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ABSTRACT

We introduce OCEANGYM, the first comprehensive benchmark for ocean under-
water embodied agents, designed to advance AI in one of the most demanding
real-world environments. Unlike terrestrial or aerial domains, underwater settings
present extreme perceptual and decision-making challenges, including low vis-
ibility, dynamic ocean currents, making effective agent deployment exception-
ally difficult. OCEANGYM encompasses eight realistic task domains and a uni-
fied agent framework driven by Multi-modal Large Language Models (MLLMs),
which integrates perception, memory, and sequential decision-making. Agents are
required to comprehend optical and sonar data, autonomously explore complex
environments, and accomplish long-horizon objectives under these harsh con-
ditions. Extensive experiments reveal substantial gaps between state-of-the-art
MLLM-driven agents and human experts, highlighting the persistent difficulty of
perception, planning, and adaptability in ocean underwater environments. By pro-
viding a high-fidelity, rigorously designed platform, OCEANGYM establishes a
testbed for developing robust embodied AI and transferring these capabilities to
real-world autonomous ocean underwater vehicles, marking a decisive step toward
intelligent agents capable of operating in one of Earth’s last unexplored frontiers.
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Figure 1: Illustration of OCEANGYM. The OCEANGYM benchmark introduces a unified agent framework
across 8 real-world underwater scenarios. The agent interprets language instruction, fuses optical and sonar
imagery, and controls Autonomous Underwater Vehicles (AUVs).

1 INTRODUCTION

As Richard S. Sutton famously noted, we are entering an “era of experience” (Silver & Sutton, 2025).
Embodied agents equipped with language models (Zhao et al., 2023; OpenAI, 2024) are emerging
as a central paradigm for intelligent systems, as they accumulate and leverage experience through
continuous interaction to close the perception-decision-action loop in physical or simulated environ-
ments (Gupta et al., 2021; Ding et al., 2024; Liu et al., 2025). Unlike static decision or generative
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models, these agents must integrate rich multimodal sensory streams and execute continuous-control
policies to achieve long-horizon objectives. This necessitates a unified treatment of perceptual rep-
resentation, planning, online inference, and sequential policy optimization (Fung et al., 2025). Sig-
nificant progress has been demonstrated across diverse domains, including robotic manipulators
(Anderson et al., 2018; Caesar et al., 2020; Vasudevan et al., 2021; Gao et al., 2024), drones (Wang
et al., 2024a; Lee et al., 2025; Gao et al., 2025b), and autonomous vehicles (Ma et al., 2025b).

In contrast, underwater1 embodied agents remain largely unexplored despite their critical scientific
and engineering importance (Visbeck, 2018; Kelly et al., 2022; Zheng et al., 2023; Li et al., 2024b;
Gao et al., 2025a). Deploying embodied agents in marine environments offers unique opportuni-
ties for ocean exploration, offshore resource development, environmental monitoring, and subsea
rescue operations. These tasks impose stringent requirements on the robustness and reliability of
autonomous platforms, making the development of agents capable of functioning under real marine
conditions a key bridge between simulated research and practical deployment (Ma et al., 2025a).

Challenges. Underwater embodied agents face distinct challenges that set them apart from overland
and aerial systems. Perceptually, poor visibility and low-light conditions, combined with the inher-
ent limitations of optical sensors, compel reliance on sonar, inertial measurements, and other sparse
modalities (Li et al., 2024c; Aubard et al., 2025). These heterogeneous and noisy observations com-
plicate sensor fusion and perception. Environmentally, deep-sea and offshore settings are largely
unexplored, with unstable localization, absent prior knowledge, and dynamic currents. The lack of
prior knowledge prevents effective environmental modeling, requiring agents to reason under cir-
cumstances of extreme partial observability and uncertainty (Sariman et al., 2025). Together, these
factors constrain the development of underwater agents, leaving their capabilities in early stages.

Building OceanGym. To address these challenges, we introduce OCEANGYM, an open environ-
ment benchmark for underwater embodied agents. OCEANGYM constructs a comprehensive marine
environment spanning approximately 800m × 800m (length × width), with dynamically adjustable
depth to simulate varying lighting conditions. The platform incorporates eight distinct task do-
mains designed to reflect real-world operational requirements. Additionally, it provides a multimodal
LLM-based agent framework that integrates perception, memory, and action decision-making capa-
bilities for controlling Autonomous Underwater Vehicles (AUVs). The benchmark unifies perception
and decision-making in simulated underwater scenarios, where agents must infer target states from
contextual cues or multi-view sensor data and execute complex behaviors such as search, inspec-
tion, and docking. By simulating these environments, OCEANGYM enables systematic evaluation of
language models’ capabilities in underwater embodied settings and offers a pathway for transferring
learned skills to real-world underwater vehicles through the generation of synthetic data, reinforce-
ment learning guided by environmental feedback, and iterative improvement of agent capabilities
through various algorithmic approaches. We discuss the limitations of OCEANGYM in §3.3.

Benchmark Results and Insights. Extensive experiments on OCEANGYM reveal that Multi-modal
Large Language Models (MLLMs) exhibit significant gaps compared to human experts, particularly
under low-visibility conditions (decision-making success rate drops to 14.8%). Agents frequently
struggle to interpret sonar data accurately, distinguish objects in complex environments, and main-
tain consistent devision strategies over extended missions. Limitations also arise in memory reten-
tion and adaptability when objects are occluded or conditions change dynamically. These findings
highlight persistent challenges for embodied AI in underwater environments and underscore the
need for continued research in robust perception, reasoning, and control under extreme uncertainty.

2 OCEANGYM

OCEANGYM is a high-fidelity embodied underwater environment that simulates a realistic ocean
setting with diverse scenes. As illustrated in Figure 2, OCEANGYM establishes a robust bench-
mark for evaluating autonomous agents through a series of challenging tasks, encompassing various
perception analyses and decision-making navigation. OCEANGYM facilitates these evaluations by
enabling MLLM-driven agents with multi-modal perception and parameterized action spaces.

1Underwater refers to the ocean environment throughout this work and is not further specified.
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Figure 2: OCEANGYM Tasks. OCEANGYM comprises Perception Tasks (divided into Multi-view Percep-
tion and Context-based Perception settings) and Decision Tasks for evaluating embodied agents.

2.1 OCEANGYM ENVIRONMENT

We develop OCEANGYM atop Unreal Engine (UE) 5.3 (Epic Games, 2025), providing a compre-
hensive set of underwater environments, including both natural terrains and engineered structures.
The environment features several semantic regions such as open water, seabed plains, underwater
cliffs, pipeline networks, wreckage sites, and energy infrastructure zones. Each region is modeled
with realistic physical and geometric properties, incorporating elements like oil pipelines, chemical
waste barrels, submerged shipwrecks, electrical equipment, wind turbine foundations, and aircraft
debris (more details in Appendix A.4). These elements are built using intricate 3D assets based on
real-world references, ensuring accurate representation of structural and material characteristics.

We also simulate different lighting conditions by controlling the depth of the underwater environ-
ment. In our experiments, we configure two representative depths to emulate shallow (50m) and
deep water (500m)2 scenarios. For each task, the starting position is randomly selected to vary task
difficulty, because tasks become increasingly challenging when the start point is far from the target,
the target is initially out of view, or the initial orientation faces away from the goal. Furthermore,
OCEANGYM is completely scalable, allowing users to customize the environment by selecting new
depths to simulate more complex lighting conditions, or by adding new props and designing addi-
tional tasks based on the existing environment, thereby extending the diversity and difficulty.

2.2 UNDERWATER EMBODIED AGENTS

We model the agent’s control–perception loop as a Partially Observable Markov Decision Process
(POMDP) enhanced with contextual memory. At each time step t, the agent processes the task
specification T = (Itarget, c), where Itarget is a visual reference image of the target and c provides its
textual identity and features. It also considers language instruction L, synchronized observationsOt,
and its memory state mt. These elements collectively shape the agent’s perception and objectives.

With the above information, the agent must generate either a textual perception response yt
for perception tasks, or determine a control action at for decision tasks. Here, at ∈ A is a
discrete action selected from the action space A. A decision trajectory is described by σ =
(O1, a1, s1,m1, . . . ,mt−1, Ot, at, st). In this sequence, Oi represents the observations, ai the ac-
tions, si the states, and mi the memory states at each time step i. The episode concludes when the
target is achieved or when the maximum time tmax is exhausted. The ultimate reward is based on the
successful score of the task, as defined in §2.5.

2For deep water scenarios, optical sensing relies on artificial light sources, with a visibility range of approx-
imately 0–10m.
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State and Observation. The agent’s state at time t is given by st = {(xt, yt, zt), (ϕt, θt, ψt)},
where (xt, yt, zt) represent the agent’s 3D positional coordinates, and (ϕt, θt, ψt) denote the roll,
pitch, and yaw angles, respectively. At each timestep, the agent receives synchronized RGB and
sonar images from sensors oriented in six different directions. The directions are defined by the
set Dsensor = {f, b, l, r, u, d}, corresponding to front, back, left, right, up, and down. The
RGB images from these directions are denoted as OR

t = {oRt,d}d∈Dsensor , and the sonar images are
represented similarly as OS

t = {oSt,d}d∈Dsensor . Therefore, the complete observation at time t can be
expressed as a combination of both image sets, Ot = (OR

t , O
S
t ).

Action Space. The agent’s action direction set is defined as Daction = {f, b, l, r, u, d, rl, rr}, which
encompasses both directional and rotational movements. Directional actions include translations
along the primary axes: forward (f ), backward (b), left (l), right (r), up (u), and down
(d). Rotational actions consist of rotate left (rl) and rotate right (rr). At each timestep
t, the agent selects an action at ∈ A from this discrete set and applies a control magnitude δ ∈ R≥0

to determine the execution intensity.

Memory. Memory systems play a crucial role in storing and structuring past information, thereby
enhancing the agent’s resilience in dynamic and partially observable environments (Xi et al., 2025;
Liu et al., 2023; Zhong et al., 2024; Wu et al., 2024; Maharana et al., 2024). OCEANGYM agent
maintains an explicit memory mt, structured as a sliding window that records the last K steps:

mt = {(dt−k, at−k) | k = 1, 2, . . . ,K}. (1)

Within this memory structure, dt−k denotes the textual description at time t−k, and at−k represents
the corresponding action executed. The sliding window size K is implemented primarily to prevent
the context length from exceeding the model’s maximum input capacity. The default window size is
large enough to capture the necessary historical information for most tasks in our benchmark. The
perception module Pθ, modeled as an MLLM, generates a summary based on the current context
and the interaction history {(Ok, ak)}tk=t−K :

dt = Pθ

(
{(Ok, ak)}tk=t−K

)
. (2)

This summary is subsequently used to refresh the memory: mt+1 = update(mt, dt, at).

Memory-augmented Markov Process. To maintain the Markov property while incorporating mem-
ory, we introduce an augmented hidden state s̃t = (st,mt). The state transition is then modeled as:

p(s̃t+1 | s̃t, at, δ), (3)

where p(· | ·) represents the augmented state transition function of the environment. This function
captures both the evolution of memory, ensuring that the system remains Markovian despite the
added complexity of memory integration.

Agent Policy. The agent policy is a multimodal, memory-augmented mapping parameterized by an
MLLM with parameter vector θ:

πθ(at, yt | L,Ot,mt, T , δ), (4)

Concretely, for perception tasks, we sample an answer yt ∼ πθ(y | L,Ot,mt, T , δ), and for decision
tasks, we sample an action at ∼ πθ(a | L,Ot,mt, T , δ). An episode terminates at time T when the
agent either outputs a STOP command (for decision tasks) or provides a final answer to the question
(for perception tasks) or when the maximum time tmax is reached. The policy, combined with the
memory-augmented transition dynamics, induces the trajectory distribution:

Pθ(σ | L, T ) =

T−1∏
t=1

πθ(at, yt | L,Ot,mt, T , δ) p(s̃t+1 | s̃t, at, δ), (5)

where σ represents the trajectory of the agent through the state space over time, influenced by the
specified policy πθ and the transition model p(s̃t+1 | s̃t, at, δ).

4
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2.3 OCEANGYM PERCEPTION TASKS

The perception tasks are categorized into two settings: Multi-View Perception and Context-based
Perception. These tasks primarily use RGB images as input, with sonar data added in certain ex-
periments to enhance perception. The data for each setting are collected by human operators and
designed to evaluate different aspects of MLLMs’ perceptual abilities. There are a total of 85 scenes.
More details in Appendix A.3.

Multi-view Perception Setting. This setting evaluates the agent’s ability to interpret visual infor-
mation from multiple synchronized viewpoints. At each timestep t, the agent captures a set of six
simultaneous RGB images, denoted as OR

t = {oRt,d}d∈Dsensor , where d refers to the different sensor
orientations: front, back, left, right, up, and down. The objective is to consistently identify
and localize underwater objects across these varied viewpoints. This setting examines whether ob-
jects visible from certain angles can be correctly perceived when the visual inputs from all directions
are sequentially processed by the MLLM, thereby evaluating robustness to viewpoint variations.

Context-based Perception Setting. This setting assesses the agent’s ability to perceive and interpret
sequential observations gathered during navigation. At each timestep t, the agent captures an RGB
image oRt from a fixed orientation, forming a chronological sequence OR

1:m = {oRt }mt=1, where m
is the total number of timesteps. The agent must track and understand changes over time, ensuring
consistent and accurate identification and localization of underwater objects. This evaluation em-
phasizes temporal consistency and the agent’s capacity to build a coherent perception from a stable
visual perspective in dynamic and complex underwater environments.

Running Example: Shipwreck Area

Perception Task: (1) Multi-view perception setting. The agent receives perception images (vi-
sual and sonar) from different sensors at the same time to determine the target, such as whether
it is a shipwreck. (2) Context-based perception setting. The agent analyzes images one by one
along a trajectory from a fixed viewpoint to identify the target.

Decision Task: The agent receives a task instruction, such as “Search for a sunken ship,” and
then explores the area for 30 minutes to complete it.

2.4 OCEANGYM DECISION TASKS

Decision Task Definition. Decision tasks evaluate decision-making in continuous 3D environments,
where agents must integrate multimodal sensory input with task specifications. Each episode begins
from an initial state s0 = {(x0, y0, z0), (ϕ0, θ0, ψ0)} and requires the agent to reach the target
defined by T . The agent must combine sensory observations Ot, temporal memory, and goal in-
formation to execute precise maneuvers in cluttered, low-visibility environments. Key parameters
of the task include the decision interval tinterval and the task’s limited duration tmax

3. The decision
interval tinterval determines how frequently the agent makes decisions and executes actions. The total
task duration tmax sets the temporal constraint, within which the agent must meet its objectives,
thereby influencing the planning and movement strategies employed by the agent. Compared with
grid-based navigation benchmarks, this task emphasizes continuous control and realistic underwater
environment, reflecting the challenges of autonomous exploration and inspection tasks.

Decision Task Design. To evaluate the decision-making capabilities of MLLMs in marine environ-
ments, we design eight representative task scenarios that are commonly used in actual underwater
operations (more details in Appendix A.4). The task construction methods are divided into two cat-
egories: detection tasks and tracking tasks. Detection tasks focus on assessing the ability of MLLMs
to locate specific underwater objects, including searching for large targets such as sunken ships
or aircraft wreckage, and smaller targets like scientific research robots. Tracking tasks focus on
evaluating the ability of MLLMs to perform inspection and monitoring tasks underwater, including
scenarios like pipeline inspection and platform approaches. To further investigate the performance
in challenging environments, four representative tasks are conducted under low light deep-sea con-
ditions. In the experimental design, a systematic initial positioning strategy is adopted for each

3By default, tinterval takes 30 seconds and tmax takes 0.5 hours in decision tasks.

5
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Table 1: Performance of perception tasks across different models and conditions. Values represent
accuracy percentages (%). Adding sonar means using both RGB and sonar images.

Model

Shallow Water Environment
(High Illumination)

Deep Water Environment
(Low Illumination)

Multi-View
Perception

Context-based
Perception Avg

Multi-View
Perception

Context-based
Perception Avg

Vision +Sonar Vision +Sonar Vision +Sonar Vision +Sonar

GLM-4.5V 52.73 56.36 46.67 63.33 54.77 36.36 30.91 20.00 33.33 30.15
GPT-4o-mini 34.55 34.55 20.00 33.33 30.61 14.55 20.00 3.33 6.67 11.14
Gemini-2.5-Flash 29.09 30.91 50.00 33.33 35.83 9.09 5.45 20.00 30.00 16.14
Qwen2.5-VL-7B 58.18 43.64 56.67 70.00 57.12 27.27 20.00 33.33 33.33 28.48
Minicpm-4.5 52.73 43.64 36.67 23.33 39.09 29.09 23.64 43.33 13.33 27.35

Human 100.00 100.00 100.00 100.00 100.00 94.55 98.18 86.67 90.00 92.35

task. The first two starting positions remain consistent across all tasks to ensure experimental re-
producibility. The third starting position is randomly generated within the operational boundary to
evaluate the adaptability of the agent to different initial conditions.

2.5 EVALUATION METRICS

Perception Task Evaluation. We evaluate model performance using exact match accuracy. Let yi
denote the ground-truth answer and ŷi represent the model’s predicted answer for the i-th sample.

Acc =
100%

N

N∑
i=1

I [ŷi = yi] , (6)

For multiple-choice items, yi and ŷi are treated as sets and equality requires an exact set match.

Decision Task Evaluation. We evaluate decision tasks using a distance-based scoring method. Each
episode ends when the agent issues a STOP command or reaches the time limit tmax. For a task with n
evaluation points, let pi be the i-th target location. If the target is detected, we use the closest position
from the agent’s trajectory to pi; otherwise, we use the agent’s final position. The Euclidean distance
is computed as di = ∥p̂i − pi∥2, and the score for each point is defined as:

Si =


100, di ≤ τ1,

100
τ2 − di
τ2 − τ1

, τ1 < di ≤ τ2,

0, di > τ2,

(7)

where the distance thresholds are set to τ1 = 30 meters and τ2 = 100 meters by default. The total
score is a weighted sum as Stotal =

∑n
i=1 wiSi, where wi are task-specific weights4.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTINGS

To thoroughly evaluate the perception and decision capabilities of MLLMs in underwater environ-
ments, we conduct experiments using a variety of models5. Among the open-source models, we
assess MiniCPM-V-4.5 (Yao et al., 2025), GLM-4.5V (Team et al., 2025) and Qwen2.5-VL-7B (Bai
et al., 2025). For proprietary models, we test GPT-4o-mini (OpenAI, 2024) and Gemini-2.5-Flash
(Gemini Team, 2024). We run each task three times and report the average results. Humans pro-
vide perception and decision-making answers based on tasks, and operate underwater robots through
keyboards for decision-making tasks.

4For a single-point task w1 = 1.0; for two points (w1, w2) = (0.6, 0.4); for three points (w1, w2, w3) =
(0.6, 0.2, 0.2).

5Note that our setup is designed to real-world deployment of MLLMs in the future; accordingly, we priori-
tize smaller-scale models that can run natively on edge devices.

6
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Table 2: Performance in decision tasks requiring autonomous completion by MLLM-driven agents.

Task Model Human
GLM-4.5V GPT-4o-mini Gemini-2.5 Qwen2.5-VL-7B

Shallow Water Environment (High Illumination)

Locate the robot 6.6±19.83 8.9±10.1 0.0±0.00 7.8±13.5 100
Locate the oil drums 10.7±16.52 11.1±19.2 3.5±6.0 5.7±9.8 100
Locate the electrical box 7.9±17.08 36.6±21.9 15.9±27.4 8.7±15.0 100
Search for a sunken ship 5.9±5.04 13.4±19.3 20.5±14.3 10.3±10.3 100
Search for the aircraft 25.0±6.10 16.9±17.8 11.7±15.6 7.8±10.0 100
Inspect oil pipe 37.8±17.88 27.1±23.6 18.3±15.8 30.8±25.2 100
Inspect the wind turbine 20.3±28.89 13.9±14.33 25.1±22.1 14.7±17.0 100
Docking 14.9±13.20 19.2±33.28 19.4±33.6 8.3±7.2 100
Average 16.1±15.6 18.4±19.9 14.4±16.1 11.8±13.7 100

Deep Water Environment (Low Illumination)

Locate oil drums 10.6±21.35 5.6±9.69 0.0±0.0 0.0±0.0 40.8
Search for a sunken ship 2.9±2.16 12.8±14.48 8.2±14.1 3.4±5.8 100
Inspect the oil pipe 32.5±5.86 15.8±15.5 6.6±11.4 21.7±25.3 78.2
Inspect the wind turbine 0.0±0.0 25.1±16.0 10.6±10.0 0.4±0.6 100
Average 11.5±7.3 14.8±13.9 6.4±8.8 6.4±8.4 69.6
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Figure 3: Performance comparison between human
and MLLMs after adding sonar and sonar reference
examples for objects in deep water environments.
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Figure 4: Case analysis in perception tasks.
Agents are susceptible to perception errors under
challenging conditions such as low-light environ-
ments, multi-object scenarios, and occlusions.

3.2 MAIN RESULTS

Perception Results. The results for perception tasks are summarized in Table 1. In shallow, well-
illuminated water environments, Qwen2.5-VL-7B achieves the strongest overall performance among
the evaluated MLLMs, with an average accuracy of 57.12%, while GLM-4.5V demonstrates com-
petitive performance with 54.77% average accuracy. Multi-view perception generally yields higher
accuracy than the context-based setting across most models, likely because targets of similar size
across viewpoints are easier to interpret, whereas distant objects in sequential views can introduce
ambiguity. Under deep water conditions with low illumination, all models exhibit significant per-
formance degradation, though GLM-4.5V emerges as the most robust (30.15% average accuracy),
followed by Qwen2.5-VL-7B (28.48%) and Minicpm-4.5 (27.35%). Notably, incorporating sonar
data does not consistently improve performance across models or tasks (further analysis in §3.3).

Decision Results. Performance on decision tasks is shown in Table 2. Several tasks resulted in
zero scores, indicating extreme difficulty due to small object size or time constraints. GPT-4o-mini
achieves the best average performance in both shallow (18.4%) and deep water (14.8%) environ-
ments, with GLM-4.5V ranking second under shallow conditions (16.1%) and deep water conditions
(11.5%). Performance declines markedly in deep water, where Gemini-2.5 and Qwen2.5-VL-7B
both average 6.4%. Notably, GLM-4.5V demonstrates strong performance in specific tasks, achiev-
ing the highest scores in ”Search for the aircraft” (25.0%) and ”Inspect oil pipe” (37.8%) in shallow
water, and ”Inspect the oil pipe” (32.5%) in deep water. Human performance substantially outper-
forms all models, reaching 100% in shallow water and 69.6% in deep water, underscoring the gap
between current MLLM-driven decision-making and human proficiency.
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Figure 5: Scaling analysis performance over time in decision tasks.
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Figure 6: Impact of different memory transfer mechanisms on model performance.

3.3 ANALYSIS

MLLM agents struggle to exploit sonar data for enhanced underwater perception, in stark
contrast to humans who leverage it effectively. To investigate the role of sonar data in deep-water
environments, we compare the performance of human experts with the two MLLMs, Qwen2.5-VL
and GPT-4o-mini, on perception tasks. Specifically, we either let the models directly comprehend
sonar images or provide them with human-annotated interpretations as prompts. As shown in Fig-
ure 3, human experts consistently benefit from incorporating sonar data across tasks. By contrast,
MLLMs exhibit only limited gains when using raw sonar images, and this gap becomes even more
pronounced when reference sonar images of each object are introduced. This limitation likely stems
from current MLLMs’ fundamental difficulty in interpreting sonar imagery and underwater percep-
tual data (Xie et al., 2022; Zheng et al., 2023; Xu et al., 2025; Aubard et al., 2025), combined with
potential constraints in the sonar simulation within OceanGym, an issue we discuss in §3.3. Notably,
when employing a YOLO model (Redmon et al., 2016) specifically trained on sonar data as auxil-
iary perception tools, we observe significant performance improvements, suggesting that specialized
vision models may currently outperform general-purpose MLLMs in sonar data interpretation tasks.

Extended exploration enhances an agent’s acquisition of environmental knowledge and task
performance, following a scaling law that eventually plateaus. We analyze the relationship be-
tween navigation performance and operational duration using the representative MLLMs, across
both shallow- and deep-water scenarios. The performance was evaluated over durations of 0.5, 1,
1.5, 2, and 3 hours. As shown in Figure 5, performance initially improves with longer operation
time, consistent with prior studies on test-time scaling (Zhang et al., 2025a; Zhu et al., 2025), but
eventually plateaus. This plateau reflects inherent limitations in perception, memory, and reasoning,
as well as a lack of intrinsic curiosity to explore new regions. These findings underscore the need to
improve both fundamental MLLM capabilities and agent strategies, such as enhanced memory and
long-horizon planning, to break through performance ceilings in embodied environments.

Memory transfer enables agents to leverage past experience to tackle new challenges. We in-
vestigate whether knowledge and experience accumulated from previous tasks (Hou et al., 2024; Hu
et al., 2024a; Tan et al., 2025; Tang et al., 2025) can enhance performance in new tasks. Specifically,
we explore using agents’ previously explored trajectories as experiential input. Experiments are
conducted in both shallow water and deep water environments, evaluating two transfer conditions:
within-task transfer (different starting points) and cross-task transfer (different but related tasks). As
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Figure 7: Case analysis in decision tasks.

shown in Figure 6, memory transfer improves decision-making performance in shallow water envi-
ronments under both transfer conditions. However, in the more challenging deep water environment,
only cross-task transfer demonstrates stable performance improvements, while within-task transfer
shows limited benefits. This suggests that more appropriate prior experiences provide more robust
guidance under perceptually degraded conditions. Transfer learning helps compensate for percep-
tual limitations by providing informed priors about environmental structure and effective naviga-
tion strategies. These findings underscore the importance of developing adaptive memory retrieval
mechanisms that can selectively leverage relevant past experiences to enhance decision-making in
autonomous underwater agents operating under diverse environmental conditions.

Case analysis. We present case analyses and illustrate failure cases in Figure 4, mainly due to: (1)
Occlusions, where targets are partially blocked; (2) Multi-object Scenes, causing identification and
localization ambiguities; and (3) Low Illumination, which severely reduces vision-based perception
accuracy. Figure 7 shows common decision task failures, primarily from: (1) Perception Errors,
where inaccurate detection leads to wrong actions; and (2) Memory Forgetting, where the agent
cannot retain crucial past information, such as visited locations or previous decisions. Furthermore,
we deploy physical objects that serve as real-world references for object modeling in OceanGym into
an actual marine environment to correlate simulated performance with real-world performance. An
AUV equipped with a sonar data acquisition system is then used to collect sonar measurements. As
shown in the Figure 8, the YOLO model trained in the simulated environment enhances GPT-
4o-mini’s ability to interpret real-world sonar data. However, it exhibits limited generalization
capability for objects not included in the simulation.

Discusses and Limitations of OCEANGYM. OCEANGYM offers a versatile testbed for under-
water embodied agents, though it cannot fully replicate real-world conditions as factors like cur-
rents, salinity, marine life, and sonar noise remain imperfectly modeled. Despite these constraints,
OCEANGYM supports synthetic data generation and facilitates reinforcement learning with rich
feedback, and serves as a sim-to-real bridge for deploying models on AUVs (See §A.2).

4 RELATED WORK

Embodied Simulations. Embodied intelligence describes artificial intelligence systems whose in-
telligent behavior emerges through continuous physical and sensory interactions with the environ-
ment (Gupta et al., 2021; Ding et al., 2024; Shi et al., 2024). Simulation platforms are essential for
advancing such systems across ground, aerial, and marine domains (Liu et al., 2024b; Han et al.,
2025; Aldhaheri et al., 2025). In ground applications, platforms like Matterport3D (Chang et al.,
2017), House3D (Wu et al., 2018), and Habitat (Manolis Savva et al., 2019) provide realistic in-
door and outdoor environments for navigation, scene understanding, and human-robot interaction
research. Aerial robotics benefits from simulators such as AirSim (Shah et al., 2018), CityNav (Lee
et al., 2025) and OpenUAV (Wang et al., 2024a), which offer high-fidelity simulations with ac-
curate physics and sensor models. Similarly, in the marine domain, simulation platforms such as
HoloOcean (Potokar et al., 2022), OceanSim (Song et al., 2025), and MarineGym (Chu et al., 2025)
provide specialized capabilities for modeling hydrodynamic effects and underwater dynamics. With
the development of embodied intelligence, an increasing variety of simulation environments (Kolve
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Figure 8: We evaluate whether YOLO models trained in simulated environments can enhance real-world
performance by testing them on actual sonar data. The results demonstrate that while the YOLO-assisted GPT-
4o-mini approach yields measurable performance improvements for certain objects modeled in OceanGym, the
models exhibit limited generalization capability for objects not included in the simulation.

et al., 2017; Puig et al., 2018; Xiang et al., 2020; Gan et al., 2021; Li et al., 2021; Nasiriany et al.,
2024; Zhou et al., 2024b; Hong et al., 2025) have emerged to meet specific tasks, needs, or scenarios.

MLLM-driven Embodied Agents. Building upon the rapid advancement of LLMs (Achiam
et al., 2023; Touvron et al., 2023; Chiang et al., 2023; Yang et al., 2025a), the emergence of MLLMs
(OpenAI, 2024; Bai et al., 2025; Meta AI, 2024; Liu et al., 2024a; Gemini Team, 2024; Team et al.,
2025; Wang et al., 2025b) has further strengthened agent capabilities by incorporating visual un-
derstanding for multimodal perception. Despite impressive results in various agent applications (Hu
et al., 2024b; Ning et al., 2025), MLLM-driven agents still face substantial challenges in real-world
and simulated embodied environments. Key difficulties persist in spatial cognition (Prasad et al.,
2023; Du et al., 2024; Tong et al., 2024; Shiri et al., 2024; Zheng et al., 2024; Dang et al., 2025;
Yang et al., 2025c; Li et al., 2025), task planning (Chen et al., 2023; Huang et al., 2023; Zhou et al.,
2024a) , object navigation (Wang et al., 2024b; Khanna et al., 2024; Guo et al., 2025; Qiao et al.,
2025; Cheng et al., 2025), and robotic manipulation (Zheng et al., 2022a; Yang et al., 2025b; Wang
et al., 2025a). To evaluate agent capabilities, embodied benchmarks have been developed across di-
verse settings, including indoor (Anderson et al., 2018; Wu et al., 2018), urban (Chen et al., 2019;
Caesar et al., 2020; Vasudevan et al., 2021; Gao et al., 2024), aerial (Yao et al., 2024; Gao et al.,
2025b; Cai et al., 2025), specialised (Zheng et al., 2022b; Luo et al., 2023; Song et al., 2024; Li
et al., 2024a) and real-world (Zhao et al., 2025; Koh et al., 2024; Zhang et al., 2025b) scenarios.

5 CONCLUSION

We introduce OCEANGYM, the first bechmark environment specifically designed for underwa-
ter embodied agents. Our experiments reveal significant limitations in current MLLMs. We hope
OCEANGYM can bridge the gap between simulated research and real-world deployment, offering a
foundation for developing robust autonomous systems for marine applications.

ETHICS STATEMENT

This research is conducted in strict compliance with established ethical guidelines and best prac-
tices in scientific research. All data employed in this study are obtained from publicly accessible
datasets, with no utilization of proprietary or confidential information. Proper and accurate citations
are provided for all data sources referenced throughout this paper. We emphatically advise all users
to maintain the highest ethical standards when utilizing our dataset, ensuring principles of fairness,
transparency, and responsibility in their research applications. Any use of the dataset that may po-
tentially cause harm or adversely affect societal welfare is expressly prohibited.

REPRODUCIBILITY STATEMENT

We provide data from our benchmark under file size limitation, along with the corresponding eval-
uation code, in the supplementary materials. Detailed descriptions of the environment setup and
data construction procedures are available in § 2.1, § 2.3 and § 2.4. Additional data details and
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comprehensive benchmark statistics can be found in Appendix A.3 and Appendix A.4. Specific
configurations of the tested models are documented in Section 3.1.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We confirm that LLMs are used only as an auxiliary tool to assist in refining wording and sentence
structure. Their application in experiments is strictly confined to scientific research purposes, and
all such uses have been clearly documented in the Experimental Settings. No additional reliance on
LLMs has been involved in this work.

A.2 MORE DETAILED DISCUSSES AND LIMITATIONS

Limitations. While OCEANGYM provides a valuable testbed for underwater embodied agents, sev-
eral limitations should be acknowledged. First, OceanGym leverages Unreal Engine (UE) 5.3 (Epic
Games, 2025) for realistic underwater environment rendering and physical simulation, while uti-
lizing HoloOcean’s (Potokar et al., 2022) cluster-based multipath ray-tracing algorithm to simulate
multibeam sonar. Although UE plugins can be used to simulate water flow, buoyancy, lighting, water
interaction etc, it cannot fully replicate the real underwater environment, as factors such as ocean
currents, salinity, marine life, and geological changes are not accurately captured. Future work may
leverage generative models (Ball et al., 2025) or physics-informed machine learning to incorporate
these complexities. The optical and sonar images still differ from those in the real world, particu-
larly since sonar simulation introduces errors. We will continue to refine the system to reduce these
discrepancies, noting that real-world sonar itself is also subject to noise and inaccuracies. In addi-
tion, the environment is large and requires considerable computational resources, with at least 24GB
of GPU memory. We recommend running without a graphical interface, as enabling it can cause
significant lag. These limitations highlight opportunities for future work to expand task coverage,
improve physical realism, and optimize computational efficiency.

Applications of OceanGym. (1）A competitive arena for evaluating foundational models and em-
bodied agent frameworks, particularly memory mechanisms. Future work can leverage OCEANGYM
to optimize prompt design, memory utilization, and base model capabilities. (2) A platform for
synthesizing underwater simulation data to enhance both perception and decision-making skills of
agents. (3) A testbed for reinforcement learning, providing rich feedback for training autonomous
behaviors. (4) A sim-to-real bridge, enabling the transfer of trained models to real-world AUVs.
By connecting virtual training with real-world deployment, OCEANGYM substantially reduces de-
pendence on costly and hazardous field trials, accelerates development cycles, and enhances the
reliability and robustness of autonomous underwater systems.

Figure 9: Statistics of perception tasks.

A.3 PERCEPTION TASK STATISTICS

Figure 9 presents the statistical distribution of different perception settings analyzed in our dataset.
The dataset consists of 85 sets of data, which include 55 sets focusing on Multi-view Perception and
30 sets on Context-based Perception. Within the Multi-view Perception data, 55 sets are categorized
as follows: 23 sets involve normal pipelines, 8 sets entail damaged pipelines, 5 sets are related to
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planes, 4 sets concern ships, 2 sets focus on towers, 5 sets involve container boxes, and 6 sets do not
feature any specific dominant object. For the Context-based Perception data, the 30 sets are evenly
divided among three distinct sub-tasks, each comprising 10 sets. These sub-tasks involve the agent
following pipelines, inspecting pipelines for potential damage, and scanning around shipwrecks.

A.4 DECISION TASK DETAILS

Decision-making tasks require an embodied agent to accomplish a given objective through a series
of decisions. Figure 10 illustrates the perceptual input at one specific state during such a task.

Figure 10: A state case of a decision-making task.

Locate the robot. Locate and approach the mining robot in a complex underwater environment
within an abandoned subsea research zone characterized by variable terrain, low visibility, and arti-
ficial structures. The operational protocol mandates an initial memory check for the target’s coordi-
nates; if available, the system engages in direct coordinate-based navigation. Absent prior data, the
robot utilizes its six camera feeds for visual comparison against a reference image, identifying the
target by its distinct shape, structure, and color. A systematic exploration pattern, such as a grid or
linear search, is then executed. Throughout the mission, all encountered special objects and artificial
structures are documented. Maintaining a strict minimum standoff distance of 10 meters from all
rocks and obstacles is the highest priority, superseding all other actions. The vehicle must remain
within the predefined operational boundaries at all times, and all reports must exclusively detail
artificial structures, explicitly ignoring any marine life.

Inspect the oil pipe. Locate and identify the abandoned subsea oil pipeline network situated in a
central zone where pipelines may be partially buried and serve as potential navigation references.
The procedure begins with a query of the robot’s memory for known pipeline coordinates, initiating
direct navigation if the data is present. Without prior coordinates, the robot employs its camera
feeds to detect linear structures and surface features that match the reference imagery of a pipeline.
This is followed by a systematic exploration of the area to comprehensively document all artificial
structures and special objects. A critical safety requirement is to maintain a safe distance from all
obstacles, executing immediate directional changes upon hazard detection. All reporting must focus
solely on artificial structures, with biological entities entirely omitted from logs.

Locate oil drumss. Locate and identify oil drums or barrels submerged in an environment where
they may be partially buried or scattered within sediment under conditions of poor visibility. The
first action is a memory scan for stored coordinates of oil drums, proceeding with direct waypoint
navigation if the search is successful. If no coordinates exist, the robot must use its camera sys-
tems to identify cylindrical objects and any visible markings that align with the target description. A
methodical search pattern is then conducted across the operational area, with all special objects doc-
umented. Strict obstacle avoidance protocols are continuously enforced, and the robot’s trajectory
must never exceed the designated operational boundaries. Reports are confined to artificial structures
and special objects only.
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Figure 11: Target object
for the “Locate the robot”
task.

Figure 12: Target object
for the “Inspect the oil
pipe” task.

Figure 13: Target object
for the “Locate oil drums”
task.

Figure 14: Target ob-
ject for the “Search for a
sunken ship” task.

Figure 15: Target object
for the “Locate the electri-
cal box” task.

Figure 16: Target object
for the “Inspect the wind
turbine” task.

Figure 17: Target object
for the “Search for the air-
craft” task.

Figure 18: Target object
for the “Docking” task.

Search for a sunken ship. Locate and identify sunken shipwrecks, which are typically structurally
complex entities that may be partially buried or obscured by various underwater obstacles. The
mission initiates with an access of the robot’s memory for any known coordinates of shipwrecks,
utilizing them for direct navigation if available. In the absence of positional data, the robot relies
on its camera feeds to recognize large structural features and surface details that correspond to the
reference images of a shipwreck. A systematic exploration is subsequently performed to document
all special objects within the area. A safe distance from all obstacles must be maintained throughout
the operation, and the vehicle is required to stay within its prescribed operational limits. All marine
life is systematically ignored and excluded from reporting.

Locate the electrical box. Locate and identify underwater electrical boxes, which are often par-
tially buried in sediment and possess distinctive structural features. The operational sequence starts
with a retrieval attempt from the robot’s memory for the coordinates of electrical boxes, followed
by direct navigation to any located waypoints. Without prior coordinate data, the robot must analyze
its camera feeds to identify the target based on its specific shape, structural characteristics, and any
identifiable markings. A thorough and systematic exploration of the zone is then carried out, with
all special objects recorded. The mission must adhere to strict obstacle avoidance procedures and
remain within the defined operational boundaries at all times. All communications and reports are
restricted to artificial structures and special objects.

Inspect the wind turbine. Locate and identify underwater wind power station structures, which
are large installations featuring multiple pillars and mechanical components. The robot first searches
its internal memory for stored coordinates of the wind power station, navigating directly to the
location if the data is found. If the coordinates are not located, the system uses its camera arrays
to identify the major structural and mechanical elements that match the reference documentation.
A systematic exploration pattern is executed to document every special object in the vicinity. A
safe buffer distance from all obstacles is perpetually maintained, and the robot’s path must comply
strictly with the operational boundaries. Any biological entities encountered are disregarded and not
included in any reports.

Search for the aircraft. Locate and identify underwater aircraft wreckage, which can be complex
and potentially dispersed across different areas of the seafloor. The initial phase involves a memory
check for any existing coordinates related to aircraft wreckage, with immediate navigation initiated
upon a successful find. If no data is available, the robot switches to using its visual feeds to identify
key structural features and surface details that are consistent with the target wreckage. A comprehen-
sive systematic search is then conducted, ensuring all special objects are documented. Strict obstacle
avoidance is paramount, and the vehicle must operate entirely within the set boundaries. Reports are
exclusively to contain information on artificial structures and special objects.
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Docking. Locate and identify an underwater landing platform marked with a distinctive ”H” sym-
bol, a structure with a regular form that provides a reliable navigation reference. The robot’s first
action is to consult its memory for the platform’s coordinates, proceeding with direct navigation
if the information is available. Should the coordinates be absent, the platform must be identified
visually through the camera feeds by recognizing the ”H” marking and the overall platform struc-
ture. This is followed by a systematic exploration to document all special objects in the area. A
safe distance from all obstacles must be maintained, and the operation is confined to the approved
boundaries. All reporting is limited to artificial structures and special objects, with no mention of
biological activity.

A.5 PROMPT FOR OCEANGYM

Prompt for Perception Tasks

[RGB Image]
You are an assistant that analyzes an image and checks which of the following options appear
in it.
Options:[Options]
Instructions:
- Carefully examine the image, even the corners.
- You can choose single or multiple options, if none of the options appear, just return an
empty list.
- For multiple-choice questions, no points will be awarded for incomplete selections, over-
selections, or incorrect selections.
- The output must be a valid list (only list, no explanation, no extra text).

Prompt for Perception Tasks (Add Sonar)

[Sonar Image]
This sonar image can be used as a reference to assist in identifying the next color image.

[RGB Image]
You are an assistant that analyzes an image and checks which of the following options appear
in it. Before that, I have already provide you a sonar image to help you choose the correct
one.
Options:[Options]
Instructions:
- Only when you find it difficult to recognize the color image, I suggest you refer to the
previous sonar image together.
- Carefully examine the image, even the corners.
- You can choose single or multiple options, if none of the options appear, just return an
empty list.
- For multiple-choice questions, no points will be awarded for incomplete selections, over-
selections, or incorrect selections.
- The output must be a valid list (only list, no explanation, no extra text).

Prompt for Perception Tasks (Add Sonar and Examples)

[Object A Sonar Image]
This sonar image example is [Object A].

[Object B Sonar Image]
This sonar image example is [Object B].

...
[Sonar Image]
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This sonar image can be used as a reference to assist in identifying the next color image.

[RGB Image]
You are an assistant that analyzes an image and checks which of the following options appear
in it. Before that, I have already provide you a sonar image to help you choose the correct
one.
Options:[Options]
Instructions:
- Only when you find it difficult to recognize the color image, I suggest you refer to the
previous sonar image together.
- Carefully examine the image, even the corners.
- You can choose single or multiple options, if none of the options appear, just return an
empty list.
- For multiple-choice questions, no points will be awarded for incomplete selections, over-
selections, or incorrect selections.
- The output must be a valid list (only list, no explanation, no extra text).

Prompt for Navigation Tasks

You are an expert pilot for an Autonomous Underwater Vehicle (AUV), designated as the
”Control Expert”. Your mission is to navigate a complex underwater environment to com-
plete specific tasks. You will receive data from six cameras and location sensors. Your deci-
sions must be precise, safe, and strategic.
1. Tactical Briefing for the Area of Operations
Before the mission begins, you must internalize the following intelligence about the op-
erational area. This context is vital for interpreting sensor data and forming a macro-level
strategy.

...
3. Mission Briefing and Sensor Data
Task Description: [Task Description]
Target Object Name: [Object Name]
Target Object Reference Image: [Object Image]
Target Object Description: [Object Description]

...
5. Survey Navigation Commands
Available Commands: ‘ascend‘, ‘descend‘, ‘move left‘, ‘move right‘, ‘move forward‘, ‘move
backward‘, ‘rotate left‘, ‘rotate right‘, ‘stop‘.
Command Execution: You must only issue ONE command per turn from the list above.

...
Remember:
Conduct comprehensive reconnaissance! Systematic coverage = priority! Use efficient ex-
ploration patterns! Catalog all special objects! Maintain exploration momentum! Always use
format! Ignore all marine life! One continuous line between markers!

Table 3: Performance of perception tasks across different prompts.

Model

Shallow Water Environment
(High Illumination)

Deep Water Environment
(Low Illumination)

Multi-View
Perception

Context-based
Perception Avg

Multi-View
Perception

Context-based
Perception Avg

Vision +Sonar Vision +Sonar Vision +Sonar Vision +Sonar

GPT-4o-mini(prompt1) 34.55 34.55 20.00 33.33 30.61 14.55 20.00 3.33 6.67 11.14
GPT-4o-mini(prompt2) 54.55 45.45 40.00 30.00 42.5 20.00 20.00 10.00 0.00 12.5
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A.6 THE IMPACT OF DIFFERENT PROMPTS ON PERCEPTION TASKS.

Due to the difficulty in finding a prompt that is suitable for all MLLMs, we test the impact of
different prompts on the model. As shown in Table 3, we find that the impact was relatively small
in deep water environment. Prompt1 is the prompt used in the main experiment, and prompt2 is the
best prompt for GPT-4o-mini during the testing process.
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