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Abstract001

While most current approaches rely on further002
training techniques, such as fine-tuning or re-003
inforcement learning, to enhance model capac-004
ities, model merging stands out for its ability005
of improving models without requiring any ad-006
ditional training. In this paper, we propose a007
unified framework for model merging based008
on low-rank estimation of task vectors without009
the need for access to the base model, named010
LORE-MERGING. Our approach is motivated011
by the observation that task vectors from fine-012
tuned models frequently exhibit a limited num-013
ber of dominant singular values, making low-014
rank estimations less prone to interference. We015
implement the method by formulating the merg-016
ing problem as an optimization problem. Ex-017
tensive empirical experiments demonstrate the018
effectiveness of our framework in mitigating019
interference and preserving task-specific infor-020
mation, thereby advancing the state-of-the-art021
performance in model merging techniques.022

1 Introduction023

Large Language Models (LLMs) have become024

ubiquitous in numerous real-world applications025

(Bommasani et al., 2021; Zhuang et al., 2020). The026

utilization of LLMs typically involves fine-tuning027

them for specific tasks, a process that often yields028

superior performance compared to general-purpose029

LLMs. A rapidly emerging technique in this do-030

main is model merging (Garipov et al., 2018; Worts-031

man et al., 2022; Yu et al., 2024b), which aims032

to create a single multi-task model by combining033

the weights of multiple task-specific models. This034

approach facilitates the construction of multi-task035

models by integrating knowledge from fine-tuned036

(FT) models without requiring additional training.037

Building on recent studies (Ilharco et al., 2022;038

Yadav et al., 2024; Yu et al., 2024b), task vector-039

based merging approaches have demonstrated sig-040

nificant effectiveness, where task vectors are de-041

fined as the parameter differences between fine- 042

tuned models and the base LLM. Achieving opti- 043

mal results in model merging often requires min- 044

imizing interference between task vectors associ- 045

ated with different tasks. To address this, existing 046

approaches utilize modified task vectors instead of 047

the original ones. For instance, Yu et al. (2024b) ap- 048

plied random dropping with probability p to obtain 049

a sparse representation of task vectors, while Ya- 050

dav et al. (2024) retained only the top-k elements 051

of each task vector based on magnitude, setting 052

the remaining elements to zero. These strategies 053

aim to produce sparse estimations of task vectors, 054

a common technique for mitigating interference. 055

Nevertheless, task vector-based model merging 056

approaches remain constrained by two fundamental 057

limitations. First, the computation of task vectors 058

necessitates access to the base model parameters 059

and demonstrates heightened sensitivity to para- 060

metric variations (Yu et al., 2024b). As fine-tuning 061

progress goes deeper, substantial parametric diver- 062

gence emerges between the original base model and 063

its fine-tuned counterpart, thereby greatly hindering 064

them merging effectiveness (Yu et al., 2024a). Sec- 065

ond, empirical evidence from Yadav et al. (2024) 066

reveals that conflicting task vectors interactions 067

could appear even when employing sparse esti- 068

mation techniques. On the other hand, the spar- 069

sification process risks inadvertently eliminating 070

essential task-specific features, thereby compro- 071

mising the efficacy of the resultant merged model. 072

These inherent constraints of sparse approximation 073

methodologies underscore the necessity for devel- 074

oping alternative frameworks to estimate higher- 075

fidelity low-rank task vector representations. 076

To this end, we first empirically validate that 077

task vectors exhibit a small number of dominant 078

singular values, with the remaining singular values 079

being significantly smaller in magnitude, as shown 080

in Figure 1. Additionally, the dimension of the in- 081

tersection of the images of two matrices is bounded 082
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Figure 1: Singular value distributions for the task vector
in layer 1. We show the top-100 singular values, out of
4096 within the full rank.

by the minimum of their ranks. Therefore, we pro-083

pose LORE-MERGING, a unified framework for084

model merging based on Low-Rank Estimation085

of task vectors, which eliminates the need for ac-086

cess to the base model. Specifically, given a set087

of FT models, we formulate the merging problem088

as an optimization problem whose goal is to si-089

multaneously identify an approximate base model090

integrated with a set of low-rank task vectors. To-091

gether, these vectors collectively approximate the092

behavior of the FT models. By leveraging low-rank093

estimations, task vectors become inherently less094

susceptible to interference, effectively addressing a095

fundamental challenge in model merging. We con-096

duct extensive experiments on optimization model-097

ing problems and math word problems to confirm098

the effectiveness of our method.099

2 Related Works100

Merging fine-tuned models has been shown to offer101

several benefits, such as improving performance102

on a single target task (Gupta et al., 2020; Choshen103

et al., 2022; Wortsman et al., 2022), enhancing104

out-of-domain generalization (Cha et al., 2021;105

Arpit et al., 2022; Ilharco et al., 2022; Ramé et al.,106

2023), creating multi-task models from different107

tasks (Jin et al., 2022; Li et al., 2022; Yadav et al.,108

2024), supporting continual learning (Yadav and109

Bansal, 2022; Yadav et al., 2023), and addressing110

other challenges (Don-Yehiya et al., 2022; Li et al., 111

2022). Among these methods, task-vector-based 112

merging approaches play an important role. Task 113

Arithmetic (Ilharco et al., 2022) first introduced the 114

concept of task vectors and shows that simple arith- 115

metic operations can be performed to obtain the 116

merged models. Building on this idea, methods like 117

DARE (Yu et al., 2024b) and TIES-Merging (Yadav 118

et al., 2024) adopt pruning-then-scaling techniques 119

to merge task vectors, based on the assumption that 120

not all parameters equally contribute to the final 121

performance. However, these methods based on 122

sparsity estimation consistently suffer from the in- 123

terference among task vectors and require access 124

to the base model, thus limiting their overall effec- 125

tiveness. 126

3 Methodology 127

3.1 Problem Setting 128

We denotes Mi as the candidate models to be 129

merged, where each Mi is parameterized by θi. In 130

this work, we focus on the homogeneous model 131

merging (Wortsman et al., 2022; Ilharco et al., 132

2022; Yadav et al., 2024), suggesting that the base 133

models share the same model architecture. Specifi- 134

cally, these models can be obtained from the train- 135

ing process, such as checkpoints, or fine-tuned 136

from the same pre-trained model, referred to as 137

task-specific models. The primary objective of 138

model merging is to construct a new model, M∗, 139

having better performance on the target single or 140

multiple tasks. 141

3.2 Implicit Low-Rank Estimation for Model 142

Merging 143

In this study, drawing upon methodologies similar 144

to those presented by Matena and Raffel (2022), 145

we investigate the model merging problem without 146

presupposing specific characteristics of, or requir- 147

ing access to, a base model. This methodologi- 148

cal decision is underpinned by several key ratio- 149

nales. Firstly, in the context of checkpoint merging 150

(Liu et al., 2024), a prevalent scenario involves ac- 151

cess restricted solely to checkpoints saved during 152

the training trajectory, before the finalization of 153

a base model. Consequently, in such instances, 154

the assumption of a pre-defined base model is 155

untenable. Furthermore, as demonstrated by Yu 156

et al. (2024b,a), model pairs frequently exhibit 157

limited mergeability, particularly when subjected 158

to extensive fine-tuning or prolonged pre-training, 159
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which can induce substantial parametric shifts. Un-160

der these circumstances, existing task-vector-based161

merging techniques often prove less effective due162

to significant representational divergence between163

an original base model and its fine-tuned counter-164

part. To surmount this challenge, we introduce165

LORE-MERGING, an implicit low-rank estimation166

approach to model merging. This method lever-167

ages the inherent robustness of low-rank estimation168

against perturbations while obviating the require-169

ment for base model access.170

The core idea of LORE-MERGING is straight-171

forward: instead of using the original base model,172

we first construct an approximate base model and173

subsequently integrate the task-specific vectors via174

a low-rank approximation technique. Formally, de-175

note the approximate base model as θ0 and the176

low-rank task vectors {δi}ni=1 where n is the num-177

ber of FT models, our objective is to minimize178

the discrepancy between each FT model and its179

corresponding integrated version derived from the180

constructed base model, expressed as θ0+ δi ≈ θi.181

To ensure the low-rank structure of δ, we apply182

a nuclear norm penalty, as suggested in Cai et al.183

(2008). Then, we formulate the merging problem184

as the following optimization problem:185

min
θ0,δ1,...,δn

f :=
n∑

i=1

(
∥θ0 + δi − θi∥2F + µ∥δi∥2∗

)
,

(1)186

where ∥·∥∗ represents the nuclear norm, and µ > 0187

is a hyperparameter. In Equation (1), the first term188

minimizes the difference between θ0 + δi and θi,189

ensuring reconstruction accuracy. The second term190

acts as a penalty that encourages the task vectors191

δi to exhibit low-rank properties.192

This problem is a standard multi-variable con-193

vex optimization problem. To solve it effi-194

ciently, we employ the coordinate descent method195

(Wright, 2015). Starting from an initial point196

{θ0
0, δ

0
1 , . . . , δ

0
n}, each iteration (round k + 1) up-197

dates the variables by iteratively solving the follow-198

ing single-variable minimization problem:199 
θk+1
0 = argmin

θ
f(θ, δk1 , · · · , δkn)

δk+1
i = argmin

δ
f(· · · , δki−1, δ, δ

k
i+1, · · · ), ∀i

(2)200

The update for θ∗
0 is trivial, while the update201

for δ is less straightforward due to the presence202

of the nuclear norm. Fortunately, as shown in Cai203

et al. (2010), closed-form solutions for the coor-204

dinate descent method iterations in Problem (1) 205

can be obtained using the Singular Value Thresh- 206

olding (SVT) technique. Recall that for a given 207

matrix δ with the Singular Value Decomposi- 208

tion (SVD) δ = UΣV ⊤, and a hyperparameter 209

µ, the SVT operator is defined as follows. Let 210

Σ+(µ) := diag((σi − µ)+), where (·)+ denotes 211

the positive part function. The SVT(δ;µ) op- 212

erator with hyperparameter µ is then defined as 213

SVT(δ;µ) := UΣ+(µ)V ⊤. Using the SVT opera- 214

tor, the update for δi can be expressed as: δk+1
i = 215

SVT(θi − θk+1
0 ;µ). 216

Once the optimization problem is solved, we can 217

obtain the approximate base model and a set of low- 218

rank task vectors. Then, existing task-vector based 219

approaches, such as Average Merging and TIES- 220

Merging, can be applied to combine the task vec- 221

tors and the base model. In this work, we directly 222

adopt Average Merging as our post-calculation 223

merging methods for simplicity, as as it demon- 224

strated comparable performance to TIES-Merging 225

in our preliminary experiments. The overall pro- 226

cess is outlined in Algorithm 1. 227

4 Experiments 228

Baselines & Settings We compare LORE- 229

MERGING with following popular merging meth- 230

ods. Average Merging (Choshen et al., 2022): 231

This method computes the element-wise mean of 232

all the individual models. DARE (Yu et al., 2024b): 233

This approach randomly drops task-specific vectors 234

and rescales the remaining vectors back to the base 235

model. We set the hyperparameter for the random 236

probability to 0.5. TIES-Merging (Yadav et al., 237

2024): In this method, task-specific vectors are ran- 238

domly dropped, and only the parameters aligned 239

with the final agreed-upon sign are merged. For 240

TIES-merging, we set the top-k value to 20%, and 241

the hyperparameter λ is fixed at 1. For LORE- 242

MERGING, the rank r is determined dynamically. 243

For a given task vector δ ∈ Rm×n, we set the rank 244

r = 0.2×min{m,n} to get a low-rank estimation. 245

Evaluation We first evaluate LORE-MERGING 246

on diverse benchmarks, including GSM8K (Cobbe 247

et al., 2021), MATH (Hendrycks et al.) (math 248

word problem), MMLU (Hendrycks et al.), 249

GLUE(Wang et al., 2019) (commonsense reason- 250

ing) and MBPP(Austin et al., 2021) (code task). We 251

evaluate DeepSeek-series models (NuminaMath- 252

7B (Beeching et al., 2024) and DeepSeek-Math-7B- 253

Base (Shao et al., 2024)) and LLaMA-series mod- 254
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Method DPSK & Numina LM & Math Math & Code Checkpoints Merging Avg.
GSM8K MATH GSM8K MATH MMLU GLUE MBPP EasyLP ComplexLP NL4OPT

Baseline 76.3 55.8 54.8 12.4 52.0 63.3 32.0 81.9 39.3 94.0 56.18
Average 75.0 45.8 58.8 12.6 52.8 61.7 28.0 75.9 40.3 91.6 54.25
DARE 81.0 54.2 14.9 3.7 52.7 59.1 27.6 80.7 35.1 95.1 50.41
TIES 80.8 51.6 58.5 11.8 53.1 59.3 26.8 82.4 42.7 94.8 56.18

LORE 81.0 52.7 60.3 13.0 53.7 62.4 28.8 83.4 47.4 94.8 57.75

Table 1: Evaluations on various benchmarks. LM and Math are Wizard-series models, namely WizardLM-13B and
WizardMath-13B. Code is llama-2-13b-code-alpaca model. The score of baseline is the higher one of base models.

Datasets µ = 0 µ = 0.01 µ = 0.1 µ = 1.0

GSM8K (%) 81.3 82.0 79.9 67.3
MATH (%) 53.8 54.5 53.8 42.4

Table 2: The ablation study for the hyperparameter µ
(with λ = 1.0) on DPSK & Numina.

Datasets λ = 0.5 λ = 1.0 λ = 1.5

GSM8K (%) 18.9 82.0 79.1
MATH (%) 33.1 54.5 51.0

Table 3: The ablation study for the hyperparameter λ
(with µ = 0.01) on DPSK & Numina.

els (WizardLM-13B (Xu et al., 2023), WizardMath-255

13B (Luo et al., 2023) and LLaMA-2-13B-Code256

model). Additionally, we also evaluate on the ad-257

vanced task, i.e. mathematical optimization model-258

ing problems (Ramamonjison et al., 2023; Huang259

et al., 2024, 2025). This task aims to generate solv-260

able mathematical models given an optimization261

problem in natural language. As the lack of public262

models on this task, we first fine-tuned Qwen-2.5-263

Coder-7B-Instruct model (Hui et al., 2024) with the264

dataset provided by Huang et al. (2025) and merge265

checkpoints in the training process. The evalu-266

ations are conducted on MAMO dataset (Huang267

et al., 2024) which includes two subsets EasyLP268

and ComplexLP, and NL4OPT dataset (Ramamon-269

jison et al., 2023).270

Main Results As shown in Table 1, LORE-271

MERGING achieves superior performance across272

most metrics, as well as the highest overall score.273

For the math word problem evaluation, our method274

demonstrates consistently superior performance275

against baselines, except for the evaluations on276

MATH (DPSK & Numina) and MBPP datasets. We277

think this is because of the significant performance278

gap between the base models, where DeepSeek-279

Math achieves only a score of 36.2 on the MATH280

dataset, while NuminaMath reaches 55.8. As indi-281

cated in Yao et al. (2024), a large performance gap282

can significantly impact the effectiveness of model283

merging. Another worthy-noting observation is284

that DARE demonstrates significantly poorer per-285

formance when merging WizardLM and Wizard-286

Math. This can likely be attributed to the substan-287

tial parameter divergence between these models,288

which results in the failure of calculating the task289

vector derived from the base model. In contrast,290

our LORE-MERGING with the approximate base291

model and low-rank task vectors demonstrates su- 292

perior robustness and effectiveness in solving math 293

word problems. For the evaluations on optimization 294

modeling with checkpoints merging, we can see 295

existing task-vector based merging methods con- 296

sistently improve the performance because of the 297

marginal gap between the checkpoints. Therefore, 298

we believe that checkpoint merging can serve as a 299

highly effective technique complementary to train- 300

ing methods, particularly our LORE-MERGING 301

method. We also conduct a detailed analysis how 302

our method enhance the modeling capacity on Com- 303

plexLP dataset. We found that the earlier check- 304

point is more good at identifying the variables and 305

parameters in the questions while the later one fo- 306

cuses on more complex components, such as for- 307

mulating variables and the constraints. With the 308

merging of task vectors, the merged model exhibits 309

superior overall performance on the task. 310

Ablations We conduct a systematic empirical 311

analysis of the selection of hyperparameters λ and 312

µ, as presented in Table 2 and Table 3. Our results 313

show that the best performance is achieved with 314

λ = 1.0 and µ = 0.01. Notably, variations in the 315

hyperparameters around these values do not signifi- 316

cantly impact the final performance, indicating the 317

robustness of LORE-MERGING. 318

5 Conclusion 319

In this paper, we propose a unified framework 320

for merging models based on low-rank estimation, 321

named LORE-MERGING. We achieve it by for- 322

mulating the merging problem as an optimization 323

problem. Extensive experiments demonstrate the 324

efficacy and efficiency of our proposed methods. 325
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Limitations326

Although we have demonstrated the effectiveness327

of our method on merging homogeneous models,328

we have not yet evaluated it on merging hetero-329

geneous models which is a much more challeng-330

ing task. Compared to existing task-vector based331

model merging methods, our method is the most332

suitable one that can be adapted to heterogeneous333

model merging, as we disentangle the base model334

and task vectors. We think how to expand LORE-335

MERGING to heterogeneous model merging should336

be a promising future direction.337
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Method Average TIES-Merging Twin-Merging LoRE-Merging

Acc. on GSM8K 75.0 80.8 79.9 81.0
Runtime 4.2s 5min 29s 17min 44s 12min 24s

Table 4: Caption

A Appendix521

A.1 Speed and Computational Cost522

While standard SVD exhibits computational in-523

efficiency for extremely large matrices compris-524

ing billions of elements, its application to LLM525

presents a substantially different computational pro-526

file. Despite LLMs containing billions of param-527

eters in aggregate, SVD operations are performed528

on individual parameter matrices, each typically529

comprising only millions of entries. For instance,530

in the Qwen2.5-72B architecture, the largest ma-531

trix requiring decomposition is dimensioned at532

8192 × 28564, while for Qwen2.5-7B, the corre-533

sponding matrix has dimensions of 3854× 18944.534

Thus, the substantial parameter differential be-535

tween LLM scales does not translate to proportion-536

ally expanded matrix dimensions. In our implemen-537

tation, merging operations for 7B-scale models re-538

quire approximately 5 minutes using Ties-Merging,539

while LoRE-Merging necessitates approximately540

12 minutes. However, compared to another SVD-541

based mering method, like Twin-Merging (Lu et al.,542

2024), our method exhibit superior performance on543

efficiency.544

A.2 Task Vector Rank Validation545

In this subsection, we validate the low-rank prop-546

erties underlying the low-rank assumption. Specif-547

ically, we focus on the checkpoint merging prob-548

lem and compute the rank of the task vectors.549

As previously discussed, we set the rank r as550

r = 0.2 × min{m,n} for any given task vector551

δ.552

The distribution of the largest 100 singular val-553

ues for Layer 1 is presented in Figure 1. Our ex-554

perimental results reveal that σr ≤ 0.05× σ1, indi-555

cating that the singular values set to 0 in low-rank556

estimation are significantly smaller than the largest557

singular value across all linear layers. This finding558

supports the validity of adopting a low-rank approx-559

imation for task vectors, as it reflects the inherent560

structure of the data.561

Algorithm 1 Implicit low-rank merging method
Input: fine-tuned models {θi}ni=1, parameter di-
mension d, and hyperparameter λ, µ.
Output: merged model θ∗.
� Step 1: Coordinate descent method to solve
problem (1).
Set δi = 0 for i = 1, 2, . . . , n.
while iteration NOT converges do
θ0 =

1
n

∑n
i=1(θi − δi)

for i = 1, . . . , n do
δi = SVT(θi − θ0;µ);

end for
end while

� Step 2 (Optional 1): Direct sum.
τ =

∑n
i=1 δi.

� Step 2 (Optional 2): TIES selection (Yadav
et al., 2024).
γ = sgn(

∑n
i=1 δi).

for p = 1, 2, . . . , d do
Ap = {i : γp

i = γp}
τ p = 1

|Ap|
∑

i∈Ap τ p

end for

� Step 3: Obtain merged checkpoint.
θ∗ = θ0 + λτ .
return θ∗
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