 0.88+001 091i001  0.55:004 0921001  0.731005 N/A | 0.924001
§ texture 10010924001 0864001 0911001 0921001 0.6040020 0.93:001  0.644003 N/A | 0.94101
200 | 0941001 0.824001 0901001 0.931000  0.621001 0.944000 0.60+001 N/A | 0.94100

500 | 0951000 0.844002 0911001 0934001  0.61i1002 0.954000 0.644001 N/A | 0.951000

Averagerank | 3971173 7.094072 5524097 3761112 8271101 3274155 745103 4394193 | 127107
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Table 21: x? test between real test data and synthetic data on eight real-world tabular datasets
with varied real data availability. We report the mean = std result and average rank across datasets.
A higher rank implies higher fidelity. Note that “N/A” denotes that a specific generator was not
applicable, and the rank is computed with the mean result of other methods. We bold the highest
result for each dataset of different sample sizes. TabEBM achieves the best overall performance
against benchmark generators.

Datasets Nieal ‘ SMOTE TVAE CTGAN NFLOW TabDDPM ARF GOGGLE TabPFGen ‘ TabEBM
20 N/A 0.011000 0.0ltoo0 0.0l1000  0.01:000 0.011000 0.011000  0.021001 | 0.0610,03

50 | 0264005 0.324006 0.094004 0174004  0.014000 0254004 0221005  0.054003 | 0.154004

protein 100 | 0391004 0.331005 0.18+£005 0291000  0.01x000 0.341004 0.131004  0.121004 | 0.261005
200 | 0481006 0.304007 0281006 0481004  0.011000 0441008 0.021001 0341008 | 0431006

500 | 0.541005 0.24:007 0331006 0.601004  0.011000 0.55:004 0.011000  0.531005 | 0.58+006

20 N/A 0.001000 0.014000 0.0lioo0  0.0liooo 0.011000  0.0liop0  0.01i000 | 0104004

50 | 0424008 0451007 0.154006 031007  0.0liooo 0.39+00s 0294008  0.104004 | 0.331006

fourier 100 0.58:&0.03 0.44:&0.07 0.3210.07 0.52:&0.09 0.01:&0.00 0.4810‘07 0.0810‘04 0.26:&0.07 0.4910.07

S 200 | 0.671+005 0.284005 0.381006 0.681004  0.011000 0.601004 0.021001  0.464006 | 0.60+005
3 500 | 0.761004 0.154006 0551008 0.724007  0.0li000 0.711005 0.01000  0.69+004 | 0.741003
N 20 | 0.054003 0.051004 0.044003 0.041002  0.031001 0.051003 0.031001  0.101001 | 0.131002
=z 50 | 0.134006 0.124004 0.074002 0.08100s  0.024000 0.081005 0.064003  0.081004 | 0.141005
§ biodeg 100 | 0.15:004 0.144005 0.10+003 0.121005s  0.021000 0.124004 0.041002  0.071003 | 0.18+004
= 200 | 0.18+003 0.154004 0.141005 0.19400s  0.03:001 0.181003  0.024000  0.141005 | 0.281007
500 | 0.251007 0.131005 021007 0.284005  0.03:001 0.281007  0.024000  0.231007 | 0.38100s

20 | 0.13£004 0.161004 0.091003 0.10£004  0.031900 0.14:003  0.121005  0.071002 | 0.29+006

50 | 0264007 0241007 0.174004 021006 0.034000 0.311004  0.0540020 0174005 | 0434007

steel 100 | 0.324004 0.234006 0.241007 0.311006  0.031000 0.33:006 0.041002 0291006 | 0491007
200 | 0.361004 0.174005 0291006 0.341005  0.031000 0.36:006 0.021000  0.351006 | 0.531007

500 | 0.371004 0.154007 0281005 0.361004  0.031000 0.36:005 0.021000  0.38+006 | 0.57+006

20 | 0314011 0381013 0.224008 0254008  0.104000 0.331011 0424048  O.11i003 | 0414019

stock 50 | 0.60000 0.561012 0444015 0541008  0.101000 0.734014 031014 041i0i6 | 0.7610.10
100 | 0.714011 0404011 0531015 0.684012  0.124006 0.851005 0.13400s  0.654012 | 0.841007

200 | 0.86+007 0454012 0.60+018 0.91i011 0351020 0971005 0.104000  0.924008 | 0971005

. 50 N/A 0.05:1008 025:000 0.28+010  0.175006 0401014  0.151010 N/A | 0.78-005
é energy 100 N/A 0.10:&0‘09 0.31:&0.12 0.3410.03 0.14:&0.0(, 0.3010‘09 0.06:&0‘07 N/A 0.9210.02
g 200 N/A 0161011 0301005 0384012  0.05:007 0282008  0.032005 N/A | 0.96100;
S e 100 N/A 0232008 0211005 0255000 0053000 0242006 0072005 N/A | 0.181007
§ 7200 ] 0324006 0.164006 0.241006 0.38100s  0.06+002 0.331007  0.024004 N/A| 0314007
N 50 1 0.334041 0444010 02lpgos 0294010  0.024000 0.551015 0274008 N/A | 0414004
§ texture 1001 0444013 0274006 0271000 0481015 0.024000 0.54006  0.071005 N/A | 0.491008
200 | 0514011 0.194010 0.341010 0.58+011  0.021000 0.641000  0.00000 N/A | 0.59+0.00

500 | 0.631014 0.214009 0.49:009 0.671008  0.021000 0.64+008  0.00000 N/A | 0.66+0.12

Averagerank | 3.06113 5451035 6.151087 3.641175 8361090 3181147 7764177 5331171 | 2.06404;
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D.7 Results on Privacy Preservation

D.7.1 Downstream Accuracy in Data Sharing

Table 22: Classification accuracy (%) aggregated over six downstream predictors, comparing data
sharing on eight real-world tabular datasets with varied real data availability. We report the mean
=+ std balanced accuracy and average accuracy rank across datasets. A higher rank implies higher
accuracy. Note that “N/A” denotes the inapplicability of a specific generator. Different from Table 1,
“—" denotes a generator cannot satisfy the requirement of generating 500 stratified samples even
after generating 10,000 synthetic samples. The results of these inapplicable or failed generators are
computed with the mean results of other methods. We bold the highest result for each dataset of
different sample sizes. TVAE learns the joint distribution p(x, y) and fails to maintain the original
training label distribution. TabEBM achieves the best overall performance against Baseline and
benchmark generators.

Datasets Nieal ‘ SMOTE TVAE CTGAN NFLOW  TabDDPM ARF GOGGLE TabPFGen ‘ TabEBM
20 N/A 163841334 13.064357 12.9914.16 12.641306 19.4213096 12.88423  33.114364 | 33.97 1348

50 | 54554304 27294343 17184487 13.2043,08 14.044329 29344446 13.054334 54.824374 | 55.831435

protein 100 | 72464355 40.04145s 26651350 12801345 17.654325 35904529 13554305 71631305 | 72991360

200 | 83.124233 45334601  32.524s560 14074304 20.79444> 41.634424  11.684360 84.184100 | 84.294703

500 | 89.631157 5524153 44351567 12764573 21.631490 54.264347 11.094310 91194 45 | 90.99+153

20 N/A — 13.3043.14 10.724303 10.034040 17141455 10.294581  33.871493 | 37.06L45)

50 | 55.114356 - N/A 9.884251 11.964230 28.631371 11.524546 56.114328 | 56.8812.90

fourier 100 | 64.061334 34.804460 23351420 10851300  17.684342 32591402 9.824584 644245096 | 64.931306

$ 200 | 70.784299 40494343 32984530 10.284374  28.631420 3934134 9.554206 71.374256 | 72014267
‘é: 500 | 74841147 46.831374  46.131433 11.134047 27254604 47.194280 10314019  75.864191 | 76.584 54
Qu 20 | 68.751496 64.074739  53.601749 54581800 483912735 58.69i675 48.651950 69.144503 | 69.66. 5,3
; 50 | 72.084301 67.114s503 62214704  55.124881  47.861358 70.144390  52.141745 73.531339 | 73.96+313
g biodeg 100 | 75.614048 70.90+496  70.334328 58.08.4671 48.784292  70.791288 49151771  76.651503 | 76.561229
- 200 | 78971146 T1.541484 71424430 55784776 47.6341308 72744346 50751670 79.664249 | 79.80.7 5
= 500 | 81.261142 74571349 76324093 52781417 47.3lingy 75671027 48051750 81364160 | 81.10415
20 | 57.551483 54.394765  52.134s578  S51.21iees  S51.284458 52.031488  49.251436 63271566 | 63.301547

50 | 64841407 59.061385  56.701496 53241477  49.1841467 57.164435 49904396 78.551517 | 79.99.1637

steel 100 | 724841451 61.741416  59.374508 52791406 45014584 57.264446 49.664356 90.124450 | 92.331557
200 | 77.854350 65451407 63311463 51.024004 43714751 6141140 50.204370 94.614175 | 95.54.1 45

500 | 84.214350 702641493  70.624s509 49971405 4698143 66.331s70  51.604343 96314125 | 97.044 47

20 | 81.624462 69.354830 S1.7141000 67.0541160 759441443 64164918 48.5511254  82.551442 | 83.60+400

stock 50 | 87434047 76071500  69.124500 70.6ligso 8599405 78381356  49.744974 88.091,37 | 88.49.,3

100 | 89.631130 81.184424 78444301  72.054543  88.274234 84.024286 S51.0715008  90.1314157 | 90.584 34

200 | 91114 29 84.051063 82124593 75444354 89921156 85.604226 49.7411206 91.0941s50 | 91.074107

- 50 NA 7174131 5.2042.04 5.331161 4214160 7264180 4.524057 N/A | 23.804260
E energy 100 N/A — 7.6611_96 5.5211_49 4,0811_40 9.8712_01 4.0111_12 N/A 30.1513_21
\S 200 N/A - 7571201 6.9211.96 3421955 11.851539 4184091 N/A | 35.74 1359
S colling 100 N/A - 5.51 4087 4584005 11741173 534448 3774063 N/A | 1312475
5 ) 200 | 17.60.; 53 - 5554134 47041083  13.641158  5.461090 3.924092 N/A | 1680455
E 50 | 75.504203 23.864505  12.004410 12164320  17.184534 16.824616 9.634275 N/A | 78.84.335
§ texture 100 | 83.771250 26.87 1419 14.0516.20 1395453, 20.084550 23.824506 10.21 4560 N/A | 85.88.,47
200 | 87.964179 21.594899 15364443 1217 4457 20.59459¢6 42.281541 9.521001 N/A | 88.84L 65

500 | 91.654, 14 34.48.i973 26451377 12371463 20.074556  57.944477 10.224369 N/A | 91364112

Average rank | 2761076 4521077 6.18-095 7.48-0.76 7.031207 4911136 8.524057 2364080 12441056
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Table 23: Classification accuracy (%) of LR, comparing data sharing on eight real-world tabular
datasets with varied real data availability. We report the mean =+ std balanced accuracy and average
accuracy rank across datasets. A higher rank implies higher accuracy. Note that “N/A” denotes the
inapplicability of a specific generator. Different from Table 1, “— denotes a generator cannot satisfy
the requirement of generating 500 stratified samples even after generating 10,000 synthetic samples.
The results of these inapplicable or failed generators are computed with the mean results of other
methods. We bold the highest result for each dataset of different sample sizes. TVAE learns the joint
distribution p(x,y) and fails to maintain the original training label distribution. TabEBM achieves
the best overall performance against Baseline and benchmark generators.

Datasets Nieal ‘ SMOTE TVAE CTGAN NFLOW  TabDDPM ARF GOGGLE TabPFGen ‘ TabEBM

20 N/A 14514357 13.004574 12.08 1467 13.834350 2246450 12.524566  38.0012.16 | 38.041534

50 | 61.15442 2443133 16.811560 12.551578 14741436  33.774553 12264483 63.011366 | 62.94 1410

protein 100 | 78.164353  40.22.1403 27141559 12,4053, 19.341312  40.9945.14 12331606  80.54132 | 80.184297

200 | 88.754137 45704729 34171611 13.871439  22.0lis564 44.761463 12784520 90.891153 | 90.0941 g6

500 | 94294117  60.391081  47.871719 125841376 24.69is587 58914040 9.794365 95.8641159 | 95.3841.40

20 N/A - 11.641435 10.1642.99 8481286 18.754429 11384485 42.984514 | 43.0415 10

50 | 58241505 — N/A 9.824425 13484585 3397437 12.00429>  60.301;55 | 60.284¢3

fourier 100 | 65.324533 28.6042 38 21.264288 11.24 1365 19.724378  37.644366 11344554  67.361221 | 67.384234

$ 200 | 70.7412.13 37.5014.11 28.861432 10.121456  33.584365 42.751257 7524005 72204302 | 72.181004

§ 500 | 739641094 46.841599 4118148 10.604333 31.884960 48.671158 10564312 75584199 | 76.004503

S 20 | 69931559 60924716 50.1041026 56.0811054 46151420 61151727  45.124923  70.78439s5 | 71241435

- 50 | 74714339 70191480 62901628 56.8511024 42741080 73.38i261 545241240 75.671236 | 7647209

g biodeg 100 | 77484183 71771556 71424327  59.174735  46.241359 74481084 48.0311256 77944045 | 7834171

- 200 | 80.564177  75.37 1447 72.611599 5571472 44164471 75.094203 529411150 81.211206 | 81.504 84

< 500 | 82.68.,; 77921273 77.5542355 54904550 465340091 77.874210 464041051 82381161 | 82.144130

20 | 56.804546 54.0641124 54414557 52144731 51404683 543814814 48324695 00.751971 | 67.051939

50 | 66.80.41¢52 61.111373 58251667 52951668 49.074758 61314445 48.864710 93511404 | 92.13 41490

steel 100 | 79382400 64.64sr09 6057100 S440ssgr 4251451 58864360 50951571 9921056 | 99175093

200 | 82.66439; 71.78 1368 65441500 51724416  38.194824 63314508 534612096 99451069 | 99.511069

500 | 90211380 76491504 75.41i620 48.71iens  46.001477 72114756 52554350  99.701022 | 99721020

20 | 80.314403  71.684845 54.5811304 70.644977 T1.0541108 68.034738 49.8441978 79.58.4443 | 80.33135>

stock 50 | 81.284587 75751384  69.671314 72991680  77.721499 T76.641254 49.011173 82371313 | 82.0647s8

] 100 | 83901 85 78791325  77.374385  75.641363 80434370 78224045 49.60+17035 83.651165 | 83.564181

200 | 83.61+13  79.3liag9  80.201206 763711920 79.324234 78894240 481811704 83.69i141 | 83.824134

i 50 N/A  75li10s  579i2%  589:109 3425200 8721170 4521110 N/A | 215646

§ energy 100 N/A — 7.1641 60 6.1541.09 48841199 10.671227 4.034133 N/A | 27594514

-% 200 N/A - 7.824919 6.631211 3481164 1296422 4341104 N/A | 33.011244

S collins 100 N/A — 5.331008 5494110 12.3042.14 5984161 3.61435 N/A | 14.02545

g 200 | 1891416 536114 5031000 14701170  604i08s 328415 N/A | 1911414
=

E 50 | 86.204275 25.72 16389 13.321463 13.864499 23904656 18.1718%> 10.11 1304 N/A | 88.46,,5

S exture 100 | B1Tm01 26041904 12344507 12444567 27674600 22554585 12004529 N/A | 94.2341 3

= 200 | 95704124  16.651920 17154504 13.144640  29.671650 43.54 1707 11124504 N/A | 9599, 14

500 | 97174038  39.6941043 27.24 1508 11.681450 27754750  60.15 1545 10.954575 N/A | 96.53 1054

Average rank ‘ 2.824030 4701078 6.391114 7.481076 6.7942.00 4.641137 8.521071 224410 142106
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Table 24: Classification accuracy (%) of KNN, comparing data sharing on eight real-world tabular
datasets with varied real data availability. We report the mean = std balanced accuracy and average
accuracy rank across datasets. A higher rank implies higher accuracy. Note that “N/A” denotes the
inapplicability of a specific generator. Different from Table 1, “—" denotes a generator cannot satisfy
the requirement of generating 500 stratified samples even after generating 10,000 synthetic samples.
The results of these inapplicable or failed generators are computed with the mean results of other
methods. We bold the highest result for each dataset of different sample sizes. TVAE learns the joint
distribution p(x, y) and fails to maintain the original training label distribution. TabEBM achieves
the best overall performance against Baseline and benchmark generators.

Datasets Nreal ‘ SMOTE TVAE CTGAN NFLOW  TabDDPM ARF  GOGGLE TabPFGen ‘ TabEBM
20 N/A 16.84 1319 12.84 1339 11.264306 11.634102 16.531352 11.76 4251 35751445 | 35.761439

50 | 55104365 27.341043 15.5514.00 13.2544.00 12.034370 24.091443 12.53 1050 53424359 | 53.44 133

protein 100 | 69.44. 543 39.231386 22.234589 12.64 1303 16714338  30.64.4450 13.664229 67.231065 | 67.351269
200 | 77124575 41504416  27.684517 14164410  20.29430s 36.011274 11914420 75564200 | 76.17 1204

500 | 83.82418¢ 50.56453  35.074452 13.444575 19904306 46.404368 11991062 83.631163 | 84.351 33

20 N/A - 19.60145 11.0643 5 9.164173 15.58 1319 97841029 42.661575 | 42.78 1553

50 | 60.16. > - N/A 9.74 1510 11.664239 24324459 12.864044 58524171 | 58.564199

fourier 100 | 66.54. ;75 38.18+570 19.86138> 10.683.49 184241340 27.641426 9481363 64.641706 | 64981558

§ 200 | 71.081207 42724073 31.68.+4.44 9.704210 26.964208  34.321426 9.764216  70.004177 | 70.504 g6
§ 500 | 75.061,95 47.581346 42.68131g 10.004107 26.184318  41.871325 10.884170 73.464180 | 73.954145
S 20 | 69.114328  65.061601 54271617  52.021s508  47.871408 55351664 4741104 67.891468 | 69.62145)
N 50 | 72.841533 66.101438 61.8917%7 52.264383) 50.78 452 67.721353 53.4811048 72.01:414 | 73.77 1346
§ biodeg 100 | 75824203 69.864393  70.02143 58.951548  48.67 1405 69.39109s Sl.1liyzns 74774003 | 75154103
£ 200 | 79.672005s 70251555  71.8943m  53.5410m 51404700 7021ssgr 49424595 77784240 | 78234208
< 500 | 82514145 7272408 75534597  52.92+s4  46.0dssre 73574514 50.032371 80554156 | 81154158
20 | 62724546 56.754762  49.841s579 49974659  52.294471 52.674s56 49231434 70711387 | 69.361402

50 | 69.724345 60431512  57.651462 54414404 48.61i650 57241550  49.661195 82.03:305 | 80.571335

steel 100 | 76331410 63341200 60891555 52241406 42381673  58.0liess 51171190 87.79%s06 | 87761505

200 | 79904107 68001255 6631a427  50.194400 43.82474s 63294468  50.99405 90.901150 | 91074115

500 | 85.064190 73244316 72494080  49.194479 45774819  68.81i44r 52454350 92814945 | 92834135

20 | 84.274508  66.054950 521511008  58.6911520 772811840 58.0311241 45134153 84451400 | 84.6914.16

stock 50 | 89.641535 75401327 67.641603 64.811927 88941162 77.671440 485511105 89.691159 | 89.701; 90

] 100 | 91931077  80.874260 783743093  67.33463¢  91.034155  84.534334 531941160 91.984063 | 92.354075
200 | 93.46.0.93 84.65+161 81.641360  70.56434; 91.811069 85581264 4998411390 92534100 | 92.941099

o~ 50 N/A 6.754125 4.8841.00 5214139 4714144 6.06.1) 55 4.63 1047 N/A | 25.36.1529
2 energy 100 N/A - 7.534181 5334143 3.68.+1.03 9.0542.14 437112 N/A | 29.63.17.43
'»% 200 N/A - 7.221099 6.01413; 3304091 10.5641 57 3.991073 N/A | 33.85.31;
2 collins 100 N/A — 5.611095 432072 13.461 63 4714100 3.8010.09 N/A | 15.201500
§ 200 | 19.94., 5 — 5.24 1054 4.49 1068 1529418 4.58 1070 3.891008 N/A | 17.66.4 30
N 50 | 7867107 220521001 12361355  11.19.51> 15851518 1367160 9051015 N/A | 75571261
§ texture 100 | 8531044 25804561 13.8247.03 11.671414 19321490 25544586 9.0940.10 N/A | 84.694 70
200 | 88.174171 18.334783 13.8543095 10.554455 23171757 42921667 9.07 056 N/A | 89.16.; 75

500 | 90.78 4116 29294703 24914999 10.234348  23.851999  57.581408 10.1242555 N/A | 91.23 1095

Average rank ‘ 2.03.10.99 4.39. 084 6.034107 7.7040381 6.97 1505 5.304092 8.331082 2.73 1083 1.52.495;

43



Table 25: Classification accuracy (%) of MLP, comparing data sharing on eight real-world tabular
datasets with varied real data availability. We report the mean = std balanced accuracy and average
accuracy rank across datasets. A higher rank implies higher accuracy. Note that “N/A” denotes the
inapplicability of a specific generator. Different from Table 1, “—" denotes a generator cannot satisfy
the requirement of generating 500 stratified samples even after generating 10,000 synthetic samples.
The results of these inapplicable or failed generators are computed with the mean results of other
methods. We bold the highest result for each dataset of different sample sizes. TVAE learns the joint
distribution p(x, y) and fails to maintain the original training label distribution. TabEBM achieves
the best overall performance against Baseline and benchmark generators.

Datasets Nreal ‘ SMOTE TVAE CTGAN NFLOW  TabDDPM ARF  GOGGLE TabPFGen ‘ TabEBM
20 N/A 15.814326 12.081427 13.064522 12934350  20.17 1444 12981250 36.011068 | 36.231249

50 | 56.85.45 268314ss 1419045 1368115 14921395 31361450 13781391 58.69142 | 58.831u50

protein 100 | 75864303 41.601443 25781477 11341338  20.821455  40.311563 1454 304 77471339 | 77.561365
200 | 87.854199  50.871626 32494676 12904377  23.854506 45.40453; 10.24 1354 90.01.500 | 89.481200

500 | 943741166  62.8lisn9 47224643 12.064249 24514767 60.311402 10411060 96.264135 | 96.034) 56

20 N/A - 12164277 10.5643.04 10.38 4251 19.6614.97 11.041361 34401385 | 35.041363

50 | 52724511 - N/A 942303 13.784307 33944246 10.884314 5512481 | 55.304 65

fourier 100 | 60.821585 33.16439; 2144155 10.884421 21961234  39.68.1404 8124325 63.541,8 | 64.081, 57

§ 200 | 68.6410785  42.181309s5 30.56.4591 10941487  33.804s510 43924547 8464068 71764162 | 71.364104
] 500 | 73784112 504841403 45944355 13104400  35.184584  51.104353 9.661262 76.504187 | 77.654;3;
N 20 | 68.594424 62241567  53.561565 55151909  45.871320  57.764442 459811123 72.041405 | 72101460
; 50 | 73484567 65964624 62154711 558441109 45554863 72404340 49951648 77.204084 | 77.24133
g biodeg 100 | 77204172 70204567  71.904327 57.99 1621 49104576 71424059 45524661 78584225 | 78931011
£ 200 | 81302091 72264555 71594485 557547935 44371721 738243 484555 82.0641 6 | 82.254 1
< 500 | 83.551060 7436143 77551054 53371484 43971460 76514060 47.041941 83.63:119 | 83.331086
20 | 57494560 532841147  50.5747m 52.014853 52.764911 51.251401 47984599 6434165 | 64.331570

50 | 66.704360 62.024503 57414518 54514650 50.584720 59.85is516  50.781619 83.061605 | 82.381579

steel 100 | 76171420 63051411 6062471 5481iscs 4464100  59.60isgs 48931200 95361315 | 9545152

200 | 80234517 6845134 64.73157; 50.834476 39.7311223 62364396 47891771 983445 | 98.37 1051

500 | 85.761361 73.891448  71.48142 49.324651 43.651566 68124463  53.561470 99.56.034 | 99.451 044

20 | 82931466 71784733 55.0941304 68464587 76.71i1545 621311043 52.6811266 83.831386 | 83.914399

vock 50| BOdBLn 75937 6704 T3A8igy 87475 T8Blisgs  4879isy 9025:1e | 9036122

] 100 | 90.85+072 81.611337  79.761351  71.034s588 90171166  85.831070 504141472 91.60+100 | 91.721097
200 | 92.03 1979 84.67 1245 82.92150 T4.97 1441 91214100 87.064218 44.9011708 92.24.09; | 92.001003

o~ 50 N/A 7.77 £139 5.64 1240 575417 4.304207 8.284 191 4.461025 N/A | 2391449
2 energy 100 N/A - 7441933 5.341160 3.68.1168 10.38 1167 429,071 N/A | 29.24 1545
'»% 200 N/A - 8744517 7.384233 3.844129 12.8842.00 4.0841 12 N/A | 38.27 1350
2 collins 100 N/A - 6.06-£0.96 504414 12.804148 5.69.+1.80 3.67 1043 N/A | 13.66.; 56
§ 200 | 1891416 — 5784175 4.9010.94 1594174 5844119 442418 N/A | 19.49. 56
N 50 | 83451505 28111700 14571620 12561290 22501671 18071455 9881400 N/A | 85411075
S exture 100 90731150 33201450 15181746 13720603 29361505 2580152 1077150 N/A | 91.874 14
= 200 | 93314119 26.954153 18.10+537 103941468 28.79411029 4444 1546 7.704274 N/A | 93.78.11.41
500 | 95.61+110 39391919  29.601879 13154459  27.704621 62.881556 10.3043.10 N/A | 95.06.0.96

Average rank ‘ 2911071 4731075 6454112 7481087 6.7942.13 4.704133 8.39.10.70 2214105 1.33 1060
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Table 26: Classification accuracy (%) of RF, comparing data sharing on eight real-world tabular
datasets with varied real data availability. We report the mean =+ std balanced accuracy and average
accuracy rank across datasets. A higher rank implies higher accuracy. Note that “N/A” denotes the
inapplicability of a specific generator. Different from Table 1, “— denotes a generator cannot satisfy
the requirement of generating 500 stratified samples even after generating 10,000 synthetic samples.
The results of these inapplicable or failed generators are computed with the mean results of other
methods. We bold the highest result for each dataset of different sample sizes. TVAE learns the joint
distribution p(x,y) and fails to maintain the original training label distribution. TabEBM achieves
the best overall performance against Baseline and benchmark generators.

Datasets Nieal ‘ SMOTE TVAE CTGAN NFLOW  TabDDPM ARF GOGGLE TabPFGen ‘ TabEBM

20 N/A 19.29.4385 13.63 1295 12.71 4284 12.754209 2047 1429 13.2545090  31.864224 | 34.0541504

50 | 56094077 32294308 19371550 12624005 14874075 32.604415 1329105 54254199 | 5696133

protein 100 | 71.141565  44.501308 29.72 1360 12371312 17714351 38.2244%s 13.674100 70.684+324 | 72.741597

200 | 81.224251  50.104389  37.081si7 14344315 22234343 43484374 11764327  81.931247 | 82.354009

500 | 87934150 58174500 4944557 12.031040  22.884267 53.674204 10594314 90.81.137 | 89.784173

20 N/A - 11.284 163 11.521565 9241516 17764396 9784133  31.941355 | 38.161443

50 | 65324386 — N/A 9981108 12124956 31.764366 11244070 65.641373 | 66.04.1509,

fourier 100 | 73.824970 44.84153s 29.681597 11.041251 21904468 35.601477 9304087 7428104 | 7492432

§ 200 | 78.661164 48.561350 41.94554 10.24 1503 31.361410 44.80138s 988123 79481018 | 79.52 1503

§ 500 | 79.64113  54.80145 57.06+4.59 11941226  25.084465 54.041310 10.66427; 81.641,61 | 81.854053

S 20 | 69.34 163 64.524740  52.8317385 53.884731 49801045 60951660 50471967 67.371545 | 67.061488

: 50 | 70.174360  68.144308 62.504674 54844767 49941105 67214425 51994612 71941416 | 71914077

g biodeg 100 | 74.8041206 71.824370 68291567 56441566 49.621063 67.6841285  50.71ys41  75.68.1001 | 74.93 1008

- 200 | 77494213 69224350 609.631286 55471736 48704153 70404301 48.041s50;  78.641229 | 76.96430

< 500 | 80.31.,3, 74831176 74441590 51301300 49.684061 73.884150 45731813  79.564195 | 78.664176

20 | 55. 714347 55.231431 521443614 50934620 49931056 52.024s550 48.884470 57.2040092 | 58271240

50 | 62301294  56.051307 55404401  52.161388 49981020 54.551289  50.6511920 64.261255 | 66.98.330

steel 100 | 67.63575 58.9314gr  56.65:401  S5186sn5s 47.84ars5 56132000 49334005 1247401 | 77424555

200 | 71414346  62.151445 59.89 1405 51444139 48944150 58234557 49251305 81.561446 | 86.14 1404

500 | 77174201 67424315 65341417  50.864385  49.831045 60.964442  S51.044362  86.491435 | 90.601465

20 | 80.814471  71.581648 48.00111.14 66.0711260 774211577 61801934 46.6211160 84301406 | 84651335

stock 50 | 894541000  74.304864  66.751707 699511051 87731221 79901452 47.2811221  89.2711g0 | 90.044500

] 100 | 91.384180 84.094375  79.164444  72.001477  90.964504 86.384297 47.78+1005 92.071156 | 92.224 36

200 | 93.461079 86.851220 83471347 78624319 92724081 87.664089 499111388  93.35+132 | 93.074099

i 50 NA 642110 45202 488111  A467i1m 6621000 44710m N/A | 28791170

§ energy 100 N/A — 7924114 5404111 4.214004 9.034153 337412 N/A | 39.204 35

-g 200 N/A - 7124177 6.014133 3.261091 11.784310 4.321075 N/A | 42.55 393

S collins 100 N/A — 6.10£063 4.094082 11.954 192 4954123 3.99.10.64 N/A | 13.674,3

g 200 | 17.74+,75 - 5.86+139 4561008 13224122 5234063 4.0810.62 N/A | 16.244 145
=

E 50 | 71.184280  22.41473s 10.33 4147 10.5541 87 12.354409 19.834572 9.504201 N/A | 75.77 1360

S xure 100 [ 798550 2634iy  148d4ies  1577isn M06is 2607w 897i0m N/A | 81.99., 5

= 200 | 84174007 22.704557 12.591481 11.614340 11.684373 46.831478 10.17 1308 N/A | 84.90 93

500 | 8831113 32.9244058 27.621973 13.331479 10.841237 62.04.140; 9.504 384 N/A | 88.14150

Average rank | 2.551084 4.391080 6.09+1.01 7421090 7.09+1904  5.154103 8.55+062 2361080 1391070
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Table 27: Classification accuracy (%) of XGBoost, comparing data sharing on eight real-world
tabular datasets with varied real data availability. We report the mean =+ std balanced accuracy and
average accuracy rank across datasets. A higher rank implies higher accuracy. Note that “N/A”
denotes the inapplicability of a specific generator. Different from Table 1, “—" denotes a generator
cannot satisfy the requirement of generating 500 stratified samples even after generating 10,000
synthetic samples. The results of these inapplicable or failed generators are computed with the
mean results of other methods. We bold the highest result for each dataset of different sample sizes.
TVAE learns the joint distribution p(x, y) and fails to maintain the original training label distribution.
TabEBM achieves the best overall performance against Baseline and benchmark generators.

Datasets Nieal ‘ SMOTE TVAE CTGAN NFLOW  TabDDPM ARF  GOGGLE TabPFGen ‘ TabEBM
20 N/A 15471977 13.60436 15.03 1460 11774336 18324384 14.61427 23.541433 25221356

50 | 3851cass 25361510 18881431 13841450 12722100 24394400 1313044  41.882600 | 43.7916s1

protein 100 | 60.714570  33.234465 23.544374 14.364309 14.08 1184 28491626 14.48 1406 5491696 61.11.4 1,
200 | 73.31435 355046720 26.744501 15.451 445 14714338 36.61436; 10414050 75.204013 76.96.5 90

500 | 83.114180 41.184631 37.95is56 13.5642.40 14471540 48924400 11.254302 85.304156 85.39. 190

20 N/A —  11.164278 10.361258 12.38 41308 14641490 9184160  21.8014386 26.801 45>

50 | 41.7045.00 - N/A 10.0641 96 10.004141 19964444 12.24 1353 43.104637 | 4716454

fourier 100 | 54.524550 27784540 1940s405 1098120 12224505 24241470 1034106  51.401em | 52621505

S 200 | 65961460 31.604049 24.761553 11.844399 13.124324 31744375 11.364239  62.68143 66.264 5,
§ 500 | 71444157 34724186 36.564508 11.64 1558 12.72 4383 37.864331 9421166  72.001204 74.45 1 ¢6
s 20 | 66521505 60351765 58551657 5465154 50674416 59801700 525811375 6599:cs5s | 66.60465
; 50 | 68.014067 63.624485 60.53179; 56.104694 48131377 68901466 52.891913 68.601427 | 68.821315
g biodeg 100 | 71.984421 68. 711456 68581357 60.671900 49.08431 68741358 49514540 7473488 72.694336
- 200 | 74294014 68941403 69.871315  59.264734  47.264299 T70.894366 55.644790  76.034477 | 77151253
< 500 | 76041509 70531519 73651558 53.731avs 47864457 7439108 49.08:1110 78991080 | 7761108
20 | 55.76.1440 53171628 53.714933 51364560 51324629 51364640 Sllligys  55.714s46 54.95 1504

50 | 61.074358 56971393 54384400 53544380 46.831¢18 53.604417 49464657 63.641650 | 71.581 1408

steel 100 | 6412457 59034575 57.0lisss 52861305 44221797 55214400 4692475 88.6lirams | 96341275

200 | 749641642 58421666 59.254348 51941330 439641060 58921356 49.581s596  98.85417 99.28.072

500 | 81.794579 61114840 65.70477; 51.684271 46.631660 59.194743 49984515 99.624 1 99.92, 13

20 | 77.644607 64.611100s 50.931699 67.7011204 746311341 68291728 45.59+1006 80.141476 | 84.224450

stock 50 | 84.831208  77.894753 73.574576 70291608 84751401 79.194251 54.824n1s1 86971305 | 88591354

100 | 87.69+126 80.124875 77.231437  71.034350s 85.721400 83914327 55.60410094 89.214339 9114, 97

200 | 90.584302  83.344380 81.041324  76.601s586 91524349 87491341 554311205  90.781356 | 90944

. 50 NA 7372200 5161205 490112 395110 662118 N/A N/A | 1938135
2 energy 100 N/A - 82517 5404204 3954137 10214045 N/A N/A | 25.081599
% 200 N/A - 6.97 1292 8.564268 3214553 11.084206 N/A N/A | 31.031404
b collins 100 N/A - 4.45 052 3.98+10.70 8184143 5.391168 N/A N/A 9.03.1 14
§ - 200 | 12.52408 - 5524157 4431063 9.064 21 5.614110 N/A N/A 11.491 145
; 50 | 57994335 20.94 1545 9.44 1478 12.63 1307 11324419 14354405 N/A N/A | 68971408
S texture 100 | 6980430 23001710 14064490 16184564 9.901239  19.131641 N/A N/A | 76.624555
= 200 | 78464270 23324704 15.094296 15151379 9.664164 33.674507 N/A N/A | 80.37153
500 | 86.391,70 31131916 22.8841724 13.46.1572 10224170 47.064383 N/A N/A 85.83 1168

Average rank | 2761090 49710920 639113 7421075 7484235 4971126 711425 2.62+0.95 127405
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Table 28: Classification accuracy (%) of TabPFN, comparing data sharing on eight real-world tabular
datasets with varied real data availability. We report the mean =+ std balanced accuracy and average
accuracy rank across datasets. A higher rank implies higher accuracy. Note that “N/A” denotes the
inapplicability of a specific generator. Different from Table 1, “—" denotes a generator cannot satisfy
the requirement of generating 500 stratified samples even after generating 10,000 synthetic samples.
The results of these inapplicable or failed generators are computed with the mean results of other
methods. We bold the highest result for each dataset of different sample sizes. TVAE learns the joint
distribution p(x,y) and fails to maintain the original training label distribution. TabEBM achieves
the best overall performance against Baseline and benchmark generators.

Datasets Nreal ‘ SMOTE TVAE CTGAN NFLOW  TabDDPM ARF GOGGLE TabPFGen ‘ TabEBM
20 N/A 16364339 13224140 13.80+4.56 12934367 18551064 12.144516 33464506 | 34.504 536

50 | 59.601363 27511372 18.264454 13.284334 14951350 29.824375 13304188 57.681279 | 59.001397

protein 100 | 79471345 41.49160g 31.504305 13.694275 17214312 36734505 12.611081  78.931423 | 79.024374
200 | 90.49.,553 48304773 36.99.539 13. 714379 21.674590 43534540 12964286 91471128 | 90.714130

500 | 94.284136 5831isos 48524470 1291ins6 23354776 57371328 12514323 95.264137 | 95.004128

20 N/A - 13.98430s 10.6415 50 10.561186 16441450 10.564320 29424672 | 36.56.1405

50 | 52.52437 — N/A 1024453 10724155 2782434 9904033 53981443 | 5392435

fourier 100 | 63.361356 36.241425 28.44 1445 10.3041.94 11.841310 30.764270 10321004 65.321326 | 65.58 335

§ 200 | 69.62447; 40361377 40.08457 8.8213038 32984625 3850138 10.304076 72.084245 | 72.264270
§ 500 | 75.144,83 46561561 5338145 9524146 32464000 49.621560 10.681136  75.984125 | 75.604085
N 20 | 69.014456 65351746  52.294845  55.71i677  50.004000 57114837  50.354111  70.774490 | 71.364530
; 50 | 73.274331 68.691s583 63311635  54.85:500 50.00+000 71231504 50.001000 75.784250 | 75.5643.19
] biodeg 100 | 76.391512  73.061633 71.754575 55264654  50.004000 73.024242  50.004000 78.22+155 | 79.2842.16
- 200 | 80.524085 73.19i528 72931504 54941551 49.884033 76.03i283 50.001000 82221172 | 82.70473
< 500 | 82474100 77.064303 79.18.42.08 50471105 49.671105 77791136  50.001000 83.034096 | 83.671083
20 | 56.801460 53.881500 52.124328 50864560  50.004000 50471175  50.004000 64.921575 | 65.824620

50 | 62451431 57.8042.19 57114527 51.844372 50.004000 56401361 50.004000 84.8141786 | 86.324655

steel 100 | 71.254506 61.441333 60451460  50.591350 48484317 557414690 50.6641208 97.294140 | 97.854138

200 | 77961506 63.924333 6422452  50.002000 47651405 62331450 5000001 98.58107> | 98894040

500 | 85294402 69411533 73344543 50.094027  50.001000 68.781584  50.001000 99711030 | 99714027

20 | 83.791301 7041799 49.5241646 70.7511065 78.5841150 66.661526 51451491 82981447 | 83.794496

stock 50 | 89914044 77184313 70.04423 72424850 89.35i175  78.06133 50.001000  89.97i212 | 90174173

] 100 | 92.054134 81.601366 78731367 75244391 91324147 8524153 49831054 9225415 | 924645

200 | 93504091 85464304 83474302 75514044 92951104 87.251203 50.004000 93.931085 | 93.65+101

Average rank | 2771060 4731087 5.881126 7424106 7334172 521i0s3 8421050 185106 | 1401049
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D.7.2 DCR Evaluation

Table 29: DCR between real train data and synthetic data on eight real-world tabular datasets
with varied real data availability. We report the mean =+ std result and average rank across datasets. A
higher rank implies better privacy preservation. Note that “N/A” denotes that a specific generator
was not applicable, and the rank is computed with the mean result of other methods. We bold the
highest result for each dataset of different sample sizes. Even though ARF and NFLOW show high
DCR, our experiments demonstrate that they do not learn the data distribution well, leading to poor
downstream accuracy. TabEBM achieves competitive overall DCR against benchmark generators.

Datasets Nreal ‘ SMOTE TVAE CTGAN NFLOW TabDDPM ARF TabPFGen ‘ TabEBM
20 N/A 0-24:t0,06 0.3610.10 0.29:&0_07 0-60:t0,06 0.4910.03 0.24:t0,1 1 0.3910.05

50 | 0204003 0.341000 0421006 0211006  0.621001 0474008 0211011 | 0.371011

protein 100 0~20i0A03 0-33i0.07 0‘37i0.05 0.26i0‘10 0-54i0.03 0‘46i0.05 0-12i0.07 O~27i0,15
200 | 0.194003 0.311005 0.35+004 0.31:006 0511004 0441005  0.10+003 | 0.2610.06

500 | 0.194002 0.321006 0.301005 0.33:1002 0481005 0431005  0.091006 | 0.231013

20 N/A 0.194017 0.61190s 0.5241008 0.564005 0.57+0.04 0.484000 | 0.40-+000

. 50 | 0.204002 0.291026 0.481017 0.331010  0.671005s 0.541007 0311007 | 0431003
fourier 100 | 0231002 0.531006 0.50+0.04 0.37+0.00 0.601008 0.59+0.06 0.311+007 | 0.44+004

S 200 | 0.2214002 0.56+006 0.53+005 0371008  0.581002 0.561004  0.301003 | 0.46+004
§ 20 | 0.294005 0.191008 0.261007 0.331008  0.261015 0461005  0.38+003 | 0.39+0.04
s 50 | 0184005 0.174006 0.164004 0244004  0.144005 0.311005 0314007 | 0.304007
g biodeg 100 | 0.114004 0.174004 0171004 0224006  0.104002 0214000  0.241007 | 0.214008
= 200 | 0.08+002 0.141002 0.144003 0201004  O0.111004 0.201004  0.131008 | 0.15+007
500 | 0.08+003 0.161003 0.131003 0.18+005  0.10+004 0.18+1003  0.05+003 | 0.09+0.04

20 | 0384000 0.211010 0.251012 0331007 0481015 0431008  0.231005 | 0.2110.03

50 | 0274001 0.271000 0.221009 0341005 0451015 0401006  0.15+006 | 0.2410.08

steel 100 | 0204011 0.284007 0.224008 0.30+008  0.371019 0411907  0.154+000 | 0.2510.10
200 | 0.19+008 0.281004 0.224004 0321006 0311011 040004  0.141006 | 0.30+0.090

500 | 0.174004 0.29+007 0.241007 0.32+005 0211007 0.371005s  0.10+005 | 0.25+0.09

20 | 0.244005 0.371008 0424007 0464005 0451012 0.501005s 0414006 | 0.4610.03

stock 50 | 0.164003 0.411008 0.341004 0431006  0.281007 0.391003 0371014 | 0.461002
100 | 0.15+004 0391004 0.331005 0461004  0.171002 0.331003  0.3d1000 | 0.441003

200 | 0.144002 0.381004 0.281003 0.45+005  0.111001 0.321003  0.39+011 | 0461004

g 50 N/A 01841020 0.361008 0.48+007  0.001000 0.46+0.06 N/A| 0441002
2 energy 100 N/A 0~08i0.17 0‘403:0_()3 0-46:t0.05 O-OOj:O.(J(J 0‘40330.04 N/A O.4Oi0‘04
% 200 N/A 0.041911 0304016 0.454005 0.004000 0.3840.03 N/A | 0.424004
E COlliIlS 100 N/A 0.0oio_oo 0‘303:0_05 0.333:0_05 0.26i0_05 0‘33;{:0.06 N/A 0'38j:0,ll
E 200 | 0.184003 0.004000 0.234006 0.29+008 0.194005 0.3340.00 N/A | 0.3640.1>
N 50 | 0214005 0.004000 0.174010 0.264008 0264013 0.424007 N/A | 0.401013
§ texture 100 | 0.164004 0.084014 0.354006 0.2640.03 0.374000 0.464008 N/A | 0424010
200 | 0.131003 0.241018 0294012 0324005  0.40+008 0.37+005 N/A | 0421007

500 | 0.131002 0.041011 0154011 0344005 0.371007 0.311003 N/A | 0441005

Average rank ‘ 6.64i1_35 5-48j:2.08 4~82i1.42 3~45:t1.75 4~03i2.82 2'21i1.17 5~85j:1.85 ‘ 3-52il.95
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D.7.3 Delta-presence Evaluation

Table 30: J-presence between real train data and synthetic data on eight real-world tabular
datasets with varied real data availability. We report the mean =+ std result and average rank across
datasets. A higher rank implies better privacy preservation. Note that “N/A” denotes that a specific
generator was not applicable, and the rank is computed with the mean result of other methods. We
bold the best result for each dataset of different sample sizes. TabEBM achieves the best overall
performance against benchmark generators.

Datasets Nrea | SMOTE TVAE CTGAN NFLOW TabDDPM ARF  TabPFGen | TabEBM

20 N/A 0.03:000 0331094 0131023  0.071011 0.051004  0.031000 | 0.03+000

50 [ 0071000 0.071000 0.071000 0391092  0.11:010 0.091003  0.0740.00 | 0.07+0.00

protein 100 | 0.194902 0.361019 0.501+0s8 24543235 0231003 0361014 0171001 | 0.171001
200 | 0.624023 2.841207 2.031105 11.554774 1711072 2731146 0.57+047 | 0.57+017

500 | 1.15:012 4621061 241113 26.851908 6511141 2264053 1201032 | 1.201032

20 N/A 0024000 0.021000  0.061007  0.041003 0.041004  0.024000 | 0.021000

50 [ 0.08+000 0.10+001 0.091+001 0.09+0.01 0.081+000 0.081000  0.080.00 | 0.08+0.00

fourier 100 0.18i0‘01 0-31i0.10 0.26i0‘12 2~74i2A76 0-3Oi0,07 0-53i0,16 0.17i()‘01 0.17i()‘01

g 200 | 0.731048 1.561063 3.521+167 10.6014:58 1.524067 2.52+114 0454005 | 0.44:005
3 500 | 1424031 6.061350 5.651416 25.6311253 3394153 2991080  1.184020 | 1.1640.18
§ 20 [ 0.03 4000 0.091010 0.1210.15 0224032 0.031000 0.141030  0.031000 | 0.031000
s 50 [ 0.08£001 0.104004 0.081001 0.123004  0.101004 0.101004  0.081001 | 0.08+0.00
g biodeg 100 | 0.354025 0.521029 0.981092 1141089  0.591041 0.511030  0.244006 | 0.241006
= 200 | 2354176 2274101 2.801174 4184174 5101444 1.701082  0.744023 | 0.741023
500 | 2914143 3951108 3.581171 8851307 11921819 2371104 1.571040 | 1611042

20 | 0.04£001 0.08+008 0.101012  0.081006  0.061002 0.151030  0.0340.00 | 0.03+000

50 [ 0.08+001 0124003 0.09:002  0.171008 1.041098 0.094001  0.08+001 | 0.081001

steel 100 | 0.224005 0394012 0441040 0731030 2171247 0271006  0.201003 | 0.20+0.03
200 | 1.394078 2.05+099 3.394250  5.554358  6.684455 1.29:060  0.494007 | 0.481006

500 | 1.931060 4.39+330 5231300 10524720 339249531 2.39:088  1.6810s3 | 1.70+089

20 [ 0.034000 0.03:000 0.031000  0.031000  0.041000 0.031000  0.0310.00 | 0.03+000

stock 50 [ 0.08+£000 0.09:000 0.091000  0.08:000  0.091001 0.081000  0.08£0.00 | 0.08+0.00
100 | 0.194002 0231004 0261012 0231004 0221004 0.201002  0.181001 | 0.181001

200 | 0.51+008 0.971+030 1.831114 0904032  0.57+007 0.60+016  0.494007 | 0.48+008

“ 50 N/A 0.094002 0.081000 0.0840.00 0.064000 0.081000 N/A | 0.08+1900
E energy 100 N/A 1.56i]‘51 0~19i0.03 0~19i()‘03 0-99i2,46 0.16i0‘01 N/A 0.16i0.00
\S 200 N/A 4154304 1.674084 0.724016 13.284921 0.441004 N/A | 0.384003
S collins 100 N/A 1'79il.23 0'18j:0.02 0.183:0‘03 0.17j:0,02 0.17j;0,01 N/A 0.163:0‘01
§ 200 | 0.43 1008 4.204255 0.761026 1734100 0941050 0.951047 N/A | 0.39.05
s 50 | 0081000 0.081+000 0.08+000  0.08:000  0.104002 0.08:0.00 N/A | 0.08.0.00
§ texture 100 0.173:0,01 0.423:0_22 0-19j:0.02 0-41j:0.16 0.443:(),32 0.25i0.05 N/A 0'17j:0.01
200 0.573:0,13 2~34il.14 1'763:1.05 5.78i2_32 7-02i4.14 1.54i0.94 N/A 0'45i0.08

500 | 1331061 2.88+100 2424135 234041074 16.6411235 2.364106 N/A | 1.0310.14

Averagerank ‘3-30i1,37 5.91i1‘(,g 5~30il.74 6~45i1A86 5.82i2‘11 4~45il,66 3‘00i190‘ 1-76i1A05
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Section 1 details our research objectives and highlights our contributions.
2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Presented in Section 4.
3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: Section 2 presents the theoretical results of our proposed method.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Refer to Appendix B, where we provide full details on reproducing the results
in the paper. We provide an open-source library of the proposed method.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Refer to Appendix B. All datasets used in this paper are publicly available,
and the implementations of benchmark generators are open-source. We also provide an
open-source library https://github.com/andreimargeloiu/TabEBM .

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Appendix B provides full descriptions of the experimental setup.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Refer to Section 3, where we provide standard deviations for all tables.
Figure 6 and Figure 4 (Right) contain error bars. Due to the page limit, the error bars for
all other figures are available in Appendix D. In Section 3.2 and Appendix D.6, we show
statistical significance tests of the similarity between real data and synthetic data.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?
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11.

12.

13.

14.

15.

Answer: [Yes]

Justification: Refer to Appendix B.4, where we provide full details on the computation
resources used in the paper.

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We carefully check the NeurIPS Code of Ethics, and we confirm that our work
follows the Code in every respect.

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Refer to Appendix A, where we include the societal impacts of our work.
Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [NA]
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Refer to Appendix B, where we provide the open-source licenses followed
by the creators or original owners of assets.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide the implementation of our method as a python library attached
to this submission. We will make it publicly available post-publication.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA]

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:
Justification:[NA |
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