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Abstract
In recent years, single tasks such as face frontalization, image inpainting, and glasses removal
have improved face de-occlusion. However, there is little work on joint learning of multiple
de-occlusion tasks. To achieve multi-task learning, we propose an unoccluded face synthesis
(UFS) framework for multi-tasks such as face frontalization, image inpainting, and glasses
removal, which can remove glasses, face self-occlusion, and external occlude. Our UFS
framework consists of an encoder, an image reconstruction module, a decoder, and an image
discriminator. First, Gaussian random noise extracts high-dimensional features from images
in the encoder module. Next, the image reconstruction module includes multi-scale feature
fusion, residual hole block, and self-attention network. As a result, it can strengthen the
learning of multi-level fine-grained features and achieve better results in face restoration
and face frontalization tasks. Then, we synthesize unoccluded face textures from multi-
level fine-grained elements in the decoder. Finally, the image discriminator learns the global
information structure of the synthesized image, preventing problems such as distortion and
blurring of the picture. Experiments show that our UFS framework can achieve better results
on single tasks such as face frontalization, image inpainting, and glasses removal. It also can
obtain acceptable results on multiple tasks such as face frontalization and glasses removal
simultaneously.
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1 Introduction

Due to the occlusion of faces and other objects, it isn’t easy to find full-view unoccluded
face textures in photos. In the wild, non-frontal face images are prevalent. People often pose
various gestures poses and wear different glasses when taking pictures. These images often
have various occlusions, challenging to synthesize unoccluded face textures. Although the
PCA-based methods [1–3] can remove other face occlusions, it relies heavily on the prior
knowledge of face scanning, resulting in the loss of many local details in the synthesized
face image. As a result, it cannot guarantee the high fidelity of the synthesized face. Tasks
such as face frontalization and face removal have made breakthroughs in occlusion removal,
but it is still impossible to remove multiple occlusions. Although the various occlusions of
the face can be removed by connecting numerous networks, the high computational cost and
excessive resource consumption lead to training difficulties.

In response to the above problems, this paper proposes an unoccluded face synthesis
(UFS) frameworka that combines face frontalization, image inpainting, and face glasses
removal to remove face occlusion. Our framework can generate unoccluded face textures
using only one network, reducing network overhead. The UFS framework includes four
parts such as an encoder module, an image reconstruction module, a decoder module, and
an image discriminator module. The encoder and decoder are used to synthesize unoccluded
face textures. The image reconstruction module adopts a multi-scale feature fusion mod-
ule, a hole residual block module, and a self-attention network module. Multi-scale feature
fusion extracts features of different scales and global features from the encoder. The residual
hole block expands the receptive field and performs feature fusion with multi-scale feature
fusion to obtain fine-grained features. The self-attention network generates spatial atten-
tion maps for fine-grained features and enhances face region learning. Finally, multi-level
fine-grained features are generated through the momentum formula. The image discrimina-
tor module captures the global information structure, making the synthesized images more
realistic.

In summary, this study makes the following contributions to existing literature:

• We propose a UFS framework that combines multiple tasks of face frontalization, image
inpainting, and glasses removal to synthesize unoccluded face textures.

• Our proposed framework jointly employs an image reconstruction module with multi-
scale feature fusion, an atrous residual block, and an attention network to obtain multi-
level fine-grained feature representations. The image discriminator learns the overall
structure of the face, and the synthesized face is more realistic. As a result, we can achieve
better visual results on multiple tasks such as face frontalization, image inpainting, and
glasses removal.

• We adopt the high-frequency focal loss to make the synthesized image closer to the target
image in frequency, recover the high-frequency details that are difficult to synthesize and
make the picture is more realistic. We also construct a face dataset and train the network
to synthesize transparent face textures without occlusion.
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2 RelatedWork

2.1 Face Frontalization

Face frontalization aims to synthesize the frontal face image from the profile image. Hassner
et al. [4] employed a mean 3D face model to recover the frontalized face image in the tradi-
tionalmethod. Still, thismethod ignores the texture details, resulting in a severe loss of texture
details of faces. With the development of deep learning, many GAN-based approaches [5, 6]
have been present. Tran et al. [7] proposed a disentangled representation learning generative
adversarial network (DR-GAN) to decouple various pose information to synthetic frontal
faces. However, this method has poor generalization ability and is prone to image degrada-
tion in unconstrained environments. Two-pathway generative adversarial network (TP-GAN)
was proposed in [8] to apply two-pathway GAN to learn global face structure and local area
structure, preventing distortion and artifacts during image frontalization. This method pro-
vides a new idea for face frontalization, and most of the subsequent face frontalization work
employs the global and local overall structure. However, this method still cannot eliminate
the limitation of the environment, and the effect is poor in the unconstrained environment.
Zhao et al. [9] presented a pose invariant model (PIM) using a domain adaptation strategy
for face recognition in extreme poses. The Dual-attention generative adversarial network
(DA-GAN) [10] was proposed to adopt a self-attention mechanism to learn rich feature rep-
resentations and preserve identity consistency. Still, the frontal face images generated by
this method cannot guarantee the consistency of illumination information. In response to the
above problems, we adopt an image reconstruction module in the UFS framework to recover
the face’s local details and maintain the illumination information’s consistency. The image
reconstructionmodule employs multi-scale features to perceive illumination information and
uses a self-attention network to enhance face regions’ learning.

2.2 Image Completion

Unocclusion face synthesis is also an image completion problem. Recently, image comple-
tion has become a research hotspot in computer vision. Some deep learning-based methods
have been applied to image completion. Context-encoder in [11] was the first to propose
using GAN for image inpainting. It jointed reconstruction and adversarial loss to repair the
structure of missing regions. Iizuka et al. [12] presented atrous convolution to enlarge the
receptive field. To address the irregular mask problem, Liu et al. [13] proposed partial con-
volution to perform convolution operations on valid pixels to reduce the difference between
repaired and entire regions. Joint global and local discriminator methods [3] were proposed to
improve the image quality. The global discriminator learns the global information structure.
The local discriminator learns the information of the local image to ensure the consistency
of the context information. Huang et al. [14] presented a range scaling global U-Net, which
used global features in the U-Net framework to reduce visual artifacts and realize the trans-
formation from low-quality images to high-quality images.We apply the image discriminator
in the UFS framework to learn the global information of the picture. We use atrous residual
blocks to enlarge the receptive field and employ a spatial self-attention network in the image
reconstruction module to enhance the learning of local face regions. As a result, we achieve
good results on image inpainting tasks.
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Fig. 1 Our proposed UFS framework consists of an encoder module, a decoder module, an image recon-
struction module, and an image discriminator. An encoder-decoder module is used to generate unoccluded
face textures. The image reconstruction module can obtain feature representations with different semantics to
recover texture details. The feature fusion module is used to get fine-grained features, and the self-attention
network is used to enhance the learning of face details in the image reconstruction module. Finally, the image
discriminator contains global structural information to improve the quality of face generation

2.3 Face Attributes Editing

Face attribute editing is a research direction that has received much attention. People have
proposed deep learning-based face attribute manipulation methods. Xiao et al. [15] presented
an elegant to decouple multiple attributes of a face and implement multi-attribute manipula-
tion based on reference images. However, the generalization ability of this method is poor.
Moreover, the effect of removing glasses and bangs on the face is not so good. Ergan et al.
[16] pulled the occlusion of glasses by transforming the face encoder and the glasses region
encoder. Cyclegan et al. [17] proposed an unsupervised way to achieve image translation,
in which face glasses and bangs are removed based on reference images. Pix2pix in [18]
offered a unified framework to solve the image translation problem. However, these meth-
ods still cannot altogether remove the occlusion of the bangs of the glasses. Li et al. [19]
proposed hierarchical style disentanglement (HiSD) to achieve independent separation of
single-attribute or multiple-attribute removal. This method removes glasses and bangs alto-
gether but ignores the image quality, resulting in low image synthesis quality and blurring
and artifacts. We constructed a paired face dataset to eliminate the occlusion of glasses and
cracks. We learned the unoccluded face texture in a supervised way, removing the occlusion
of glasses and bangs and realizing the editing of face attributes.

In conclusion, we propose a UFS framework to achieve multi-task removal of face occlu-
sion and perform cooperative learning for multi-tasks such as face frontalization, face image
inpainting, and face attribute editing. The image reconstruction module we propose realizes
the generation of facial texture details and solves the inconsistency between artifacts and
illumination information generated by the face frontalization process. We implement image
inpainting using atrous residual blocks and self-attention networks.

3 Method

In previous work, tasks such as face frontalization and face de-glassing worked as separate
tasks, and few jobs jointly learned these tasks. Therefore, we propose combining multiple
tasks such as face frontalization and face de-glasses to generate unoccluded face textures.
To achieve multi-task learning, we present the UFS framework. Our framework is outlined
in Fig. 1, which contains an encoder module (E), an image reconstruction module (IR), a
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decoder module (D), and an image discriminator module. The encoder module extracts rich
feature representations for different types of face images (non-frontal, wearing glasses, with
bangs, etc.). The image reconstruction module first employs a hole residual block to enlarge
the receptive field and interpolates to fuse the multiscale feature from the downsampling
residual block of the encoder in the feature fusion module. Then the self-attention network is
used to obtain the spatial attentionmap. Finally, themomentum formula is used to improve the
quality of face reconstruction. The decoder module recovers the high-frequency information
of the face using the up-sampling residual block and the skip connection with the encoder,
which further improves the face generation ability. Finally, the image discriminator is used
to learn the overall structure of the face texture and mitigate problems such as distortion and
artifacts in the generated face. Detailed processes are outlined in various sections.

In this section, we first introduce the network architecture in Sect. 3.1, the encoder and
decoder are introduced in Sect. 3.1.1, and the image reconstruction module is presented in
Sect. 3.1.2. We then introduce image discriminators in Sect. 3.2. Finally, the loss formula is
introduced in detail in Sect. 3.3.

3.1 Framework and Network Architecture

3.1.1 Encoder–Decoder Module

In this paper, the encoder-decoder module generates unoccluded face textures. Various types
of train images I fused with Gaussian random noise are the input images Ĩ of the UFS
framework. Gaussian random noise is significant to recover the high-frequency details of face
images.We first use a 7×7 convolutional block in the encoder to obtain a large receptive field
and then apply four downsampling residual blocks to learn rich feature representations. As
shown in Fig. 2a, each block employs batch normalization layers and LeakReLU activation
function. The downsampling residual block uses 3 × 3 and 1 × 1 convolution at each step
to speed up inference, and batch normalization is used in the residual branch to improve the
network performance.Although the four downsampling residual blocks have only 16 layers of

structure, the encoder can also learn rich feature representations. The feature e = E
(
Ĩ
)
can

be obtained by the encoder. In the decoder, we use a combination of four residual upsampling
blocks and skip-connected residual blocks, each ofwhich uses group normalization andReLU
activation function. As shown in Fig. 2b, the upsampling residual block uses transposed
convolution and bilinear interpolation to obtain enlarged feature maps, respectively. Among
them, the 1×1 convolution layer reduces the dimensionduringbilinear interpolation, reducing
the calculation amount of the bilinear interpolation, and finally, the two perform the residual
fusion. The loss of feature information is further compensated by upsampling the residual
layer to learn different enlarged feature maps. In addition, skip residual blocks learn high-
frequency details of latent textures to improve the quality of generated face textures. After
that, we synthesize the unoccluded face image ỹ through the decoder.

3.1.2 Image Reconstruction Module

The image reconstruction module can learn the texture details of the invisible face area
and occlusion area (glasses and bangs occlusion, etc.) of the training image, making the
generated image more realistic. The image reconstruction module can be divided into hole
residual modules, feature fusion modules, and self-attention modules. Hole convolution can
expand the receptive fieldwithout increasing the amount of computation, but hole convolution
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Fig. 2 Upsampling and downsampling residual structures

will cause the loss of local details. Therefore, we employ hole residual blocks to reduce the
loss of local details while enlarging the receptive field. As we can see from Fig. 3, the
hole residual blocks all use 3 × 3 convolutions, and the hole steps are set to 2, 3, 1, and 5,
respectively. We perform feature fusion on the features of different atrous convolutions to
obtain fine-grained features. The residual branch applies 1×1 convolutional layers and batch
normalization to reduce the loss of local details. To improve the quality of the generated
images, we employ multi-scale feature fusion to obtain fine-grained features. Multi-scale
feature fusion consists of four steps. First, we perform a linear interpolation operation on the
first three downsampling residual blocks of the encoder to obtain a feature map of the same
size as the hole residual block. We then perform a global average pooling operation on the
last downsampling residual block to obtain global features. The generation of artifacts can
be eliminated and reshaped to the feature map of the same size as the hole residual block.
After that, we perform feature fusion on these four feature maps and reduce the amount of
computation through dimensionality reduction. Finally, feature fusion with the hole residual
block is performed to obtain fine-grained features.

We use a self-attention module to enhance the learning of face regions and mitigate
the impact of harsh environments (low resolution, bright and dark light) on the generated
images. First, the convolution used in this paper reduces the dimensionality of the fine-
grained features. Then, the softmax operation is performed on the fine-grained features to
obtain the spatial attention map. Finally, the sigmoid function is performed to output the
feature map. The momentum method is used to fuse the features of the attention module
and the fine-grained features of dimensionality reduction. The final fine-grained features are
given as
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Fig. 3 We use different atrous convolutions for both layers in the atrous residual block to expand the receptive
field

fn = (1 − m) · fsa + m · fn−1, (1)

where m is the momentum parameter we set to 0.5, fsa is the feature map after attention
network, fn−1 is the feature map after 1 × 1 convolution layer dimensionality reduction.
Through the momentum method, the features can obtain multi-level feature information,
improve the network’s performance, and prevent the degradation of images during the training
process.

3.2 Discriminator

We use the image discriminator to learn the overall structure of the face, strengthen the
learning of the texture of the occluded area, and reduce the distortion and blurring of the
occluded region. The image discriminator consists of four residual blocks and a convolution.
In the residual blocks, spectral normalization is used to prevent training instability. We also
use an attention network to enhance the discrimination of inpainted face regions. First, we
input the training and target images into the discriminator, which outputs two feature maps
as the predicted and actual labels, respectively. We then use the least square GAN as the
adversarial loss, which is given by

Ladv = min
P

max
D

EI
[
log D (I )

] − EP(X) [1 − D(P(X))] , (2)

where D(·) is the discriminator, P(·) is the UFS framework, X is the training image, and
I is the label image. In this paper, an image discriminator is used to learn global structure
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information, repair texture information of occluded areas, and prevent image distortion and
artifacts, which plays a vital role in image inpainting and face frontalization tasks.

3.3 Loss Formula

This section introduces further losses to constrain theUFS framework to generate unoccluded
face textures. Our objective function consists of pixel-wise loss, identity loss, lpips loss, and
focal frequency loss. They are described in detail below.

3.3.1 Pixel-Wise Loss

To make the generated image more approximate to the target image, we use pixel loss to
reduce the difference between the generated image and the target image. It can be defined as

L pixel = ‖I f − I gt‖1, (3)

where I f is the generated unoccluded image, I gt is the target image, and ‖·‖1 is the L1
paradigm.

3.3.2 Identity Loss

To make the generated unoccluded images retain more training image identity features,
we adopt the ArcFace network [20] to extract the high-dimensional identity features of the
developed and training images.We also use the cosine similarity of the two high-dimensional
identity features as the identity loss. It can be given by

Lid = 2 − 2 × 〈F(I f ), F(I gt )〉
‖F(I f )‖ · ‖F(I gt )‖ , (4)

where F(·) is pretrainedArcFacemodel taken fromTreB1eN, I f is the generated unoccluded
image, I gt is the target image, 〈·, ·〉 is the vector inner product.

3.3.3 Lpips Loss

We use Learned perceptual image patch similarity (Lpips) [21] loss to learn perceptual
similarity. The Lpips loss obtains the perceptual similarity of the image by calculating the
channel cosine distance of the output of the network model layer by layer and averaging all
the cosine distances. We find that Lpips loss generates higher quality images than standard
perceptual losses. It is more in line with human visual cognition than other losses. It prevents
image blurring. The Lpips loss is described as

Llpips = ‖L(I f ) − L(I gt )‖2, (5)

where L(·) is a deep feature extractor that uses the Alexnet backbone network to extract
features. I f is the generated unoccluded image and I gt is the target image.
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3.3.4 Focal Frequency Loss

To narrow the frequency gap between the generated image and the target image and improve
the quality of the generated image, we strengthen the learning of frequency components that
are difficult to synthesize through the focal frequency loss [22]. Then the generated image is
closer to the target image in frequency. It can be defined as

L f f l = 1
MN

M−1∑
u=0

N−1∑
v=0

w(u, v)‖Fr (u, v) − Ff (u, v)‖2,
w(u, v) = ‖Fr (u, v) − Ff (u, v)‖α,

F(u, v) =
M−1∑
x=0

N−1∑
y=0

f (x, y)·e−i2π( uxM + vy
N ),

(6)

where f (x, y) is the pixel value, M and N are the height and width of the trained image,
respectively, u and v are the coordinates of the corresponding frequency space. Fr (u, v) is
the spatial frequency value of the real image at the spectral coordinate (u, v), and the corre-
sponding Ff (u, v) is the spatial frequency value of the fake image at the spectral coordinate
(u, v).

Finally, the objective function for all losses is given by

Lloss = λpixel L pixel + λid Lid + λlpips Llpips + λ f f l L f f l , (7)

where λpixel , λid , λlpips , and λ f f l are weights corresponding to each loss formula, respec-
tively, and their values will be illustrated in Sect. 4.

4 Results

The UFS framework proposed in this paper generates clear face images through multi-tasks
such as face frontalization, glasses, and bangs. We first made with recent methods for sin-
gle tasks such as removing glasses. We then show the multi-task experimental results in
quantitative and qualitative experiments, such as eliminating glasses or bangs while face
frontalization. And we also use the generated unoccluded face images for 3D face recon-
struction. Our method has a significant improvement in texture compared to previous work.
Finally, to verify the effectiveness of our proposed modules, we conduct ablation experi-
ments on each module. The robustness of our framework is demonstrated through multiple
experiments.

This section presents the implementation details and datasets in Sect. 4.1, followed by
quantitative and qualitative experiments compared with state-of-the-art methods in Sect. 4.2.
Precise details are introduced in individual sections.

4.1 Experimental Settings

4.1.1 Implementation Details

We propose a UFS framework to generate unoccluded face textures, implemented using
PyTorch. We use Adam optimizer with β1 = 0.5, β2 = 0.999, and the initial learning rate is
set to 4 × 10−4. Furthermore, we use a fixed step size learning-rate-decay strategy, gamma
is set to 0.7, step size is set to 30. In the training process, we employ RTX3060 GPU, the
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batch size is set to 8, and 200 echoes are trained. For the weight of the loss function, we set
λpixel = 10, λid = 1, λlpips = 1, and λ f f l = 10.

4.1.2 Datasets

To achieve multi-task work, we construct a face dataset, which includes various face images
with glasses, different bangs, and profile faces. The corresponding label images are unoc-
cluded frontal face images. There are 30,000 face images in our dataset, consisting of the
FFHQ dataset [23] and the Celeba-HQ dataset [24]. We then split this dataset into 28,000
images in the training set and 2,000 in the test set. We first align and crop the face images
according to the face detection algorithm for the constructed high-resolution face dataset.
The size of the cropped image is 256 × 256. We then perform data augmentation by ran-
domly rotating and adding noise to the training data. Finally, we apply the LFW dataset
[25] and Celeba dataset [26] for single-task comparative experiments. The Celeba is a public
largescale face dataset containing 202,599 face images of 10,177 Celebrity identities. The
LFW is a face recognition dataset containing 13,233 face images collected from the websites.
The LFW is often used to evaluate frontalization performance in uncontrolled settings.

4.2 Comparison to State-of-the-Art Methods

4.2.1 Qualitative Evaluation

Image InpaintingWe train the image inpainting task separately due to the difference between
image inpainting and other tasks. We do two-fold work on the image inpainting task. On the
one hand, for the external occlusion of the image (hand, microphone, sunglasses, etc.), we
add a small area mask to the external occlusion area to obtain the mask image. We then input
it into the UFS framework, which outputs an unoccluded face image. Although the images
synthesized by our method are more realistic, our approach still has some problems. When
the mask area we add is too large, there will be a difference between the synthesized face area
and the source image. On the other hand, like other image inpainting methods [27–32], we
add different large region masks on face images. We hope that our approach can repair the
face texture of the large-area mask even when covering more areas of the face under the large
mask. Therefore, the synthesized face texture has a high sense of realism. The images we test
are all from the test set of our constructed face dataset. Due to the different image inpainting
tasks, we increase the weight of the identity loss and the high-frequency focal loss and reduce
the importance of the Lpips loss during training. we set λid = 2, λ f f l = 50, λlpips = 0.1.

As shown in Fig. 4, we add a mask to the face area covered by the microphone, hands, and
sunglasses to generate a mask image. As we can see from the synthesizing face images, our
method fixes themicrophone, hands, sunglasses, etc. The occluded texture gives the synthetic
face a certain sense of realism. However, we found in our experiments that if the mask area
we add is too large, it will cause the synthesized texture information to be different from
the source image. For example, we added a mask area covering the entire mouth in the last
picture. As a result, the expression of the synthesized face has changed, and we will solve
this problem in future work.

As shown in Fig. 5, we select five kinds of large-area masks to add to the test set to
generate mask images, and our composite face images are consistent with the actual pictures.
Although the faces synthesized by our method are somewhat different from the authentic
images in some details, they are acceptable in terms of visual effects.
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Fig. 4 Occlusion-based image inpainting results

Fig. 5 Image inpainting results

Face Frontalization Face frontalization is challenging, and all face frontalization work is
trained on the multi-pie dataset. However, the datasets are collected in closed indoor scenes,
lacking face data in wild environments. Testing unconstrained face images in the wild often
leads to degradation (blur, artifacts) in synthetic frontal face images. To solve this problem,we
construct a face dataset consisting of all wild data, which can adapt to various unconstrained
environments to slow down image degradation. On the single task of face frontalization, we
conduct a two-part experiment. In the first section, we compare with state-of-the-art face
frontalization methods. In the second part, we conduct experiments on an unconstrained test
set to verify the effectiveness of our approach on the face frontalization task.

We perform qualitative comparisons with face frontalization methods such as PIM [9],
TP-GAN [8], DR-GAN [7], and Hassner et al. [4]. As shown in Fig. 6, our method is robust to
unconstrained face images on the single task of face frontalization. The frontal face synthe-
sized by the TP-GAN method seriously loses texture details. The synthesized result is very
blurred. The frontalized face images synthesized by the PIMmethod are not high quality and
lose some texture details. The frontalized faces synthesized by DR-GAN and Hassner et al.
deviate significantly from the accurate frontal pose.
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Fig. 6 Comparison of different face frontalization methods

Fig. 7 Face frontalization results

In contrast, ourmethod to synthesize frontalized face images preserves the high-frequency
details of the face and maintains the identity consistency with the input image. Furthermore,
we find that our composite face images have higher image quality, and the synthesized results
are sharper than the input images. In conclusion, our method can realistically recover high-
fidelity frontal face textures.

We selected eight non-frontal face images on the test set for face frontalization experi-
ments. As shown in Fig. 7, our method can recover the missing face texture. Although our
method is not exactly the same in texture as the input image, our synthesized frontal images
preserve the identity consistency of the input image. Therefore, the synthetic result is more
realistic.

Glasses RemovalWearing glasses will block parts of the face, which will lead to the inability
to express some high-frequency details and reduce the accuracy of face recognition. On the
single task of face glasses removal, we conduct two-part experiments. In the first part, we
compare the effect of glasses removal with state-of-the-art methods. In the second part, we
conduct experiments on the test set to demonstrate the robustness of our approach on the
glasses removal task. To be consistent with the results of other methods on a single job, we
select appropriate data for training to prevent the synthetic face texture from performing face
frontalization while removing the glasses.

Our method visually compares with CycleGAN [17], ELEGANT [15], ERGAN [16],
ByeGlassGAN [33], pix2pix [18], and StarGAN [34] on a single task. ERGAN and Bye-
GlassGAN are glasses removal methods. CycleGAN, ELEGANT, pix2pix, and StarGAN are
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Fig. 8 Comparison of different eyeglass removal methods

Fig. 9 Glasses removal results

face editing methods. As shown in Fig. 8, the results of the pix2pix and StarGAN methods
show a lot of artifacts. The results of CycleGAN and ELEGANTmethods show a lot of noise
speckles. The ERGAN method removes the occlusion of the glasses, but the synthesized
images become blurred and lose some high-frequency details. The results of the ByeGlass-
esGAN method achieve better results, but the results of our method are visually better than
their method, and the synthetic images are sharper. Our method removes the occlusion of
glasses and preserves more texture details to make the synthesized images more realistic.

To demonstrate the capability of our method on the task of glasses removal, we select
eight images of different glasses from the Celeba dataset, including small glasses frames,
round glasses frames, square glasses frames, large glasses frames, and sunglasses frames.
As shown in Fig. 9, our method can altogether remove the glasses frame without losing
high-frequency details. In addition, as shown in the input image in the first row and seventh
column, the glasses can create shadows on the face when illuminated by one-sided light.
However, our method can also remove such shadows when removing glasses. Our process
does not produce some sunglasses artifacts like other methods in removing sunglasses. Our
approach can altogether remove the sunglasses and maintain the identity consistency of the
synthesized image and the input image.

Multi-task To synthesize unoccluded face textures, we jointly learn multiple face de-
occlusion methods. We perform multi-task learning on the constructed face dataset and
conduct experiments on the test set. It isn’t easy to include all de-occlusion tasks in typical
face datasets. Ourmulti-task experiment is divided into the following parts. First, we combine
the face frontalization task with the glasses or bangs removal task to remove the occlusion
of the glasses or bangs. Then, we synthesize unoccluded high-resolution faces for blurred
occlusion face images. Finally, we can use the generated unoccluded face texture for 3D
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Fig. 10 Face frontalization and glasses removal results

Fig. 11 Results from blurred image to sharp image

face reconstruction. The experimental results show that the face texture synthesized by our
method is better than the previous methods.

We first perform the test set’s dual face frontalization and glasses removal tasks. We
select five face images with different glasses and small poses for dual-task experiments.
As shown in Fig. 10, our method recovers the frontalized face texture while completely
removing the glasses, synthesizing an unoccluded face image. Then, we perform the dual
tasks of face frontalization and bang removal on the test set. We select six face images with
bangs and side faces for dual-task experiments. As shown in Fig. 11, our method removes
most of the occlusion of bangs while restoring the frontalized face texture. The removal of
the contralateral bangs by our approach works best. In conclusion, our method can achieve
face frontalization and remove glasses or bangs to synthesize unobstructed face textures.
However, the results of our strategy are not exactly the same texture as the input images,
which we will address in future work.

In the face frontalization single-task experiment, we are surprised to find that when synthe-
sizing a frontal face image from a blurred non-frontal face image, the synthesized face image
becomes very clear. As shown in Fig. 12, we choose five non-frontal, blurred face images
with bangs and glasses for experimentation. The occlusion-free face texture synthesized by
our method makes the image sharper without losing face details. Therefore, our approach is
more robust.

The synthesized unoccluded face is used for 3D face reconstruction. First, we adopt the
method of Deng et al. [1] to generate 3D face geometry. We then generate unoccluded
frontalized face textures and use texture mapping to create textures for 3D face geometry. As
shown in Fig. 13, we present the results generated by our method at two angles with realistic
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Fig. 12 Face frontalization and bangs removal results

Fig. 13 Results from blurred image to sharp image

textures. The third row is the result with a right bias of 30, and the fourth row is the result
with a left bias of 30. Comparing our approach with Gecer et al. [2], their approach cannot
preserve the high-frequency details of the face texture, and the generated texture is also far
from the input image. On the contrary, our approach keeps the high-frequency components
of faces and recovers the texture information of self-occlusion regions with high fidelity.
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Table 1 Comparison of FID (↓)
under different tasks

Methods Glasses test set Glasses and bangs test set

Hisd 12.0989 14.0735

w/o IR UFS 12.8567 15.4167

UFS 11.0810 13.9924

Table 2 Comparison of SSIM
(↑) and PSNR (↓) under different
datasets

Datasets SSIM PSNR

Glasses test set 0.8253 22.1256

Glasses and bangs test set 0.7993 22.7240

Masks test set 0.9395 20.6068

4.2.2 Quantitative Evaluation

To quantitatively evaluate the advantages of our method, we divide the test set into three
sub-test sets, namely the test set with glasses, the test set with glasses and bangs, and the test
set with masks. We utilize the Frechet inception distance (FID) to measure the performance
of glasses and bangs removal. FID is a measure of calculating the distance between the actual
image and the feature vector of the generated image. It uses the inception model to obtain
the feature map. The lower the scores of the two sets of FID feature maps, the more similar
the two sets of images. We compare FID with the Hisd method [19] on the single task of
removing glasses and the dual task of removing glasses and removing bangs. To demonstrate
the effectiveness of the image reconstruction module, we add the UFS framework without
the image reconstruction module to the comparative experiments. As shown in Table 1, we
use the test set with glasses and the test set with glasses and bangs for experiments. The
UFS frame achieves the lowest FID score in the single task of removing glasses, indicating
that the glasses-free images generated by the UFS frame are more accurate. Closer to the
target image, it is more capable in the single task of glasses removal. The result without the
image reconstruction module achieves the worst score, proving that the image reconstruction
module can improve the performance of UFS. Our UFS framework and the Hisd method
achieve similar scores in the dual-task of removing glasses and bangs. Because our method
employs multi-scale feature fusion, atrous residual blocks, and self-attention networks to
obtain multi-level feature representations, it can handle multi-task occlusion problems and
can generate better results. The Hisd method uses the idea of image translation to inject
style parameters into the feature map to realize the attribute editing of the face, but this
style injection method is difficult to achieve the effect of our method in the single task of
de-occlusion. However, in the multi-task of de-occlusion, the Hisd method improves the
ability of de-occlusion by injecting style parameters multiple times. The Hisd method finally
achieves a similar effect to our method. However, UFS without the image reconstruction
module still gets the worst score, and the single task score is significantly lower than the
dual-task score. The dual-task of removing glasses and bangs is comparable to the Hisd
method. Therefore, our UFS frame has a more vital ability to remove glasses and bangs.
Removing glasses for a single task is stronger than eliminating glasses and bangs for dual
tasks.

We use the peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM)
to measure the generative ability of our UFS framework. We conduct experiments with the
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Fig. 14 Comparison of histograms with different methods. a Histogram of the input image, b histogram of the
image generated by the PIMmethod, c histogram of the image generated by the TP-GANmethod, d histogram
of the image generated by our method

glasses dataset, the glasses and bangs dataset, and the masks dataset. As shown in Table
2, the image inpainting task achieves the best results on the SSIM and PSNR metrics in
multiple datasets, followed by the glasses removal task, and finally, the glasses and bangs
dual removal task. Therefore, our UFS framework can achieve the best results on a single
job. However, in the face of multitasking, our UFS frame generation ability becomes weak,
but our method can still achieve better results visually. In the future, we will improve the
generative capability of multitasking.

To verify that our method can generate sharper unocclusion results, we select blurred
images in the LFW dataset for face frontalization and display the generated results in a
histogram. As shown in Fig. 14, the pixel value distribution in the histogram of the results
generated by the b and c methods is around 30–150, which is somewhat different from the
pixel distribution of the input image. The histogram pixel distribution of b and c is lost at 200
Pixel points after the pixel point, which causes the generated result to lose some details. The
histogram generated by ourmethod is more similar to the input image’s histogram. The pixels
expressing face information are denser, and the pixels after 200-pixel values are retained,
which allows some details to be preserved. In conclusion, our method can generate sharper
results.
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5 Conclusion

This paper proposed a novel UFS framework that combines face frontalization, glasses
removal, and image inpainting to synthesize unoccluded face textures. We adopted an image
reconstruction module in the UFS framework to obtain multi-level fine-grained features to
improve the quality of image synthesis. The image reconstruction module used a multi-
scale feature fusion and self-attention network to enlarge the receptive field and strengthen
the learning of face regions. We also used focal frequency loss to enhance the synthesis of
complex frequencies. Therefore, our synthesized unoccluded faces retain more local high-
frequency details. In addition, we used an image discriminator to learn the overall structure
of the face, preventing image distortions and artifacts. Our UFS framework achieves good
results in the single task of face frontalization, glasses removal, and image inpainting in
all experiments. However, in the case of multitasking face fronting and removing glasses
or bangs, the results are not quite perfect. We will address the instability of multi-task syn-
thetic images in future work and address inconsistencies between synthetic textures and input
images.
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