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ABSTRACT

In this paper, we investigate the impact of differential privacy (DP) on the fine-
tuning of publicly pre-trained models, focusing on Vision Transformers (ViTs).
We introduce an approach for analyzing the DP fine-tuning process by leverag-
ing a representation learning law to measure the separability of features across
intermediate layers of the model. Through a series of experiments with ViTs pre-
trained on ImageNet and fine-tuned on a subset of CIFAR-10, we explore the
effects of DP noise on the learned representations. Our results show that, without
proper hyperparameter tuning, DP noise can significantly degrade feature quality,
particularly in high-privacy regimes. However, when hyperparameters are opti-
mized, the impact of DP noise on the learned representations is limited, leading
to high model accuracy even in high-privacy settings. These findings provide in-
sight into how pre-training on public datasets can help mitigate the privacy-utility
trade-off in private deep learning applications.

1 INTRODUCTION

Recently, privately fine-tuning publicly pre-trained models with differential privacy (DP) has drawn
much attention in private deep learning. For example, De et al. (2022) demonstrated that fine-tuning
an ImageNet-pretrained Wide-ResNet achieves 95.4% accuracy on CIFAR-10 under (ϵ = 2.0, δ =
10−5)-DP, surpassing the 67.0% accuracy from training a three-layer convolutional neural network
from scratch with private training (Abadi et al., 2016). Furthermore, Li et al. (2021); Yu et al. (2021)
showed that pre-trained models like BERT (Devlin et al., 2018) and GPT-2 (Radford et al., 2018)
achieve near-no-privacy-utility trade-offs when fine-tuned for sentence classification and generation
tasks.

However, the empirical success of privately fine-tuning large, pre-trained models seems to contradict
the worst-case dimensionality dependence seen in private learning problems. Specifically, noisy
stochastic gradient descent (NoisySGD) requires adding noise scaled to

√
p to each coordinate of the

gradient in a model with p parameters, making it impractical for models with millions of parameters.
This suggests that the benefits of pre-training may help mitigate the dimension dependence and
privacy-utility trade-off inherent in NoisySGD. Recent works (Tang et al., 2023; Wang et al., 2024)
have explored this issue, showing that if the last-layer features are well-learned, fine-tuning only
the last layer—also known as linear probing—can achieve high accuracy with nearly no privacy-
utility trade-offs. However, when the features are not sufficiently extracted, fine-tuning part or all of
the model’s parameters becomes essential (De et al., 2022). In such cases, the precise behavior of
representations across intermediate layers remains difficult to analyze.

In this work, we investigate the private fine-tuning behavior of intermediate layers by leveraging rep-
resentation learning tools in DP fine-tuning. Specifically, we adopt a representation law introduced
by He & Su (2023; 2024), which quantifies the separability of representations across intermediate
layers.

Based on experiments with Vision Transformers pretrained on ImageNet, our key observations are
as follows:
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• If hyperparameters are not chosen appropriately, the injected DP noise can destroy the
extracted features.

• With a well-tuned selection of hyperparameters, a representation law shows that the im-
pact of DP noise on representation learning is limited. As the representations are not sig-
nificantly affected by DP noise, this explains why public pretraining helps mitigate the
privacy-utility trade-off.

2 PRELIMINARIES

2.1 DIFFERENTIAL PRIVACY

The focus of this study is on differentially private learning, where the objective is to train a model
while adhering to the mathematical definition of privacy known as differential privacy (Dwork,
2006). Differential privacy ensures that no individual training data point can be identified from
the trained model, even when additional side information is available. The most commonly used DP
notion, (ϵ, δ)-DP, is formally defined as follows.

Definition 2.1 (Differential privacy, DP). A randomized mechanism M satisfies (ϵ, δ)-DP for ϵ ≥ 0
and 0 ≤ δ ≤ 1 if, for any pair of neighboring datasets D and D′—where one can be obtained from
the other by adding or removing a single individual record—and any event S, we have

P(M(D) ∈ S) ≤ eϵ · P(M(D′) ∈ S) + δ. (1)

When ϵ and δ are small, it is harder to distinguish between D and D′ just based on the outputs.
Thus, ϵ and δ are called the privacy budget and a smaller value of ϵ means the algorithm is more
private.

2.2 A REPRESENTATION LAW

The representation learning tool we adopt in this paper is a law introduced by He & Su (2023; 2024).

For vision models, this law measures the separability of the outputs at each layer of a deep learning
model.

For a classification problem with K classes, let xik be the intermediate output of the deep neural
network for the i-th image in the k-th class, with sample size nk. The total sample size is n =∑k

i=1 nk. Denote xk the sample mean of xik and x the sample mean of the outputs across all K
classes. Define the between-class sum of squares SSb and within-class sum of squares SSw as

SSb =
1

n

K∑
k=1

nk(xk − x)(xk − x)T ,

SSw =
1

n

K∑
k=1

nk∑
i=1

(xk − x)(xk − x)T .

The separability of the output can then be measured by the following:

D = Tr
[
SSbSS

†
w

]
,

where SS†w is the Moore–Penrose inverse of SSw. He & Su (2023) demonstrated that the separability
of each layer decays linearly as the depth of the network increases. Specifically, let Dl denote the
separability of the l-th layer of a deep neural network. A law of data separation states:

Dl ≈ ρlD0,

for some coefficient 0 < ρ < 1.

In He & Su (2024), a law was introduced that applies to next-token prediction, where the prediction
residual (PR) in the form of regression exhibits a linear decay across layers. To assess how well a
large language model (LLM) predicts the next token, they fit a linear regression model to the dataset
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D. Specifically, they treat each token x as its index in the token vocabulary and use a least-squares
regression approach to predict the next token. The resulting model is expressed as:

x̂next = w · h+ b,

where w and b are the learned parameters, and h is the hidden representation from the model. This
framework allows us to quantify the LLM’s ability to predict the next token. To evaluate the perfor-
mance of this prediction, the PR is defined as:

PR :=

∑
(xnext − x̂next)

2∑
(xnext − x̄next)

2 ,

where xnext represents the true next token, x̂next is the predicted next token, and x̄next is the mean
of all true next tokens. The PR metric quantifies the proportion of variance in the true next token
that is not explained by the model’s prediction. A high PR value indicates that the token embeddings
have limited predictive power, while a low PR value suggests that the embeddings are more effective
at predicting the next token.

Specifically, the PR for the l-th layer in a model with depth L follows the relationship:

PRl ≈ ρl−1 × PR1,

where 0 < ρ < 1. This indicates that the predictive power of each layer decays linearly as the depth
of the network increases.

To apply this law to ViTs, we focus on the [CLS] (stands for classification) token, which is a special
learnable token added to the input sequence of a ViT. The [CLS] token aggregates information from
all patches of the image and is used for classification or regression tasks. We treat the representation
of this [CLS] token as the input x in linear regression, with the actual classification label y as the
target. By performing regression on the [CLS] token’s embedding, we obtain the PR for each layer,
similar to the next-token prediction task. This allows us to quantify how the predictive power of the
model changes across its layers, following the same linear decay as observed in language models.

3 MAIN RESULTS

Experimental settings. We consider privately fine-tuning a Vision Transformer (ViT) with 12
blocks, publicly pretrained on ImageNet, on a subset of CIFAR-10. For each of the 10 classes
in CIFAR-10, we randomly select 100 images, resulting in a total sample size of 103. With a fixed
value of δ = 10−3 (the reciprocal of the total sample size), we examine both a high-privacy regime
with ϵ = 1 and a low privacy regime with ϵ = 8. The tunable parameters range from 1 to 12 blocks
of the ViT.

DP noise may destroy the features. As noted by Wang et al. (2024), when fine-tuning only the last
layer, any constant learning rate is sufficient to ensure model convergence, regardless of the privacy
budget. When fine-tuning all 12 blocks, we also considered using a constant learning rate, and the
results are presented in Figure 1. In the low-privacy regime (Figure 1(b)), the derived law closely
resembles the case with optimized hyperparameters, and the corresponding accuracy remains high
at 95.8%. However, in the high-privacy regime with ϵ = 1, as shown in Figure 1(a), the behavior
significantly deviates from the case with optimized hyperparameters in Figure 2. Additionally, the
accuracy drops to 11.5%, which is nearly equivalent to random guessing. This suggests that, without
appropriate hyperparameter tuning, a larger noise can degrade the features without a more fine-
grained hyperparameter tuning.

Optimized hyperparameters mitigate the privacy-utility trade-off. By choosing the hyperpa-
rameters using Optuna (Akiba et al., 2019), we display the representation law for the high privacy
regime in Figure 2 and the low privacy regime in Figure 3. As we can see, with a fixed privacy bud-
get ϵ, the number of tunable blocks has a limited impact on the learned representations, as the laws
are nearly identical. Moreover, for different privacy budgets (ϵ = 1 and ϵ = 8), the representation
laws are nearly the same. This means that despite the larger noise in the high privacy regime, the
learned representations remain of high quality if the hyperparameters are well-tuned.
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(a) ϵ = 1 with learning rate 0.003. The accuracy
is 11.5%.
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(b) ϵ = 8 with learning rate 0.003. The accuracy
is 95.8%.

Figure 1: The representation law when privately finetuning vision transformers.
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(b) Tune 2 blocks.
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(c) Tune 3 blocks.
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(d) Tune 4 blocks.
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(e) Tune 5 blocks.
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(f) Tune 6 blocks.
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(g) Tune 7 blocks.

2.5 5.0 7.5 10.0 12.50.0

0.2

0.4

0.6

0.8

(h) Tune 8 blocks.
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(i) Tune 9 blocks.
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(j) Tune 10 blocks.
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(k) Tune 11 blocks.
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(l) Tune 12 blocks.

Figure 2: The representation law when privately fine-tuning vision transformers by tuning 1–12
blocks in the high privacy regime (ϵ = 1). The accuracy in each case ranges from 92.83%-93.57%.

4 CONCLUSIONS AND FUTURE STUDY

This study presents a detailed examination of the private fine-tuning process for large pre-trained
models under differential privacy. Our key findings demonstrate that while DP noise can severely
degrade model performance if hyperparameters are poorly chosen, careful tuning of hyperparam-
eters can effectively mitigate this issue. Specifically, our analysis shows that the separability of
intermediate layer representations remains largely unaffected by DP noise when appropriate tun-
ing is applied, even in high-privacy regimes. This highlights the importance of hyperparameter
optimization in private fine-tuning tasks and suggests that pre-training on large public datasets can
help alleviate the inherent privacy-utility trade-off. Future work should focus on further exploring
the dynamics of intermediate layer representations in private learning and developing more robust
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(h) Tune 8 blocks.
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(i) Tune 9 blocks.
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(k) Tune 11 blocks.
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(l) Tune 12 blocks.

Figure 3: The representation law when privately fine-tuning vision transformers by tuning 1–12
blocks in the low privacy regime (ϵ = 8). The accuracy in each case ranges from 92.83%-93.56%.

methods for hyperparameter selection. An important future topic is to extend our experiments on
ViT to language models. The next token prediction law proposed by He & Su (2024) may provide
some insights on the effects of learned representations for language models.
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