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Abstract
Recent developments in natural language processing (NLP) have highlighted the
need for substantial amounts of data for models to capture textual information
accurately. This raises concerns regarding the computational resources and time
required for training such models. This paper introduces SEmantics for data
SAliency in Model performance Estimation (SeSaME). It is an efficient data
sampling mechanism solely based on textual information without passing the data
through a compute-heavy model or other intensive pre-processing transformations.
The application of this approach is demonstrated in the use case of low-resource
automated speech recognition (ASR) models, which excessively rely on text-to-
speech (TTS) calls when using augmented data. SeSaME learns to categorize
new incoming data points into speech recognition difficulty buckets by employing
semantic similarity-based graph structures and discrete ASR information from ho-
mophilous neighbourhoods through message passing. The results indicate reliable
projections of ASR performance, with a 93% accuracy increase when using the
proposed method compared to random predictions, bringing non-trivial information
on the impact of textual representations in speech models. Furthermore, a series
of experiments show both the benefits and challenges of using the ASR informa-
tion on incoming data to fine-tune the model. We report a 7% drop in validation
loss compared to random sampling, 7% WER drop with non-local aggregation
when evaluating against a highly difficult dataset, and 1.8% WER drop with local
aggregation and high semantic similarity between datasets.

1 Introduction
Cutting-edge advancements have emerged across several areas of artificial intelligence, including
large language models (1), multi-modal and context-aware models (2), conversational AI (3) and
vision transformers (4). While they gain robustness and generalizability across tasks, they often
become more computationally expensive and data-demanding. This leads to problems concerning the
availability of trustworthy data (5), budget allocation, and environmental impact.

A ubiquitous example of a system requiring substantial quantities of data is automated speech recogni-
tion (ASR), for which large-scale training can significantly improve model performance (6). Examples
of commonly used benchmark datasets are VoxLingua107, containing speech segments extracted
from YouTube videos that amount to 6628 hours of data, and LibriSpeech, incorporating 960 hours of
audiobook data (7). Training an ASR system has several challenges: (1) the computational workload
and time required for processing audio data are costly, and (2) several low-resource languages lack
annotated data. Data augmentation is one of the most common techniques to compensate for a low
resource setting (8; 9). However, it is not necessarily the case that adding vast quantities of synthetic
data will proportionally improve the model’s performance, while it does add to the computational
workload (10).
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We present SEmantics for data SAliency in Model performance Estimation (SeSaME), a novel
graph-based approach to finding salient training instances using semantic similarity between data
points. Specifically, we focus on the ASR task and investigate if, given a set of textual utterances, we
can select a subset for fine-tuning an ASR system and achieve better performance as if fine-tuning
on a random sample from the same dataset. Our intuition is to use the measured model to infer
its evaluation performance on a new dataset through label recovery on the utterance level based
on semantic similarity between the new sentences and the observed data. Efficient data sampling
brings two advantages: (1) compute benefits by reducing speech synthesis calls and (2) lower
carbon footprint as a result of more efficient training. We propose an approach to estimating ASR
performance using semantic similarity-based graph neural networks and leverage the salient data
points for fine-tuning an ASR system. In this paper, we answer the following research questions: (1)
can we use semantic priors and graph-based structures to predict the performance of an ASR model?
and (2) if so, how can we use the leveraged information to sample data points and fine-tune the ASR
model?

Our key contributions are the following:

• We propose SeSaME, a novel approach to modelling the performance of a model in discrete
space using graph-based semantic similarity using textual data alone.

• We leverage known model performance to efficiently sample new data for fine-tuning.

• We show that by incorporating an attention mechanism, our proposed sampling procedure
achieves a 7% WER improvement compared to the baseline.

The remainder of the paper is organized as follows: In Section 3 we formalize the approach of using
textual semantic similarity graph structures to predict ASR performance. Section 4 presents the
experimental setup for training and fine-tuning the ASR and GNN models, repectively. Section 5
discusses the results and answers the research questions, while Section 6 lays down the conclusions
of the experiments and proposes future research directions.

2 Related Work
In this section, we outline the definitions needed for formulating our approach.

Graph Neural Networks Graph neural network (GNN) architectures emerged as powerful tools for
processing and exchanging node, edge and structure information (11) through message passing. Mes-
sage passing (MP) updates each node representation based on its 1-hop neighbourhood information.
MP layers differ by choice of the aggregation function over the 1-hop neighbourhood. Depending on
the architecture, the aggregation can take different forms. We will study and compare the impact of
local aggregation, i.e., GCN (12), GIN (13), and GraphSAGE (14), with non-local aggregation, i.e.,
GAT (15).

Label Recovery Assume a graph G = (V, E), where V is the set of vertices and E is the set of edges
representing connections between nodes. The label recovery task is the problem of inferring missing
labels for a set of nodes V ′ ⊆ V from available information, i.e., known labels of nodes V \ V ′. The
labels can be either discrete, i.e., in which case the task is a classification problem, or continuous, i.e.,
in which case the task is a regression problem.

Homophily In the context of social networks, homophily has been expressed as the tendency of nodes
to connect with others that exhibit similar characteristics. In contrast, heterophily is the tendency of
nodes to gather into scattered groups. It has been shown that the degree of homophily directly impacts
the performance of graph models in a label recovery task (16), i.e. higher homophily leads to better
performance. We use the Schelling model (17) to assess the homophily of sampled neighbourhoods
in the graph structure for different ASR utility functions. Accordingly, we choose the utility that
exhibits a higher degree of homophily for optimizing the performance of the graph model on the
label recovery task.

3 Methodology
In this section, we explain SeSaME, our semantic graph-based sampling approach, considering the
following ASR use case: assume access to a high-cost pre-trained ASR model α; we want to estimate
its performance on a new dataset without explicitly using the data, i.e., without making a forward
pass; the only available information is the prior training data points and their ASR performance. We
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formalize and split our approach in two parts: (1) the train pass (see Figure 1) constructs and trains
a semantic similarity graph using the available training data and its ASR evaluation metrics, and
(2) the fine tune pass (see Figure 2) uses the graph structure for mapping incoming data points to
ASR performance, and uses the leveraged information for sampling a subset of the incoming data
for further fine-tuning the ASR model. A summary of the notation used throughout this section is
presented in Appendix A.

3.1 Train Pass
ASR Training Consider a textual dataset Dtrain and a text-to-speech (TTS) engine τ that receives
as input Dtrain and generates its corresponding synthetic audio. The audio synthesis is then used for
training an ASR model α. The ASR model predicts a hypothesis for each data point and is evaluated
against its reference (ground truth) sentence using Word Error Rate (WER), which measures the
percentage of incorrectly recognized or substituted words in the sentence.

Our intuition is that we can infer the model’s performance on a new dataset Dholdout using the
observed WER and the semantic similarity of Dholdout with Dtrain. The approach is inspired by the
RHO-LOSS (18) utility function presented in Equation 1, which has been proven efficient in sampling
task-relevant, non-redundant and non-noisy data for training on a wide range of datasets and tasks.
We will use the first term of the function to define a label for each sentence in Dtrain:

L[y|x] = argmax(x,y)∈Bt
L[y|x;Dtrain]− L[y|x;Dholdout]. (1)

where x represents the input waveform fed to the ASR model, y is the prediction (hypothesis),
L[y|x;Dtrain] is the training loss of the model, and L[y|x;Dholdout] is the loss of the model when
trained on a smaller adjacent dataset, called the holdout dataset;

We aim to choose a labelling utility function L[y|x;D] that has the following properties: it is suitable
for evaluating the ASR model, it is representative of homophilous relationships between input
sentences, and it can be discretized into ordinal labels. We have experimented with both WER and
CTC loss as utility functions; we chose to use WER as it exhibits a higher degree of homophily in the
graph.

The WER metric is defined as follows:

WER =
S +D + I

N
, (2)

Equation 2 can be interpreted as the percentage of incorrectly substituted, deleted and inserted
words, denoted as {S,D, I}, compared to the total number of words N in the reference, where
N = S +D + C. The typical value for WER is wi ∈ [0, 1], however, it can exceed the upper bound
when the prediction (hypothesis) is longer than the ground truth sentence (reference). A lower WER
indicates better performance.

However, WER has one nontrivial disadvantage when using it in an ordinal regression task: it is
a continuous variable. To mitigate this issue, we discretise WER into k buckets according to their
distribution in Dtrain, bringing WER from a continuous to a discrete space. Each sentence in Dtrain is
mapped to a WER value which is associated with one of the defined classes to create a label.

Graph Creation We can construct an undirected weighted graph G = (V, E) with nodes V and
edges E using Dtrain and the inferred WER labels as follows:

• Each node v ∈ V is associated with the textual representation of one single data point from
Dtrain. The textual representations are modelled as BERT embeddings (19). We use the
BERT base uncased model.

• Two utterances {u, v} ⊆ V are connected through an edge (u, v) ∈ E iff the semantic
similarity between them exceeds a configurable threshold. The similarity between any pair
of sentences is calculated on the node embeddings and not the waveform.

Computing semantic similarity in a large, fully connected graph is computationally infeasible. As an
alternative, we apply approximate nearest neighbours (ANN) search to connect edges in the graph
with cosine similarity as edge weights (20).
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Moreover, since the objective of this study is to predict ASR performance without making any TTS
calls for converting augmented textual data into audio samples, waveform features are not employed
in the graph creation process.

Graph Neural Networks We aim to learn a mapping between textual utterances and their WER
labels, for which we train a GNN model that takes as input G = (V, E) and outputs a WER
prediction for each node. There are two reasons for modelling this problem using graph structures:
(1) aggregating information through message passing (our intuition is that similar utterances have a
similar impact on the ASR model), and (2) using edge weights (the degree of similarity should have
an impact in the message passing process). The WER labels indicate how well the ASR model can
map its equivalent audio waveform to the reference sentence. We formalize the problem as an ordinal
regression task by defining the label encoding and loss functions:

• Label Encoding: If a data point x is mapped to a label y, it is automatically classified into
all lower labels (0, 1, 2, ...k − 1). The target of input x is t = (1, 1, .., 1, 0, 0, 0) where ti
with 0 ≤ i ≤ k − 1 is set to 1 and all other elements to 0.

• Loss Function: We use binary cross entropy as a loss function to differentiate distance
magnitudes between predictions and real targets. It has two advantages: (1) treating each
class as a binary classification task and (2) applying a logarithmic scale between classes,
ensuring a higher loss for wrong predictions that are further apart from the ground truth
label.

Figure 1: Train pass from left to right: Given dataset Dtrain; Pass it to the TTS engine τ for
transforming textual sentences into synthetic audio; Train ASR model α; Compute WER on the
predictions of α; Bucket the observed WER into seven ordinal classes; Create a graph structure
G = (V, E) with BERT embeddings as node features, bucketed WER as labels, and edges between
semantically similar nodes; Train GNN γ on the label recovery task.

3.2 Fine Tune Pass
Consider a new augmented dataset Dholdout which contains textual utterances for further fine-tuning
the ASR model. Instead of passing it through the TTS engine τ and ASR model α as previously
done with Dtrain, the GNN mapping can be used for predicting the importance of individual entries in
Dholdout on fine-tuning α by creating a new graph Ḡ = (V̄, Ē).

The textual representations of Dholdout are added to the existing graph G = (V, E) by creating a node
u for each sentence in Dholdout, computing its approximate nearest neighbors Vu ⊂ V , and adding
edges from u to its neighbors v ∈ Vu. The edge weights are the cosine similarities between nodes.
The labels of the holdout dataset are predicted by passing Ḡ through the trained GNN and solving the
label recovery task.

The inferred labels of Dholdout indicate how well the ASR model performs on new incoming data
without including them in training or even processing their audio synthesis. We can use these
projected WER labels to sample a subset of points from Dholdout for further fine-tuning α.
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Figure 2: Fine tune pass from left to right: Given new dataset Dholdout; Add it to G to create a new
graph structure Ḡ = (V̄, Ē); Make forward pass to the pre-trained GNN to retrieve labels for Dholdout;
Sample the nodes predicted as highly difficult points; Fine-tune α with the sampled data; Get WER
performance and compare with baselines.

4 Experimental Setup
In this section, we specify the data and models used, i.e., ASR and GNN architectures, training
hyperparameters, and preliminary results that influenced modelling decisions.

Data We use the Common Voice Corpus 11.0 English dataset (21) which is available for public
use. It contains over 3k hours of recorded audio sourcing from over 84k different voices with
varying accents, which include demographic metadata such as names, age and locations. Each data
point contains an audio file sampled at 16 kHz and its corresponding textual transcription. Several
pre-processing steps have been taken, i.e. lowercasing and removing punctuation. Moreover, we
eliminated time-stretching outliers with over 165K parameters and data points for which the audio
file was unavailable. After pre-processing, the train, validation and test datasets have a size of 885k,
15k and 15k data points. As described in Section 3, we create buckets out of the WER evaluation
metric to create ordinal categorical labels for our dataset. The buckets are chosen so that the classes
do not differ too much in size. We divide WER into seven classes by grouping all utterances with
a WER xi ≤ Xc where Xc = [0.05, 0.1, 0.15, 0.2, 0.3, 0.5, 1]. In the case when WER xi > 1 we
include the utterance into the last bucket.

ASR model We employ the wav2vec2 XLS-R-300M model for cross-lingual speech representation
learning. It comprises a CNN feature extractor, a feature encoder generating multilingual speech units,
and a transformer. It has been pre-trained using 435k hours of unlabeled speech from open-source
datasets such as VoxPopuli (22), Common Voice (23), VoxLingua107 (24) and BABEL (25). To use
the XLS-R-300M architecture in an ASR setting, we drop the transformer and fine-tune it to solve a
connectionist temporal classification (CTC) task. We train the model with Common Voice English
for 20 epochs using a batch size of 8 utterances, Adam optimizer, learning rate of 3× 10−4, CTC
loss function, and evaluate it with WER.

GNN Models During the experimental phase we discovered that the BERT embeddings are not
sufficiently discriminative between classes, making it difficult for the GNN to learn a mapping from
textual utterances to their WER labels. To mitigate this issue, we employ a feature embedding
MLP trained with self-supervised contrastive loss (26) to push BERT embeddings closer together if
assigned to the same class or further apart if assigned to different classes. The MLP has two linear
layers that keep the BERT dimensionality consistent and one relu activation function. Using the MLP
BERT embeddings, we deploy four GNN models:

• Graph Convolutional Network (GCN): GCN (27) is a Graph Neural Network (GNN)
architecture that applies a multilayer local aggregation function (MLA). It is an efficient and
unbiased method of solving the label recovery problem in a graph structure.

• Graph Isomorphism Network (GIN): GIN (13) is a more flexible and expressive architec-
ture than GCN, which also uses a local aggregation technique.
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• GraphSAGE: GraphSAGE (14) is an inductive learning GNN that learns an aggregation
function to recognize both local information and global position. The graph is thus able to
learn complex properties of the neighbourhoods, which leads to better generalization on
unseen nodes.

• GAT: GAT (28) is a non-local aggregation GNN that makes use of masked self-attention
layers to attribute attention weights to different neighbourhoods of a node in G. GAT brings
the advantage of not needing to rely on homophilous graphs.

Each GNN model consists of 4 message passing layers with a hidden dimensionality reduction from
768 to 128 nodes and tanh as nonlinearity, one linear layer and a final sigmoid function for each
class output node. The GNNs are trained for 2100 epochs using drop edge (29) with probability
p = 0.25 to avoid over smoothing, Adam optimizer, weight decay 10−4, learning rate 10−3, binary
cross entropy, and evaluated across accuracy and one frame agreement (OFA). The OFA metric is
calculated by considering a prediction yi correct if it is either equal to the ground truth label ŷi or a
class at a one-hop distance from ŷi. This metric allows the model to make wrong label predictions as
long as they are ordinally close to the ground truth.

5 Results and Discussion
We evaluate SeSaME by comparing the ASR performance when fine-tuned on the predictions of
the graph-semantic estimation model versus random sampling. This is done by (1) analyzing the
validation metrics for GNN training on the ordinal regression task and (2) estimating the saliency of
the retrieved data points by conducting three comparison fine-tuning experiments.

To this end, we define the evaluation datasets:

1. random dataset: 10k data points randomly sampled from the test set,

2. difficult dataset: 900 data points from the test set labelled as very difficult to learn,

3. semantic similarity dataset: 2k data points from the test set labelled as difficult, which
also exhibit a high semantic correspondence with the GNN sample. More precisely, we
first sample difficult points from the holdout set as identified by the GNN model. Then, we
extract difficult points from the test set, and calculate the average cosine similarity between
each test point against the GNN sample. Finally, we pick the first 2k test data points with
the highest similarity with the GNN sample, enforcing textual correspondence between the
two datasets.

For fine-tuning the ASR model, we sample k difficult nodes as predicted by SeSaME. The sampling
process involves picking the nodes with inferred labels starting from the last bucket as defined in Xc.
If the current bucket does not cover the whole sample size k, we move one bucket to the left until the
sample is complete. For the last bucket we access, i.e., a class with size |xi| > (k −

∑n
i+1 |xj |), we

randomly pick the remaining (k −
∑n

i+1 |xj |) utterances from xi.

When evaluating against the random and semantic similarity datasets, the fine-tuning process is done
on 20 epochs. When evaluating against the difficult dataset, the fine-tuning takes place for only 10
epochs because the models do not converge for longer training.

GNN training The performance of the GNN models on the ordinal regression task is summarized in
Table 1. We report train and validation accuracy, and one-frame agreement (OFA). The calculated
gain is between GIN and the random predictions, indicating how many times GIN is better at mapping
textual information to speech recognition performance.

The results show a performance increase from the random accuracy of 14.3% to a SAGE accuracy
of 27.6%. The evaluation MSE drops from the random value of 0.40 by 31%− 38% to an MSE of
0.25 for SAGE, and an MSE of 0.22 with GAT. In short, we observe that both local and non-local
GNN models can successfully map a transformation between textual utterances to predicted ASR
performance.

ASR fine-tuning The random test results indicate that both the test loss and WER do not differ
between sampling approaches. However, the WER drops from 18.2% without fine-tuning to ap-
proximately 17% when using any GNN. This indicates that when evaluating against a random test
dataset, any sampling approach has the same positive effect relative to no further model fine-tuning.
To compare with existing metrics, the SOTA performance on a speech recognition task using the
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Train Val Train Val MSE
Acc. Acc. OFA OFA

GCN 27.3% 27.3% 72.2% 72.3% 0.26
GIN 27.7% 27.7% 73.2% 73.4% 0.25
SAGE 27.4% 27.6% 72.3% 72.9% 0.25
GAT 27.7% 27.5% 72.3% 73.1% 0.22
Random - 14.3% - 39.7% 0.40

Table 1: GNN performance on bucketed WER Ordinal Regression.

CommonVoice English test set is reported to a WER of 14.81% using a language modelling head, and
WER of 19.06% without the LM head. We achieved a WER of 16% on the test set when fine-tuning
the XLS-R-300M model for 20 epochs with the CTC task. The similar test loss and WER results
across GNN and random sampling indicate that SeSaME does not improve ASR fine-tuning when
evaluated on random test data.

Train Loss Test Loss WER

GCN 0.69 0.63 17%
GIN 0.72 0.63 16.9%
SAGE 0.66 0.63 16.9%
GAT 0.51 0.64 16.9%
Random x 5 0.66 ± 0.45-3 0.63 17%
W/o fine-tuning - - 18.2%
Gain - - 7.14%

Table 2: ASR fine-tuning with a sampled subset of 4k out of 5k data points; Evaluated on 10k random
data points drawn from the test data. Fine-tuned for 20 epochs.

Table 3 shows the results when evaluating against the difficult dataset. Unlike the previous experiment,
this evaluation highlights a considerable difference in training loss values between GNN and the
random baseline, e.g., 1.56 for GIN, and 0.69 for the random sample, indicating that the GNN models
are indeed able to predict and sample data points that are difficult to train on. The GNN test loss values
are considerably lower than random, indicating that sampling difficult points can improve the test
loss, but the evaluation WER metric for local aggregation is lower than the random sampling baseline.
However, GAT shows significantly better performance, with a 17% decrease in test loss compared
to random sampling. GAT also achieves an impressive WER decrease of 37.9% compared to the
random 40.9%, meaning that using the attention mechanism, we can effectively improve fine-tuning
of an ASR system without passing the data through the model, and without any audio processing.
These results indicate that we can apply SeSaME combined with non-local aggregation to efficiently
sample and fine-tune an ASR model on difficult points.

Train Loss Test Loss WER

GCN 1.59 1.48 41.8%
GIN 1.56 1.48 41.6%
SAGE 1.59 1.49 41.7%
GAT 1.39 1.32 37.9%
Random x 5 0.69 1.59 40.9%

Table 3: ASR fine-tuning with a sampled subset of 900 out of 13K data points; Evaluated on 900
very difficult points drawn from the test data. Fine-tuned for 10 epochs.

Results from Table 1 clearly indicate that semantically-driven graph structures can predict the
difficulty of incoming data for ASR training. However, tables 2 and 3 show that leveraging this
information for ASR fine-tuning is non-trivial, as data points predicted as difficult do not necessarily
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exhibit semantic correlation to the difficult points in the test set. The reasons behind an incoming
utterance being predicted as difficult can be manyfold, e.g., background noise, incomprehensible
audio, or simply highly different content. To better understand the role of semantic correlation
between incoming utterances and the test dataset, we conduct one final evaluation on a subset of the
test data with close textual cosine similarity to the GNN sample (see table 4).

Train Loss Test Loss WER

SAGE 0.65 0.62 16.4%
GAT 0.54 0.62 16.4%
Random 0.67 0.62 16.7%

Table 4: ASR fine-tuning with a sampled subset of 2k out of 5k data points; Evaluated on 2k test
points with high textual correspondence with the GNN sample; Fine-tuned for 20 epochs.

Our findings indicate that having semantic similarity between the sampled and test datasets does
help in lowering the WER of non-local GNNs. Table 4 shows that fine-tuning with the semantically
similar dataset as sampled using GAT brings the training loss from the random baseline value of 0.67
to a much better performance of 0.54. Interestingly, when evaluating against difficult points (Table
3), GAT shows an impressive 7% drop in WER; however, it is gained back in Table 4 when we add
textual correspondence. While this seems counterintuitive, evaluating against the most difficult 7% of
the data points (Table 3) versus the most difficult 40% data points (Table 4) is a significantly heavier
task. For the first one, there is more room for improvement in the model evaluation performance, as
confirmed by the evaluation WER. While for the latter, fine-tuning is trivial, therefore there is little
room for substantial improvement.

6 Conclusion
We presented SeSaME (SEmantics for data SAliency in Model performance Estimation), a graph-
based approach for identifying salient data points based on semantic similarity. The application
of this approach is studied in the use-case of low-resource ASR models, which make heavy use of
speech processing and transcription calls.

To assess SeSaME, we conduct a comparative analysis of the ASR performance when fine-tuned
with graph-based estimation versus random sampling. The results indicate that our method can
successfully predict the speech recognition performance of the dataset based on textual information
alone. Moreover, the results clearly indicate that we can use this information for efficiently fine-tuning
an ASR model when combined with a robust semantic similarity relationship between the datasets and
an attention mechanism. However, fine-tuning becomes a more complex problem when employing
local aggregation.

Future research For future research, we propose three directions: (1) a more extensive study on
how semantic correlation between difficult points in sampled and test data influences fine-tuning
performance, (2) an approach using the full version of RHO-LOSS as described in Equation 1, and
(3) including a feedback loop from the fine-tuning predictions to the graph structure for redefining
the WER labels.
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A Notations

Table 5: A list of notations

Dtrain train dataset
Dholdout holdout dataset, i.e. new data
x input audio waveform to the ASR model
y ground truth for the ASR model
Xc WER buckets as classes
L[y|x;D] utility function mapping WER for input x
V set of nodes as utterances in the train dataset
E set of edges as connections in the train dataset
G graph structure built on the train dataset
V ′ subset of nodes from a larger graph
E ′ subset of edges from a larger graph
G′ subgraph structure of the train dataset graph structure
V̄ new set of nodes including incoming data
Ē new set of edges including incoming dependencies
Ḡ new graph including incoming nodes
α ASR model
τ TTS model
γ GNN model
BERT model for generating contextualized word embeddings
XLS−R−300M open-source ASR model

11


	Introduction
	Related Work
	Methodology
	Train Pass
	Fine Tune Pass

	Experimental Setup
	Results and Discussion
	Conclusion
	Notations

