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ABSTRACT

The rapid development of generative models has made it increasingly crucial to
develop detectors that can reliably detect synthetic images. Although most of
the work has now focused on cross-generator generalization, we argue that this
viewpoint is too limited. Detecting synthetic images involves another equally
important challenge: generalization across visual domains. To bridge this gap,
we present the OmniGen Benchmark. This comprehensive evaluation dataset
incorporates 12 state-of-the-art generators, providing a more realistic way of eval-
uating detector performance under realistic conditions. In addition, we introduce
a new method, FusionDetect, aimed at addressing both vectors of general-
ization. FusionDetect draws on the benefits of two frozen foundation mod-
els: CLIP & Dinov2. By deriving features from both complementary models,
we develop a cohesive feature space that naturally adapts to changes in both the
content and design of the generator. Our extensive experiments demonstrate that
FusionDetect delivers not only a new state-of-the-art, which is 3.87% more
accurate than its closest competitor and 6.13% more precise on average on estab-
lished benchmarks, but also achieves a 4.48% increase in accuracy on OmniGen,
along with exceptional robustness to common image perturbations. We introduce
not only a top-performing detector, but also a new benchmark and framework for
furthering universal AI image detection.

1 INTRODUCTION

Figure 1: FusionDetect performance on Om-
niGen and established benchmarks from previous
works Zhu et al. (2024); Boychev & Cholakov
(2024); Yan et al. (2024) compared to other de-
tectors. The size of the bubble indicates the stan-
dard deviation of accuracy between all generators
in the dataset (smaller is better).

The field of artificial intelligence has entered an
era of unprecedented creative capacity, primar-
ily driven by the rapid maturation of text-to-
image generative models Zhang et al. (2023).
Recently, diffusion-based architectures such as
Stable Diffusion Rombach et al. (2022), Mid-
journey MidJourney (2025), and Imagen Sa-
haria et al. (2022) have achieved a level of pho-
torealism and artistic flexibility that was once
the domain of science fiction. These models
have democratized content creation, empow-
ering users to generate complex, high-fidelity
images from simple textual descriptions. This
technological leap has unlocked vast potential
in domains ranging from digital art Saharia
et al. (2022); Nichol et al. (2021) and enter-
tainment Stark (2024) to product design Wang
et al. (2025) and scientific visualization Tham-
panichwat et al. (2025). However, this acces-
sibility is a double-edged sword. The same
tools that foster creativity can be wielded for
malicious purposes, including the generation of
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convincing disinformation, the creation of syn-
thetic media to erode public trust, and the violation of copyright and personal identity Xu et al.
(2023); Ren et al. (2024); Samrouth et al. (2024). Consequently, the development of robust, reli-
able, and universal methods for detecting AI-generated images has become a critical imperative for
ensuring the integrity of our digital ecosystem Mahara & Rishe (2025).

The academic pursuit of AI-generated image detection has evolved significantly, yet it faces persis-
tent challenges that limit its real-world applicability. Early research Wang et al. (2020); Zhang et al.
(2019); Qian et al. (2020) focused heavily on identifying artifacts from Generative Adversarial Net-
works (GANs) Goodfellow et al. (2014). Although fundamental, this focus is increasingly obsolete
due to the overwhelming dominance of diffusion models Ho et al. (2020); Song et al. (2021). These
models Ho et al. (2020); Dhariwal & Nichol (2021); Song et al. (2021); Rombach et al. (2022) are
the backbone of nearly all state-of-the-art (SOTA) commercial, open-source, and community-driven
projects. A modern, practical detector must therefore be also engineered for the unique and subtle
characteristics of this new paradigm.

More critically, we argue that the community’s understanding of generalization is dangerously in-
complete as they focus on only one aspect of it. This typically involves training a detector on images
from a single generator and evaluating its ability to identify images from a variety of other gener-
ators Ojha et al. (2023); Wang et al. (2023); Yan et al. (2024). To rectify this, we formalize the
problem as a two-axis generalization challenge: a truly universal detector must demonstrate robust-
ness not only on the well-studied cross-generator axis (handling unseen generators) but also on
the often-neglected cross-semantic axis (handling unseen visual domains). As we will show, prior
works often fails on the second axis, rendering it unreliable for real-world Yan et al. (2024). This
semantic gap is not merely theoretical. As our t-SNE Maaten & Hinton (2008) projection in Fig-
ure 2 visualizes, popular datasets like GenImage Zhu et al. (2024), ImagiNet Boychev & Cholakov
(2024), and the challenging Chameleon Yan et al. (2024) form distinct, non-overlapping clusters in
our proposed FusionDetect embedding space. As shown, there is no to little overlap between
each dataset cluster. This demonstrates that a model trained exclusively on the feature distribution
of one dataset will fail to recognize the patterns of another, regardless of the generator used.

Figure 2: T-SNE Maaten & Hinton (2008) pro-
jection of GenImage Zhu et al. (2024), ImagiNet
Boychev & Cholakov (2024), and Chameleon Yan
et al. (2024) dataset.

To solve this two-axis challenge, we propose
FusionDetect, a powerful fusion model
engineered for universal AI image detection.
We hypothesize that a truly robust and gen-
eralizable representation can only be created
by combining the complementary strengths of
large-scale, foundational models with orthog-
onal training objectives. Instead of hunt-
ing for a single, elusive universal artifact,
FusionDetect fuses deep features from two
distinct and powerful vision encoders: CLIP
Radford et al. (2021) for its unparalleled se-
mantic breadth and DINOv2 Oquab et al.
(2023) for its profound understanding of fine-
grained structure and texture.

To facilitate a more rigorous and realistic evalu-
ation of detector performance, we introduce the
OmniGen Benchmark, a new, open-source test
set designed to capture the modern generative
landscape. The OmniGen benchmark directly
addresses the weaknesses of prior benchmarks
by including images from 12 SOTA generators, such as closed-source models, the latest open-source
architectures, and popular community fine-tunes. By curating this benchmark with high semantic
variety, we provide a robust framework to validate a model’s performance along both axes of gener-
alization, ensuring that our evaluations reflect a detector’s true capabilities in real-world scenarios.
1

In summary, the primary contributions of this paper are fourfold:
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1. We formalize the ”two-axis generalization” problem in AI image detection, highlighting the
critical need for models to generalize across both unseen generators and semantic domains.

2. We introduce FusionDetect as a strong proof-of-concept for this framework. It demon-
strates that fusion of complementary foundational features can decisively outperform more
complex architectures when evaluated under the two-axis setting.

3. We release the OmniGen Benchmark, the first test set explicitly designed to test two-axis
generalization, featuring 12 diverse SOTA generators and high semantic variance.

4. We demonstrate through extensive experiments that FusionDetect establishes a new
SOTA, achieving superior generalization and robustness to common image perturbations
compared to existing methods.

2 RELATED WORK

The field of AI-generated image detection is in a constant race against generative technology. To
provide context for our work, we’ll first review the evolution of generative models, from older
GANs Goodfellow et al. (2014); Karras (2017); Brock et al. (2018) to modern diffusion models
Dhariwal & Nichol (2021); Rombach et al. (2022); Nichol et al. (2021). We’ll then look at the
detection methods, highlighting how each has responded to the shifting capabilities of generative
architectures. Our review shows that existing detection methods have consistently lagged behind
generative advancements, a critical gap that our work aims to close by addressing the ”two-axis
generalization” problem.

2.1 IMAGE GENERATION

The field of synthetic image generation has been reshaped over the last decade. It has transitioned
from early breakthroughs with GANs Karras (2017); Karras et al. (2019); Brock et al. (2018) to the
current dominance of Diffusion Models (DMs). The advent of Denoising Diffusion Probabilistic
Models (DDPMs) Ho et al. (2020) marked a significant paradigm shift. Diffusion Models (DMs)
and their subsequent variants have now surpassed GANs in terms of image quality, diversity, and
text-to-image coherence Dhariwal & Nichol (2021). The initial wave of practical diffusion models
was led by the Latent Diffusion Model (LDM) architecture Rombach et al. (2022), which underpins
the widely popular Stable Diffusion series. These models made high-fidelity generation accessible
to the public and became a foundational tool for both research and creative applications.

The pace of innovation has since accelerated, leading to a new generation of even more sophisti-
cated architectures. Architectural upgrades in models like Stable Diffusion XL (SDXL) Podell et al.
(2023), such as a larger UNet Ronneberger et al. (2015) and dual text-encoders, have led to sig-
nificant improvements in image quality and prompt fidelity. The field continues to evolve rapidly
with new open-source models like FLUX Labs et al. (2025), SD3.5 Esser et al. (2024), HiDream
Cai et al. (2025), CogView4 Zheng et al. (2024), Kandinsky3 Vladimir et al. (2024), PixArt-δ,
alongside closed-source counterparts like Google’s Imagen Saharia et al. (2022) and Midjourney
MidJourney (2025) and also community finetuned models such as Juggernaut RunDiffusion (2025)
and Dreamshaper Lykon (2025). This model shift from GANs to diffusions generates a new class
of synthetic images with distinct statistical fingerprints that challenge existing detection methodolo-
gies, a primary focus of this work.

2.2 IMAGE DETECTION

Detection methodologies can be broadly categorized into two main paradigms: those that seek to
identify specific, inherent artifacts of the generation process, and those that leverage the general-
purpose feature representations of large pretrained foundational models.

ARTIFACT-BASED DETECTION

This paradigm is founded on the principle that the synthetic generation process, regardless of its
sophistication, leaves behind subtle, machine-detectable traces or ”fingerprints” Sinitsa & Fried
(2024). Researchers have pursued these artifacts across various domains. A significant body of
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work targets universal image properties, analyzing inconsistencies in the frequency domain (Frank
et al. (2020); Tan et al. (2024); Sinitsa & Fried (2024); Qian et al. (2020)), exploring local texture
and patch-level correlations (Zhong et al. (2023); Tan et al. (2023); Chen et al. (2024b)), or extract-
ing unique residual noise patterns left by the generation process (Zhang & Xu (2023); Liu et al.
(2022)). More recently, a modern class of artifact-based detectors leverages the internal mechanics
of the diffusion process itself as a forensic tool. This approach is broadly divided into error-based
and non-error-based methods. Error-based detectors operate on the principle that diffusion models
reconstruct their own outputs with lower error than real images, using this discrepancy in pixel space
(Wang et al. (2023); Ma et al. (2023)), in latent space (Ricker et al. (2024)), or as a guiding feature
(Luo et al. (2024)). In contrast, non-error-based methods use the diffusion pipeline in other ways,
such as to generate hard negative training samples (Chen et al. (2024a)), to extract internal represen-
tations like noise maps as features (Cazenavette et al. (2024)), or to distill a slow, error-based model
into a faster one (Lim et al. (2024)). A detailed overview of these detection paradigms is provided
in Appendix 7.3.

Despite their successes, our experiments indicate that artifact-based detection methods face signifi-
cant limitations. First, their performance is often brittle, demonstrating poor cross-generator gener-
alization. As generative models evolve, the specific artifacts these methods rely on change, making
the detectors quickly outdated. Second, they are highly sensitive to common image perturbations,
like compression, which can easily destroy the subtle fingerprints they detect.

PRETRAINED FEATURE-BASED DETECTION

A more recent and increasingly dominant paradigm moves away from specialized artifact detection
and instead leverages the rich feature spaces of large-scale, pretrained foundational models Yan
et al. (2024); Ojha et al. (2023); Keita et al. (2025). The core idea is that these models, having been
trained on web-scale data, have learned robust and generalizable representations of the visual world.
A pioneering work in this area is UniFD Ojha et al. (2023), which demonstrated that a simple linear
classifier trained on CLIP Radford et al. (2021) features can achieve impressive generalization across
unseen generators. This highlighted the power of semantic features for the detection task. Other
works have explored this vision-language connection further; for example, Bi-LoRa Keita et al.
(2025) reframes the detection problem as a visual question-answering or captioning task. Methods
like LASTED Wu et al. (2023) also leverage language-guided contrastive learning. AIDE Yan et al.
(2024), proposed a hybrid model that combined semantic features from a pretrained CLIP model
with specialized, hand-crafted modules (DCT Ahmed et al. (2006) and SRM Fridrich & Kodovsky
(2012) filters) to capture low-level texture statistics.

The success of sophisticated hybrid approaches like AIDE Yan et al. (2024), raises a critical ques-
tion: is it necessary to design hand-crafted modules for low-level features, or can a more effective
and less complex solution be found by fusing the features of two distinct, general-purpose founda-
tional models? To answer this question we proposed FusionDetect that utilized feature fusion
of foundation models and experiment on the impact of such approach.

3 METHODOLOGY

This section details FusionDetect, a model explicitly designed to solve the two-axis generaliza-
tion problem. We formally define this as training a detector D on a distribution of generators Gtrain

and semantic domains Strain that must generalize to a test set drawn from Gtest and Stest, where
Gtrain ∩ Gtest = ∅ and Strain ∩ Stest = ∅. FusionDetect addresses this by creating a hybrid
feature space engineered to be a strong baseline detector invariant to shifts in both G and S.

FUSIONDETECT

The feature extraction backbone of FusionDetect consists of two distinct, powerful vision en-
coders. A key design choice is that both of these pretrained backbones remain frozen during training.
This helps with computation efficiency and faster training time as well as preventing the model from
overfitting to the training data and preserving the highly generalizable, world-knowledge features
learned by these models during their original large-scale pretraining.

The two branches of our feature extractor are as follows:
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1. Semantic Feature Encoder (CLIP): We employ a CLIP vision encoder to capture high-
level semantic, contextual, and object-level information. Its rich understanding, derived
from large-scale image-text pretraining, is crucial for achieving cross-semantic general-
ization. Given an input image I , the CLIP encoder ECLIP produces a semantic feature
vector.

2. Structural Feature Encoder (DINOv2): We use a DINOv2 vision transformer to capture
fine-grained structural and textural details. As a self-supervised model, it is highly sen-
sitive to the low-level patterns and artifacts that betray a synthetic origin, which is vital
for achieving cross-generator generalization. The DINOv2 encoder EDINO processes the
same input image I to produce a structural feature vector.

These two feature vectors are then fused via concatenation to form a comprehensive hybrid feature
vector, zf , assuming dclip and ddino are the image encoders output dimensions:

zf = [ECLIP (I) ∈ Rdclip ∥ EDINO(I) ∈ Rddino ] ∈ Rdclip+ddino (1)

zf , is then processed by the only trainable component of our model: a lightweight Multi-Layer
Perceptron (MLP) classifier head, denoted by the function fθ with parameters θ. The model is
trained end-to-end to minimize the binary cross-entropy (BCE) loss L(θ) over a batch of N images,
defined as:

L(θ) = − 1

N

N∑
i=1

[yi log(pi) + (1− yi) log(1− pi)] (2)

where yi ∈ {0, 1} is the ground-truth label and pi = σ(fθ(zf,i)) is the predicted probability from
the sigmoid function σ.

4 EXPERIMENTS

To empirically validate the effectiveness of our proposed FusionDetect model, we conduct a
series of comprehensive experiments. Our evaluation is designed to rigorously test performance
along the two-axis generalization problem, assess robustness to real-world image perturbations, and
dissect the model’s architecture to understand the contribution of its core components.

4.1 EXPERIMENTAL SETUP

Implementation Details: The FusionDetect model was trained for an efficient 10 epochs us-
ing an AdamW optimizer on a single NVIDIA RTX 3090 GPU. The final architecture consists of
frozen CLIP-ViT-L14 and DINOv2-L14 backbones and a 4-layer MLP classifier head. To enhance
robustness, we applied random JPEG compression and Gaussian blur to 10% of the images during
training.

Baselines for Comparison: We compare FusionDetect against a comprehensive suite of recent
detectors which their code and pretrained weights were publicly accessible: DIF Sinitsa & Fried
(2024), UNIFD Ojha et al. (2023), DNF Zhang & Xu (2023), LASTED Wu et al. (2023), BiLORA
Keita et al. (2025), AIDE Yan et al. (2024), SSP, and NPR. To ensure a thorough and fair evaluation,
these models are tested in two settings where applicable: using their original, off-the-shelf pretrained
weights, and after being retrained from scratch on our custom dataset.

Training Dataset: To directly address the semantic generalization gap, we curated a custom, bal-
anced training set of 60,000 images (30k real, 30k fake). This dataset was constructed to maximize
categorical and stylistic diversity by combining three distinct sources: samples derived from the
large-scale ImagiNet Boychev & Cholakov (2024) and GenImage Zhu et al. (2024) benchmarks,
and a challenging set of images generated using prompts derived from the hyper-realistic Chameleon
dataset Yan et al. (2024). To follow the training scheme of previous work for cross-generator gener-
alization, only images generated by SD1.4 and SD2.1 Rombach et al. (2022) were used in the train
dataset and tested on others generators and datasets.

Evaluation Metrics: Similar to previous work, we report performance using Accuracy (Acc) and
Average Precision (AP) Yan et al. (2024); Wu et al. (2023); Tan et al. (2024); Ojha et al. (2023). To
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Table 1: Performance comparison on established benchmarks. Models marked with * were evaluated
using their official pretrained weights. All other baselines were retrained on our custom training set.
Results are in the format: Acc / AP (%). Best overall performance is bold, second best is underlined.

Detector GenImage ImagiNet Chameleon STD Mean

BiLoRA* 61.20 / 61.13 56.56 / 53.61 50.54 / 42.21 5.34 / 9.53 56.10 / 52.32
DIF* 91.80 / 65.20 50.20 / 99.60 53.30 / 87.10 23.17 / 17.41 65.10 / 81.97
UNIFD* 70.49 / 88.93 76.16 / 85.67 50.76 / 54.49 13.33 / 19.01 65.80 / 76.36
NPR* 75.70 / 81.70 74.60 / 74.50 54.20 / 37.89 12.11 / 23.49 68.17 / 64.70
DNF 77.90 / 99.71 74.42 / 91.79 57.37 / 35.30 10.99 / 35.12 69.90 / 75.60
UNIFD 73.42 / 79.02 71.74 / 79.01 64.56 / 64.58 4.71 / 8.33 69.91 / 74.20
LASTED 73.14 / 61.20 74.10 / 59.98 69.31 / 62.33 2.53 / 1.18 72.18 / 61.17
AIDE 88.51 / 97.09 69.23 / 85.46 59.63 / 67.49 14.71 / 14.91 72.46 / 83.35
LASTED* 93.61 / 76.74 62.74 / 59.88 61.42 / 55.27 18.22 / 11.30 72.59 / 63.96
NPR 86.50 / 94.10 72.70 / 87.60 59.10 / 61.50 13.70 / 17.25 72.77 / 81.07
AIDE* 87.11 / 98.06 72.65 / 83.73 61.82 / 63.08 12.69 / 17.58 73.86 / 81.62
SSP* 93.59 / 99.10 75.61 / 82.81 58.64 / 64.24 17.48 / 17.44 75.95 / 82.05
SSP 93.34 / 96.86 77.99 / 80.19 59.64 / 66.77 16.87 / 15.07 76.99 / 81.27
FusionDetect 83.03 / 91.28 83.23 / 90.91 76.32 / 80.02 3.93 / 6.41 80.86 / 87.40

specifically measure generalization, we compute the both the Mean and Standard Deviation (STD)
of these metrics across diverse benchmarks. A lower STD is a critical indicator of a robust detector,
as it signifies consistent performance across different semantic domains. Accuracy of each class
(real/fake) has also been reported in Appendix 7.4.

4.2 COMPARATIVE ANALYSIS ON ESTABLISHED BENCHMARKS

To validate the generalization capabilities of FusionDetect and provide a comparison point to
prior work, we evaluated it on a collection of diverse and established test sets. The test set contains
8000, 10000, and 2595 images from GenImage Zhu et al. (2024), ImagiNet Boychev & Cholakov
(2024) and Chameleon Yan et al. (2024) datasets respectively, each containing equal number of real
and synthetic images. To ensure a fair and comprehensive evaluation, the test set is composed of
an equal number of images sampled from every available generator within each source dataset. A
detailed overview can be found in Appendix 7.2.

As shown in Table 1, FusionDetect achieves the best overall performance, attaining the highest
mean accuracy and average precision, and crucially, the lowest standard deviation. It surpasses the
closest competitor by 3.87% in accuracy, 6.13% in average precision. An important note is that
although other detectors perform better on GenImage Zhu et al. (2024), but on ImagiNet Boychev
& Cholakov (2024) and the difficult chameleon Yan et al. (2024) dataset our detector outperforms
others by almost 10% on average which indicates that previous models were specifically designed to
perform well on the GenImage benchmark since it was seen as the standard benchmark for synthetic
image detection; and not as a universal detector. Acheiving low STD and high mean accuracy on
three different datasets indicates the domain generalization capabilities of FusionDetect.

4.3 THE OMNIGEN BENCHMARK

A core contribution of our work is the creation of a new, open-source benchmark designed to reflect
the practical challenges of AI image detection. Our motivation was to address the shortcomings of
existing benchmarks, which often lack semantic diversity and lag behind the rapid pace of generator
development. The OmniGen benchmark was designed to be more practical and challenging by
focusing on the latest SOTA generators, including both closed-source APIs and popular fine-tuned
community models.

Generator Selection: The benchmark contains 11,550 fake images from a curated list of 12 relevant
and powerful generative models, categorized as follows:
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Table 2: Comparison of detectors on our proposed OmniGen test set on Accuracy (%). Models
marked with * were evaluated using their official pretrained weights. Best results are in bold and
second best is underlined.

Generator D
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*
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*
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GPT-4o 52.8 71.5 73.9 82.9 82.1 79.6 87.6 82.9 97.2 99.4 85.7 98.3 97.3
Imagen 4 50.3 49.6 62.0 72.8 73.7 79.4 49.2 51.2 56.8 88.6 96.7 74.9 97.5
Imagen 4 Ultra 50.2 50.0 61.9 72.7 72.7 80.0 49.8 51.2 57.3 87.3 96.8 75.6 96.4
FLUX 1 dev 57.6 49.3 70.5 86.7 73.0 80.5 83.4 83.7 97.8 94.2 88.3 96.7 98.5
Kandinsky 3 50.2 61.4 67.7 88.2 84.0 70.2 81.4 90.1 97.8 92.8 91.2 97.7 99.3
PixArt-δ 51.3 60.1 77.7 88.7 82.7 74.7 85.4 88.3 96.6 84.3 90.2 94.8 99.0
Juggernaut v11 50.1 52.9 76.0 59.8 91.3 76.8 93.2 94.0 96.6 91.3 94.0 97.2 99.2
Dreamshaper 50.2 54.4 77.3 65.2 85.4 74.8 95.6 95.2 99.4 83.1 96.9 99.9 98.4
CogView4-6B 50.0 49.9 80.5 61.5 57.5 74.1 94.6 94.8 99.1 97.6 90.4 92.9 99.6
HiDream-I1 50.4 49.3 68.5 89.6 75.7 74.7 61.7 90.2 93.7 87.7 91.6 96.9 97.9
SD3.5-medium 50.1 56.6 76.6 72.7 74.6 79.9 80.0 87.5 94.1 95.5 86.5 92.2 98.2
MidJourney v7 51.2 68.0 58.2 71.0 60.2 79.7 76.5 91.8 86.6 74.6 91.6 98.0 87.5

STD 2.17 7.68 7.30 11.94 9.95 3.30 16.23 15.55 15.51 6.97 3.84 8.54 3.26
Mean 51.20 56.06 70.90 75.97 76.06 77.02 78.18 83.39 89.40 89.70 91.65 92.90 97.38

• Closed-Source: GPT-4o Hurst et al. (2024), Imagen 4 Saharia et al. (2022), Imagen 4 ultra
Saharia et al. (2022), MidJourney v7 MidJourney (2025).

• Open-Source: FLUX 1 Labs et al. (2025), Kandinsky 3 Vladimir et al. (2024), PixArt-
δ Chen et al. (2024c), SD3.5-medium Esser et al. (2024), HiDream-I1 Cai et al. (2025),
CogView4-6B Zheng et al. (2024).

• Community Fine-tuned: Juggernaut RunDiffusion (2025), Dreamshaper Lykon (2025).

Benchmark Curation: To ensure high semantic diversity and prevent model overfitting to specific
concepts, the synthetic images were generated using a structured, randomized prompt template:

”A richly detailed, high-resolution and photorealistic image depicting: {subject} during the {time}.
The scene includes {setting}, {visual}, and lifelike rendering. The image style resembles {style}.
Use {light}.”

Each bracketed variable was populated from a large pool of options (e.g., over 400 different sub-
jects), resulting in highly unique prompts for each image. For each of the 12 generators, we gen-
erated 1000 images with 1024 × 1024 resolution which were evaluated against a set of 1000 real
images from Unsplash uns. A detailed overview and examples generated can be found in Appendix
7.1.

Our secondary evaluation is conducted on the new OmniGen benchmark, which is designed to test
detectors against the modern, real-world generative landscape. The results shown in Table 2 demon-
strate the superior performance of FusionDetect, specifically in accuracy where we see +4.48%
increase in performance. Among the detectors, FusionDetect is the top performer, achieving the
highest mean accuracy of 97.38% and a remarkably low standard deviation of 3.26. This indicates
its consistent ability to generalize across a wide variety of SOTA generators, from closed-source
APIs to open-source and community. AP and class accuracies are reported in 7.4.

4.4 ROBUSTNESS TO COMMON PERTURBATIONS

A critical attribute of a practical detector is its resilience to image degradations commonly encoun-
tered online. We subjected the detectors to two stress tests: JPEG compression and Gaussian blur.
The results, shown in Table 3, highlight a key weakness in many artifact-based detectors. Models
that rely on high-frequency spatial artifacts, such as SSP Chen et al. (2024b), NPR Tan et al. (2024)
and DNF Zhang & Xu (2023), fail drastically under both compression and blur, despite their high
scores on clean images. In contrast, FusionDetect’s performance barely sees any degradation.
This remarkable stability confirms that our model’s decisions are based on more fundamental, ro-
bust features rather than fragile, easily-disrupted artifacts, making it far more suitable for real-world
deployment.
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Table 3: Robustness analysis under common image perturbations. All models are subjected to
varying levels of JPEG compression and Gaussian blur. Results are reported as Acc / AP (%).

JPEG Compression Gaussian Blur
Detector No Degradation QF=95 QF=75 QF=50 σ = 1.0 σ = 2.0 σ = 3.0

DNF 71.61 / 89.12 59.83 / 72.44 59.80 / 70.77 50.89 / 68.18 50.89 / 44.23 50.88 / 37.10 41.96 / 40.96
UNIFD 63.38 / 72.54 61.65 / 70.18 61.91 / 70.74 61.38 / 70.20 59.85 / 69.26 59.11 / 68.02 58.38 / 66.02
LASTED 70.35 / 57.58 69.43 / 55.94 69.83 / 57.53 69.14 / 55.28 69.34 / 57.68 69.12 / 57.19 69.82 / 57.22
AIDE 74.49 / 86.88 67.50 / 79.20 66.22 / 74.71 64.77 / 70.92 68.32 / 76.47 67.82 / 76.81 66.66 / 75.64
NPR 74.33 / 85.50 52.30 / 53.50 51.50 / 52.50 51.30 / 51.90 66.30 / 72.80 56.20 / 60.20 54.50 / 56.80
SSP 76.86 / 86.72 52.77 / 63.11 51.32 / 55.66 51.05 / 54.83 57.48 / 61.74 54.49 / 58.64 53.27 / 57.47
FusionDetect 80.91 / 90.43 80.94 / 91.04 81.03 / 91.10 80.45 / 91.08 80.92 / 92.64 79.32 / 92.34 78.87 / 92.00

Table 4: Ablation and sensitivity analysis of FusionDetect. (a) Ablation on core components.
(b) Sensitivity to different backbone and classifier architectures.

(a) Component Ablation Study.

CLIP DINOv2 FeatUp Acc / AP (%)
✓ ✗ ✓ 62.83 / 70.47
✗ ✓ ✓ 60.69 / 68.38
✓ ✓ ✓ 66.18 / 72.49

✓ ✗ ✗ 77.81 / 85.77
✗ ✓ ✗ 75.42 / 86.11
✓ ✓ ✗ 80.92 / 92.86

(b) Sensitivity Analysis.

Variable Variants Acc / AP (%)

CLIP
(DINO: ViT-L14)
(Classifier: 4 layer)

- 78.81 / 86.77
ViT-H14 quickgelu 79.37 / 90.48
ViT-L14 quickgelu 80.14 / 91.36
ViT-L14 80.92 / 92.86

DINOv2
(CLIP: ViT-L14)
(Classifier: 4 layer)

- 75.98 / 84.15
ViT-S14 79.21 / 90.17
ViT-B14 79.51 / 91.12
ViT-L14 80.92 / 92.86

Classifier
(CLIP: ViT-L14)
(DINO: ViT-L14)

1 layer 80.26 / 89.55
2 layers 80.33 / 89.47
3 layers 81.14 / 92.58
4 layers 80.92 / 92.86
5 layers 80.75 / 92.92

4.5 ABLATION AND SENSITIVITY ANALYSIS

We evaluated the performance of the individual components of our model. As shown in Table 4a,
while only using the CLIP Radford et al. (2021) model as feature extractor performs well, consis-
tent with findings from prior work, and only using the DINOv2 Oquab et al. (2023) model is also
effective, their fusion in FusionDetect yields the best results. This confirms our core hypothesis
that the two models provide complementary features. The t-SNE visualization of these three embed-
dings is shown in Figure 3 which indicates that that CLIP+DINO embedding can easily separate not
only real and fake images but also their underlying dataset. We also explored incorporating feature
up-scaling via FeatUp Fu et al. (2024), but this did not improve performance, suggesting that the
raw, powerful features from the foundational backbones are more discriminative for this task.

Moreover, we analyzed the impact of different backbones and classifier depths on performance
and the results are shown in Table 4b. The choice of ViT-L/14 for both backbones was made for
consistency with prior work and to leverage the power of large-scale architectures. The results show
that a relatively simple 4-layer MLP classifier is sufficient to achieve SOTA performance. This
indicates that the true power of FusionDetect lies in its robust feature extractor, which is so
effective that it does not require a complex classifier to learn a decision boundary.

5 DISCUSSION

The empirical findings presented here strongly substantiate our central thesis regarding the ”two-
axis generalization” issue. FusionDetect exhibits remarkable stability across the cross-semantic
axis, as evidenced by its minimal standard deviation on benchmarks such as GenImage Zhu et al.
(2024), ImagiNet Boychev & Cholakov (2024), and Chameleon Zhong et al. (2023). This consis-
tency indicates that its performance is not restricted by the underlying visual domain. Additionally,
FusionDetect maintains impressive accuracy on the OmniGen benchmark which can be consid-
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Figure 3: T-SNE Maaten & Hinton (2008) projection of GenImage Zhu et al. (2024), ImagiNet
Boychev & Cholakov (2024), and Chameleon Yan et al. (2024) dataset. The CLIP+DINO (bottom)
encoder successfully separates real and fake classes for each dataset unlike the other two options.
(Top left: CLIP, Top right: DINOv2)

ered out-of-distribution both semantically and also unseen generators used, affirming its robustness
across the two axes. Our proposed benchmark itself plays a pivotal role in this analysis. By incor-
porating both cutting-edge closed-source models and a variety of community fine-tuned models, it
reveals the limitations of detectors that only excel on outdated test sets. These results underscore the
necessity of benchmarks that capture both semantic and generator diversity to meaningfully assess
a detector’s real-world effectiveness.

6 CONCLUSION

In this paper, we redefined the task of AI-generated image detection by formalizing the “two-axis
generalization” task that warrants robustness to both previously unseen generators and different
semantic domains. To tackle the two-axis generalization task, we presented the OmniGen Bench-
mark, a new challenging test set consisting of 12 SOTA generators, and the FusionDetect, a
robust detector that solves the two-axis problem by learning representations in a fusion model com-
posed of complementary features extracted from foundational models. We show, empirically, that
FusionDetect sets a state-of-the-art within generalization and robustness stages that indicate in-
telligently fusing complementing features extracted from foundational models is a better paradigm
than building from scratch with special architectures. More generally, the two-axis framework of-
fers a valuable method for evaluating model robustness that is broadly applicable, and we hope our
contributions lay the groundwork for the next generation of universal fake media detectors.
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Figure 4: OmniGen Benchmark Images. Top row: Midjourney v7 MidJourney (2025), HiDream
Cai et al. (2025), Imagine 4 Saharia et al. (2022), Kandinsky 3 Vladimir et al. (2024); Middle
row: Flux 1 Labs et al. (2025), Dreamshaper Lykon (2025), Pixart-δ Chen et al. (2024c), Cogview
4 Zheng et al. (2024); Bottom row: Juggernaut RunDiffusion (2025), SD3.5 Esser et al. (2024),
Imagen 4 ultra Saharia et al. (2022), GPT4o Hurst et al. (2024).

7 APPENDIX

7.1 DETAILED OVERVIEW OF OMNIGEN BENCHMARK

This appendix provides supplementary details for the OmniGen Benchmark introduced in Section 3.
To offer a comprehensive overview of its composition, Table 5 lists all 12 state-of-the-art generators
used in its creation, along with their respective image counts, resolutions, and sourcing methods.
Furthermore, Figure 4 presents a selection of example images generated by these models, visually
demonstrating the high degree of realism and semantic diversity that makes the OmniGen benchmark
a challenging and realistic testbed for modern AI image detectors.

7.2 DETAILED OVERVIEW OF ESTABLISHED DATASETS

We provide additional information regarding the test sets used for GenImage Zhu et al. (2024),
ImagiNet Boychev & Cholakov (2024), and Chameleon Yan et al. (2024) in Section 4. It includes
generators used, number of images, image resolution, semantic categories, and the source for real
images utilized in these datasets which is shown in Tables 6, 7, and 8. Note that the numbers reported
in these tables indicate the count of fake images only.
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Table 5: Composition of the OmniGen Benchmark generators containing 11550 synthetic images in
total.

Generator Number Resolution Gather Method Real Source
GPT-4o Hurst et al. (2024) 550 1024× 1024 Public Dataset

Unsplash

MidJourney v7 MidJourney (2025) 1000 1024× 1024 Public Dataset
Imagen 4 Saharia et al. (2022) 1000 1024× 1024 API
Imagen 4 Ultra Saharia et al. (2022) 1000 1024× 1024 API
FLUX 1 Labs et al. (2025) 1000 1024× 1024 Local Model
Kandinsky 3 Vladimir et al. (2024) 1000 1024× 1024 Local Model
PixArt-δ Chen et al. (2024c) 1000 1024× 1024 Local Model
Juggernaut v11 RunDiffusion (2025) 1000 1024× 1024 Local Model
Dreamshaper Lykon (2025) 1000 1024× 1024 Local Model
CogView4-6B Zheng et al. (2024) 1000 1024× 1024 Local Model
HiDream-I1 Cai et al. (2025) 1000 1024× 1024 Local Model
SD3.5-medium Esser et al. (2024) 1000 1024× 1024 Local Model

Table 6: Composition of the GenImage Zhu et al. (2024) evaluation set used. The test set contains
4000 fake and 4000 real images.

Generator Number Resolution Real Source
BigGAN Brock et al. (2018) 500 512× 512 ImageNet Deng et al. (2009)
VQDM Gu et al. (2022b) 500 256× 256 ImageNet Deng et al. (2009)
SDv1.4 Rombach et al. (2022) 500 512× 512 ImageNet Deng et al. (2009)
SDv1.5 Rombach et al. (2022) 500 512× 512 ImageNet Deng et al. (2009)
Wukong Gu et al. (2022a) 500 512× 512 ImageNet Deng et al. (2009)
ADM Dhariwal & Nichol (2021) 500 512× 512 ImageNet Deng et al. (2009)
Glide Nichol et al. (2021) 500 512× 512 ImageNet Deng et al. (2009)
MidJourney v5 MidJourney (2025) 500 1024× 1024 ImageNet Deng et al. (2009)

Table 7: Composition of the ImagiNet Boychev & Cholakov (2024) evaluation set used. The test set
contains 5000 fake and 5000 real images.

Category Generator Number Resolution Real Source

Photos

StyleGAN-XL Sauer et al. (2022) 388 256× 256 ImageNet Deng et al. (2009)
ProGAN Karras (2017) 424 256× 256 LSUN Yu et al. (2015)
SD v2.1 Rombach et al. (2022) 361 768× 768 COCO Lin et al. (2014)
SDXL v1.0 Podell et al. (2023) 380 1024× 1024 COCO Lin et al. (2014)

Paintings

StyleGAN 3 Karras et al. (2021) 623 1024× 1024 WikiArt Tan et al. (2019)
SD v2.1 Rombach et al. (2022) 131 768× 768 WikiArt Tan et al. (2019)
SDXL v1.0 Podell et al. (2023) 129 1024× 1024 WikiArt Tan et al. (2019)
Animagine XL 246 1024× 1024 Danbooru Anonymous et al. (2022)

Faces
StyleGAN-XL Sauer et al. (2022) 509 1024× 1024 FFHQ Karras et al. (2019)
SD v2.1 Rombach et al. (2022) 295 768× 768 FFHQ Karras et al. (2019)
SDXL v1.0 Podell et al. (2023) 288 1024× 1024 FFHQ Karras et al. (2019)

Other Midjourney MidJourney (2025) 626
1024× 1024
1792× 1024

Photozilla Singhal et al. (2021)

DALL·E 3 Betker et al. (2023) 600
1024× 1024
1792× 1024

Photozilla Singhal et al. (2021)
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Table 8: Composition of the complete Chameleon Yan et al. (2024) dataset. After train/test split, the
test set contains 1478 fake and 1117 real images. The specific generator used were not reported by
the authors.

Fake Source Number Resolution Real Source Category

Artstation art
Civitai civ
Liblib lib

2, 976

various Unsplash uns

Scene
2, 016 Object
313 Animal
5, 865 Human

7.3 DETAILED OVERVIEW OF PREVIOUS DETECTORS

Detectors for synthetically generated images leverage a variety of signals, from low-level artifacts to
high-level semantic features. Below is a detailed overview of prominent methods and the core ideas
behind their approaches.

• NPR Tan et al. (2024): This method focuses on Frequency and Spectral Analysis. It oper-
ates on the principle that up-sampling operations in generative models introduce predictable
artifacts in the frequency domain. NPR analyzes an image’s frequency spectrum to identify
these high-frequency inconsistencies.

• DIF Sinitsa & Fried (2024): Also a method based on Frequency and Spectral Analysis,
DIF aims to extract a ”Deep Image Fingerprint.” It leverages frequency-aware clues to find
unique, model-specific signatures for detection and lineage analysis.

• PatchCraft Zhong et al. (2023): This detector is based on Texture and Patch Analysis.
It posits that artifacts are more pronounced at a local level and works by analyzing the
inter-pixel correlation contrast between rich and poor texture regions within an image.

• SSP Chen et al. (2024b): Following the Texture and Patch Analysis approach, SSP operates
on local patches and gradients to identify discriminative features that separate real images
from generated ones.

• DNF Zhang & Xu (2023): This method uses Noise Pattern Analysis. It is designed to
extract the unique residual noise patterns present in synthetic images by estimating and
analyzing the noise added during the diffusion process.

• DIRE Wang et al. (2023): A Diffusion Process-Based Method that relies on reconstruction
error. It is founded on the principle that diffusion models can reconstruct their own gen-
erated images with significantly lower error than they can reconstruct real-world images.
This pixel-space error is used as the primary feature for detection.

• AEROBLADE Ricker et al. (2024): This method also uses reconstruction error but mea-
sures it in the latent space of the model’s autoencoder, providing a different perspective on
the reconstruction fidelity.

• LaRE2 Luo et al. (2024): This approach uses the latent reconstruction error not as a direct
feature, but as a guiding signal for a larger, more complex classification network.

• DRCT Chen et al. (2024a): A non-error-based diffusion method that employs contrastive
training. It cleverly uses the diffusion model’s reconstruction ability to generate hard neg-
ative training samples (reconstructed real images labeled as fake) to improve detector ro-
bustness.

• DistilDIRE Lim et al. (2024): This method addresses the slow speed of error-based de-
tectors by distilling the knowledge from a large, slow DIRE-based detector into a much
smaller and faster one, which operates without a full reconstruction cycle.

• UniFD Ojha et al. (2023): A pioneering Pretrained Feature-Based detector. It leverages the
rich, semantic feature space of large vision-language models like CLIP, demonstrating that
a simple linear classifier trained on these general-purpose features can achieve impressive
generalization across unseen generators.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

• LASTED Wu et al. (2023): This detector also leverages vision-language models but
through the specific mechanism of language-guided contrastive learning to better align fea-
tures for the detection task.

• Bi-LoRa Keita et al. (2025): This approach creatively reframes the detection problem as an
image captioning task. It fine-tunes a VLM to output a simple caption of ”real” or ”fake,”
leveraging the model’s generative language capabilities for classification.

• AIDE Yan et al. (2024): This detector proposes a Hybrid Model that combines the best
of both worlds. It fuses high-level semantic features from a pretrained CLIP model with
specialized, hand-crafted modules (like DCT and SRM filters) designed to capture low-
level, artifact-based texture statistics.

7.4 ADDITIONAL EXPERIMENT RESULTS

Here we included the supplementary experiment results on our evaluation sets and report AP and
accuracy of each class: Real & Fake.

Table 9: Comparison of detectors on established benchmarks based on real and fake class accuracy.
Detectors marked with * were evaluated using their official pretrained weights. Results are in the
format: rAcc / fAcc (%).

Detector GenImage ImagiNet Chameleon STD Mean

BiLoRA* 99.71 / 22.75 40.76 / 72.36 62.68 / 34.38 29.80 / 25.95 67.72 / 43.16
DIF* 96.4 / 87.2 99.5 / 1.1 86.3 / 20.4 6.90 / 45.18 94.07 / 36.23
UNIFD* 97.35 / 43.63 86.21 / 67.32 97.94 / 3.58 6.61 / 32.22 93.83 / 38.18
NPR* 58 / 93.4 61.7 / 87.5 98.31 / 10.16 22.28 / 46.45 72.67 / 63.69
DNF 100 / 55.8 99.8 / 49.04 100 / 6.26 0.12 / 26.86 99.93 / 37.03
UNIFD 93.25 / 54.33 89.53 / 58.53 75.63 / 53.49 9.29 / 2.70 86.14 / 55.45
LASTED 92.21 / 54.55 94.49 / 54.12 94.99 / 45.93 1.48 / 4.86 93.90 / 51.53
AIDE 99.35 / 77.67 98.46 / 40.1 99.93 / 6.1 0.74 / 35.80 99.25 / 41.29
LASTED* 90.83 / 95.13 73.18 / 52.5 61.25 / 16.12 14.88 / 39.55 75.09 / 54.58
NPR 97.9 / 75.0 96.9 / 48.6 99.9 / 4.8 1.53 / 35.46 98.23 / 42.80
AIDE* 99.82 / 74.4 88.2 / 57.1 94.01 / 18.97 5.81 / 28.36 94.01 / 50.16
SSP* 99.3 / 87.88 91.56 / 59.66 99.53 / 4.21 4.54 / 42.57 96.80 / 50.58
SSP 97.25 / 89.43 94.98 / 61.0 99.8 / 5.85 2.41 / 42.50 97.34 / 52.09
Ours 96.95 / 68.12 91.50 / 72.26 94.23 / 51.11 2.73 / 11.21 94.23 / 63.83
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Table 10: Comparison of detectors on our proposed OmniGen test set based on real and fake class
accuracy. Detectors marked with * were evaluated using their official pretrained weights. Results
are in the format: rAcc / fAcc (%).
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*
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*
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P*
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PR
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SS
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O
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GPT-4o
99.9
5.8

79.3
57.4

64.73
83.09

100
51.44

87.33
77.26

63.10
96.03

94.5
75.27

94.3
62.45

99.8
93.1

100
98.4

89.34
81.4

99.6
96.03

99.10
93.32

Imagen 4
99.9
6.5

97.78
1.41

74.52
49.55

100
45.59

57.89
87.88

63.10
95.79

94.5
3.9

99.9
2.3

99.8
13.63

100
77.2

96.99
96.39

99.6
50.10

99.3
95.49

Imagen 4 Ultra
99.9
6.2

97.8
2.1

74.57
49.15

100
45.3

44.22
92.8

63.10
96.8

94.50
5.1

99.9
2.5

99.6
14.9

100
74.6

97.36
96.30

100
51.2

99.30
93.40

FLUX 1 dev
99.9
15.3

97.8
0.7

64.04
76.88

100
73.4

52.0
92.2

63.10
97.90

94.5
72.3

94.3
73.0

99.6
96.0

100
88.4

91.44
85.40

99.5
93.80

99.10
97.80

Kandinsky 3
99.9
5.02

73.4
49.4

64.06
71.27

100
75.65

69.56
96.90

63.10
77.30

94.5
68.3

94.3
85.8

99.80
95.7

100
85.7

95.83
87.0

99.8
95.50

99.10
99.5

PixArt-δ
99.9
2.7

74.6
45.5

64.06
91.39

100
77.4

80.82
84.30

63.10
86.20

94.5
76.2

94.3
82.3

99.60
93.5

100
68.6

95.67
85.30

99.8
89.8

99.10
98.90

Juggernaut v11
99.9
3.25

57.9
47.9

64.06
87.89

100
19.5

87.22
95.0

63.10
90.40

94.5
91.8

94.3
93.7

99.70
93.5

100
82.6

96.01
91.89

99.6
94.8

99.10
99.20

Dreamshaper
99.9
6.3

35.7
73.0

64.06
90.49

100
30.4

81.53
89.0

63.10
86.40

94.5
96.6

94.3
96.1

99.8
99.0

100
66.2

96.15
97.6

99.9
99.85

99.10
97.70

CogView4-6B
99.9
1.2

97.8
2.0

64.06
97.0

100
22.9

46.32
66.10

63.10
85.10

94.5
94.7

94.3
95.3

99.6
98.6

100
95.2

93.69
87.4

99.8
85.9

99.10
100

HiDream-I1
99.9
1.8

97.8
1.1

64.04
72.87

100
79.2

54.02
95.30

63.10
86.30

94.5
28.9

94.3
86.1

99.8
87.6

100
75.4

92.22
91.0

99.8
94.0

99.10
96.60

SD3.5-medium
99.9
3.1

57.6
55.6

63.92
89.35

100
45.3

83.96
66.20

63.10
96.60

94.5
65.4

94.3
80.6

99.4
88.7

100
90.9

95.56
78.4

84.5
99.8

99.10
97.30

MidJourney v7
99.9
4.3

73.5
62.6

63.92
52.46

100
41.94

72.19
49.35

63.10
96.40

94.5
58.45

94.3
89.28

99.7
73.47

100
49.2

95.44
88.09

99.9
96.0

99.10
77.8

STD 0.00
3.68

20.50
28.92

4.07
17.23

0.00
23.37

16.39
14.96

0.00
6.60

0.00
32.20

2.18
33.34

0.13
30.97

0.00
13.88

2.45
6.02

4.41
17.51

0.08
6.02

Mean 99.90
5.12

78.42
33.22

65.84
75.95

100.00
50.67

68.09
82.69

63.10
90.94

94.50
61.41

95.23
70.79

99.68
78.98

100.00
79.37

94.64
88.85

98.48
87.23

99.13
95.58

Table 11: Comparison of detectors on our proposed OmniGen test set on Average Precision (%).
Models marked with * were evaluated using their official pretrained weights. Best results are in
bold and second best is underlined.
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GPT-4o 58.7 58.1 72.0 81.2 90.4 75.9 85.3 99.8 99.9 99.7 100 99.7 99.7
Imagen 4 46.1 71.2 66.8 65.9 50.8 93.8 53.3 87.2 92.5 100 99.8 100 99.8
Imagen 4 Ultra 46.7 71.7 56.6 64.8 50.9 93.6 53.2 86.9 92.7 100 99.6 100 99.8
FLUX 1 dev 39.4 72.2 68.1 73.4 94.2 79.2 93.9 99.8 99.8 100 99.9 99.4 99.9
Kandinsky 3 63.4 63.7 79.7 70.7 93.2 89.2 96.9 99.8 99.8 100 99.9 100 100
PixArt-δ 60.4 67.3 74.0 84.3 93.7 87.9 96.0 99.0 99.0 100 99.8 99.9 100
Juggernaut v11 51.1 69.0 81.8 83.1 98.1 89.7 98.7 99.5 99.8 97.8 99.9 99.9 99.2
Dreamshaper 52.5 67.3 75.7 84.0 99.0 96.7 99.1 99.9 100 98.9 99.7 100 99.9
CogView4-6B 48.5 66.8 72.8 91.5 98.8 84.6 99.0 99.8 98.8 97.8 100 100 100
HiDream-I1 37.6 67.3 70.6 71.3 71.4 84.5 96.8 98.3 99.3 100 99.8 100 99.9
SD3.5-medium 55.0 71.6 72.2 85.6 91.6 78.3 96.2 99.3 99.2 100 99.9 100 99.9
MidJourney v7 73.2 71.5 58.6 61.3 88.1 86.8 97.7 97.6 99.8 99.8 98.9 99.98 98.3

STD 10.18 4.12 7.48 9.72 17.55 6.50 17.02 4.82 2.72 0.90 0.30 0.18 0.51
Mean 52.72 68.14 70.74 76.42 85.03 86.68 88.83 97.24 98.38 99.49 99.77 99.91 99.69
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