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Abstract

We propose a learning algorithm to overcome the limitations of a traditional backprop-
agation in resource-constrained environments: Solo Pass Embedded Learning Algorithm
(SPELA). SPELA is equipped with rapid learning capabilities and operates with local loss
functions to update weights, significantly saving on resources allocated to the propagation
of gradients and storing computational graphs while being sufficiently accurate. Conse-
quently, SPELA can closely match backpropagation with less data, computing, storage, and
power. Moreover, SPELA can effectively fine-tune pre-trained image recognition models for
new tasks. Further, SPELA is extended with significant modifications to train CNN net-
works, which we evaluate for equivalent performance on CIFAR-10, CIFAR-100, and SVHN
10 datasets. Our results indicate that SPELA can be an ideal candidate for learning in
resource-constrained edge AI applications.

1 Introduction

Backpropagation (BP) is a long-standing and the most fundamental algorithm for training deep neural net-
works (NNs) (Werbos (1990); Rumelhart et al. (1986); LeCun et al. (1989; 2015)). It has wide applications
in the form of multi-layer perceptrons (MLP), convolutional neural networks (CNN), recurrent neural net-
works (RNN), and now transformers. Backpropagation is a loss minimization problem involving thousands,
if not millions, of parameters. Data is first propagated through the network using forward passes, and the
entire computational graph is stored. The difference (error) between the final layer output and the label is
utilized to update the weight matrices of the network. The error is propagated backward from the final layer
using the chain rule of differentiation, which uses the stored computational graph to compute the associated
gradients for each layer.

Careful observations of backpropagation drive home the point of no free lunch. Backpropagation works
on a global learning framework, i.e., a single weight update requires knowledge of the gradient of every
parameter (global/non-local learning problem) (Whittington & Bogacz (2019)). Backpropagation requires
the storage of neural activations computed in the forward pass to use in the subsequent backward pass
(weight transport problem) (Lillicrap et al. (2014); Akrout et al. (2019)). For every forward pass, the
backward pass is computed with the forward pass updates frozen, preventing online utilization of inputs
(update locking problem) (Czarnecki et al. (2017); Jaderberg et al. (2017)). Furthermore, there are several
differences between backpropagation and biological learning, as mentioned in Section 2.

The constraints of backpropagation lead to significant data requirements, training time, memory require-
ments, power consumption, and area occupied by the neural network hardware. These limitations render
backpropagation computationally expensive and unsuitable for applications with resource constraint scenar-
ios such as fewer train data, small memory, or less energy (example: on-device machine learning(ODL) Cai
et al. (2020); Zhu et al. (2023)). An effort to mitigate these algorithmic constraints of backpropagation can
lead to improved learning efficiency.

We introduce and investigate a multi-layer neural network training algorithm - SPELA (Solo Pass Embedded
Learning Algorithm), that uses embedded vectors as priors to preserve data structure as it passes through
the network. Previous studies indicate that prior knowledge helps one learn faster and easier Goyal & Bengio
(2022); Wang & Wu (2023). Although we don’t claim complete biological plausibility, SPELA is built on the
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premise that biological neural networks utilize local learning Illing et al. (2021) and neural priors to form
representations. We introduce neural priors as symmetric vectors distributed on a high-dimensional sphere
whose dimension equals the neuron layer size. Our back-propagation-free learning algorithm demonstrates
a significant gain in computational efficiency and rapid(few-shot, few-epoch) learning capabilities, making
it suitable for on-device learning (ODL) and exhibiting several learning features in the brain, such as early
exit (for layered cognitive reasoning Scardapane et al. (2020)), and local learning. In this paper, we make
the following contributions:

• Design: We introduce SPELA and its variant SPELA(O). Next, we extend SPELA to convolutional
neural networks. SPELA is a family of algorithms that uses a single forward pass (with no backward
pass) for training. During inference, output from any layer can be utilized for prediction. It makes
an innovative use of embedded vectors as neural priors for efficient learning.

• Evaluate: Experiments conducted in this paper indicate that SPELA closely matches backprop-
agation in performance while maintaining an edge over backpropagation in resource-constrained
scenarios due to its computational efficiency. SPELA can learn rapidly (from a few examples within
a few shots) on multiple datasets. Moreover, SPELA can efficiently fine-tune models trained with
backpropagation(transfer learning). In addition, an extension of SPELA to CNN makes complex
image classification possible.

• Complexity Analysis: Theoretic bounds for peak memory usage show that SPELA can edge over
backpropagation in the analyzed settings. The vector-matrix multiplications needed for updating
weights using SPELA are much lower than the standard backpropagation algorithm for these settings.

2 Related works

Recently, a significant interest has been in designing efficient training methods for multi-layer neural net-
works. Hinton (2022) presents the Forward-Forward (FF) algorithm for neural network learning, replacing
backpropagation with two forward passes: one with positive (real) data and the other with generated neg-
ative data. Each layer aims to optimize a goodness metric for positive data and minimize it for negative
data. Separating positive and negative passes in time enables offline processing, facilitating image pipelining
without activity storage or gradient propagation interruptions. These algorithms have garnered significant
attention, and multiple modifications have been proposed in conjunction with applications such as image
recognition (Lee & Song (2023); Pau & Aymone (2023); Momeni et al. (2023); Dooms et al. (2024); Chen
et al. (2024)) and extension to graph neural networks (Park et al. (2024)). In contrast to the FF approach,
which aggregates goodness values across layers, SPELA can perform classification at any layer without stor-
ing goodness memory for the experiments conducted. Furthermore, unlike FF, SPELA eliminates the need to
generate separate negative data for training. Instead, it efficiently uses the available data without requiring
additional processing.

Using a forward and a backward pass, Pehlevan (2019) introduced the concept of non-negative similarity
matching cost function for spiking neural networks to exhibit local learning and enable effective use of
neuromorphic hardware. Lansdell et al. (2020) introduces a hybrid learning approach wherein each neuron
learns to approximate the gradients. The learning feedback weights provide a biologically plausible way of
achieving good performance compared to backpropagation-based trained networks. Giampaolo et al. (2023)
follows a similar strategy to our approach of dividing the entire network into sub-networks and training them
locally using backpropagation (SPELA divides the network into sequential layers). Still using two forward
passes, but instead of backward propagating, Dellaferrera & Kreiman (2022) used the global error to modulate
the second forward pass input to train a neural network. We observe Dellaferrera & Kreiman (2022) as the
closest match to our approach but with one forward pass and layer-specific non-global error during training
for SPELA. Inspired by pyramidal neurons, Lv et al. (2025) used distinct weights for forward and backward
passes to train a multi-layer network in a biologically plausible manner. Significantly, as detailed in Pau &
Aymone (2023); Srinivasan et al. (2024), these algorithms still lack some desired characteristics of on-device
learning.
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3 Methods

3.1 Network Initialization and Learning Methods

The network is defined as follows: there are L layers, each containing li neurons. The weights of the network
are initialized at random. Each layer Li (except the input layer) has N (number of classes in the given
dataset) number of symmetric vectors, each of dimension li. These symmetric vectors are assigned a unique
class. As the activation vector is also in the li dimensional space, we can measure how close the activation
vector points to a particular symmetric vector using a simple cosine similarity function (Momeni et al.
(2023)). The network outputs the class assigned to the symmetric vector closest to the activation vector
with respect to cosine similarity. These symmetric vectors remain fixed and are not updated during training.

(a) Network Architecture (b) Prediction Method

Figure 1: (a) Network Architecture: Each layer possesses a distinct set of symmetric vectors. Here, the
network is trained on MNIST-10, resulting in 10 symmetric vectors. (b) Prediction Method: Inference is
performed using the closeness of activation and symmetric vectors. The activation is represented in blue,
and the prediction is in green.

3.2 Arranging the vector embeddings

To generate vector embeddings for the classification task, we adopt the most straightforward choice to
allocate an equal portion of space to each vector as a starting point. Consequently, the vectors are arranged
symmetrically on the unit norm ball in the nth dimension (see Fig. 1a.).

Remark 1: The symmetric vectors are generated by simulating the physics of electrons in the nth dimension
by restricting their movement on the standard unit ball until the electrostatic energy converges sufficiently
to a minimum value (Saff & Kuijlaars (1997); Cohn & Kumar (2007)). The resulting coordinates of these
electrons are used as symmetric vectors.

Training: (Appendix Algorithm 3) Given data x and label y, the network learns locally by minimizing the
cosine similarity loss between the activation vector (arising from input x) and the symmetric vector (which
is assigned to the class y) in every layer. There is no batch size restriction (training and testing); multiple
data points can be given before the weight update. Using this training method, the weights of the layers are
updated sequentially. As mentioned earlier, this training method aligns perfectly with the Hebbian learning
principle.

Inference: (Appendix Algorithm 4) Given data x, the network measures how close each symmetric vector
is to the activation vector (arising from input x). It declares the closest symmetric vector as the prediction
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vector. The prediction class is assigned to the corresponding symmetric vector (shown in Fig. 1b). SPELA
can also perform classification from any of the layers in the network.

We next optimize SPELA (Appendix Algorithm 3) and design SPELA(O)(Algorithm 1), which reduces
redundant forward passes (as detailed in 3.3).

3.3 Optimizing SPELA

SPELA trains models layer-wise, inherently, there is a caveat if Appendix Algorithm 3 is used: To train
layer i, the data must be pushed through all previous layers. This is inefficient as SPELA encounters an
unnecessarily large number of forward passes compared to backpropagation. To overcome this, we optimize
the training as shown in Algorithm 1 and introduce SPELA(O). In this method, the weights and biases are
updated for that layer after passing the data point through a layer, and the data point is propagated to
the next layer. As the data moves through the network, it updates all layers using their local loss function.
This fashion allows for parallel training of all n layers. It reduces the number of forward passes from O(n2)
to O(n), significantly decreasing the number of computations.

Table 1 contrasts SPELA(O) and other learning algorithms. Our algorithm exhibits the most favorable traits
for the applications discussed in this work: a single forward pass for training, no backward pass, and a local
loss function with no storage of activations.

Learning Methods BP FF PEP MPE SPELA(O)
Forward Pass 1 2 2 3 1

Backward Pass 1 0 0 0 0
Weight Update 1 2 1 1 1
Loss function global local global global local
Activations all current all current current

Table 1: Different learning algorithms are compared and contrasted with SPELA. PEP stands for PEPITA
(Dellaferrera & Kreiman (2022)) and MPE for MEMPEPITA (Pau & Aymone (2023)).

Algorithm 1 Training MLP with SPELA(O)
1: Given: An input (X), label (l), number of layers (K), and number of epochs (E)
2: Define: cos_sim(A, B) = A.B

||A||.||B|| and normalize(X) = X
||X|| ▷ Dot product and normalization of

vector
3: Set: h0 = x
4: for e← 1 to E do ▷ Iterate through epochs
5: for k ← 1 to K do ▷ Iterate through layers
6: hk−1 = normalize(hk−1)
7: hk = σk(Wkhk−1 + bk)
8: lossk = −cos_sim(hk, vecsk(l)) ▷ vecsk(.) is the set of symmetric vectors
9: Wk ←Wk − α ∗∆Wk

(lossk) ▷ Weight update using local loss
10: bk ← bk − α ∗∆bk

(lossk) ▷ Bias update using local loss
11: end for
12: end for

3.4 Complexity Analysis

Updating the weights of the final layer in backpropagation requires one matrix-vector multiplication. Every
other layer requires two matrix-vector multiplications, as the gradients from subsequent layers are consid-
ered. SPELA can be visualized as cascading blocks of one-layer networks that perform classification at
every junction. It can be considered a sequence of final layers from the backpropagation algorithm. Up-
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dating the weights of any layer using SPELA (as the weight updates are all analogous to the final layer
of backpropagation) requires only one matrix-vector multiplication. For deep neural nets, this would mean
that the number of vector-matrix multiplications needed for weight updates is half that backpropagation
needs. Furthermore, this discounts other operations required by backpropagation and not by SPELA, such
as transposing of weights. Both the algorithms would need one vector-matrix multiplication for a forward
pass. Considering this, the total number of vector-matrix multiplications needed by SPELA is around 0.67
times that of backpropagation (relative MACC for training being 2× that of inference is mentioned in Cai
et al. (2020)).

In the context of memory (see Table 2), we describe the complexities involved in variables that need to
be saved to calculate the weight updates. We do not include overhead memory complexities from storing
weights, optimizer states, temporary variables, and other operations. At any given computational step, only
a single layer is trained by both SPELA and SPELA(O); hence, only that layer’s activation needs to be
stored. SPELA(O) is superior to backpropagation in computation and memory complexity.

Algorithm Forward pass
complexity

Weight update
complexity

Memory
complexity

SPELA N2L2 LN2 N
SPELA(O) N2L LN2 N

BP N2L 2LN2 LN

Table 2: The computation and memory complexities are shown above. The NN is considered to have L
layers, each having N neurons. The complexity of a vector matrix multiplication is assumed to be O(N2).
Here, for SPELA, it is assumed that activations are not stored.

3.5 SPELA for Convolutional Neural Network

For the Convolutional Neural Networks (CNNs), we use the interleaving of traditional CNN and MLP layers
to incorporate SPELA. The changes are as such: each kernel in the convolutional layer is assigned a certain
number of groups. Each group has a nonzero number of classes. Each class is in one group, and all the
classes are distributed. The CNN layer identifies which group an input class belongs to. For example, when
the group setting is such as (dog, cat, fish), (banana, boat, bug), (football, airplane, phone), then the class
dog will belong to the first group.

The number of groups and classes assigned to each group varies between kernels, with randomness facilitating
our performance. Each class is given a score depending on what the kernel returns. If a kernel returns the
first group, all the classes corresponding to the first group get a score of one, next to the second, and so
on. Once tallied, the class with the highest score is considered the output of the CNN layer. This particular
distribution of groups and classes in groups is random across kernels but is consistent across layers, one of
the restrictions of our method.

Once we get the output of a particular CNN kernel, this slice of 2D data is flattened and projected down to
a smaller dimension using a simple MLP. The classification is performed in the MLP precisely in a typical
SPELA MLP setup. The data is pushed through the network after the classification. We keep the MLP
as tiny as possible to mitigate learning in this perpendicular direction and focus more on training the CNN
layer. Refer to Algorithm 2 for CNN layer-wise training.

4 Empirical Studies

4.1 How does SPELA work?

We perform an in-depth analysis of SPELA’s capacity. Accordingly, we first understand SPELA(O)’s learning
dynamics on the standard MNIST 10 dataset. Following the design described in Dellaferrera & Kreiman
(2022), we evaluate the performance of a 784− 1024− 10 size SPELA(O) network on MNIST 10. Figure 3a
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Figure 2: Schematic diagram of SPELA Convolutional Neural Network.

Algorithm 2 Training CNN ith layer with SPELA
1: Given: κ number of classes, C = {1, 2, . . . , κ}, ni kernels and Bi is conv block from previous layer
2: Define: Si = 0 is score for class i,∀i ∈ C
3: Define: m groups such that:
→ Gi ⊂ C

→
m⋃

i=1
Gi = C

→ Gi ∩Gj = ϕ ∀i ̸= j

4: for j ← 1 to ni do ▷ Define MLP for each kernel
5: MLPj N (0, 1)∗×d

6: end for
7: for j ← 1 to ni do ▷ Kernel + MLP operation
8: oj = CNN(Bi, kj) ▷ kj is the jth kernel
9: o

′

j = flatten(oj)
10: o

′′

j = MLPj(o′

j)
11: Use o

′′

j and cos_sim to predict the closest group
12: Say the predicted group is Gm

13: for c in Gm do
14: Sc = Sc + 1
15: end for
16: end for
17: Prediction: arg maxi Si

describes the rise of test accuracy to the number of training epochs with SPELA(O). It is observed that
SPELA(O) training is effective at improving the accuracy from 8.94% without learning to 95.58% after 100
epochs of training. Additionally, by design, SPELA(O) can perform predictions at all layers (except the input
layer), wherein the amount of available resources can determine the number of layers. Figure 3a also shows
the accuracy increases with the layer counts on MNIST 10 (91.20% accuracy for layer one vs. 95.58% accuracy
for layer two after 100 epochs of training), thereby justifying the need for multiple layers to improve network
performance. This also empowers SPELA with an early exit feature Scardapane et al. (2020), enabling easy
neural network distribution across hardware platforms and improving inference. Moreover, it is observed
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that SPELA(O) reaches near maximum performance very quickly. SPELA(O) achieves 86.53% performance
after only 1 epoch of training on MNIST 10. Next, we analyze the effect of SPELA(O) training on network
parameters as in Figure 3b. The Frobenius norm of the layer weights demonstrates an increasing trend with
learning, precisely 45.24, 4.46 (before learning) to 1453.53, 48.68 (after 100 epochs) for layer 1, and layer 2,
respectively.

(a) (b)

Figure 3: SPELA(O) network behavior during learning to classify MNIST 10 digits. (a) Test accuracies of
both hidden layer(1024 neurons) and output layer(10 neurons) to epochs. (b) Evolution of Frobenius norm
of the layer weights for SPELA(O) with learning. The solid lines denote the mean, and the shades denote
the standard deviation of five simulation runs.

Figure 4a establishes the representation learning capabilities of SPELA(O). Consequently, a t-SNE embed-
ding analysis of the output layer representation (10 neurons) before learning in Figure 4a shows a high
degree overlap of the MNIST 10 digit classes. However, after training with SPELA(O) for 100 epochs of the
network, we observe 10 distinct clusters corresponding to MNIST 10 digit classes in the t-SNE embeddings
of the output layer representation.

(a) Before Learning (b) After Learning

Figure 4: Two-dimensional t-SNE embeddings of the output layer(10 neurons) of a SPELA network trained
on MNIST 10 (a) Before any training, (b) After training for 100 epochs. The colors corresponded to different
digits of MNIST 10.

In Appendix B.1, we compare the weight distribution of an equivalent backpropagation network and a
SPELA(O) network (size 784 − 1024 − 10). Figures 7 and Figure8 show that although both networks are
initialized with a normal distribution, after training, the weights of a backpropagation network retain a
normal distribution (as described similarly in Dellaferrera & Kreiman (2022)). However, a SPELA(O)
network does not exhibit such a normal distribution post-training. A SPELA (O) network uses extreme
weight values for classification (Figure 7 b, Figure 8 b depicts larger magnitude weights in blue). Such a
non-normal nature is also ascertained by the QQ plots (Figure 7c, and Figure 8c).
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SPELA, by design, doesn’t require a softmax layer whose dimensions are usually equal to the number of
classes in the dataset. Due to the absence of such constraints, we explore the optimal network configuration,
keeping the total number of neurons constant. On the MNIST 10 dataset, the performance of a 784−1024−10
network is 94.06%, a 784− 1010− 24 network is 96.56%, and 784− 1000− 34 network is 96.62%. Hence, we
pick a 784−1000−34 SPELA(O) network for a fair comparison in subsequent studies. It is worth noting that
this work’s goal is not to compete with backpropagation (BP) but to utilize ANN training in applications
wherein utilization of backpropagation is computationally infeasible due to issues such as storage of forward
pass activations (such as in the case of on-device learning with backpropagation Cai et al. (2020)).

We compare SPELA(O)’s performance wherever possible with existing work. Table 3 describes the key
comparison results on MNIST 10, KMNIST 10, and FMNIST datasets (we pick these datasets as they
are reasonably optimal for a multilayer perceptron classification task ). Table 8 similarly describes the
performance of SPELA(O) on reasonably complex datasets such as CIFAR 10, CIFAR 100, and SVHN
10. Notably, in Table 3 and Table 8, SPELA(O) is the only network design that learns with a single
forward pass. The other training methods viz. BP, FA, DRTP, or PEPITA require either a forward pass
followed by a variant of a backward pass or two consecutive forward passes. On the MNIST 10 dataset, we
observe that SPELA(O) achieves an accuracy of only 1.97% lower without any dropout than an equivalent
backpropagation-trained network (96.66% vs. 98.63%). Interestingly, a 784 − 1000 SPELA(O) achieves a
91.20% performance for the same training. Keeping the same network configuration, SPELA(O) performs
93.63% and 89.77% on KMNIST 10 and Fashion MNIST 10 datasets, respectively. We also noticed that
introducing dropout does not improve SPELA(O) network performance.

Model Architecture MNIST 10 KMNIST 10 Fashion MNIST 10
BP 784-1024-10 98.63 ± 0.03 - -
FA 784-1024-10 98.42 ± 0.07 - -

DRTP 784-1024-10 95.10 ± 0.10 - -
PEPITA 784-1024-10 98.01 ± 0.09 - -

SPELA(O) 784-1000 91.20 ± 0.05 84.64 ± 0.13 86.39 ± 0.05
SPELA(O) 784-1000-34 96.66 ± 0.04 93.63 ± 0.31 89.77 ± 0.24

Table 3: Test accuracies(mean ± standard deviation) comparison of different learning methods on MNIST
10, KMNIST 10, and FMNIST datasets. The accuracies of FA, DRTP, and PEPITA are as presented in
Dellaferrera & Kreiman (2022). For BP, we used a learning rate of 0.0005. We report both hidden layer and
output mean accuracies (average of five runs) of SPELA(O) for an initial learning rate of 0.01.

4.2 Delving into the rapid learning capabilities of SPELA

We next explore and analyze SPELA(O) for scenarios that align with brain-like learning - learning rapidly
from a few examples within a few epochs. Accordingly, we merge the standard train and test datasets of
MNIST 10, allowing us to vary the data split ratio from very few shots (99%) to 10% of the entire dataset.
Figure 5 describes the performance of SPELA(O) and backpropagation on varying test set sizes We observe
that as MNIST 10 is a reasonably simple dataset, SPELA(O) almost performs similarly to backpropagation
after both 5 epochs and 100 epochs. The exception is backpropagation when its learning rate matches that
of SPELA(O). Hence, for Table 4, we utilize a backpropagation network whose performance in the standard
train test split of the MNIST 10 dataset(98.24%) closely matches the performance reported earlier in Table
3.

A closer look at Figure 5 indicates that for a few shot few epoch regimes (large test set and corresponding
small train set), the backpropagation curve drops compared to SPELA(O). In Table 4, we attempt to
understand this behavior in detail. SPELA(O) always performs better than backpropagation in the few-
shot regime. This performance improvement of SPELA(O) is more prominent in the 99% test data regime
(MNIST 10: 94.69% vs. 80.59, KMNIST 10: 88.91% vs. 71.24%, Fashion MNIST 10: 80.51% vs. 71.68%).
We pick five epochs for these studies as both network dynamics require some training to reach a reasonably
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acceptable accuracy (higher than 70%). Table 4 and Figure 5 establish that SPELA can learn features with
minimal data samples and epochs.

Figure 5: Comparison of SPELA and BP performance accuracies across multiple test dataset sizes on MNIST
10. Here, BP 5 Epochs(A) corresponds to the network with best performing learning rate (0.0005) whereas
BP 5 Epochs(B) corresponds to a learning rate similar to SPELA (0.01). The numbers 5/100 indicate the
epochs trained.

Task Architecture Test Size BP Test
Accuracy

SPELA Test
Accuracy

MNIST 10 BP: 784,1024,10
SPELA: 784,1000, 34

0.95 91.34 ± 0.7 % 92.52 ± 0.31%
0.99 80.59 ± 4.75% 94.69 ± 0.9%

KMNIST 10 BP: 784,1024,10
SPELA: 784,1000, 34

0.95 78.33 ± 0.65% 84.01 ± 0.32%
0.99 71.24 ± 0.69 % 88.91 ± 3.77%

Fashion MNIST 10 BP: 784,1024,10
SPELA: 784,1000, 34

0.95 78.07 ± 3.35 % 81.92 ± 0.49 %
0.99 71.68 ± 3.28 % 80.51 ± 2.24 %

Table 4: Performance(mean ± standard deviation) over five trails of SPELA and an equivalent BP network
in the extreme few shots regime (95% and 99% test data) post training on five epochs. We evaluate the
performance of MLP optimal datasets such as MNIST 10, KMNIST 10, and Fashion MNIST 10.

4.3 Transfer Learning with SPELA

For real-world applications, on-device learning(ODL) helps mitigate the impact of phenomena such as data
drift by enabling the on-device update of ML models. However, on-device learning must be performed under
constraints such as memory and power for tiny ML applications. Let’s assume we have a neural network(NN)
with three layers: L0, L1, and L2. Previous work on on-device learning using backpropagation shows that
forward pass activation storage of such layers consumes significantly higher memory than neural network(NN)
parameters (Cai et al. (2020)). This assumes a network design requiring L0 → L1 → L2 synapses as well as
L0 ← L1 ← L2 synapses. SPELA, on the other hand, would need only a unidirectional synaptic connection
L0 → L1 → L2 - implying SPELA would need fewer connection wires. These traits should make SPELA
useful in tinyML applications. In this section, we examine the behavior of SPELA in the framework of tiny
transfer learning, wherein the models are pre-trained with backpropagation and optimized using SPELA.
We compute the top-1 and top-5 accuracies for varying degrees of training data while monitoring memory
complexity. Motivated by our observations in section 4.2, we analyze the suitability of SPELA in transfer
learning for varying test sizes.

Figure 6 and Tables 9, 10, 11, 12, 13, 14, 15, 16 describe the performance on the four datasets. Although the
ResNet50 model is trained with backpropagation(BP) and should be the obvious training method, SPELA(O)
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doesn’t lag far behind on the four datasets. SPELA(O) performs better than backpropagation for the top-1
and top-5 accuracy on the Flowers-102 dataset. For all the other three datasets (Aircraft-100, CIFAR-10,
and Pets-37 datasets), for test set sizes of 10, 20, 30, 40, 50, 60 %, SPELA(O) performs better or at least
similar to an equivalent backpropagation network on the top-1 accuracy. For top-5 accuracy, though, a
backpropagation network performs slightly better than SPELA(O) for these three datasets, with the gap in
performance widening for test data percentages of 70 and beyond (prominently for Aircraft-100 and Pets-37
datasets). SPELA(O) can fine-tune backpropagation pre-trained networks appropriately when a reasonably
large train data set is available. Appendix B.2 describes the relevant experimental details.
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Figure 6: Accuracy plots of SPELA(O) and Backpropagation trained networks for test dataset size percent-
ages of 10, 20, 30, 40, 50, 60, 70, 80, 90, 95 and 99 during transfer learning. The solid lines denote the mean,
and the shades denote the standard deviation of five simulation runs.

It is observed from Table 5 that for networks with larger sizes (Aircraft-100, Flowers-102), the theoretical
memory (lower bound) saving is higher, whereas the memory obtained by SPELA(O) and backpropagation
is of the same order for smaller layer networks (CIFAR-10, Pets-37). Such memory gap widening has been
observed earlier (mentioned in Section 3.4).

4.4 Ablation Studies

4.4.1 Why not use Euclidean distance?

Just as we try to orient the vectors to their corresponding embedded direction for correct classification,
another question arises: Instead of classifying data in terms of closeness concerning angle (cosine loss), why
not classify data in terms of closeness concerning distance (euclidean loss)? Here, we run experiments by
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Dataset Aircraft-100
Flower-102 CIFAR-10, Pets-37

Memory BP 2048 units 576 units
SPELA 1024 units 512 units

Memory Savings 1024 units 64 units

Table 5: Memory comparison for on-device learning with transfer learning setup across multiple datasets.
Aircraft-100 and Flower-102 have been trained on a bigger network as they have more classes; CIFAR-10
and Pets-37 have been trained on a smaller network. The savings in memory is proportional to size and
depth and is reflected in the table.

replacing our cosine loss function with the Euclidean norm loss function. Table 6 shows that when tested
on MNIST 10, KMNIST 10, and Fashion MNIST 10 datasets, SPELA(O) with Euclidean distance performs
significantly lower than SPELA(O) with cosine distance (83.33% vs. 96.66% for MNIST 10, 74.9% vs. 93.63%
for KMNIST 10 and 78.96% vs. 89.77% for Fashion MNIST 10).

4.4.2 Randomising the vector embeddings

Symmetrically distributing the vectors is intuitive and axiomatic, as explained in Section 3.2. However, the
question remains: How much would the performance drop if we randomly choose these vectors? Accordingly,
we rid ourselves of the complexity of finding a symmetric distribution and run experiments by drawing the
embedded vectors from a Gaussian distribution N (0, 1).

The network has three layers with 784, 1000, and 34 neurons. Table 6 indicates that classification performance
drops for all three datasets when vectors are drawn at random. However, this performance drop is significantly
lower than Euclidean distance in SPELA(O) (MNIST 10: 3.34% vs. 13.33%, KMNIST 10: 4.69% vs. 18.73%,
Fashion MNIST 10: 7.99% vs. 14.67%). In Appendix B.3.1, we discuss this observation further.

4.4.3 Binarization(±1) of SPELA

Anderson & Berg (2018) show that binarization does not significantly change the directions of the high-
dimensional vectors. As our algorithm tries to orient the activations to a particular direction in high di-
mensions, it is safe to assume that the weight binarization should not significantly affect the performance.
In Table 6, we show the results of our experiments involving the binarization of weights (here, we do not
binarize the bias involved at each layer, only the weights to ±1).

Table 6 shows that our assumption is experimentally proven accurate. Binarization of weights while dealing
with vectors in high dimensions does not change the relative angular positions significantly; hence, the
accuracy does not drop significantly either. This modification could lead to a far more efficient algorithm
that cuts down on memory and energy consumption, as well as the area occupied by a chip, while not
sacrificing performance. Noteworthily, on KMNIST 10 and Fashion MNIST 10 dataset, SPELA(O)(with
±1 weights) performs better than an equivalent backpropagation trained network (MNIST 10:91.64% vs.
94.26%, KMNIST 10: 84.30% vs. 69.62%, Fashion MNIST 10: 84.81% vs. 80.17%).

4.5 SPELA Convolutional Neural Network

We evaluate the performance of our SPELA CNN on image classification tasks. Accordingly, we here com-
pare the performance of SPELA CNN on complex datasets such as CIFAR 10, CIFAR 100, and SVHN
10. Table 17 describes the details of our experiments. Similar to Dellaferrera & Kreiman (2022); Liao
et al. (2016), we compare the relative performance of SPELA CNN to reported results on previously pro-
posed backpropagation alternatives (Table 7). Although SPELA doesn’t require a global error signal (either
through backpropagation or as a second forward pass), a one-layer SPELA CNN performs at par with
PEPITA (57.24% vs. 56.33%) on CIFAR 10. Moreover, this performance improves to 61.10% by adding
another convolution layer. For CIFAR 100, a two-layer SPELA CNN performs at par with a one-layer CNN
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Model Architecture MNIST 10 KMNIST 10 Fashion MNIST 10
SPELA(O) 784-1000-34 96.66 ± 0.04 93.63 ± 0.31 89.77 ± 0.24

SPELA(O)-Euc 784-1000-34 83.33 ± 0.77 74.9 ± 1.05 78.96 ± 0.38
SPELA(O)-Rand 784-1000-34 93.32 ± 0.28 88.94 ± 0.68 85.64 ± 0.9
SPELA(O)-Bin 784-1000-34 91.64 ± 0.13 84.30 ± 0.91 84.81 ± 0.48

BP-Bin 784-1024-10 94.26 ± 0.45 69.62 ± 0.45 80.17 ± 2.48

Table 6: Ablation study results on SPELA(O) on MNIST 10, KMNIST 10 and FashionMNIST datasets.
SPELA(O)-Euc implies SPELA(O) with Euclidean distance, SPELA(O)-Rand implies SPELA(O) with ran-
dom vectors, and SPELA(O)-Bin/BP-Bin implies with ±1 weights.

PEPITA(27.46% vs. 27.56%). On the SVHN 10 dataset, a two-layer SPELA CNN archives a mean accuracy
of 83.26%, which is a significant improvement over a vanilla SPELA performance on SVHN 10 (63.11%,
Table 8).

Model CIFAR 10 CIFAR 100 SVHN 10
BP 64.99 ± 0.32 34.20 ± 0.20 -
FA 57.51 ± 0.57 27.15 ± 0.53 -

DRTP 50.53 ± 0.81 20.14 ± 0.68 -
PEPITA 56.33 ± 1.35 27.56 ± 0.60 -

SPELA CNN(1) 57.24 ± 1.07 23.76 ± 0.22 78.79 ± 0.38
SPELA CNN(2) 61.10 ± 0.7 27.46 ± 0.40 83.26 ± 0.75

Table 7: Test accuracies (mean ± standard deviation) comparison of different CNN architectures on CIFAR
10, CIFAR 100, and SVHN 10 datasets. The accuracies of BP, FA, DRTP, and PEPITA are represented
from Dellaferrera & Kreiman (2022). We report both hidden layer and output mean accuracies (average of
five runs) of a SPELA convolutional neural network (CNN). SPELA CNN(1) and SPELA CNN(2) imply a
network with 1-layer and 2-layer CNN, respectively.

5 Discussion and Future Work

We propose SPELA as a computationally efficient method of training neural networks. For the experiments
conducted, SPELA has a feature set comprising symmetric embedded vectors, local learning, and a single
forward pass for training with no storage of activations, no weight transport, and no updated weight locking
of weights. As part of it, we perform detailed experiments to benchmark SPELA to existing works. We also
observe SPELA’s rapid learning (a few epochs and very few shot learning) capabilities on multiple datasets.
In addition, we analyzed its suitability for transfer learning on backpropagation-trained image recognition
networks. Moreover, we perform ablation studies on SPELA to justify the design choices. Finally, we extend
SPELA to convolutional neural networks(CNN) and benchmark it on equivalent image recognition tasks.
Analyzing theoretical complexity (lower bound) shows that SPELA is more efficient than backpropagation.
Hence, this work can help guide the implementation of on-device learning in tiny microcontrollers such as
ARM Cortex-M devices. Overall, we believe SPELA is helpful for a wide range of ML applications, wherein
we care about training and testing efficiency in terms of accuracy, memory, and power consumption.

To conclude, we view this work as a starting point for developing efficient learning algorithms that can
aid in applications where backpropagation presently has limitations. In the future, we will extend SPELA
to the training and inference of advanced architectures such as deep convolutional neural networks and
transformers. Although SPELA is biologically inspired, it lacks some key features in biology, such as the
spiking behavior of neurons. Further work is necessary to integrate such features with SPELA.
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A Additional Methods

A.1 Algorithms

Algorithm 3 Training MLP with SPELA
1: Given: An input (X), label (l), number of layers (K) and number of epochs (E)
2: Define: cos_sim(A, B) = A.B

||A||.||B|| ▷ Dot product of normalized vectors
3: Set: h0 = x
4: for k ← 1 to K do ▷ Iterate through layers
5: for e← 1 to E do ▷ Iterate through epochs
6: hk−1 = normalize(hk−1)
7: hk = σk(Wkhk−1 + bk)
8: loss = −cos_sim(hk, vecsk(l)) ▷ vecsk(.) is the set of symmetric vectors
9: Wk ←Wk − α ∗∆Wk

(loss) ▷ Weight update using local loss
10: bk ← bk − α ∗∆bk

(loss) ▷ Weight update using local loss
11: end for
12: end for

Algorithm 4 Inference on MLP trained with SPELA
1: Given: An input (X) and number of layers K
2: Define: cos_sim(A, B) = A.B

||A||.||B||
3: Set: h0 = x
4: for k ← 1 to K do ▷ Passing data through all the layers
5: hk = σk(Wkhk−1 + bk)
6: end for
7: for i← 1 to N do ▷ N is the number of classes
8: Si = cos_sim(hK , vecs(i)) ▷ Similarity between activation vector and symmetric vectors
9: end for

10: Prediction: arg maxi Si ▷ Class corresponding to the maximum score is prediction

B Additional Results

B.1 How does SPELA work?

Model Architecture CIFAR 10 CIFAR 100 SVHN 10
BP 3072-1024-10 55.27 ± 0.32 27.58 ± 0.09 -
FA 3072-1024-10 53.82 ± 0.24 24.61 ± 0.28 -

DRTP 3072-1024-10 45.89 ± 0.16 18.32 ± 0.18 -
PEPITA 3072-1024-10 45.89 ± 0.16 18.32 ± 0.18 -

SPELA(O) 3072-1000/3072-800 43.66 ± 0.38 23.93 ± 0.69 33.64 ±2.23
SPELA(O) 3072-1000-34/3072-800-234 50.24 ± 0.27 32.66 ± 0.07 63.11 ±3.17

Table 8: Test accuracies(mean ± standard deviation) comparison of different learning methods on CIFAR
10, CIFAR 100, and SVHN 10 datasets. The accuracies of BP, FA, DRTP, and PEPITA are presented in
Dellaferrera & Kreiman (2022). We report both hidden layer and output mean accuracies (average of five
runs) of SPELA(O) for an initial learning rate of 0.01. For CIFAR 10 and SVHN 10, we use a 3072-1000-34
network, and for CIFAR 100, we use a 3072-800-234 network.
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(a) (b) (c)

Figure 7: For a SPELA and a backpropagation network of 784− 1024− 10 neurons, (a) describes the initial
weight distribution of layer 1(hidden layer), (b) describes the hidden layer (1024 neurons) weight distribution
within [-10, 10] post training on MNIST 10 for 100 epochs, (c) describes QQ plot for the same hidden layer
weights of SPELA network(in blue).

(a) (b) (c)

Figure 8: For a SPELA & backpropagation network of 784 − 1024 − 10 neurons, (a) describes the initial
weight distribution of layer 2, (b) describes the output layer (10 neurons) weight distribution within [-5,
5], post-training on MNIST 10 for 100 epochs, (c) describes QQ plot for the same output layer weights of
SPELA network(in blue).

B.2 Transfer Learning with SPELA

In these experiments, the networks are trained for 50 epochs with a learning rate of 0.001, and analysis is
done on four datasets: Aircraft 100, CIFAR 10, Flowers 102, and Pets 37 datasets (the numbers denote
the number of classes in that dataset). Note that most of these datasets have a large number of classes.
The backpropagation network has four layers, and the SPELA(O) network has four layers (an extra layer
is given to backpropagation for a classification head). For datasets with more than 50 classes, network
layer sizes were 2048, 1024, and 1024; for datasets with less than 50 classes, we used a smaller layer size of
2045, 512, and 64. As PyTorch does not support explicit fine-print memory management, we analyze the
memory footprint with theoretical calculations (Cai et al. (2020)) of only the trainable MLP network. A
ResNet50 model pre-trained on Image Net-100 extracts features from the layer before the MLP classifier.
These features are then used to train a custom MLP network using backpropagation and SPELA(O).
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Test size: 10 20 30 40 50
SPELA(O) top1 32.59 ± 0.98 31.84 ± 0.69 29.95 ± 0.81 28.71 ± 0.49 26.31 ± 0.48
SPELA(O) top5 57.87 ± 1.18 57.74 ± 0.67 54.49 ± 0.77 53.04 ± 0.80 49.82 ±0.65

BP top1 29.60 ± 1.27 29.94 ± 1.08 28.04 ± 0.76 27.14 ± 0.84 26.29 ± 0.78
BP top5 59.67 ± 1.23 60.31 ± 1.66 58.65 ± 1.67 57.26 ± 1.44 55.37 ± 0.78

Table 9: Layer-wise test accuracy for Aircraft 100 dataset.

Test size: 60 70 80 90 95 99
SPELA(O) top1 25.20 ± 0.72 22.23 ± 0.77 18.81 ± 0.56 15.06 ± 0.23 11.41 ± 0.28 5.55 ± 0.39
SPELA(O) top5 47.22 ± 0.82 43.60 ± 0.60 37.80 ± 0.45 32.02 ± 0.44 26.26 ± 0.34 14.46 ± 0.22

BP top1 23.45 ± 1.13 21.06 ± 1.29 23.31 ± 3.07 17.53 ± 0.26 11.65 ± 0.19 4.81 ± 0.38
BP top5 50.99 ± 1.06 47.61 ± 1.91 49.61 ± 3.65 40.46 ± 0.57 28.71 ± 0.42 13.21 ± 0.44

Table 10: Layer-wise test accuracy for Aircraft 100 dataset.

Test size: 10 20 30 40 50
SPELA(O) top1 83.75 ± 0.33 83.30 ± 0.35 83.17 ± 0.27 83.19 ± 0.12 82.50 ± 0.35
SPELA(O) top5 97.66 ± 0.42 97.48 ± 0.20 97.51 ± 0.23 97.60 ± 0.30 97.34 ± 0.42

BP top1 81.94 ± 0.92 81.14 ± 0.30 81.75 ± 0.57 80.82 ± 0.56 80.36 ± 1.19
BP top5 99.10 ± 0.07 99.09 ± 0.09 99.13 ± 0.08 99.13 ± 0.06 99.03 ± 0.12

Table 11: Layer-wise test accuracy for CIFAR 10 dataset.

Test size: 60 70 80 90 95 99
SPELA(O) top1 81.87 ± 0.33 81.50 ± 0.29 80.85 ± 0.24 78.90 ± 0.13 76.51 ± 0.10 69.02 ± 0.21
SPELA(O) top5 96.80 ± 0.51 96.84 ± 0.31 96.72 ± 0.32 96.02 ± 0.21 95.40 ± 0.47 94.41 ± 0.41

BP top1 79.55 ± 0.26 79.19 ± 0.84 77.52 ± 1.39 74.82 ± 0.89 71.54 ± 1.25 68.68 ± 0.22
BP top5 98.99 ± 0.09 98.96 ± 0.05 98.76 ± 0.11 98.28 ± 0.23 97.64 ± 0.26 96.63 ± 0.07

Table 12: Layer-wise test accuracy for CIFAR 10 dataset.

Test size: 10 20 30 40 50
SPELA(O) top1 85.75 ± 3.57 85.07 ± 3.25 84.76 ± 3.09 84.65 ± 2.95 84.01 ± 2.41
SPELA(O) top5 97.27 ± 0.31 97.56 ± 0.13 97.49 ± 0.21 97.48 ± 0.17 97.22 ± 0.26

BP top1 83.35 ± 1.37 82.30 ± 1.08 80.76 ± 1.08 80.60 ± 1.23 78.37 ± 1.44
BP top5 96.54 ± 0.90 95.72 ± 0.35 95.38 ± 0.63 95.29 ± 0.47 94.23 ± 0.63

Table 13: Layer-wise test accuracy for Flowers 102 dataset.

Test size: 60 70 80 90 95 99
SPELA(O) top1 83.32 ± 2.15 82.08 ± 0.94 80.30 ± 0.58 76.18 ± 4.98 71.32 ± 9.90 60.50 ± 16.94
SPELA(O) top5 97.07 ± 0.46 96.38 ± 0.58 95.79 ± 1.41 93.91 ± 4.14 91.02 ± 8.77 83.75 ± 21.00

BP top1 76.08 ± 0.57 72.66 ± 1.30 80.04 ± 5.71 72.93 ± 0.31 57.89 ± 0.52 20.75 ± 2.09
BP top5 92.98 ± 0.65 91.63 ± 0.35 93.82 ± 3.20 90.32 ± 0.25 79.22 ± 1.02 34.96 ± 1.67

Table 14: Layer-wise test accuracy for Flowers 102 dataset.
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Test size: 10 20 30 40 50
SPELA(O) top1 90.76 ± 3.31 90.39 ± 3.45 89.30 ± 3.35 88.89 ± 2.87 87.72 ± 2.57
SPELA(O) top5 97.65 ± 0.56 97.52 ± 0.34 97.48 ± 0.21 97.44 ± 0.25 96.86 ± 0.20

BP top1 86.72 ± 1.21 86.30 ± 1.15 86.52 ± 0.68 87.12 ± 0.40 84.85 ± 1.70
BP top5 98.50 ± 0.32 98.60 ± 0.28 98.68 ± 0.20 98.73 ± 0.19 98.19 ± 0.26

Table 15: Layer-wise test accuracy for Pets 37 dataset.

Test size: 60 70 80 90 95 99
SPELA(O) top1 86.61 ± 1.96 83.61 ± 1.33 79.81 ± 0.59 68.89 ± 4.98 56.84 ± 9.57 35.02 ± 16.83
SPELA(O) top5 96.54 ± 0.29 95.32 ± 0.73 93.30 ± 1.60 87.30 ± 4.10 77.64 ± 8.79 51.96 ± 21.34

BP top1 86.68 ± 1.11 86.52 ± 2.14 87.79 ± 0.25 85.26 ± 0.62 81.44 ± 0.36 48.52 ± 1.08
BP top5 98.38 ± 0.13 98.34 ± 0.25 98.40 ± 0.08 98.33 ± 0.14 97.54 ± 0.15 74.98 ± 1.62

Table 16: Layer-wise test accuracy for Pets 37 dataset.

B.3 Extension of Ablation Studies

B.3.1 Remarks on randomizing the vector embeddings

Remark 1: As we operate in dimensions much higher than the number of embedded vectors (number of
classes), a non-symmetric distribution should perform equivalent to a symmetric structure. The performance
gap between symmetric and non-symmetric structures would be noticeable when the number of dimensions
exceeds the number of classes.

Remark 2: We use the energy of the system as a structured metric:

λ(V) =
∑
u∈V

∑
v∈V,u̸=v

1
∥u− v∥

Of all possible vectors x ∈ Rd, if |V| is fixed, the symmetric structure has the minimum energy. Comparing
vectors drawn from the Gaussian distribution N (0, 1) and the symmetric structure for 300 dimensions and
10 embedded vectors, we get high energy difference. Despite this, the network learns the incoming data. A
symmetric structure is necessary for lower dimensions (where the number of dimensions is comparable to
the number of embedded vectors).

We learn that although having vectors embedded in a symmetric structure is optimal, it is unnecessary.
The model will mold the weights according to the relative positions of the vectors and classify the data
accordingly, which ascertains the model’s flexibility.
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C Experimental Details

Model CIFAR 10 CIFAR 100 SVHN 10
Input size 32×32×3 32×32×3 32×32×3

Conv 32,5,1(2) 32,5,1(2) 32,5,1(2)
MLP 30 200 30

Learning rate 0.1, 0.1 0.1, 0.1 0.1, 0.1
Batch size 64 64 64

Epochs 15 + 10 15 + 10 15 + 10
Dropout None None None

Table 17: Experimental Details CNN
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