
Learning to Generate Human-Human-Object Interactions from Textual Descriptions

Jeonghyeon Na*, Sangwon Baik*, Inhee Lee, Junyoung Lee, Hanbyul Joo†

Seoul National University

*Equal Contribution †Corresponding Author

{prom317, bsw1907, ininin0516, juncong, hbjoo}@snu.ac.kr

Abstract

The way humans interact with each other, including interpersonal distances, spatial configuration, and motion, varies significantly across different situations. To enable machines to understand such complex, context-dependent behaviors, it is essential to model multiple people in relation to the surrounding scene context. In this paper, we present a novel research problem to model the correlations between two people engaged in a shared interaction involving an object. We refer to this formulation as Human-Human-Object Interactions (HHOIs). To overcome the lack of dedicated datasets for HHOIs, we present a newly captured HHOIs dataset and a method to synthesize HHOI data by leveraging image generative models. As an intermediary, we obtain individual human-object interaction (HOIs) and human-human interaction (HHIs) from the HHOIs, and with these data, we train an text-to-HOI and text-to-HHI model using score-based diffusion model. Finally, we present a unified generative framework that integrates the two individual model, capable of synthesizing complete HHOIs in a single advanced sampling process. Our method extends HHOI generation to multi-human settings, enabling interactions involving more than two individuals. Experimental results show that our method generates realistic HHOIs conditioned on textual descriptions, outperforming previous approaches that focus only on single-human HOIs. Furthermore, we introduce multi-human motion generation involving objects as an application of our framework.

1 Introduction

Human behavior in real-world environments is inherently social and context-dependent. People naturally interact with one another through structured patterns of interpersonal distance, spatial configuration, and motion, which are intuitively understood by humans but vary significantly across different situations. Understanding these nuanced, multi-human interactions is critical for AI systems that aim to interpret, simulate, or engage naturally in human-centric environments. While Human-Object Interactions (HOIs) [66, 57, 9, 32, 65, 63, 45, 26] and Human-Human Interactions (HHIs) [67, 23, 10, 35, 42, 10, 43, 54, 50, 36, 56] have been extensively studied in isolation, modeling interactions involving both multiple people and shared objects remains underexplored. In particular, dyadic interactions, where two individuals engage in a coordinated activity around a common object, are prevalent in everyday life, but have received relatively little attention. Examples include sitting together on a sofa, sharing an umbrella, or standing side by side at a whiteboard for discussion. In this paper, we present a novel research problem: modeling the coordinated behavior of two individuals interacting around a shared object. We refer to this formulation as Human-Human-Object Interactions (HHOIs). A core challenge in studying HHOIs is the absence of dedicated datasets. Existing HOI datasets [52, 15, 68, 16, 61] primarily feature single-human-object interactions, while

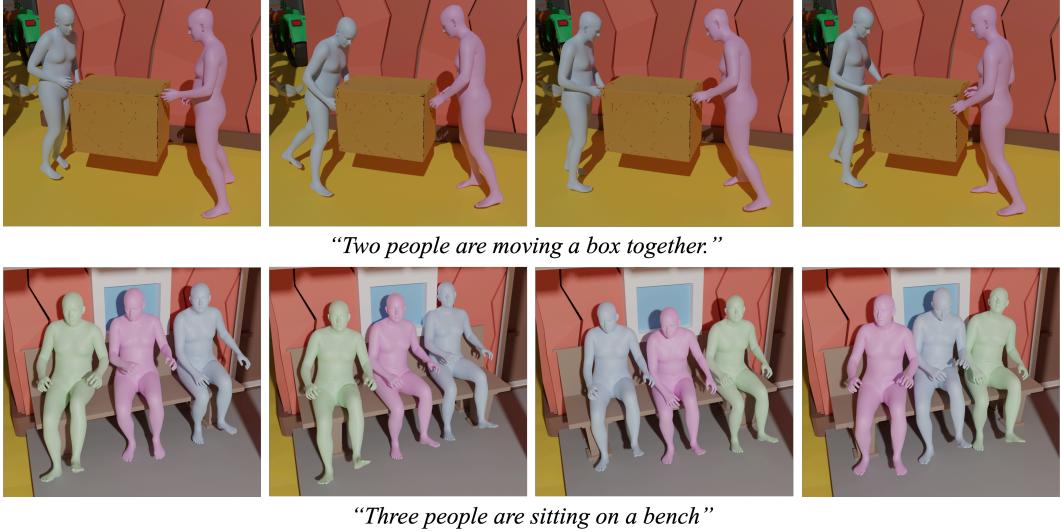


Figure 1: Results of our HHOI generation given object instances and text-prompt descriptions. Multiple humans in action are generated by jointly enforcing scene-level consistency across human-object interactions (HOIs) and human-human interactions (HHIs).

HHI datasets [30, 12, 14, 35, 55, 13, 38, 42] typically lack object context, often limited to dyadic conversational scenarios in standing poses.

To address the lack of diverse HHOI data, we introduce a newly collected 3D dataset captured using a multi-camera system, specifically designed to support the training and evaluation of HHOI models. In addition, we present a synthetic HHOI dataset generation pipeline that leverages pretrained image diffusion models [41] to complement real-world data, particularly for scenarios that are challenging to capture in studio environments. These diverse data sources are unified through a score-based diffusion model, enabling realistic generation of dyadic human-object interactions. Our model is conditioned on textual descriptions, enabling semantically grounded generation of HHOIs. Importantly, we further demonstrate that our framework can be extended beyond dyadic interactions to accommodate multi-human interactions, offering a scalable solution for modeling increasingly complex social behaviors. Experimental results show that our method produces more realistic and coherent interactions compared to existing baselines that model only single-human HOIs. As a potential application of our model, we present multi-human motion generation via Diffusion-Noise-Optimization [25], with our output HHOI as constraint.

Our contributions are summarized as follows: (1) Curated datasets for HHOI, along with methodologies for constructing them; (2) Score-based HHOI model that jointly captures both individuals’ interactions with a shared object and their interaction with each other, conditioned on textual description; (3) Extension to multi-human HHOIs, enabling generation of interactions beyond dyadic settings; (4) Application to object interaction-aware multi-human motion generation.

2 Related Work

Human-Object Interaction Human-object interaction (HOI) aims to understand how humans interact with objects in the environment. This line of research is crucial for enabling machines to interpret and mimic human behaviors, thereby supporting the development of embodied AI agents and realistic digital human modeling with natural object manipulation. There have been considerable efforts to collect and scale up 3D HOI dataset, aiming to pursue a data-driven approach in this direction. Early work tries to capture the 3D HOI scenes in a controlled setup using marker [22], IMU [52, 15, 68, 16], multi-view capture system [18, 19, 61, 3], or hybridizing them [11, 28, 64, 63, 37]. In addition to real-world capture, synthetic datasets have also been introduced using game engines [6] and physics simulation [4]. More recently, automated pipelines have emerged to generate 3D HOI scenes from pre-trained 2D image models, significantly reducing capture effort and expanding scenario

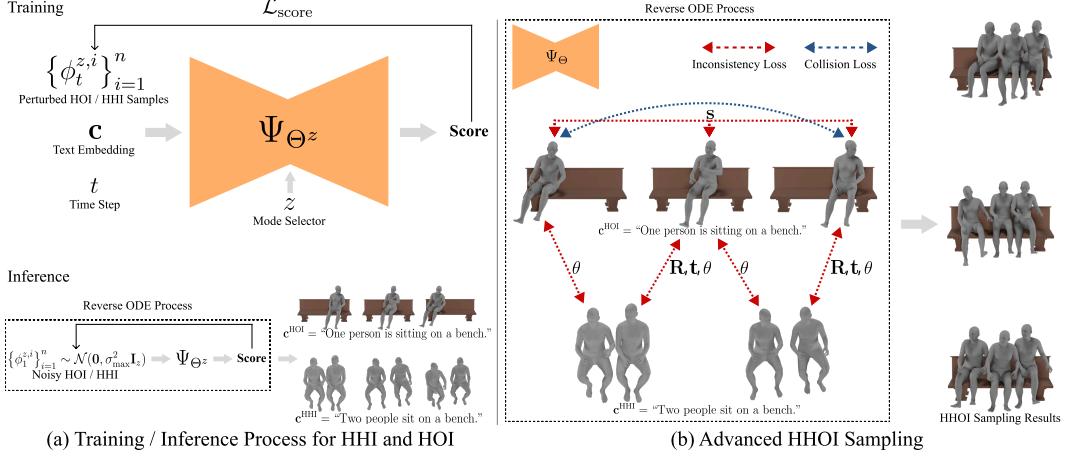


Figure 2: **Method Overview.** (a) The training and inference process of the HOI/HHI part. (b) The advanced HHOI sampling process by introducing inconsistency loss and collision loss.

diversity [26, 17, 33, 27]. Various models [57, 9, 32, 65, 45, 58, 29, 60, 21] have been proposed to learn from the presented datasets, including models manipulating articulated objects [11, 28], and multiple objects at once [63, 28]. However, the majority of existing methods are limited to single-human interaction scenarios, while scenarios involving multiple humans with objects remain largely unexplored. Core4D [37] takes a step toward this direction by collecting HHOI data for collaborative tasks involving two people, but its scale and diversity are still limited.

Human-Human Interaction Modeling the interaction between individuals is essential to capture cooperative behaviors and social dynamics [24], which is crucial for developing embodied AI agents capable of natural human interaction. Previous works have primarily focused on dyadic human-human interactions, aiming either to reconstruct plausible interactions from images [12, 38], or to generate natural motion [30, 35, 55, 13, 42]. Recently, several methods have been proposed to extend the interaction modeling to more than two individuals [67, 23, 10, 43]. Many of these approaches are conditioned by contextual signals such as text [35, 42, 10, 43], music [44, 34], or predefined action-reaction roles [54, 50, 36, 56], yet they often struggle to capture interactions that are tightly coupled with a specific target object. MAMMOS [36] explores scene-conditioned multi-human motion generation, yet remains limited in scope and lacks complex interactions.

Score-based Generative Models. Score-based generative models [46, 47] estimate gradients of the data distribution for generative modeling, by introducing noise conditional score networks to learn score functions at multiple noise levels. Later work [48] generalized this approach using stochastic differential equations, providing a continuous-time formulation. This framework has proven highly effective for various generation tasks such as object rearrangement [53], object pose estimation [62], scene-graph generation [49] and human pose estimation [8]. Recent extensions apply score-based models to interactive settings, such as human-object interaction [27], and object-object interaction [1].

3 Method

Our HHOI model is structured as a combination of HOI model and HHI model. We first introduce how each component—HOI model and HHI model—is independently represented (Sec. 3.1). Specifically, we model HOI and HHI using score-based diffusion models [46, 48]. We then describe the training and inference procedures for each component (Sec. 3.2). Finally, we present a guided sampling method that integrates each component with inconsistency and collision constraints during the inference process to generate coherent and plausible HHOI configurations (Sec. 3.3).

3.1 HHOI Formulation

Modeling Human-Object Interaction (HOI). For HOI, we adopt an object-centric coordinate frame in which the object instance mesh \mathcal{M} is centered at the origin. Our goal is to model the distribution of plausible human spatial and postural configurations relative to the object, covering a variety of HOI scenarios. Formally, we define HOI as the rotation $\mathbf{R}_{\mathcal{H}} \in \mathbb{R}^6$, translation $\mathbf{t}_{\mathcal{H}} \in \mathbb{R}^3$, scale

$\mathbf{s}_{\mathcal{H}} \in \mathbb{R}_+$, and body pose embedding $\theta_{\mathcal{H}} \in \mathbb{R}^H$ of a human \mathcal{H} . These are conditioned on an object mesh \mathcal{M} and a textual description \mathbf{c} describing the HOI. We denote the HOI distribution as $p_{\mathbf{c}}^{\mathcal{M}}$, and a corresponding HOI sample as ϕ^{HOI} :

$$\phi^{\text{HOI}} \sim p_{\mathbf{c}}^{\mathcal{M}}, \quad \phi^{\text{HOI}} = (\mathbf{R}_{\mathcal{H}}, \mathbf{t}_{\mathcal{H}}, \mathbf{s}_{\mathcal{H}}, \theta_{\mathcal{H}}). \quad (1)$$

We use SMPL-X [39] for the human model and 6D representation [70] for $\mathbf{R}_{\mathcal{H}}$. Given an HOI sample ϕ^{HOI} , human mesh \mathcal{H} can be obtained as follows:

$$\begin{aligned} \mathcal{H} &= \mathbf{s}_{\mathcal{H}} \cdot \mathbf{R}_{\mathcal{H}} \mathcal{H}^{\text{cano}} + \mathbf{t}_{\mathcal{H}}, \\ \mathcal{H}^{\text{cano}} &= \text{smplx}(\text{dec}(\theta_{\mathcal{H}})), \end{aligned} \quad (2)$$

where $\text{dec}(\cdot)$ is the body pose decoder (detailed below) that maps the body pose embedding $\theta_{\mathcal{H}}$ to SMPL-X pose $\theta \in \mathbb{R}^{21 \times 6}$. The function $\text{smplx}(\theta)$ returns the SMPL-X mesh for pose θ in its canonical frame. We use by $\mathbf{R}_{\mathcal{H}}$ both the 6D representation and the corresponding $\text{SO}(3)$ rotation, since there is a straightforward one-to-one mapping between them.

Modeling Human-Human Interaction (HHI). Given a text prompt \mathbf{c} that describes the interaction between two humans, denoted \mathcal{H}_1 and \mathcal{H}_2 , we model the HHI using their body poses along with the relative rotation and translation of \mathcal{H}_2 with respect to \mathcal{H}_1 . We assume both humans share the same scale. Specifically, we define the HHI distribution as $p_{\mathbf{c}}^{\mathcal{H} \rightarrow \mathcal{H}}$ and the HHI sample as ϕ^{HHI} :

$$\phi^{\text{HHI}} \sim p_{\mathbf{c}}^{\mathcal{H} \rightarrow \mathcal{H}}, \quad \phi^{\text{HHI}} = (\theta_{\mathcal{H}_1}, \mathbf{R}_{\mathcal{H}_2 \rightarrow \mathcal{H}_1}, \mathbf{t}_{\mathcal{H}_2 \rightarrow \mathcal{H}_1}, \theta_{\mathcal{H}_2}). \quad (3)$$

The human \mathcal{H}_2 can be reconstructed from the HOI of \mathcal{H}_1 and the HHI:

$$\begin{aligned} \mathcal{H}_2 &= \mathbf{s}_{\mathcal{H}_1} \cdot \mathbf{R}_{\mathcal{H}_1} \mathbf{R}_{\mathcal{H}_2 \rightarrow \mathcal{H}_1} \mathcal{H}_2^{\text{cano}} + \mathbf{s}_{\mathcal{H}_1} \cdot \mathbf{R}_{\mathcal{H}_1} \mathbf{t}_{\mathcal{H}_2 \rightarrow \mathcal{H}_1} + \mathbf{t}_{\mathcal{H}_1}, \\ \mathcal{H}_2^{\text{cano}} &= \text{smplx}(\text{dec}(\theta_{\mathcal{H}_2})), \end{aligned} \quad (4)$$

Body Pose Embedding. We find that modeling the human pose distribution using a low-dimensional embedding $\theta_{\mathcal{H}}$ is more effective than using the full 126D ($=21 \times 6$, 6D representation for each joint rotation) body pose θ directly. Therefore, we train a body pose encoder and decoder to obtain an embedding vector of the body pose, enabling us to model HHOI in the latent space of body poses. To this end, we process 922K human body pose data from [18, 20, 52], and train a body pose encoder and decoder, each implemented as a 4-layer MLP. In experiments, we embed 126D human body poses in a 10D space, that is, $H = 10$, which results in $\phi^{\text{HOI}} \in \mathbb{R}^{20}$ and $\phi^{\text{HHI}} \in \mathbb{R}^{29}$.

3.2 Score-based HHOI Diffusion Model

We model HHOI using score-based diffusion, similar to how poses and scales of objects are modeled in [1, 62]. Let us denote our HHOI diffusion model as Ψ_{Θ} , parameterized by Θ . Then, Ψ_{Θ} represents the noised score function of the HOI, HHI distribution at time step t :

$$\Psi_{\Theta^z}(\phi_t^z, t | \mathbf{c}, z) = \begin{cases} \nabla_{\phi_t^{\text{HOI}}} \log p_{\mathbf{c}}^{\mathcal{M}}(\phi_t^{\text{HOI}}), & z = \text{HOI} \\ \nabla_{\phi_t^{\text{HHI}}} \log p_{\mathbf{c}}^{\mathcal{H} \rightarrow \mathcal{H}}(\phi_t^{\text{HHI}}), & z = \text{HHI} \end{cases}, \quad (5)$$

where $\phi_t^{(\cdot)}$ is a noised HOI or HHI sample at time step t , $z \in \{\text{HOI}, \text{HHI}\}$ represents mode selector, and $\Theta^{\text{HOI}} \cup \Theta^{\text{HHI}} = \Theta$, $\Theta^{\text{HOI}} \cap \Theta^{\text{HHI}} = \emptyset$. For simplicity, we do not use a mesh instance \mathcal{M} as input when modeling HOI; rather, we assume a fixed \mathcal{M} is provided for each scenario.

Training. As HHOI is formulated by decomposing it into HOI and HHI in Sec. 3.1, we also train the score-based diffusion in a decoupled manner. Each mode is trained with the following objective function presented in Denoising Score Matching(DSM) [51]:

$$\mathcal{L}_{\text{score}}(\Theta^z) = \mathbb{E}_{t \sim \mathcal{U}(\epsilon, 1)} \left[\lambda_t \mathbb{E}_{\phi_t^z, \phi_t^z} \left[\left\| \Psi_{\Theta^z}(\phi_t^z, t | \mathbf{c}, z) - \frac{\phi^z - \phi_t^z}{\sigma(t)^2} \right\|_2^2 \right] \right], \quad (6)$$

where ϵ is minimal noise level, $\phi_t^z \sim \mathcal{N}(\phi^z, \sigma^2(t) \mathbf{I}_z)$, $\sigma^2(t) = \sigma_{\min} (\frac{\sigma_{\max}}{\sigma_{\min}})^t$ is a variance factor, and λ_t is a regularization term.

The training process is shown in Fig. 2(a). First, we generate perturbed samples ϕ_t^z as defined. We then compute the target score $\frac{\phi^z - \phi_t^z}{\sigma(t)^2}$ and the estimated score from the HHOI diffusion model to

evaluate the score loss in Eq. (6). We use the CLIP text encoder [40] to obtain a text embedding from a text prompt. For simplicity, we use \mathbf{c} to denote both the text prompt and its corresponding embedding. Additionally, we adopt the text prompt augmentation strategy from [1].

Inference. To sample HOI and HHI instances independently, we solve the following Probability Flow(PF) ODE [48] in reverse time, i.e., from $t = 1$ to $t = \epsilon$:

$$\begin{aligned} \phi_1^z &\sim \mathcal{N}(\mathbf{0}, \sigma_{\max}^2 \mathbf{I}_z), \\ \frac{d\phi_t^z}{dt} &= -\sigma(t)\dot{\sigma}(t)\Psi_{\Theta^z}(\phi_t^z, t|\mathbf{c}, z). \end{aligned} \quad (7)$$

We solve the ODE using external library [7], which is fully supported to run on the GPU. Fig. 2(a) shows this process. However, independently sampling HOI and HHI leads to incoherent posture and spatial configuration in each sampling output, and does not give us the desired HHOI. To address this issue, we propose an advanced guided sampling technique to obtain HHOI in Sec. 3.3.

3.3 Advanced Guided Sampling for HHOI

We adopt the PF ODE augmentation paradigm [1, 27], introducing additional terms that enforce the appropriate combination of HOI and HHI samples during HHOI sampling. Specifically, we incorporate an inconsistency loss to enforce consistency across samples and a collision loss to prevent human collisions. Consider the HHOI involving N humans(i.e., N HOIs), along with M HHIs:

$$\begin{aligned} \phi^{\text{HOI}, \mathcal{H}_i} &\sim p_{\mathbf{c}^{\text{HOI}}}^{\mathcal{M}}, \quad \phi^{\text{HOI}, \mathcal{H}_i} = (\mathbf{R}_{\mathcal{H}_i}, \mathbf{t}_{\mathcal{H}_i}, \mathbf{s}_{\mathcal{H}_i}, \theta_{\mathcal{H}_i}), \\ \phi^{\text{HHI}, \mathcal{H}_k \rightarrow \mathcal{H}_j} &\sim p_{\mathbf{c}^{\text{HHI}}}^{\mathcal{H} \rightarrow \mathcal{H}}, \quad \phi^{\text{HHI}, \mathcal{H}_k \rightarrow \mathcal{H}_j} = (\theta_{\mathcal{H}_j}, \mathbf{R}_{\mathcal{H}_k \rightarrow \mathcal{H}_j}, \mathbf{t}_{\mathcal{H}_k \rightarrow \mathcal{H}_j}, \theta_{\mathcal{H}_k}), \end{aligned} \quad (8)$$

where $i = 1, \dots, N$, and $|\{(j, k) \mid 1 \leq j, k \leq N, j \neq k\}| = M \leq \frac{N(N-1)}{2}$. Note that the number of possible HHIs is at most ${}_N C_2 = \frac{N(N-1)}{2}$. The graph formed by connecting the M human pairs should be a directed acyclic graph (DAG). For example, given three HHIs $\{\mathcal{H}_2 \rightarrow \mathcal{H}_1, \mathcal{H}_3 \rightarrow \mathcal{H}_2, \mathcal{H}_1 \rightarrow \mathcal{H}_3\}$, this is not a valid HHI set because it has a circular dependency.

Inconsistency Loss. To generate a unified HHOI sample from inconsistency HOI/HHI samples set, we introduce inconsistency loss \mathcal{L}_{inc} enforcing coherence between the human representations derived by each sample. In a nutshell, \mathcal{L}_{inc} is the role of enforcing consistency between humans obtained from Eq. 2 and humans obtained from Eq. 4. Specifically, it penalizes discrepancies in scale, body pose, rotation, and translation of HOI and HHI samples at time step t during sampling, as follows:

$$\mathcal{L}_{\text{inc}}(\Phi_t) = \mathcal{L}_{\text{var},s}(\mathbf{s}) + \mathcal{L}_{\text{var},\theta}(\theta) + \mathcal{L}_{\text{var},R}(\mathbf{R}) + \mathcal{L}_{\text{var},t}(\mathbf{t}), \quad (9)$$

where Φ_t denotes union of N HOI samples $\{\phi_t^{\text{HOI}, \mathcal{H}_i}\}$ and M HHI samples $\{\phi_t^{\text{HHI}, \mathcal{H}_k \rightarrow \mathcal{H}_j}\}$ at time step t . Each term in Eq. (9) minimizes the variance of each component, thereby enhancing overall consistency as detailed below.

The scale variance loss, $\mathcal{L}_{\text{var},s}(\mathbf{s})$ penalizes deviations in human scale across HOI samples since the HHI model assumes equal scales for paired humans:

$$\mathcal{L}_{\text{var},s}(\mathbf{s}) = N \cdot \text{Var}(\{\mathbf{s}_{\mathcal{H}_i}\}_{i=1}^N). \quad (10)$$

The body pose variance loss $\mathcal{L}_{\text{var},\theta}(\theta)$ enforces consistency in body poses for the same human:

$$\mathcal{L}_{\text{var},\theta}(\theta) = \sum_{i=1}^N N_i \cdot \text{Var}(\{\theta_{\mathcal{H}_i, n}\}_{n=1}^{N_i}), \quad (11)$$

where N_i denotes total occurrences of human \mathcal{H}_i across HOI and HHI samples. More precisely, $N_i - 1$ is the number of HHIs where \mathcal{H}_i appears. The rotation and translation variance losses, $\mathcal{L}_{\text{var},R}(\mathbf{R})$ and $\mathcal{L}_{\text{var},t}(\mathbf{t})$, ensure consistency among human rotation and translation across interactions:

$$\mathcal{L}_{\text{var},R}(\mathbf{R}) = \sum_{i=0}^N N'_i \cdot \text{Var}(\{\mathbf{R}_{\mathcal{H}_i}\} \cup \{\mathbf{R}_{\mathcal{H}_{jn}} \mathbf{R}_{\mathcal{H}_i \rightarrow \mathcal{H}_{jn}}\}_{n=1}^{N'_i}), \quad (12)$$

$$\mathcal{L}_{\text{var},t}(\mathbf{t}) = \sum_{i=0}^N N'_i \cdot \text{Var}(\{\mathbf{t}_{\mathcal{H}_i}\} \cup \{\mathbf{s}_{\mathcal{H}_{jn}} \cdot \mathbf{R}_{\mathcal{H}_{jn}} \mathbf{t}_{\mathcal{H}_i \rightarrow \mathcal{H}_{jn}} + \mathbf{t}_{\mathcal{H}_{jn}}\}_{n=1}^{N'_i}), \quad (13)$$

where N'_i represents the number of HHIs where human \mathcal{H}_i appears as a target(i.e., in pairs of the form $\mathcal{H}_i \rightarrow \mathcal{H}_j$). Note that $\text{Var}(\{x_1, \dots, x_n\}) = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$.

Collision Loss. To ensure plausible interactions among multiple humans, it is essential to avoid physically implausible scenarios such as unintended body intersections. In particular, for human pairs that are not explicitly connected by a HHI, we assume an “no collision” constraint—that is, the absence of collision serves as their implicit HHI. For instance, if the HHI set is $\{\mathcal{H}_2 \rightarrow \mathcal{H}_1, \mathcal{H}_3 \rightarrow \mathcal{H}_2\}$, then we enforce that \mathcal{H}_1 and \mathcal{H}_3 do not collide.

However, computing accurate inter-human collisions using full SMPL-X meshes during ODE-based sampling is computationally expensive. To address this, we approximate collisions between two humans in following steps: (1) Compute joint positions via forward kinematics over body joints using each human pose; (2) Construct a 24-capsule proxy from these joints with predefined radius factors to approximate each human as a capsule-based model; (3) Compute the sum of overlaps over all capsule pairs for two humans as the collision loss. Each overlap is computed simply as the sum of the two radii minus the distance between the capsules’ axis segments. Accordingly, the collision loss $\mathcal{L}_{\text{col}}(\Phi_t)$ is computed as

$$\mathcal{L}_{\text{col}}(\Phi_t) = \sum_{(\mathcal{H}_i, \mathcal{H}_j) \in \Phi_{\text{nap}}} \frac{1}{24^2} \sum_{c_i=1}^{24} \sum_{c_j=1}^{24} \max(0, r_{c_i}^{\mathcal{H}_i} + r_{c_j}^{\mathcal{H}_j} - d_{c_i, c_j}^{\mathcal{H}_i, \mathcal{H}_j}), \quad (14)$$

where Φ_{nap} is the set of non-adjacent human pairs, $r_{c_i}^{\mathcal{H}_i}$ is the radius of the c_i -th capsule of human \mathcal{H}_i , and $d_{c_i, c_j}^{\mathcal{H}_i, \mathcal{H}_j}$ is the distance between the axis segment of the c_i -th capsule of human \mathcal{H}_i and the axis segment of the c_j -th capsule of human \mathcal{H}_j . Note that in Eq. 14, if the sum of the two capsule radii is less than the distance between their axis segments, there is no collision and the value is clipped to zero. See Supp. Mat. for a process to approximate a human with a 24-capsule proxy.

Guided HHOI Sampling. Using Eq. 9 and Eq. 14, we augment the PF ODE in Eq. 7 as follows to sample HHOI:

$$\begin{aligned} \phi_1^{z,i} &\sim \mathcal{N}(\mathbf{0}, \sigma_{\text{max}}^2 \mathbf{I}_z), \\ \frac{d\phi_t^{z,i}}{dt} &= -\sigma(t)\dot{\sigma}(t)\Psi_{\Theta^z}(\phi_t^{z,i}, t|\mathbf{c}^z, z) + \lambda_1 \nabla_{\phi_t^{z,i}} \mathcal{L}_{\text{inc}}(\Phi_t) + \lambda_2 \nabla_{\phi_t^{z,i}} \mathcal{L}_{\text{col}}(\Phi_t), \end{aligned} \quad (15)$$

where $\phi_t^{z,i}$ is i th HOI($z = \text{HOI}$) sample or HHI($z = \text{HHI}$) sample at time step t , λ_1 and λ_2 are weight terms. In Fig. 2(b), we provide an intuitive overview of our advanced sampling process through a concrete HHOI example in which three humans sit on a bench.

4 Datasets

In this section, we present the motivation and data collection procedure for our dataset. To align with our model architecture, the distribution of body poses in the HOI dataset must be consistent with that of the HHI dataset. For instance, HOI dataset with action “sitting on a bench”, may consist only of body pose with head pose fixed to the front, assuming only one human is in the scene, while the HHI dataset may contain a broader range of head orientations more representative of real-world variability. In this case, our model will be unable to generate these natural variations during the HHOI synthesis.

The most straightforward solution is to collect data from scenes that include both multiple humans and interacting objects. While several individual datasets that contain either multi-human poses or human-object interactions have been released, there are a limited number of datasets that capture both multi-human poses and human-object interactions. CORE4D [37] is one of them, providing high-quality motion capture data of two individuals interacting with a single object. It includes object pose annotations and human SMPL-X parameters for six object categories. However, the range of interaction types in CORE4D is relatively narrow, focusing primarily on collaborative actions such as passing an object or moving it together. In contrast, real-world interactions are more diverse. Notably, there are scenarios where no direct contact occurs between humans and objects, yet the mere presence of the object influences spatial relationships (proxemics) and interaction dynamics between individuals. Such implicit object effects are underrepresented in existing datasets.

To address the lack of diverse human-human-object interactions, we collect dyadic human and object poses using a multi-view camera system. Specifically, we record two people interacting with various

objects from 36 synchronized RGB cameras. We apply an off-the-shelf 2D pose detector [59] and a 3D optimization method [69] to recover the SMPL-X parameters for both individuals in each camera frame, followed by manual post-filtering. The collected HHOI dataset is divided into HOI and HHI subsets, which are used to train the respective score-based models. The same data processing and training procedure is applied to the CORE4D dataset. Our dataset consists of 5,078 frames spanning 11 object categories, and is expressed in metric units. Refer to Supp. Mat. for more details.

While the aforementioned datasets provide high-quality HHOI data, their content is limited to scenarios that can be captured in controlled studio environments. As a result, interactions involving large objects or outdoor scenarios, such as “two people riding a motorcycle together”, are difficult to capture with our multi-view camera systems. To address this limitation, we leverage the knowledge of 2D image diffusion model on HOI and HHI. Recent models such as Flux [31] can generate realistic human-object interaction images from textual prompts while preserving crucial social cues, including joint body poses and interpersonal distances that reflect real-world dynamics.

To generate HOI data, we utilize ComA [26], which takes as input an object instance and a textual description of an HOI scenario, and outputs corresponding 3D human-object interactions represented via SMPL-X parameters. For HHI data, we generate images of dyadic human interactions involving an object using textual prompts and the Flux diffusion model. Subsequently, we apply a Human Mesh Recovery method [2] to reconstruct 3D human meshes from the generated images.

5 Experiments

5.1 Baselines and Metrics

Baselines. Previous research on human-object interaction has primarily focused on generating a single human pose with respect to a specific object. As there exists no comparable method for generating multiple humans interacting with an object as in our setting, we develop two approaches for this novel task: (1) by extending GenZI [33], and (2) by lifting separately generated humans using a depth optimization strategy, referred to as Depth Opt.

First, we modify GenZI, which originally renders a target object in multi-view and inpaints a single human based on a text prompt. We revise the prompt and inpainting process to synthesize images with multiple people, and follow GenZI’s pipeline by detecting 2D body poses and optimizing SMPL-X parameters using multi-view joint positions. For Depth Opt., we inpaint a single-view object rendering using a diffusion-based model [41], extract 3D human meshes via Human Mesh Recovery [2], and align them to the object using depth optimization with Depth-Pro [5]. See Supp. Mat. for further details.

Metrics. To evaluate how realistically our model generates body poses and interpersonal distances, we compare the distributions of generated results against the test set in CORE4D and our collected dataset. For body pose, we compute the Fréchet Distance (FD) between the embedded pose distributions which are obtained via our body pose encoder. For interpersonal distance, we calculate FD on the per-human global translation differences.

We additionally employ CLIP-score [40] to assess semantic alignment between the generated outputs and the input text prompts. The HHOI outputs are rendered from multi-view, and CLIP-score is computed by averaging image-text cosine similarities across these views. For cases involving more than three humans, we report the success rate to evaluate the robustness of our model in multi-human settings. We account generation success as fully generating desired number of people in 3D.

Physical plausibility of the generated HHOI is also an important factor, so we evaluate it using two metrics—penetration ratio and contact distance. Penetration ration measures the ratio of mesh vertices that lie inside another mesh, against the total mesh vertices. We count human vertices inside another human or the object and report human-human and human-object separately. Contact distance is measured only for categories requiring contact, split into hand-contact (board, box, bucket, chair, desk) and hip-contact (bench). For each, we randomly sample 10 vertices from the relevant body parts and compute their mean distance to the object mesh.

Finally, we conduct a user study to further validate the realism and text coherence of our method. Participants compare outputs from our model and baselines and select the most realistic and faithful to the prompt.

Figure 3: HHOI generation result of dyadic, and multiple humans in action with our model and baselines. In multiple HHOI, number of humans ranges from 3 to 5. Empty result represents cases where generation failed in 10 trials. Our model can generate complex HHOIs with varying number of humans in the scene, while preserving the natural social cues.

5.2 Results

Qualitative results on our model output, along with baseline outputs is shown in Fig. 3. Since both baseline models leverage the knowledge of 2D image diffusion model to generate plausible HOIs, their performance depends heavily on the inpainting output. In scenes where the object is actively used and in direct contact with a human, inpainting quality degrades; the target object is frequently missing from the output, which in turn leads to poor optimization quality. Additionally, as the number of people increases, the percentage of inpainting where it fails to generate the whole N number of

Table 1: Quantitative comparison on text-guided dyadic HHOI generation. Our model shows robust performance compared to baseline models in all the metrics.

Method	Body Pose FD ↓	Distance FD ↓	CLIP Score ↑	User Study (%)
Depth Opt.	0.6834	0.4180	0.2647	20.8
GenZI	1.3500	0.3542	0.2633	18.4
Ours	0.1755	0.0689	0.2695	60.9

Table 2: Quantitative comparison of text-guided multi-human generation. Our model consistently outperforms baseline methods across all evaluation metrics, demonstrating robust performance.

Method	CLIP Score ↑	Success Rate (%)		
		3 human	4 human	5 human
Depth Opt.	0.2510	33.3	18	13
GenZI	0.2584	67.3	41.4	22
Ours	0.2685	100.0	100.0	100.0

people also increases. The multi-view consistency of each human also further deteriorates as the number of people increases.

Aside from inpainting quality, both models suffer from lack of 3D HOI and HHI knowledge. Depth Opt. generates implausible human position relative to the object, due to depth estimation error. The multi-view SMPL-X parameter optimization in GenZI is sensitive to consistent body pose in each view, and can lead to poor body pose output quality. On the contrary, our generation results show high quality HHOIs in various object categories in both static and dynamic scenes.

Tab. 1 shows quantitative results evaluating the realism on generating two people in action with object. Compared to baseline models, our model achieves significantly higher score in body pose and distance FD, implying our model can produce more realistic and natural HHOIs, that resemble those in real world environment. Note that due to background scene rendering, images with different HHOI generation output may have similar CLIP embeddings, which may be the cause of all 3 models producing CLIP scores in close range. This suggests FD of body pose and interpersonal distance is a more reliable method in evaluating how realistic each output is. Nevertheless, our model beats the baseline model in CLIP score by a slight margin. Our model also outperforms baseline models in multi-human generation. Tab. 2 shows that our model achieves higher scores in CLIP score and success rate when generating more than 3 people, implying a more realistic and robust generation.

We show the physical plausibility metrics of our model output against the baselines in Tab. 3. Our model outperforms baseline models in contact distance metric, implying our model output achieves more precise contact with the object compared to baseline. For the human-human and human-object penetration ratios, our model demonstrates superior performance in dyadic human generation, whereas Depth Opt. achieves comparable results when generating three or more people. However, this apparent performance stems from Depth Opt.’s tendency to place humans at excessively large distances from objects, a consequence of the instability in depth estimation. When combined with Human Mesh Recovery, this results in low penetration metrics but unrealistic spatial arrangements in HHOI scenarios. The poor contact distance scores of Depth Opt. further substantiate this observation.

5.3 Applications

The capability of our model to generate plausible human-human-object interactions (HHOIs) involving multiple individuals from textual prompts provides a foundation for a range of future research directions. One promising avenue is generating multiple human motion in the presence of objects in the scene. In this way, we leverage our sampled human configurations as conditioning inputs for motion-in-betweening tasks.

Diffusion-Noise-Optimization (DNO) [25] performs various motion-related editing tasks, using existing motion-diffusion models as a motion prior. The output of naive motion generation is compared with the condition to calculate joint loss. By changing the sampling process to ODE, we

Figure 4: Motion in-betweening outputs from DNO and InterGen, given a naive standing pose as the start frame constraint and our HHOI generation output as the end frame constraint.

Table 3: Quantitative comparison on physical plausibility metrics of our model and baseline outputs.

Metric	Method	2 Human	3 Human	4 Human	5 Human
Human-Human Penetration Ratio ↓ (×1000)	Depth Opt.	13.91	14.06	19.35	26.16
	GenZI	13.91	24.60	21.55	49.06
	Ours	7.90	15.68	19.82	25.69
Human-Object Penetration Ratio ↓ (×1000)	Depth Opt.	11.48	4.15	9.41	1.20
	GenZI	60.71	15.64	11.93	8.91
	Ours	5.49	7.74	7.19	10.18
Contact Distance ↓ (m)	Depth Opt.	0.666	1.992	4.415	2.736
	GenZI	0.103	0.126	0.537	0.389
	Ours	0.029	0.031	0.028	0.026

can obtain a motion sample from the latent noise deterministically and retrieve the latent noise from the motion output. Since this process is deterministic, we can backpropagate the joint loss to the inversion process and optimize the latent noise to minimize the joint loss.

Human samples generated by our model are utilized as conditional inputs to guide the optimization of the motion diffusion model InterGen [35]. By integrating object interaction cues from our sampled HHOIs with motion priors from diffusion-based models, we enable the synthesis of natural multi-human motions that exhibit plausible interactions with objects in the environment. As illustrated in Fig. 4, our method allows precise positioning of generated humans and object-specific poses that are not observed in existing models.

6 Discussion

In this paper, we propose a method to model Human-Human-Object Interactions (HHOIs) using score-based generative models. By combining separately trained HOI and HHI models, we introduce a novel sampling strategy that enables the generation of an arbitrary number of people interacting with an object. To train and evaluate our model, we construct a new HHOI dataset by capturing additional samples, together with synthetic data generated by our pipeline. We demonstrate that our method can synthesize realistic multi-human interaction with diverse objects. As shown in our applications, this capability enables downstream tasks such as interaction-aware motion generation and provides a foundation for future research in multi-agent embodied intelligence.

As a limitation, our score-based model cannot directly learn HHOIs from datasets dedicated solely to HOI or HHI, due to distributional discrepancies in human configurations. Extending our framework to effectively leverage such datasets remains an open research question.

Acknowledgements

This work was supported by NRF grant funded by the Korean government (MSIT) [No. RS-2022-NR070498 and RS-2025-25396144], and IITP grant funded by the Korea government (MSIT) [No. RS-2024-00439854, No. RS-2025-25441838, No. RS-2021-II211343, No. RS-2025-25442338, and No.2022-0-00156]. H. Joo is the corresponding author.

References

- [1] S. Baik, H. Kim, and H. Joo. Learning 3d object spatial relationships from pre-trained 2d diffusion models. *ICCV*, 2025. 3, 4, 5
- [2] F. Baradel*, M. Armando, S. Galaaoui, R. Brégier, P. Weinzaepfel, G. Rogez, and T. Lucas*. Multi-hmr: Multi-person whole-body human mesh recovery in a single shot. *ECCV*, 2024. 7
- [3] B. L. Bhatnagar, X. Xie, I. A. Petrov, C. Sminchisescu, C. Theobalt, and G. Pons-Moll. Behave: Dataset and method for tracking human object interactions. *CVPR*, 2022. 2
- [4] M. J. Black, P. Patel, J. Tesch, and J. Yang. Bedlam: A synthetic dataset of bodies exhibiting detailed lifelike animated motion. *CVPR*, 2023. 2
- [5] A. Bochkovskii, A. Delaunoy, H. Germain, M. Santos, Y. Zhou, S. R. Richter, and V. Koltun. Depth pro: Sharp monocular metric depth in less than a second. *ICLR*, 2025. 7
- [6] Z. Cao, H. Gao, K. Mangalam, Q.-Z. Cai, M. Vo, and J. Malik. Long-term human motion prediction with scene context. *ECCV*, 2020. 2
- [7] R. T. Q. Chen. torchdiffeq, 2018. URL <https://github.com/rtqichen/torchdiffeq>. 5
- [8] H. Ci, M. Wu, W. Zhu, X. Ma, H. Dong, F. Zhong, and Y. Wang. Gfpose: Learning 3d human pose prior with gradient fields. *CVPR*, 2023. 3
- [9] C. Diller and A. Dai. Cg-hoi: Contact-guided 3d human-object interaction generation. *CVPR*, 2024. 1, 3
- [10] K. Fan, J. Tang, W. Cao, R. Yi, M. Li, J. Gong, J. Zhang, Y. Wang, C. Wang, and L. Ma. Freemotion: A unified framework for number-free text-to-motion synthesis. *ECCV*, 2024. 1, 3
- [11] Z. Fan, O. Taheri, D. Tzionas, M. Kocabas, M. Kaufmann, M. J. Black, and O. Hilliges. ARCTIC: A dataset for dexterous bimanual hand-object manipulation. *CVPR*, 2023. 2, 3
- [12] M. Fieraru, M. Zanfir, E. Oneata, A.-I. Popa, V. Olaru, and C. Sminchisescu. Three-dimensional reconstruction of human interactions. *CVPR*, 2020. 2, 3
- [13] A. Ghosh, R. Dabral, V. Golyanik, C. Theobalt, and P. Slusallek. Remos: 3d motion-conditioned reaction synthesis for two-person interactions. *ECCV*, 2024. 2, 3
- [14] W. Guo, X. Bie, X. Alameda-Pineda, and F. Moreno-Noguer. Multi-person extreme motion prediction. *CVPR*, 2022. 2
- [15] V. Guzov, A. Mir, T. Sattler, and G. Pons-Moll. Human poseitioning system (hps): 3d human pose estimation and self-localization in large scenes from body-mounted sensors. *CVPR*, 2021. 1, 2
- [16] V. Guzov, J. Chibane, R. Marin, Y. He, Y. Saracoglu, T. Sattler, and G. Pons-Moll. Interaction replica: Tracking human–object interaction and scene changes from human motion. *3DV*, 2024. 1, 2
- [17] S. Han and H. Joo. Learning canonicalized 3d human-object spatial relations from unbounded synthesized images. *ICCV*, 2023. 3
- [18] C.-H. P. Huang, H. Yi, M. Höschle, M. Safroshkin, T. Alexiadis, S. Polikovsky, D. Scharstein, and M. J. Black. Capturing and inferring dense full-body human-scene contact. *CVPR*, 2022. 2, 4
- [19] Y. Huang, O. Taheri, M. J. Black, and D. Tzionas. Intercap: Joint markerless 3d tracking of humans and objects in interaction. *GCPR*, 2022. 2
- [20] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu. Human3.6m: Large scale datasets and predictive methods for 3d human sensing in natural environments. *TPAMI*, 2008. 4
- [21] N. Jiang, Z. He, Z. Wang, H. Li, Y. Chen, S. Huang, and Y. Zhu. Autonomous character-scene interaction synthesis from text instruction. *SIGGRAPH Asia*, 2024. 3

[22] N. Jiang, Z. Zhang, H. Li, X. Ma, Z. Wang, Y. Chen, T. Liu, Y. Zhu, and S. Huang. Scaling up dynamic human-scene interaction modeling. *CVPR*, 2024. 2

[23] H. Joo, H. Liu, L. Tan, L. Gui, B. Nabbe, I. Matthews, T. Kanade, S. Nobuhara, and Y. Sheikh. Panoptic studio: A massively multiview system for social motion capture. *CVPR*, 2015. 1, 3

[24] H. Joo, T. Simon, M. Cikara, and Y. Sheikh. Towards social artificial intelligence: Nonverbal social signal prediction in a triadic interaction. *CVPR*, 2019. 3

[25] K. Karunratanakul, K. Preechakul, E. Aksan, T. Beeler, S. Suwajanakorn, and S. Tang. Optimizing diffusion noise can serve as universal motion priors. *CVPR*, 2024. 2, 9

[26] H. Kim, S. Han, P. Kwon, and H. Joo. Beyond the contact: Discovering comprehensive affordance for 3d objects from pre-trained 2d diffusion models. *ECCV*, 2024. 1, 3, 7

[27] H. Kim, S. Baik, and H. Joo. David: Modeling dynamic affordance of 3d objects using pre-trained video diffusion models. *ICCV*, 2025. 3, 5

[28] J. Kim, J. Kim, J. Na, and H. Joo. Parahome: Parameterizing everyday home activities towards 3d generative modeling of human-object interactions. *CVPR*, 2025. 2, 3

[29] N. Kulkarni, D. Rempe, K. Genova, A. Kundu, J. Johnson, D. Fouhey, and L. Guibas. Nifty: Neural object interaction fields for guided human motion synthesis. *CVPR*, 2024. 3

[30] J. N. Kundu, H. Buckchash, P. Mandikal, A. Jamkhandi, V. B. Radhakrishnan, et al. Cross-conditioned recurrent networks for long-term synthesis of inter-person human motion interactions. *WACV*, 2020. 2, 3

[31] B. F. Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024. 7

[32] J. Li, A. Clegg, R. Mottaghi, J. Wu, X. Puig, and C. K. Liu. Controllable human-object interaction synthesis. *ECCV*, 2024. 1, 3

[33] L. Li and A. Dai. GenZI: Zero-shot 3D human-scene interaction generation. *CVPR*, 2024. 3, 7

[34] R. Li, Y. Zhang, Y. Zhang, Y. Zhang, M. Su, J. Guo, Z. Liu, Y. Liu, and X. Li. Interdance: Reactive 3d dance generation with realistic duet interactions. *arXiv preprint arXiv:2412.16982*, 2024. 3

[35] H. Liang, W. Zhang, W. Li, J. Yu, and L. Xu. Intergen: Diffusion-based multi-human motion generation under complex interactions. *IJCV*, 2024. 1, 2, 3, 10

[36] D. Lim, C. Jeong, and Y. M. Kim. Mammos: Mapping multiple human motion with scene understanding and natural interactions. *ICCVW*, 2023. 1, 3

[37] Y. Liu, C. Zhang, R. Xing, B. Tang, B. Yang, and L. Yi. Core4d: A 4d human-object-human interaction dataset for collaborative object rearrangement. *arXiv preprint arXiv:2406.19353*, 2024. 2, 3, 6

[38] L. Müller, V. Ye, G. Pavlakos, M. Black, and A. Kanazawa. Generative proxemics: A prior for 3d social interaction from images. *CVPR*, 2024. 2, 3

[39] G. Pavlakos, V. Choutas, N. Ghorbani, T. Bolkart, A. A. A. Osman, D. Tzionas, and M. J. Black. Expressive body capture: 3D hands, face, and body from a single image. *CVPR*, 2019. 4

[40] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervision. *ICML*, 2021. 5, 7

[41] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis with latent diffusion models. *CVPR*, 2022. 2, 7

[42] Y. Shafir, G. Tevet, R. Kapon, and A. H. Bermano. Human motion diffusion as a generative prior. *ICLR*, 2024. 1, 2, 3

[43] M. Shan, L. Dong, Y. Han, Y. Yao, T. Liu, I. Nwogu, G.-J. Qi, and M. Hill. Towards open domain text-driven synthesis of multi-person motions. *ECCV*, 2024. 1, 3

[44] L. Siyao, T. Gu, Z. Yang, Z. Lin, Z. Liu, H. Ding, L. Yang, and C. C. Loy. Duolando: Follower gpt with off-policy reinforcement learning for dance accompaniment. *ICLR*, 2024. 3

[45] W. Song, X. Zhang, S. Li, Y. Gao, A. Hao, X. Hou, C. Chen, N. Li, and H. Qin. Hoianimator: Generating text-prompt human-object animations using novel perceptive diffusion models. *CVPR*, 2024. 1, 3

[46] Y. Song and S. Ermon. Generative modeling by estimating gradients of the data distribution. *NeurIPS*, 2019. 3

[47] Y. Song and S. Ermon. Improved techniques for training score-based generative models. *NeurIPS*, 2020. 3

[48] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based generative modeling through stochastic differential equations. *ICLR*, 2021. 3, 5

[49] M. Suhail, A. Mittal, B. Siddiquie, C. Broaddus, J. Eledath, G. Medioni, and L. Sigal. Energy-based learning for scene graph generation. *CVPR*, 2021. 3

[50] M. Tanaka and K. Fujiwara. Role-aware interaction generation from textual description. *ICCV*, 2023. 1, 3

[51] P. Vincent. A connection between score matching and denoising autoencoders. *Neural computation*, 23(7): 1661–1674, 2011. 4

[52] T. von Marcard, R. Henschel, M. Black, B. Rosenhahn, and G. Pons-Moll. Recovering accurate 3d human pose in the wild using imus and a moving camera. *ECCV*, 2018. 1, 2, 4

[53] M. Wu, F. Zhong, Y. Xia, and H. Dong. TarGF: Learning target gradient field for object rearrangement. *NeurIPS*, 2022. 3

[54] L. Xu, Z. Song, D. Wang, J. Su, Z. Fang, C. Ding, W. Gan, Y. Yan, X. Jin, X. Yang, et al. Actformer: A gan-based transformer towards general action-conditioned 3d human motion generation. *ICCV*, 2023. 1, 3

[55] L. Xu, X. Lv, Y. Yan, X. Jin, S. Wu, C. Xu, Y. Liu, Y. Zhou, F. Rao, X. Sheng, et al. Inter-x: Towards versatile human-human interaction analysis. *CVPR*, 2024. 2, 3

[56] L. Xu, Y. Zhou, Y. Yan, X. Jin, W. Zhu, F. Rao, X. Yang, and W. Zeng. Regennet: Towards human action-reaction synthesis. *CVPR*, 2024. 1, 3

[57] S. Xu, Z. Li, Y.-X. Wang, and L.-Y. Gui. Interdiff: Generating 3d human-object interactions with physics-informed diffusion. *ICCV*, 2023. 1, 3

[58] S. Xu, Z. Wang, Y.-X. Wang, and L.-Y. Gui. Interdreamer: Zero-shot text to 3d dynamic human-object interaction. *NeurIPS*, 2024. 3

[59] Z. Yang, A. Zeng, C. Yuan, and Y. Li. Effective whole-body pose estimation with two-stages distillation. *ICCV*, 2023. 7

[60] H. Yi, J. Thies, M. J. Black, X. B. Peng, and D. Rempe. Generating human interaction motions in scenes with text control. *arXiv preprint arXiv:2404.10685*, 2024. 3

[61] J. Zhang, H. Luo, H. Yang, X. Xu, Q. Wu, Y. Shi, J. Yu, L. Xu, and J. Wang. Neuraldome: A neural modeling pipeline on multi-view human-object interactions. *CVPR*, 2023. 1, 2

[62] J. Zhang, M. Wu, and H. Dong. Generative category-level object pose estimation via diffusion models. *NeurIPS*, 2024. 3, 4

[63] J. Zhang, J. Zhang, Z. Song, Z. Shi, C. Zhao, Y. Shi, J. Yu, L. Xu, and J. Wang. Hoi-m³: Capture multiple humans and objects interaction within contextual environment. *CVPR*, 2024. 1, 2, 3

[64] X. Zhang, B. L. Bhatnagar, S. Starke, I. Petrov, V. Guzov, H. Dhamo, E. Pérez-Pellitero, and G. Pons-Moll. Force: Dataset and method for intuitive physics guided human-object interaction. *arXiv preprint arXiv:2403.11237*, 2024. 2

[65] Y. Zhang, H. Yang, C. Luo, J. Peng, Y. Wang, and Z. Zhang. Ood-hoi: Text-driven 3d whole-body human-object interactions generation beyond training domains. *arXiv preprint arXiv:2411.18660*, 2024. 1, 3

[66] K. Zhao, S. Wang, Y. Zhang, T. Beeler, and S. Tang. COINS: Compositional human-scene interaction synthesis with semantic control. *ECCV*, 2022. 1

[67] Y. Zheng, R. Shao, Y. Zhang, T. Yu, Z. Zheng, Q. Dai, and Y. Liu. Deepmulticap: Performance capture of multiple characters using sparse multiview cameras. *ICCV*, 2021. 1, 3

[68] Y. Zheng, Y. Yang, K. Mo, J. Li, T. Yu, Y. Liu, C. K. Liu, and L. J. Guibas. Gimo: Gaze-informed human motion prediction in context. *ECCV*, 2022. 1, 2

[69] Z. Zheng, T. Yu, Y. Liu, and Q. Dai. Pamir: Parametric model-conditioned implicit representation for image-based human reconstruction. *TPAMI*, 2021. 7

[70] Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li. On the continuity of rotation representations in neural networks. *CVPR*, 2019. 4

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction accurately reflect the core contributions of the paper, which are also clearly summarized in the final paragraph of the introduction and supported by the experimental results.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We briefly mention limitations in Sec. 6, and provide detailed information in the supplementary material regarding training setup, data, and evaluation, enabling readers to assess potential assumptions and limitations of our approach.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results or formal proofs, as it focuses on empirical methodology and evaluation.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [\[Yes\]](#)

Justification: We provide detailed descriptions of our dataset generation process, model architecture, and evaluation procedure in the supplementary material to ensure the reproducibility of our main results.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [\[No\]](#)

Justification: We intend to release the code and dataset publicly after further polishing and preparation. However, they are not included at submission time, and we do not currently provide access to ensure the release meets quality and usability standards.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.

- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: **[Yes]**

Justification: We provide all necessary training and evaluation details—including data splits, dataset statistics, hyperparameters, and optimizer settings—in the main paper and supplementary material.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: **[No]**

Justification: We do not report error bars or confidence intervals, as we did not repeat our main experiments multiple times. However, we evaluate our model on a fixed test set composed of thousands of samples and report averaged results with detailed evaluation settings.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer “Yes” if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We provide detailed specifications of our compute resources—including GPU model, CPU, and memory—as well as training and inference time in the supplementary material, to ensure transparency.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: [Yes]

Justification: Our research adheres to the NeurIPS Code of Ethics. We ensured respect for privacy and dignity, did not involve human subjects or sensitive data, and considered potential societal impacts and harms. No ethical concerns arose during the development or evaluation of our method.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: Our paper focuses on generating plausible interacting motion between humans and objects. The generated data is synthetic, does not include any private or identifiable information, and is not directly usable for disinformation, surveillance, or impersonation. Since the work does not involve downstream deployment or decision-making, and there is no clear path to misuse or societal harm, we believe the broader societal impact is minimal.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper does not involve models or datasets with high risk for misuse. Our dataset is collected and processed to preserve anonymity and does not include personally identifiable or sensitive content.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We credit all external assets used in the paper in the supplementary material, including citation of sources and license information for datasets and models.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: We introduce a new model and dataset, and provide preprocessing steps and data structure details in the supplementary material. Although we plan to publicly release the dataset after further preparation, usage guidelines and license information are not included at submission time due to time constraints.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [\[Yes\]](#)

Justification: We use a publicly available survey platform for a human preference evaluation study and provide full instructions, interface screenshots, and compensation details in the supplementary material.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [\[NA\]](#)

Justification: Our study does not involve interventions or risks that require IRB approval. The human subject evaluation is limited to voluntary, anonymized preference ratings using a publicly available platform.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.