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Abstract

Deriving formal bounds on the expressivity of transformers, as well as
studying transformers that are constructed to implement known algo-
rithms, are both effective methods for better understanding the compu-
tational power of transformers. Towards both ends, we introduce the
temporal counting logic Kt[#] alongside the RASP variant C-RASP. We
show they are equivalent to each other, and that together they are the best-
known lower bound on the formal expressivity of future-masked soft at-
tention transformers with unbounded input size. We prove this by show-
ing all Kt[#] formulas can be compiled into these transformers without any
additional positional embeddings.

1 Introduction

What problems can transformers (Vaswani et al., 2017) solve, what problems can they not
solve, and how can we prove it? Formal logic, in connection with programming language
theory, formal language theory, and finite model theory, give a framework in which to
investigate these questions.

Previous theoretical work, as surveyed by Strobl et al. (2024), has advanced our under-
standing of transformers immensely. However, it has not provided a full account of their
expressive power. Much of this work only considers modifications of transformers, like
average-hard attention transformers (AHATs) (Barceló et al., 2024) or unique-hard atten-
tion transformers (UHATs) (Angluin et al., 2023), which are not known to be either a subset
or superset of standard, soft-attention transformers (SMATs). At the same time, program-
ming languages like RASP (Weiss et al., 2021) propose a human-readable language with
which to understand transformer computations. However, current languages compile into
transformers that appear to be more powerful than standard transformers (Weiss et al.,
2021), or require approximations and restrictions on input length (Lindner et al., 2023) to
do so.

Here, we target soft attention transformers (as originally defined (Vaswani et al., 2017) and
as used in practice). We prove that future-masked soft attention transformer encoders, with
no restriction on input length, can recognize all the formal languages defined by formulas
of Kt[#], a temporal counting logic. Along the way we develop a RASP variant called
C-RASP, equivalent to Kt[#]. Both are, to our knowledge, the tightest-known lower bound
on the expressivity of soft attention transformer encoders. Our contributions are as follows:

– We define C-RASP, the first variant of RASP that provably compiles into future-masked
soft attention transformer encoders with no restrictions on the input length.

– We prove that C-RASP is equivalent to Kt[#].
– We prove that the previous best lower bound, FOC[+;MOD] (Chiang et al., 2023), is

strictly less expressive than Kt[#].
– We prove that transformers which use fixed-precision numbers (as real-world transform-

ers do) can be compiled back to Kt[#].
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2 Background

Previous theoretical work on the expressivity of transformers has related them to a variety
of automata, circuit classes, and logics, all under varying assumptions (Strobl et al., 2024).
Here, we focus on using logics to characterize soft attention transformer encoders with fu-
ture masking. In particular, these encoders perform the same computations as one step of
a transformer decoder. Decoder-only models like GPT (OpenAI, 2023) currently dominate
applications of transformers, while empirical work has noted they have significant lim-
its and perplexing behavior. We believe theoretical analysis can provide valuable insight
towards understanding how to best use these models in practice.

The previous best upper bound on log-precision transformers (which are argued to closely
approximate real-life behavior) is TC0 (Merrill and Sabharwal, 2023). The previous best
lower bound is FOC[+;MOD] (Chiang et al., 2023). We strengthen this lower bound using
Kt[#], a temporal counting logic, and C-RASP, a new variant of the programming language
RASP. We show both can be simulated by soft attention transformers.

2.1 Hard and Soft Attention

Many previous works have investigated the expressivity of hard attention transformers,
including Angluin et al. (2023); Barceló et al. (2024); Yao et al. (2021). However, reconciling
the differences between the theoretical model of AHATs and the standard SMATs actually
remains a very open area of inquiry at the moment.

In particular, it is not yet clear how the expressivity bounds on average-hard attention
transformers apply to softmax attention transformers. On the one hand, average-hard at-
tention transformers can express sparse attention patterns by assigning weights of zero to
positions, but soft attention transformers can only approximate these patterns (scores are
always non-zero). On the other hand SMATs can express non-uniform attention patterns,
which AHATs cannot. As such it is not known whether softmax attention can simulate
average-hard attention (or even the other way around), so lower bounds on the expres-
sivity of average-hard attention transformers cannot directly be applied to soft attention
transformers.

Thus, while the counting logic LTL(C,+) (Barceló et al., 2024) contains Kt[#], we note that
they only prove it is a lower bound for average-hard attention transformers, not soft at-
tention transformers. We can view Kt[#] and C-RASP as a gentle enough restriction of
LTL(C,+) so as to render it simulatable by softmax attention transformers, but still above
previous known bounds. We hope future work will clarify the disparities between average-
hard and softmax attention.

2.2 RASP and Tracr

Implementing algorithms in transformers using human-readable programming languages
gives researchers and engineers a deeper understanding of the computations transformers
can perform. We believe that using this formalism to understand transformers has not
only pedagogical benefits, but theoretical ones as well. For example, this perspective has
been used by Zhou et al. (2024) to shed light on the length-generalization capabilities of
transformers.

These programming languages promise to compile into transformers that implement
known algorithms, which are therefore interpretable by construction. However, existing
examples make several unrealistic assumptions about transformers, rendering them inap-
propriate for compilation into standard transformers.

The primary example is RASP, which makes three strong assumptions. First, the transform-
ers that RASP compiles into use average-hard attention, which are not known to be exactly
simulated by soft attention transformers (although average-hard attention behavior has
been observed to be learned approximately, in practice (Merrill et al., 2021)). Second, the
attention weights (selectors) are not restricted to be dot-products of query and key vectors;
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this allows compilation of expressions involving arbitrary binary predicates like x = y or
x < y. Third, they assume position-wise feed-forward networks can implement any com-
putable function, with the rationale that any continuous function can be approximated by
the universal approximation theorem (Hornik et al., 1989).

Building on RASP, Tracr (Lindner et al., 2023) compiles a subset of RASP into standard
transformers. It compiles RASP selectors to dot-product attention, although this requires
a syntactic restriction on selectors and a maximum string length, and it compiles RASP
element-wise operations to ReLU FFNs, though only approximately.

Furthermore, neither of these consider layer normalization, which Brody et al. (2023) show
contributes to the expressivity of transformers.

Here, we define a variant of RASP that has more restrictions, but that can be compiled
exactly into a soft attention transformer encoder. Our variant, C-RASP, is based on the
temporal counting logic Kt[#].

2.3 FOC[+;MOD]

Counting logics are a rich area (van Benthem and Icard, 2023) of logic, whose connec-
tion with transformers has been noted by Chiang et al. (2023) and Barceló et al. (2024). In
essence, uniform attention patterns – where attention is spread evenly across positions –
can very naturally simulate counting terms. Chiang et al. (2023) define a variant of first-
order logic with counting quantifiers, called FOC[+;MOD], and prove that, on the one
hand, any sentence of FOC[+;MOD] can be translated into an equivalent soft attention
transformer encoder, and on the other hand, any fixed-precision soft attention transformer
encoder can be translated into an equivalent sentence of FOC[+;MOD].

However, FOC[+;MOD] seems somewhat underpowered. It has a normal form that uses
only one quantifier alternation (∃x.∃=x p. · · · ) and only one position variable. This means
the equivalent transformer only has depth 2, and only uses the output of self-attention at
one position. By considering an ordering on positions (and future-masking on the corre-
sponding transformers) we derive a much better lower-bound result.

2.4 Temporal logic

A technical challenge when simulating variants of first-order logic with transformers is
that a formula with k free variables, each of which is interpreted as a position in from 1 to
n, would seem to correspond to a tensor of nk values in the corresponding transformer, but
transformers only have n values at each layer and n2 values in the attention weights.

Whereas FOC[+;MOD] avoids this difficulty by using a normal form with only one vari-
able, Angluin et al. (2023) and Barceló et al. (2024) avoid it by relying on linear temporal
logic.

Temporal logics (Gabbay et al., 1980) have been widely adopted as tools for the formal
verification of state properties during the execution of programs over time. Intuitively,
temporal logics can be used to formalize statements such as the following:

Until the first train arrived at the gate, the bar remained lowered.
My arm has been sore since Tuesday.

At no point will the temperature go below zero.

More abstractly, we can also use the syntax of temporal logic to specify the occurance of
symbols in a string w.

Until the first symbol t, w contains only l’s.
Only the symbol s has appeared since position 2 in w.

At no position does w contains a z.

We believe that temporal logics are a very appropriate specification language for thinking
about masked self-attention. Firstly, the temporal accessibility relation – properties at time i
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can only depend on times j ≤ i – provides a natural way to model future-masking in trans-
formers. Secondly, the restricted use of variables in temporal logic corresponds closely to
the computational processing resources of the standard transformer, where scores depend
on only two positions. Finally, temporal logics are highly-utilized in the field of formal
methods (Fisher, 2011), so solidifying this connection with transformers may allow more
ideas to get shared across disciplines.

3 C-RASP

We follow in the footsteps of Weiss et al. (2021) to define a variant of RASP called C-RASP.
The audience may find the syntax of C-RASP is easier to follow, so we present it first before
defining Kt[#] (although both are equivalent in the end). In proofs, we generally prefer the
more compact syntax of Kt[#], but for writing programs, we use C-RASP.

3.1 Definitions

Definition 3.1 (C-RASP). A C-RASP program is defined as a sequence P1, . . . , Pn of
C-RASP operations. There are two types of operations:

Boolean-Valued Operations

Initial P(i) := Qa(i) for a ∈ Σ

Boolean P(i) := ¬P1(i)
P(i) := P1(i) ∧ P2(i)

Comparison P(i) := C1(i) ≤ C2(i)

Constant P(i) := 1

Count-Valued Operations

Counting C(i) := # [j ≤ i] P(j)

Conditional C(i) := P(i) ? C1(i) : C2(i)

Addition C(i) := C1(i) + C2(i)

Subtraction C(i) := C1(i)− C2(i)

Min/Max C(i) := min(C1(i), C2(i))
C(i) := max(C1(i), C2(i))

Constant C(i) := 1

Counting operations count the positions j ≤ i such that P(j) holds, returning the sum. We
could also extend the syntax to use an expression P(i, j) which depends on both i and j;
this can be transformed to P(j) since our logic has only unary predicates, as shown in
Lemma A.1. Conditional operations return C1 if P holds, and C2 otherwise.

By convention, when using a C-RASP program to recognize languages, we use the value
of the last operation, which must be Boolean-valued, at the last position, to determine ac-
ceptance. That is, if the program is run on input w with length n, and the last operation is
D, then we accept w if and only if D(n) is true.

Example 3.2. We present a program to recognize Dyck-1 as an example. More annotated
examples can be found in Appendix A.2

C((i) := # [j ≤ i] Q((j) The number of ( up to position i

C)(i) := # [j ≤ i] Q)(j) The number of ) up to position i

V(i) := C((i) < C)(i) Violation: there are more ) than (

CV(i) := # [j ≤ i] V(j) The number of Violations
M(i) := CV(i) = 0 Matched: zero Violations
B(i) := C((i) = C)(i) Balanced: same number of ( and )

D(i) := M(i) ∧ B(i) String is Matched and Balanced
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4 The Temporal Counting Logic Kt[#]

In this section, we define the temporal counting logic Kt[#].

4.1 Definitions

The temporal logic we target here is the past fragment of the Minimal Tense Logic (Rescher
and Urquhart, 2012), with counting terms (Barceló et al., 2024). It can also be thought of
as a modal logic with arithmetic constraints, like that of Demri and Lugiez (2010), simply
restricted to the setting where the structures are strings.

We present the syntax of Kt[#] in Backus–Naur form:1

F ::= Qa | ¬F | F ∧ F | C ≤ C | ⊤
C ::= #[F] | C + C | C − C | 1

In temporal logics, formulas and terms are written without arguments because they are
always interpreted with respect to a structure at a specified position. In our setting, they are
interpreted with respect to a string w at a position i, where w = w1w2 · · ·wn and i ∈ [1, n].
A count term C is interpreted as an integer, written Cw,i and defined as follows.

#[F]w,i = |{j ∈ [1, i] | w, j ⊨ F}|
(C1 + C2)

w,i = Cw,i
1 + Cw,i

2

(C1 − C2)
w,i = Cw,i

1 − Cw,i
2

1w,i = 1

As syntactic sugar, we allow the use of any natural number as a constant, which implicitly
is defined as a sum of 1’s. Similarly, 0 can be defined as #[¬⊤], and i as #[⊤]. Next, the
interpretation of a formula F at position i, written w, i ⊨ F, defined as follows:

w, i ⊨ Qa ⇐⇒ wi = a
w, i ⊨ ¬F ⇐⇒ w, i ̸⊨ F
w, i ⊨ F1 ∧ F2 ⇐⇒ w, i ⊨ F1 and w, i ⊨ F2

w, i ⊨ C1 ≤ C2 ⇐⇒ Cw,i
1 ≤ Cw,i

2

w, i ⊨ ⊤ is always the case

We say that a string w with length n end-satisfies ϕ a formula of Kt[#] whenever w, n ⊨ ϕ
(Maler and Pnueli, 1990). The language defined by ϕ is the set of all strings end-satisfied
by ϕ. As a final note, whenever w is implicit, we can write F(i) which is True iff w, i ⊨ F
and also write C(i) which is equal to Cw,i.

4.2 Examples

Although an exact characterization of Kt[#] is not currently known, we can see that it can
define a variety of regular, context-free, and non-context-free languages.

1We pronounce Kt[#] as “K-t-sharp”. The logic Kt is E.J. Lemmon’s minimal tense logic (Rescher
and Urquhart, 2012), where K is the minimal modal logic, and the t refers to “tense”, indicating that
our structures are linear, like timelines or strings. Additionally, # is the modal counting operator,
which is fairly standard notation in counting logics.
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Language Formula

a∗b∗ #[Qa ∧ (#[Qb] ≥ 1)] = 0

a∗b∗a∗ #[Qb ∧ #[Qa ∧ (#[Qb] ≥ 1)] ≥ 1] = 0

anbncn #[Qb ∧ (#[Qc] = 0)] = #[Qb]
∧#[Qa ∧ (#[Qb ∨ Qc] = 0)] = #[Qa]

∧#[Qa] = #[Qb] ∧ #[Qb] = #[Qc] ∧ #[Qc] = #[Qa]

Dyck-1
(

#
[

Q(

]
= #

[
Q)

])
∧
(

#
[
#
[

Q)

]
> #

[
Q(

]]
= 0

)
hello #[⊤] = 5 ∧ Qo ∧ #[Ql ∧ #[Qe ∧ #[Qh] = 1] = 1] = 2

It is of note that the context sensitive language anbncn has been observed to be learnable by
transformers (Bhattamishra et al., 2020).

4.3 Modal Depth

Definition 4.1. The modal depth of a formula ϕ or term C, which we notate as md(ϕ), is the
maximum level of nesting of # terms. That is,

md(Qσ) = 0 md(1) = 0
md(¬ϕ) = md(ϕ) md(#[ϕ]) = 1 + md(ϕ)
md(ϕ1 ∧ ϕ2) = max(md(ϕ1), md(ϕ2)) md(C1 + C2) = max(md(C1), md(C2))

md(C1 ≤ C2) = max(md(C1), md(C2))

The following construction gives some intuition on the effect of modal depth.
Lemma 4.2. For every string s of length n, there exists a formula ϕa of modal depth n such that
w ⊨ ϕa if and only if w contains s as a subsequence.
Proof. Let s = s1s2 · · · sn. Then define ϕs := τn ≥ 1 where

τ1 := #[Qs1 ]

τk+1 :=

{
#
[
Qsk+1 ∧ τk ≥ 1

]
sk ̸= sk+1

#
[
Qsk+1 ∧ τk ≥ 2

]
sk = sk+1

Verification is left as an exercise for the reader.

As a consequence of the above and Theorem 5.7, we see that masked soft attention trans-
formers can recognize all the piecewise testable languages (Klı́ma and Polák, 2010), a subset
of the star-free languages. Recall, however, that Kt[#] can express much more: for example,
the context sensitive language anbncn. A comprehensive study of the expressive power of
Kt[#] and C-RASP (and the effect of modal depth on expressivity) would be informative,
and is left for future work.

4.4 Kt[#] and C-RASP

C-RASP may have a more convenient syntax to write programs in, but C-RASP programs
and Kt[#] formulas are exactly equivalent in expressivity.
Theorem 4.3. A C-RASP program recognizes language L iff a Kt[#] formula defines L. More
precisely, given alphabet Σ, for any Kt[#] formula ϕ there is a C-RASP program P such that w ∈ Σ∗

end-satisfies ϕ iff w is accepted by P, and vice versa.
Proof. See Appendix A.3.

5 From Kt[#] to Masked-Attention Transformers

In this section, we show how to compile Kt[#] into transformers. It would also be possible
to translate directly from C-RASP to transformers; this would use fewer dimensions, but
more layers.
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5.1 Transformers

We assume familiarity with the transformer architecture (Vaswani et al., 2017), and only
review the basic definitions particular to our setting. To simplify our analysis, we do not
consider positional encodings at first, deferring them to Section 6.
Definition 5.1. (Word Embeddings) Let w be an input string of length n over a finite
alphabet Σ. We prepend to w a special symbol BOS, which we assume is not in Σ.
We abbreviate n + 1 as n′. A word embedding with dimension d over Σ is a function
WE : Σ ∪ {BOS} → Rd applied position-wise to a string of length n to form a tensor in
Rd×n′

.
Definition 5.2 (Transformer Block). A transformer block B, defined with a dimension d,
specifies a function B : Rd×n′ → Rd×n′

that computes

B(A) = LN2(FFN(A′) + A′)

A′ = LN1(SA(A) + A)

where SA denotes a self-attention layer, by the standard definition (Vaswani et al., 2017),
FFN denotes a two layer feed-forward neural network with ReLU activations between the
layers, and LN1 and LN2 denote position-wise applications of LayerNorm. This setup is
commonly referred to as a “post-norm” block.

5.2 Overview of the translation

The input and output of a transformer block are tensors in Rd×n′
. The resulting sequence of

tensors across transformer blocks is sometimes referred to as the “residual stream” (Elhage
et al., 2021). We store the values of each subformula or count term of a Kt[#] formula in a
different dimension of the residual stream.

Let A ∈ Rd×n′
be a tensor in the residual stream. Formulas ϕk are stored as two rows of A:

A2k−1:2k,∗ =

[
1 −2ϕk(1) + 1 −2ϕk(2) + 1 · · · −2ϕk(n) + 1

−1 +2ϕk(1)− 1 +2ϕk(2)− 1 · · · +2ϕk(n)− 1

]
.

Similarly, count terms Ck are stored as:

A2k−1:2k,∗ =

0 −Ck(1)
2 −Ck(2)

3 · · · −Ck(n)
n′

0 +Ck(1)
2 +Ck(2)

3 · · · +Ck(n)
n′

 .

The division of C(i) by (i + 1) is a consequence of the fact that attention computes an
average rather than a sum. Dealing with these divisions is a common feature of many
transformer constructions. In contrast to other constructions that undo the divisions using
nonstandard embeddings (Pérez et al., 2021; Barceló et al., 2024) or nonstandard versions of
LayerNorm (Merrill and Sabharwal, 2024), our construction uses no position embeddings
and only standard LayerNorm. A minor consequence of our handling of comparison (Ap-
pendix B.3) is that while Boolean values are preserved throughout the computation, integer
values can get overwritten.

The reason for representing every value as two transformer activation values is to account
for LayerNorm. It ensures that all feature vectors have zero mean, so LayerNorm only
applies a position-wise scaling factor. When necessary, we describe how to use LayerNorm
to remove this scaling factor in Appendix B.3.

Observe that for subformulas, our convention states the BOS position is always false. Con-
sequently, for count terms, the BOS position is always 0. We can ensure this with a feed-
forward layer.
Lemma 5.3. Using the word embedding and a single feed-forward layer, we can set the BOS posi-
tion to False, without disturbing the Boolean value at any other position.

Proof. See Appendix B.1.
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5.3 Counting using masked uniform attention

Count terms in Kt[#] can be simulated by uniform self-attention layers.

Lemma 5.4. Let A2k−1:2k, ∗ store a Boolean vector as defined above. For any i, let Ck,i be the
number of positions j ≤ i such that A2k−1:2k,j is True. Then there is a transformer block that

computes, at each position i, and in two other dimensions 2k′ − 1, 2k′, the values − Ck,i
i+1 and Ck,i

i+1 .

Proof. See Appendix B.2 for proof and pictures.

5.4 Other operations using position-wise feed-forward networks

All other Kt[#] formulas and terms can be simulated by feed-forward layers.

Lemma 5.5. The following position-wise operations can be simulated by a single transformer block,
using existing dimensions as input and a fresh dimension as output: addition (+), subtraction (−),
comparison (≤), and Boolean operations (∧, ¬).

Proof. See Appendix B.3.

5.5 Compiling Kt[#] formulas into masked uniform attention transformers

Definition 5.6. Fix an alphabet Σ, and assume that the symbol BOS is not in Σ. We say
a masked soft attention transformer T (as a composition of blocks T = Bb ◦ . . . ◦ B1 ◦ WE)
with d dimensions simulates a Kt[#] formula ϕ if for every input w ∈ Σ∗ with length n and
every subformula ψk of ϕ, there is some dimension dk such that

[T(BOS · w)]2dk−1:2dk ,i+1 =



[
−1
+1

]
if w, i ⊨ ψk

[
+1
−1

]
otherwise.

Theorem 5.7. For every Kt[#] formula ϕ, there exists a soft attention transformer which simulates
ϕ. Moreover, the transformer will have at most md(ϕ) blocks.

Proof. We induct on the modal depth of ϕ. If ϕ is of modal depth 0, it must be a Boolean
combination of Qσ formulas. This can be simulated in the word embedding.

For the inductive step, let ϕ be a Kt[#] formula of modal depth m + 1. By Section 4.3, ϕ is a
Boolean combination of:

– Subformulas of modal depth at most m.
– Subformulas of the form ∑k∈K ak#[ψk] ≥ 0, where K is a set of indices, ak are integers,

and ψk are subformulas of modal depth m.

By the inductive hypothesis, for each subformula ψk of modal depth at most m, there
is a transformer Tk which simulates it. Parallel-compose all the Tk as described by Ap-
pendix B.4 into a single transformer. Then we need to perform the following operations in
sequence:

1. Compute #[ψk] for all relevant ψk, as described in Lemma 5.4.
2. Compute all formulas of the form ∑k∈K ak#[ψk] ≥ 0, as described in Appendix B.3.
3. Compute all Boolean combinations of the above subformulas as necessary.
4. Ensure the BOS position is False.

This can be achieved by adding one block. The first step can be achieved with a self-
attention layer. We’ve described how to compute each of the next three steps individually
using a feed-forward layer, but their composition can also be performed with a single feed-
forward layer.
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6 Relationship to other formalisms

The expressivity of Kt[#] can be characterized in relation to other bounds on transformer
formal expressivity. To begin with, the previous best lower bound on soft attention trans-
former encoders was FOC[+;MOD], by Chiang et al. (2023). However, Kt[#] forms a tighter
lower bound due to its ability to model order.

Lemma 6.1. Kt[#] formulas can simulate FOC[+] formulas, and Kt[#;MOD] can simulate
FOC[+;MOD]. In general, for any set P of unary predicates, the extension FOC[+;P ] is con-
tained in Kt[#;P ].

Proof. See Appendix A.3.

We’ve seen that C-RASP can define Dyck-1 (Example 3.2), and Bhattamishra et al. (2020)
prove that transformers, under the same assumption as ours, can express Dyck-1 via a very
similar construction. However, it’s easy to show that FOC[+;MOD] cannot define Dyck-1.
Thus, Kt[#] is a more realistic lower bound for transformers than FOC[+;MOD]:

Proposition 6.2. There is no sentence of FOC[+;MOD] that defines Dyck-1.

Proof. Suppose that such a sentence σ exists. Chiang et al. (2023) show that there exists
an M such that σ cannot distinguish between two strings that differ only by swapping
symbols exactly M positions apart. Since (M)M ∈ Dyck-1 and )(M−1()M−1 ̸∈ Dyck-1 but σ
cannot distinguish them, we have a contradiction.

On the other hand, it does not seem that Kt[#] can express Dyck-2, so a treatment of this
language would be an informative target for future work. We note that Yao et al. (2021)
shows transformers can recognize Dyck-2, but using hard attention.

Indeed, reconciling the Kt[#] bound on softmax transformers with other bounds on hard-
attention transformers poses challenges. For instance, Kt[#] seems to be incomparable with
FO[<] (Angluin et al., 2023). Kt[#] can express Dyck-1 but FO[<] cannot, and FO[<] can
express Σ∗aaΣ∗, which Kt[#] does not seem able to do.

Furthermore, we also note that Kt[#] is a strict subset of LTL(C,+) which Barceló et al.
(2024) show is a lower bound on average-hard attention transformer expressivity. How-
ever, average-hard attention transformers are not known to be either a subset or superset
of standard, soft-attention transformers. More comments on hard and soft attention can be
found in Section 2.1. Understanding the precise connection between AHATs and soft at-
tention transformers is left for future exploration, and is expected to require modifications
to the standard architecture in order to derive an exact inclusion.

As a final note, there appears to be a sizeable gap between the lower bound of Kt[#] and the
upper bound of FOM[BIT] shown in Merrill and Sabharwal (2023). In particular, the latter
can express integer multiplication, but we suspect Kt[#] cannot. Incidentally, transformer
models are observed to have difficulty with integer multiplication (Dziri et al., 2024), so
harmonizing these theoretical and empirical results would be helpful to paint a clearer
picture of transformer expressivity.

7 From Fixed-Precision Transformers to Kt[#]

In practice, transformers use fixed-precision numbers. We adapt the proof that FOC[+] can
simulate fixed-precision soft attention transformers (Chiang et al., 2023) to show that Kt[#]
can simulate fixed-precision, masked soft attention transformers. If Kt[#] is extended with
modular predicates, it can also simulate sinusoidal positional encodings.

Theorem 7.1. Kt[#] can simulate fixed-precision masked soft attention transformers without posi-
tional encodings, and Kt[#;MOD] can simulate fixed-precision masked soft attention transformers
with sinusoidal positional encodings.

Proof. See Appendix C.

9
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8 Autoregressive C-RASP Programs

With a simple extension, we can use C-RASP to construct decoder language models.

Definition 8.1 (C-RASP Language Model). Assume a C-RASP program over alphabet Σ
has vectors Na(i) defined for each a ∈ Σ ∪ {EOS}. Then a C-RASP program can be con-
verted to an autoregressive language model with greedy decoding in the following manner

1. Translate the program into a transformer.
2. Append a linear layer, which selects the dimensions which simulate Na(i)
3. Consider last position as a uniform probability distribution: dimensions with

Na(|w|) = 1 will have the same maximum probability score, and all those with
Na(|w|) = 0 will have the minimum probability.

4. Run the transformer on w, and then select an a such that the Na dimension holds the
maximum probability, with arbitrary tie-breaking. Append a to w, and repeat until EOS
is selected.

We say a C-RASP language model assigns nonzero probability p to word w = w0 · · ·wn−1
iff w, i ⊨ Nwi+1 for all 0 ≤ i < n − 1, and w, n − 1 ⊨ NEOS. We say a C-RASP Language
Model recognizes language L whenever it assigns nonzero probability to w iff w ∈ L.

In logical terms, we can construct a C-RASP language model to recognize L iff there exists
a formula ϕ of Kt[#] which recognizes L and for all a ∈ Σ we can define formulas Na such
that w ⊨ Na ⇐⇒ ∃w′.waw′ ⊨ ϕ. In this case, NEOS = ϕ

Example 8.2. Append to the end of Dyck program in Example 3.2 the following operations:

N((i) := ¬QEOS(i)

N)(i) := ¬QEOS(i) ∧ C)(i) < C((i)

NEOS(i) := D(i)

Corollary 8.3. For every piecewise testable language L, there exists a C-RASP Language Model
which recognizes L.

Proof. This is an immediate consequence of Lemma 4.2. For any piecewise testable lan-
guage L we can define a formula ϕ of Kt[#] which recognizes L. Next, observe that it is
always the case that ∃w′.waw′ ⊨ ϕ. Finally, define NEOS = ϕ and Na = ⊤ for all a ∈ Σ.

9 Concluding Remarks

We have introduced the temporal counting logic Kt[#] alongside the RASP variant C-RASP
and proved that they are the best-known lower bound on the expressivity of future-masked
soft attention transformers, with unbounded input size. Unlike previous results, we have
made minimal extra assumptions about transformers, so all formulas in Kt[#] can com-
pile directly into standard transformers. As such, an implementation of C-RASP should
prove appropriate for constructing transformers to run experiments on, and further the-
oretical analysis of Kt[#] and its extensions should shed light on the expressive power of
transformers.
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A Proofs Related to C-RASP

A.1 Extensions

Lemma A.1. Consider an extension of C-RASP in which the counting operation has the form

C(i) := #2 [j ≤ i] F(i, j)

which allows F to be a Boolean combination of C-RASP operations P(i) and P(j) evaluated at both
i and j. Any program with this extended operation is actually equivalent to a C-RASP program
with only the normal counting operation.

Proof. Let F be a Boolean combination of P1, . . . , Pk evaluated at either i or j. First, observe
that C(i) = C1(i) + C2(i)− C3(i) where

C(i) := #2 [j ≤ i] F1(i, j) ∨ F2(i, j)
C1(i) := #2 [j ≤ i] F1(i, j)
C2(i) := #2 [j ≤ i] F2(i, j)
C3(i) := #2 [j ≤ i] F1(i, j) ∧ F2(i, j)

Now, write F in DNF and split using the above. Now every single counting operation is of
the form

C(i) := #2 [j ≤ i]

∧
x∈I

Px(i) ∧
∧
x∈J

Px(j)


Where I and J store the indices of C-RASP operations which depend on i and j, respec-
tively, within the counting operation. Observe then that this is equivalent to

C(i) := # [j ≤ i]

 ∧
x∈I∩J

Px(j)


Thus, every #2 operation can be factored out as a sequence of normal # operations.

A.2 More C-RASP Examples

We sometimes put multiple C-RASP operations on the same line for brevity.

a∗b∗ over Σ = {a, b}

Ca(i) := # [j ≤ i] Qa(j) # positions with a’s
Cb(i) := # [j ≤ i] Qb(j) # positions with b’s
V(i) := Qa(i) ∧ Cb(i) ≥ 1 Violation: an a has b’s preceding it

CV(i) := # [j ≤ i] V(j) # Violations
Y(i) := CV(i) = 0 Zero Violations

13
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a∗b∗a∗ over Σ = {a, b}

Ca(i) := # [j ≤ i] Qa(j) # positions with a’s
Cb(i) := # [j ≤ i] Qb(j) # positions with b’s

BA(i) := Qa(i) ∧ Cb(i) ≥ 1 A subsequence ba ends at i
Cba(i) := # [j ≤ i] BA(j) # ends of subsequence ba

BAB(i) := Qb(i) ∧ Cba ≥ 1 the subsequence bab ends at i
Cbab(i) := # [j ≤ i] BAB(j) # ends of subsequence bab

Y(i) := Cbab(i) = 0 There are no subsequences bab

anbncn over Σ = {a, b, c}

Ca(i) := # [j ≤ i] Qa(j) # positions with a’s
Cb(i) := # [j ≤ i] Qb(j) # positions with b’s
Cc(i) := # [j ≤ i] Qc(j) # positions with c’s
A(i) := Cb(i) + Cc(i) = 0 No preceding b’s or c’s
B(i) := Cc(i) = 0 No preceding c’s

CA(i) := # [j ≤ i] Qa(j) ∧ A(j) # a’s with no preceding b’s or c’s
CB(i) := # [j ≤ i] Qb(j) ∧ B(j) # b’s with no preceding c’s
Ga(i) := CA(i) = Ca(i) no a’s have preceding b’s or c’s
Gb(i) := CB(i) = Cb(i) no b’s have preceding c’s

Gabc(i) := Ca(i) = Cb(i) = Cc(i) same number of a’s, b’s, c’s
Y(i) := Ga(i) ∧ Gb(i) ∧ Gabc(i) Correct order and number of symbols

hello over Σ = {e, h, l, o}

Ce(i) := # [j ≤ i] Qe(j) # positions with e’s
Ch(i) := # [j ≤ i] Qh(j) # positions with h’s
Cl(i) := # [j ≤ i] Ql(j) # positions with l’s
Co(i) := # [j ≤ i] Qo(j) # positions with o’s
CΣ(i) := # [j ≤ i] 1 # symbols in string
HE(i) := Qe(i) ∧ Ch(i) = 1 A subsequence he ends at i
Che(i) := # [j ≤ i] HE(j) # ends of subsequence he

HEL(i) := Ql(i) ∧ Che(i) = 1 A subsequence hel ends at i
Chel(i) := # [j ≤ i] HEL(j) # ends of subsequence hel

HELLO(i) := Qo(i) ∧ Chel(i) = 2 A subsequence hello ends at i
Y(i) := HELLO(i) ∧ CΣ(i) = 5 Length 5 and contains subsequence hello

As a potential point of clarification for the HELLO(i) line, observe that if a string con-
tains two positions that are the end of a subsequence hel, then that string must contain the
subsequence hell.

A.3 Equivalence with Kt[#]

Theorem 4.3. A C-RASP program recognizes language L iff a Kt[#] formula defines L.
More precisely, given alphabet Σ, for any Kt[#] formula ϕ there is a C-RASP program P
such that w ∈ Σ∗ end-satisfies ϕ iff w is accepted by P, and vice versa.

14



Published as a conference paper at COLM 2024

Proof. It is straightforward to translate Kt[#] formulas into C-RASP programs.

In the other direction, we induct on the length of C-RASP program P = P1, . . . , Pn. Assume
that Boolean operations Pk(i) are simulated by formulas P̂k, and count operations Ck(i) =
# [j ≤ i] V(j) are simulated by terms Ĉk. This is straightforward, but there are many cases.
The main idea is that whenever we have a conditional or min/max operation, we divide
the formula into two cases depending on what the result of the operation should be.

– If Pk+1 is a count-valued vector, it is not used for string acceptance as defined in
3.1. Thus the formula for this is the formula for the last Boolean-valued vector, by
the IH.

– If Pk+1(i) = Qa(i), let P̂k+1 = Qa.

– If Pk+1(i) = ¬Pℓ(i) let P̂k+1 = ¬P̂ℓ.

– If Pk+1(i) = Pℓ(i) ∧ Pm(i) let P̂k+1 = P̂ℓ ∧ P̂m.

– If Pk+1(i) = Cℓ(i) ≤ Cm(i) we need to divide on cases to handle if Cℓ(i) is a condi-
tional or min/max, as Kt[#] does not have these terms built in. This is straightfor-
ward, but there are many cases.

– If Cℓ(i) = # [j ≤ i] P1(i), let Ĉℓ = #
[
P̂1
]
. Then:

– If Cm(i) = # [j ≤ i] P2(i), let P̂k+1 = Ĉℓ ≤ #
[
P̂2
]
.

– If Cm(i) = P2(i) ? C3(i) : C4(i), let P̂k+1 = (P̂2 ∧ Ĉℓ ≤ Ĉ3) ∨ (¬P̂ ∧ Ĉℓ ≤ Ĉ4).
– If Cm(i) = min(C3(i), C4(i)), let P̂k+1 = (Ĉ3 ≤ Ĉ4 ∧ Ĉℓ ≤ Ĉ3) ∨ (Ĉ4 ≤ Ĉ3 ∧

Ĉℓ ≤ Ĉ4).
– If Cm(i) = max(C3(i), C4(i)), let P̂k+1 = (Ĉ3 ≥ Ĉ4 ∧ Ĉℓ ≤ Ĉ3) ∨ (Ĉ4 ≥

Ĉ3 ∧ Ĉℓ ≤ Ĉ4).
– If Cm(i) = c, for c ∈ N let P̂k+1 = Ĉℓ ≤ c.

– If Cℓ(i) = P1(i) ? C1(i) : C2(i), then:
– If Cm(i) = # [j ≤ i] P2(i), let P̂k+1 = (P̂1 ∧ Ĉ1 ≤ #

[
P̂2
]
) ∨ (¬P̂1 ∧ Ĉ2 ≤ #

[
P̂2
]
).

– If Cm(i) = P(i) ? C3(i) : C4(i), let P̂k+1 = (P̂1 ∧ P̂2 ∧ Ĉ1 ≤ Ĉ3) ∨ (P̂1 ∧ ¬P̂2 ∧
Ĉ1 ≤ Ĉ4) ∨ (¬P̂1 ∧ P̂2 ∧ Ĉ2 ≤ Ĉ3) ∨ (¬P̂1 ∧ ¬P̂2 ∧ Ĉ2 ≤ Ĉ4).

– If Cm(i) = min(C3(i), C4(i)), let P̂k+1 = (P̂1 ∧ Ĉ3 ≤ Ĉ4 ∧ Ĉ1 ≤ Ĉ3) ∨ (P̂1 ∧
Ĉ3 ≥ Ĉ4 ∧ Ĉ1 ≤ Ĉ4) ∨ (¬P̂1 ∧ Ĉ3 ≤ Ĉ4 ∧ Ĉ2 ≤ Ĉ3) ∨ (¬P̂1 ∧ Ĉ3 ≥ Ĉ4 ∧ Ĉ2 ≤
Ĉ4).

– If Cm(i) = max(C3(i), C4(i)), let P̂k+1 = (P̂1 ∧ Ĉ3 ≥ Ĉ4 ∧ Ĉ1 ≤ Ĉ3) ∨ (P̂1 ∧
Ĉ3 ≤ Ĉ4 ∧ Ĉ1 ≤ Ĉ4) ∨ (¬P̂1 ∧ Ĉ3 ≥ Ĉ4 ∧ Ĉ2 ≤ Ĉ3) ∨ (¬P̂1 ∧ Ĉ3 ≤ Ĉ4 ∧ Ĉ2 ≤
Ĉ4).

– If Cm(i) = c, for c ∈ N let P̂k+1 = (P̂1 ∧ Ĉ1 ≤ c) ∨ (¬P̂1 ∧ Ĉ2 ≤ c).
– If Cℓ(i) = min(C1(i), C2(i)), then:

– If Cm(i) = # [j ≤ i] P2(i), let P̂k+1 = (Ĉ1 ≤ Ĉ2 ∧ Ĉ1 ≤ #
[
P̂2
]
) ∨ (Ĉ1 ≥ Ĉ2 ∧

Ĉ2 ≤ #
[
P̂2
]
).

– If Cm(i) = P(i) ? C3(i) : C4(i), let P̂k+1 = (Ĉ1 ≤ Ĉ2 ∧ P̂2 ∧ Ĉ1 ≤ Ĉ3) ∨ (Ĉ1 ≤
Ĉ2 ∧ ¬P̂2 ∧ Ĉ1 ≤ Ĉ4) ∨ (Ĉ1 ≥ Ĉ2 ∧ P̂2 ∧ Ĉ2 ≤ Ĉ3) ∨ (Ĉ1 ≥ Ĉ2 ∧ ¬P̂2 ∧ Ĉ2 ≤
Ĉ4).

– If Cm(i) = min(C3(i), C4(i)), let P̂k+1 = (Ĉ1 ≤ Ĉ2 ∧ Ĉ3 ≤ Ĉ4 ∧ Ĉ1 ≤ Ĉ3) ∨
(Ĉ1 ≤ Ĉ2 ∧ Ĉ3 ≥ Ĉ4 ∧ Ĉ1 ≤ Ĉ4) ∨ (Ĉ1 ≥ Ĉ2 ∧ Ĉ3 ≤ Ĉ4 ∧ Ĉ2 ≤ Ĉ3) ∨ (Ĉ1 ≥
Ĉ2 ∧ Ĉ3 ≥ Ĉ4 ∧ Ĉ2 ≤ Ĉ4).

– If Cm(i) = max(C3(i), C4(i)), let P̂k+1 = (Ĉ1 ≤ Ĉ2 ∧ Ĉ3 ≥ Ĉ4 ∧ Ĉ1 ≤ Ĉ3) ∨
(Ĉ1 ≤ Ĉ2 ∧ Ĉ3 ≤ Ĉ4 ∧ Ĉ1 ≤ Ĉ4) ∨ (Ĉ1 ≥ Ĉ2 ∧ Ĉ3 ≥ Ĉ4 ∧ Ĉ2 ≤ Ĉ3) ∨ (Ĉ1 ≥
Ĉ2 ∧ Ĉ3 ≤ Ĉ4 ∧ Ĉ2 ≤ Ĉ4).

– If Cm(i) = c, for c ∈ N let P̂k+1 = (Ĉ1 ≤ Ĉ2 ∧ Ĉ1 ≤ c) ∨ (Ĉ1 ≥ Ĉ2 ∧ Ĉ2 ≤ c).
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– If Cℓ(i) = max(C1(i), C2(i)), this identical to the previous case but just switch
Ĉ1 ≤ Ĉ2 with Ĉ1 ≥ Ĉ2.

– If Cℓ(i) = c for c ∈ N, this should be straightforward given the above cases
written out.

Lemma 6.1. Kt[#] contains FOC[+], and Kt[#;MOD] contains FOC[+;MOD]. In general,
for any set P of unary predicates, the extension FOC[+;P] is contained in Kt[#;P], when
defined as expected.

Proof. All FOC[+] sentences can be rewritten in the following normal form (Chiang et al.,
2023, Theorem 1):

∃x1 . . . ∃xn.

(∧
i
∃=xi p.ψi(p) ∧ χ(x1, . . . , xn)

)

where all ψi and χ are quantifier-free, and χ is a set of linear constraints on x1 . . . xn.

With respect to end-satisfiablity, this is simply equivalent to the Kt[#] formula.

χ (#[ψ1] , . . . , #[ψn])

The same is true for FOC[+;MOD], if we extend Kt[#] with modular predicates to
Kt[#;MOD] where (w, i) ⊨ MODk

m ⇐⇒ i ≡ k mod m.

In general, from this normal form we can see that for any set P of unary predicates, the
extension FOC[+;P] is contained in Kt[#;P], when defined appropriately. Furthermore, all
of these will be Kt[#] formulas of modal depth 1.

B Proofs: From Kt[#] to Transformers

In all proofs, we omit the scaling factor applied by LayerNorm, because it can be confusing
and also does not affect the end result. However, whenever relevant, we mention how to
account for this scaling factor.

Here, we recall the definition of LayerNorm

Definition B.1. LayerNorm is a function f : Rd → Rd such that

f (x) =
x − µ

σ
where µ =

1
d

d

∑
i=1

xi σ =

√√√√1
d

d

∑
i=1

(xi − µ)2

Observe that if µ = 0, LayerNorm only applies a scaling factor to all values in a position.
Observe furthermore if the absolute value of all values in a position are equal, LayerNorm
scales all of them to be ±1, which is important in Appendix B.3.

An essential part of our construction is access to a Boolean vector that is True at the BOS
position and False everywhere else. We call this a Start-Separating Vector, adapting termi-
nology from Merrill and Sabharwal (2024). Using the word embedding for BOS, we can
construct a dimension that holds such a vector (ensuring WE(wi) is true at dimensions
2ks − 1, 2ks only when wi = BOS).
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1 2 n′


...

...
...

2ks − 1 −1 +1 · · · +1

2ks +1 −1 · · · −1

...
...

...

B.1 BOS Handling Lemma

Lemma 5.3. Using the word embedding and a single feed-forward layer, we can set the
BOS position to False, without disturbing the Boolean value at any other position.

Proof. Construct a feed-forward layer which computes the min of every value in an odd
dimension with the value in dimension 2ks − 1 of the Start-Separating Vector and the max
of every value in an even dimension with the value in 2ks, as described in Lemma 5.5. Since
we’ve maintained that all values are ±1 in our Boolean representation, this sets the BOS
position to be False, while the others are unmodified.

B.2 Counting Lemma

Lemma 5.4. Let A2k−1:2k, ∗ store a Boolean vector as defined above. For any i, let Ck,i be
the number of positions j ≤ i such that A2k−1:2k,j is True. Then there is a transformer block

that computes, at each position i, and in two other dimensions 2k′ − 1, 2k′, the values − Ck,i
i+1

and Ck,i
i+1 .

Proof. First, recall the definition of a masked self attention layer SA : Rd×n → Rd×n:

SA(A) = [co · · · cn] where

W(Q) : Rd → Rdk

W(K) : Rd → Rdk

W(V) : Rd → Rd

sij =
W(Q)A∗,i · W(K)A∗,j√

d

ci =
∑i

j=0 exp(sij)W(V)A∗,j

∑i
j=0 exp(sij)

To simulate a count term #[ϕ] = C(i) of Kt[#], we need to construct a transformer block
such that if the Boolean values ϕ(i) are stored in some dimension 2k − 1, k, we can compute
C(i)
i+1 in some other dimensions 2k′ − 1, k′.

To achieve this, we only need uniform attention – that is, at each position i, we set W(Q) =

W(K) = 0, which makes sij = 0 for all i, j. This spreads attention weight evenly across all
positions j ≤ i.

Furthermore, by setting W(V) as follows, we can add the value from position i in dimen-
sions 2k − 1, 2k to position i in dimensions 2k′ − 1, 2k′.
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W(V) =

2k − 1 2k 2k′ − 1 2k′



...
...

...
...

2k − 1 · · · 0 0 · · · 0 0 · · ·
2k · · · 0 0 · · · 0 0 · · ·

...
...

...
...

2k′ − 1 · · · 1 1 · · · 0 0 · · ·
2k′ · · · 1 1 · · · 0 0 · · ·

...
...

...
...

As such, we get the attention layer to compute the average of all unmasked positions j ≤ i.
Recalling the definition once more, the general expression reads:

ci,k =
∑i

j=0 exp(sij)[W(V)A∗,j]k

∑i
j=0 exp(sij)

Then, with the use of uniform attention and our carefully constructed W(V), we compute
in position i of dimension k, the value ci,k, which is the average of all values up to position
i in dimension k, The expression reduces to:

ci,k =
∑i

j=0 exp(sij)[W(V)A∗,j]k

∑i
j=0 exp(sij)

=
∑i

j=0[W
(V)A∗,j]k

∑i
j=0 1

=
∑i

j=0 Ak,j

∑i
j=0 1

=
∑i

j=0 Ak,j

i + 1

Before moving on, note that we represent Booleans as −1,+1 instead of 0, 1, and we’ll also
write the sum of positions j ≤ i that hold a True as Ci,k. Here we write out the resulting
tensor after the described self-attention layer showing the relevant dimensions at positions
0, 1, . . . , n′. We write Bi ∈ {0, 1} be the Boolean value at position i.

1 2 n′



...
...

...
2k − 1 +1 −2B1 + 1 · · · −2Bn + 1

2k −1 +2B1 − 1 · · · +2Bn − 1
...

...
...

2k′ − 1 0 −2
C1,d′

2 + 1 · · · −2
Cn,d′
n+1 + 1

2k′ 0 +2
C1,d′

2 − 1 · · · +2
Cn,d′
n+1 − 1

...
...

...

Note, however, that instead of the desired value Ci,k
i+1 , we have actually computed 2 Ci,k

i+1 − 1.
We use a feed-forward layer to undo this transformation by subtracting (or adding) 1 and
then dividing by 2 in dimension d (or d + 1). Then, it is straightforward to construct a
feed-forward layer that simply adds dimension 2k0 − 1 to 2k − 1 and 2k0 to 2k in order to
remove the ±, and then divides by 2 to get the result:
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1 2 n′



...
...

...
2k′ − 1 0 −C1,d′

2 · · · −Cn,d′
n+1

2k′ 0 +
C1,d′

2 · · · +
Cn,d′
n+1

...
...

...

As a final note, which is relevant for the later subsection on arithmetic comparison, we will
make every self-attention layer compute a counting operation over the start-separating
vector (Appendix B.1) in order to compute the value 1

i+1 at every position i in some dimen-
sion.

B.3 Feed-Forward Lemma

Lemma 5.5. The following position-wise operations can be simulated by a single trans-
former block, using existing dimensions as input and a fresh dimension as output: addition
(+), subtraction (−), comparison (≤), and Boolean operations (∧, ¬). Arbitrary Boolean ex-
pressions in DNF can be simulated using two blocks.

Proof. A two-layer feed-forward network with ReLU activations on the first layer and none
on the second layer can compute any continuous piecewise linear function with a finite
number of pieces, or CPWL (Arora et al., 2018). All of these operations are CPWL, but we
give explicit constructions for concreteness, and the case of comparisons requires special
care.

We consider each type of operation in turn. All constructions only use the feed-forward
layer. We can force the self-attention layer to perform no changes to the residual stream by
setting all weights to 0; the residual connection then adds the original values back in.

Addition and subtraction: These operations are straightforward: put 1’s in W1 such that we
add the appropriate values to the fresh dimension, and negate using W2 if needed.

Min/Max: Recall that ReLU(x) = max(0, x). Then min(x, y) = x − ReLU(x − y).

– If x < y, then ReLU(x − y) = 0, so x − ReLU(x − y) = x = min(x, y).
– If x ≥ y, then ReLU(x − y) = x − y, so x − ReLU(x − y) = x − (x − y) = y = min(x, y).

Similarly, max(x, y) = x + ReLU(y − x).

Therefore there exist FFNs to compute the min or max of two real numbers:

x y

1 −1
1

−1

min(x, y)

1 −1
−1

x y

1 −1
−1

1

max(x, y)

1 −1 1

To compute the min of two count terms, we compute the min of their positive components
and the max of their negative components. Similarly for the max of two count terms.
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Comparison: This requires access to ± 1
i+1 in some dimensions 2k0 − 1, 2k0. This is easily

achieved by requiring every self-attention layer to perform a counting operation over the
start-separating vector (Appendix B.1).

First we explain how to simulate a comparison of two count terms C1(i) ≤ C2(i). Then, we
describe how to extend this to compare linear combinations of count terms.

Suppose that we want to compare C1 and C2 in dimensions 2k1 − 1, 2k1 and 2k2 − 1, 2k2,
and put the result in dimension 2k3 − 1, 2k3. Initially, the residual stream looks like this:

i



...
2k0 − 1 · · · − 1

i+1 · · ·

2k0 · · · + 1
i+1 · · ·
...

2k1 − 1 · · · −C1(i)
i+1 · · ·

2k1 · · · +C1(i)
i+1 · · ·
...

2k2 − 1 · · · −C2(i)
i+1 · · ·

2k2 · · · +C2(i)
i+1 · · ·
...

2k3 − 1 · · · 0 · · ·
2k3 · · · 0 · · ·

...

We construct a feed-forward layer that computes the function:

gtz(X(i)) = min
(

0.5
i + 1

,
X(i)
i + 1

− 0.5
i + 1

)
− min

(
0,

X(i)
i + 1

)
.

−1 0 1 2
− 0.5

i+1

0

0.5
i+1

X(i)

gt
z(

X
(i
))

Observe that gtz(C2(i)−C1(i) + 0.5) equals 0.5
i+1 if C1(i) ≤ C2(i), and − 0.5

i+1 otherwise. This
is because the counts C1(i), C2(i) must be integers, so if C1(i) ≤ C2(i), then C2(i)− C1(i) +
0.5 ≥ 0.5, and the expression will evaluate to 0.5

i+1 . Otherwise, C2(i)− C1(i) + 0.5 < −0.5,
and the expression will evaluate to − 0.5

i+1 .

It is straightforward, then, to use the construction for min/max from above to produce a
feed-forward layer that computes gtz (C2(i)− C1(i)). Essentially, we use W1 to compute
the values (using the pre-existing values from the residual stream)

0.5
i + 1

,
C2(i)− C1(i) + 0.5

i + 1
,−C2(i)− C1(i) + 0.5

i + 1

Then we use W2 to compute
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0.5
i + 1

+ ReLU
(

0.5
i + 1

− C2(i)− C1(i) + 0.5
i + 1

)
− ReLU

(
0.5

i + 1
− C2(i)− C1(i)− 0.5

i + 1

)
which equals gtz(C2(i)− C1(i)) as desired.

Similarly, it is straightforward to construct a feed-forward layer to compare linear combi-
nations of count terms. That is, for disjoint sets of indices K1 and K2, to compute

gtz

(
∑

k∈K2

ck · Ck(i)− ∑
k∈K1

ck · Ck(i)

)
.

So we can construct a feed-forward layer f : Rd → Rd that computes in each dimension i
the following

f





v1
v2
...
0
0
...

vd−1
vd




=



gtz(v1)
gtz(v2)

...
gtz
(
∑k∈K2

ck · Ck(i)− ∑k∈K1
ck · Ck(i)

)
gtz
(
∑k∈K2

ck · Ck(i)− ∑k∈K1
ck · Ck(i)

)
...

gtz(vd−1)
gtz(vd)


.

This truncates all positive values in the residual stream at this point to be 0.5
i+1 at position i,

and all nonpositive values to be − 0.5
i+1 . As a result, the next application of LayerNorm

(with appropriate parameter settings) scales every single value to ±1. In particular, all
previously-computed Boolean values are preserved, and the newly-computed dimensions
2k3 − 1, 2k hold the correct Boolean value based on the desired comparison

As a side effect, all previously-computed counts also get changed to ±1, but we do not
need these counts any longer due to how we organized the construction in Theorem 5.7.

Boolean operations: The Boolean operations ∧ and ¬ can be computed by FFNNs with ReLU
activations. Conjunction (∧) is equivalent to min/max:

...
−2B1 + 1

2B1 − 1
...

 ∧


...

−2B2 + 1
2B2 − 1

...

 =


...

max(−2B1 + 1,−2B2 + 1)
min( 2B1 − 1, 2B2 − 1)

...

 .

Logical negation (¬) is equivalent to arithmetic negation, or swapping the positive and
negative components:

2B − 1 −2B + 1

1 1

1 −1 −1 1
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For an arbitrary Boolean formula, convert it to canonical disjunctive normal form, which is
a disjunction ϕ1 ∨ · · · ∨ ϕn of clauses, at most one of which can be true for any value of the
inputs. Each clause is of the form ϕm =

∧
k∈Km Bk, where each Bk is an input or a negated

input and Km is a set of indices for each clause. A slightly different construction can be
used to compute ∧ over inputs in Km. Observe that:

∧
k∈Km

Bk = ReLU

((
∑

k∈Km

Bk

)
− (|Km| − 1)

)

And this can be computed for each clause using the first layer and ReLU of a feed-forward
layer. Recall again that if a constant is fixed, we can retrieve it by multiplying the constant
±1 from dimensions 2k0 − 1, 2k0 as described in Appendix B.2. Then, because at most one
clause can be true, the sum of all clauses will either be 1 or 0. Then, we convert back to the
±1 representation of truth values.

n∨
m=1

( ∧
k∈Km

Bk

)
= 2 ·

(
n

∑
m=1

ReLU

((
∑

k∈Km

Bk

)
− (|Km| − 1)

))
− 1.

This can all be done in a single feed-forward layer.

B.4 Parallel Composition of Transformers

Lemma B.2. Here we detail the claim in Theorem 5.7 that we can compose many transformers, into
a larger transformer which simulates all the formulas the smaller transformers do, in parallel.

Two transformers T1 and T2 simulating formulas ψ1 and ψ2 (using the construction described in
Theorem 5.7) can be composed into a single transformer T3 that simulates both ψ1 and ψ2.

Proof. We will just sketch out the construction. Let T1 with b1 blocks in d1 dimensions
and word embedding Emb1 simulate ϕ1 and T2 with b2 blocks in d2 dimensions and word
embedding Emb2 simulate ϕ2 in the manner described in Theorem 5.7. We can construct
T1 ⊕ T2 with max(b1, b2) blocks in d1 + d2 dimensions which simulates both ϕ1 and ϕ2, such
that

(T1 ⊕ T2)(w) =

[
T1(w)
T2(w)

]
.

First, add layers that compute the identity function to the shallower transformer so that
both have depth max(k1, k2).

Next, concatenate their word embedding vectors

(Emb1 ⊕ Emb2)(a) =
[

Emb1(a)
Emb2(a)

]
.

Then, at each level, we can compose the feed-forward networks FF1 and FF2 in parallel by
creating a new FF with

W(1) =

[
W(1)

1 0
0 W(1)

2

]
b(1) =

[
b(1)1
b(1)2

]

W(2) =

[
W(2)

1 0
0 W(2)

2

]
b(2) =

[
b(2)1
b(2)2

]
.
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Furthermore, we can compose the self-attentions in exactly the same manner, as only uni-
form attention is used in the construction.

W(Q) =
[
W(Q)

1 W(Q)
2

]
W(K) =

[
W(K)

1 W(K)
2

]
W(Q) =

[
W(V)

1 0
0 W(V)

2

]

It is straightforward to verify the correctness of this construction, given we follow the pro-
cedure in Theorem 5.7 organizing the simulation by modal depth.

C Fixed Precision Masked Transformers to Kt[#;MOD]

Definition C.1. A fixed-precision number with r integer bits and s fractional bits is a number
in Fr,s = {i/2s | −2r+s ≤ i < 2r+s}. For any value a ∈ Fr,s, we write ⟨a⟩b for the b-th bit of
the two’s complement representation of a. That is,

⟨a⟩b = ⌊a · 2−b⌋ − ⌊a · 2−b−1⌋ · 2.

This is a two’s complement representation.

It helps to access each individual bit of x.

Proposition C.2. We write xb for the b-th bit of x, whenever x is a fixed-precision number. Then,
observe that we can write a formula Fm(x) ⇐⇒ x = Fm iff we can write formulas Fb(x) ⇐⇒
xb = 1.

Proof. This should be clear by an example: 1001 in F5,0. We write Fm(x) ⇐⇒ F0(x) ∧
¬F1(x) ∧ ¬F2(x) ∧ F3(x).

Let us first define what it means for a formula of Kt[#;MOD] to simulate a Fixed Precision
transformer.
Definition C.3. Let T : Σn → Fd×n′

r,s be a fixed-precision masked soft attention transformer
defined exactly the same except we use Fr,s instead of R. We say T can be simulated in
Kt[#;MOD] if for every Fm ∈ Fr,s and every dimension of k of T we can write a formula Φk

m
such that

[T(BOS · w)]k,i+1 = Fm ⇐⇒ w, i ⊨ Φk
m

Similarly, defining predicates βk
m(i) for the BOS position. Essentially this means that we

can write a formula that tells us what value the transformer must output, given any input.

Theorem 7.1. Kt[#] can simulate fixed-precision masked soft attention transformers with-
out positional encodings, and Kt[#;MOD] can simulate fixed-precision masked soft atten-
tion transformers with sinusoidal positional encodings.

Proposition C.4. Assume we have Boolean functions Fk
m(i) which return true iff the value at posi-

tion i in dimension k is Fm ∈ Fr,s Then any function of the form f1(x1, . . . , xd) = f2(x1, . . . , xd),
where the xk is the value at dimension k in position i, can be written as a Boolean combination of
Fk

m(i).

Proof. Essentially, this is Fn ×Fn → {0, 1}, which only takes on finitely many values. Thus
it is tedious, but straightforward, to enumerate all tuples of x which should return true,
and write a formula that returns the correct answer. Let

K = {(m1, . . . , md) | f1(Fm1 , . . . , Fmd) = f2(Fm1 , . . . , Fk=md
)}
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That is, K stores all n-tuples K of indices such that given an n-tuple of fixed-precision
numbers which each have the corresponding index in K, the equality holds. Then write

∨
K∈K

(∧
k≤d

Fk
Kk
(i)

)
This formula will return 1 iff xk in dimensions k at position i have the correct fixed-precision
values in order to satisfy the equality.

As a result, for any function f : Fd
r,s → Fd

r,s we can write formulas ϕ(i) to check which
fixed-precision value the output of the function is at position i, given the formulas that
check the values of the inputs at position i. This means

Lemma C.5. We can write formulas FFNk
m(i), for each feed-forward layer FFN to check whether

the output at position i in dimension k is Fm ∈ Fr,s. Same for LayerNorm LNk
m(i).

Proof. This is a direct consequence of Proposition C.4 because these functions all take a
finite number of fixed-precision inputs, and have a finite number of outputs.

The same is not the case for self-attention layers, as we have no bound on the input length.
However, count terms help us out here.
Lemma C.6. Assume we are using Fr,s as our fixed-precision representation. Assume we have
access to predicates Fb(i) which tell us if the value at position i has a 1 in the b-th bit of its fixed-
precision representation. Then we can compute the following summation as a counting term

2s · ∑
j≤i

Xj

where Xj is a value at position j.

Proof. Observe this summation is equivalent to

∑
j≤i

Xj = 20 · ∑
j≤i

F0(j) + 21 · ∑
j≤i

F1(j) . . . + 2r+s−1 · ∑
j≤i

Fr+s−1(j)− 2r+s · ∑
j≤i

Fr+s(j)

= #[F0] + 2#[F1] + . . . + 2r+s−1#
[

Fr+s−1
]
− 2r+s#

[
Fr+s] .

As a clarifying note, recall we are using two’s complement, which is why the most signifi-
cant bit is subtracted.

Lemma C.7. We can write formulas Ck
m(i) which are true iff the output of a self-attention layer at

dimension k in position i is Fm ∈ Fr,s

Proof. Recall the definition of a self-attention layer in a fixed-precision masked soft atten-
tion transformer, SA : Fd×n

r,s → Fd×n
r,s :

SA(A) = [co · · · cn] where

W(Q) : Fd
r,s → F

dk
r,s

W(K) : Fd
r,s → F

dk
r,s

W(V) : Fd
r,s → Fd

r,s

sij =
W(Q)A∗,i · W(K)A∗,j√

d

ci =
∑i

j=0 exp(sij)W(V)A∗,j

∑i
j=0 exp(sij)
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More specifically, we want to define a formula ck
m(k) such that

ck
m(i) ⇐⇒ Fm ≤

∑j≤i eQi ·Kj Vk
j

∑j≤i eQi ·Kj
< Fm + 2−s

where Vk
j is the k-th component of the W(V)A∗,j. The bounds are because division in Fr,s

must perform some sort of rounding to the nearest number. We rearrange the equation to
the following:

ϕk
m(i) ⇐⇒ ∑

j≤i

(
Fm · eQi ·Kj

)
≤ ∑

j≤i

(
eQi ·Kj Vk

j

)
< ∑

j≤i

(
(Fm + 2−s) · eQi ·Kj

)
.

Now observe that we can enumerate all the (finitely many) values that the Fd vector Qi as
(Qx)x≤(d(r+s)) in order to get an expression that only depends on j:

ck
m(i) ⇐⇒



(
∑j≤i

(
Fm · eQ1·Kj

)
≤ ∑j≤i

(
eQ1·Kj Vk

j

))
Qi = Q1

∧
(

∑j≤i

(
eQ1·Kj Vk

j

)
< ∑j≤i

(
(Fm + 2−s) · eQ1·Kj

))
∑j≤i

(
Fm · eQ2·Kj

)
≤ ∑j≤i

(
eQ2·Kj Vk

j

)
Qi = Q2

∧
(

∑j≤i

(
eQ2·Kj Vk

j

)
< ∑j≤i

(
(Fm + 2−s) · eQ2·Kj

))
...

...
...

∑j≤i

(
Fm · eQd(r+s) ·Kj

)
≤ ∑j≤i

(
eQd(r+s) ·Kj Vk

j

)
Qi = Qd(r+s)

∧
(

∑j≤i

(
eQd(r+s) ·Kj Vk

j

)
< ∑j≤i

(
(Fm + 2−s) · eQd(r+s) ·Kj

))
This can straightforwardly be translated into a Boolean combination of formulas ck

m,Qx(i)
,

etc., which by Proposition C.4 are definable. Furthermore, by the same proposition it is
also straightforward to construct a formula QKV(j) that specifies the value of eQx ·Kj Vk

j

at position j, as well as a formula FmQK(j) that specifies the value of Fm · eQpd ·Kj . This
allows us to write the above expression in a form such that Lemma C.6 can be applied
directly to both sides of the equation, thus computing both as count terms and allowing
their comparison within Kt[#;MOD]. Notice that by applying Lemma C.6 we are implicitly
scaling both sides up by 2s, but this is fine, as equality would still be preserved under this
scaling factor.

Finally, to complete the simulation it remains to show that we can write formulas that simu-
late the word embedding and positional encoding, which will be similar to the construction
of Chiang et al. (2023).

Lemma C.8. We can write Kt[#] formulas WEk
m(i) that check that the k-th dimension of the em-

bedding at position i has the value Fm ∈ Fr,s

Proof. For a ∈ Σ ∪ {BOS}, let WE(a) = [Fm1,a, . . . , Fmd ,a] denote the fixed-precision word
embedding for a. Then, using the same notation as earlier, we can write

WEk
m(i) =

∨
a∈{a|WE(a)k=Fm}

Qa(i).
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Similarly, we define βk
m(i), which checks the word embedding for BOS has value Fm at

dimension k. Sinusoidal positional encodings can be described in the same manner, using
modular predicates.

Finally,

Proof. As a direct consequence of the above lemmas, we can write a formula of Kt[#],
which simulates a fixed-precision masked soft attention transformer without positional
encodings. Adding modular predicates allows Kt[#;MOD] to simulate fixed-precision
masked soft attention transformer with sinusoidal positional encodings. This formula will
have modal depth O(L) in the number of layers L of the transformer, and width roughly
O((2F)d) in the precision F and width d of the transformer.
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