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Abstract001

Large language models (LLMs) encode rich002
internal representations of political ideology,003
but it remains unclear how these represen-004
tations contribute to model decision-making,005
and how these latent dimensions interact with006
one another. In this work, we investigate007
whether ideological directions identified via lin-008
ear probes—specifically, those predicting DW-009
NOMINATE scores from attention head acti-010
vations—influence model behavior in down-011
stream political tasks. We apply inference-012
time interventions to steer a decoder-only trans-013
former along learned ideological directions,014
and evaluate their effect on three tasks: po-015
litical bias detection, voting preference sim-016
ulation, and bias neutralization via rewriting.017
Our results show that learned ideological rep-018
resentations generalize well to bias detection,019
but not as well to voting simulations, suggest-020
ing that political ideology is encoded in mul-021
tiple, partially disentangled latent structures.022
We also observe asymmetries in how interven-023
tions affect liberal versus conservative outputs,024
raising concerns about pretraining-induced bias025
and post-training alignment effects. This work026
highlights the risks of using biased LLMs for027
politically sensitive tasks, and calls for deeper028
investigation into the interaction of social di-029
mensions in model representations, as well as030
methods for steering them toward fairer, more031
transparent behavior.032

1 Introduction033

Large language models (LLMs) have demonstrated034

remarkable capacity to generate text that reflects a035

diverse range of subjective perspectives, includ-036

ing nuanced ideological stances on contentious037

political issues (Argyle et al., 2023; Kim et al.,038

2025; Wu et al., 2023; Le Mens and Gallego, 2025).039

Recent work has shown that LLMs can simulate040

the political views of U.S. lawmakers and media041

outlets (Santurkar et al., 2023; Bernardelle et al.,042

2024), and that these views can often be linearly de- 043

coded from model activations using simple probes 044

(Kim et al., 2025; Park et al., 2024). Such find- 045

ings suggest that high-level concepts like liberal– 046

conservative ideology are not just emergent in 047

LLM outputs, but are encoded in discrete regions 048

of the model’s internal activation space. 049

While prior research has focused on detecting 050

and monitoring these linear representations in di- 051

agnostic (Gurnee and Tegmark, 2023; Tigges et al., 052

2023) or text generation (Marks and Tegmark, 053

2023; Kim et al., 2025) scenarios, less is known 054

about whether these representations play a func- 055

tional role in the model’s broader decision-making 056

behavior (Ju et al., 2024). Specifically, can latent 057

ideological dimensions isolated through probing be 058

manipulated to alter the model’s performance on 059

downstream social scientific tasks such as political 060

bias detection, voting preference simulation, and 061

bias neutralization via rewriting? 062

In this work, we investigate whether latent ide- 063

ological directions, identified via linear probes on 064

attention head activations, are functionally shared 065

across a range of political reasoning tasks. We ex- 066

tend existing work by systematically intervening 067

predictive attention heads in the decoder-only trans- 068

former model and assessing their impact across 069

multiple downstream tasks. Our goal is not only 070

to steer ideological framing, but to test whether 071

these representations encode transferable political 072

reasoning that holds across diverse task formats 073

and decision contexts. 074

To this end, we make the following contribu- 075

tions: 076

• We demonstrate that latent ideological direc- 077

tions discovered through linear probes on 078

LLM attention head activations generalize 079

across tasks. Specifically, interventions along 080

these directions alter the model’s perception 081

of political bias, its simulated voting prefer- 082
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ences, and its ability to rewrite partisan state-083

ments neutrally.084

• We show that political ideology is not encoded085

as a single monolithic dimension. While the086

DW-NOMINATE direction effectively cap-087

tures discourse-level framing, it fails to consis-088

tently influence behavioral outputs like vote089

simulation, indicating that multiple, partially090

disentangled ideological subspaces might ex-091

ist within the model.092

• We uncover asymmetries in how ideological093

interventions affect behavior. Leftward steer-094

ing reinforces progressive framing even in095

neutrality tasks, while rightward interventions096

can degrade output coherence in certain cases.097

These imbalances suggest that the model’s098

ideological representations are skewed, likely099

shaped by pretraining data and alignment pro-100

cedures such as RLHF.101

Our findings offer new evidence that political102

ideology in LLMs is encoded in a functionally lin-103

ear and transferable manner, supporting not only104

the monitoring of model behavior but enabling pre-105

cise control.106

2 Related Work107

2.1 Ideological Representations in LLMs108

Language models are increasingly employed to109

simulate human-like political behavior, replicate110

domain-specific attitudes, and support complex111

downstream applications such as multi-agent de-112

liberation and political forecasting. Early stud-113

ies demonstrated that LLMs can adopt partisan114

personas or reflect the ideological preferences of115

specific demographic subgroups under appropriate116

prompting conditions (Argyle et al., 2023; Motoki117

et al., 2024; Potter et al., 2024). Subsequent work118

showed that models can emulate structured political119

attitudes across policy domains such as abortion,120

immigration, and foreign policy (Wu et al., 2023;121

O’Hagan and Schein, 2023), enabling applications122

including debate agents (Costello et al., 2024) and123

agent-based simulations of group polarization and124

opinion dynamics (Park et al., 2024; Törnberg et al.,125

2023; Mou et al., 2024).126

Despite these advances, a persistent concern is127

that LLMs may encode internal ideological biases128

that silently influence reasoning and generation in129

ways that are not directly observable in outputs.130

These latent biases pose significant risks to the in- 131

tegrity of social simulations and decision-support 132

tools that rely on faithful reproduction of diverse 133

perspectives. Moreover, such biases are often re- 134

silient to post-hoc alignment techniques like in- 135

struction tuning or reinforcement learning from 136

human feedback (RLHF). For example, Gupta et al. 137

(2023) show that even when surface-level outputs 138

are neutralized, internal representations can remain 139

skewed and lead to distorted reasoning under per- 140

sona conditioning. This raises critical questions 141

about how ideological knowledge is encoded and 142

how it can be meaningfully identified, interpreted, 143

and controlled within the model’s internal struc- 144

ture. 145

2.2 Probing and Inference-Time Intervention 146

Probing methods have been widely used to identify 147

whether neural network activations encode abstract 148

concepts (Alain and Bengio, 2016; Belinkov, 2022). 149

Linear probes are favored for interpretability, oper- 150

ating under the hypothesis that important semantic 151

features correspond to linearly separable directions 152

in the model’s representation space (Mikolov et al., 153

2013; Park et al., 2024). Probing has revealed that 154

LLMs encode sentiment, temporal reasoning, and 155

spatial knowledge in such directions (Tigges et al., 156

2023; Gurnee and Tegmark, 2023; Nanda et al., 157

2023; Goldowsky-Dill et al., 2025). 158

Beyond diagnostic analysis, recent work ex- 159

plores inference-time intervention. Li et al. (2023) 160

proposed methods for modifying specific vectors 161

to steer output behavior, while Marks and Tegmark 162

(2023) introduced causal tracing to manipulate fac- 163

tual knowledge. Other studies have identified and 164

manipulated abstract latent dimensions—such as 165

the “thought” dimension for enhanced model rea- 166

soning (Wang and Xu, 2025). Kim et al. (2025) 167

further extended these ideas to ideological dimen- 168

sions, showing that scaling pre-trained political 169

probes during generation steers model output left- 170

ward or rightward. However, existing evaluations 171

are confined to textual output or persona imitation. 172

It remains under-explored whether these ideologi- 173

cal interventions affect model reasoning in broader 174

social-scientific tasks, such as bias detection, vot- 175

ing behavior prediction, or partisan-text rewriting. 176

2.3 Generalizable Knowledge in LLMs 177

Recent research has increasingly focused on 178

whether the internal representations of LLMs sup- 179

port structured reasoning and generalized knowl- 180
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edge application. While existing studies empha-181

sized factual recall and training document tracing182

(Petroni et al., 2019; Liu et al., 2025), another line183

of work explores whether models internalize ab-184

stract reasoning patterns—such as moral decision-185

making, commonsense logic, and social inference186

(Ganguli et al., 2023; Sap et al., 2020). Comple-187

mentary research has further proposed that knowl-188

edge itself may be encoded as low-dimensional189

latent directions within model representations (Ju190

et al., 2024).191

However, the extent to which knowledge, for192

example, political beliefs, generalizes across tasks193

remains poorly understood. Existing studies show194

that biases acquired during pretraining can affect195

downstream tasks such as misinformation detection196

or moral reasoning (Feng et al., 2023; Gupta et al.,197

2023), even when surface-level outputs appear neu-198

tral. These findings suggest that ideological signals199

may persist as latent components of the model’s200

internal reasoning.201

Our work contributes to this line of inquiry by202

evaluating whether latent ideological representa-203

tions, once isolated via probing and perturbed204

via causal interventions, influence model behav-205

ior across a range of politically sensitive reasoning206

tasks, including policy classification, voting prefer-207

ence prediction, perspective rewriting. This allows208

us to test whether ideology functions as a symbolic209

and transferable knowledge structure within LLMs.210

3 Methodology211

We investigate whether latent ideological repre-212

sentations discovered in large language models213

(LLMs) can causally influence behavior across214

downstream tasks. Building on Kim et al. (2025),215

we explore whether manipulating model activations216

along the learned liberal–conservative axis affects217

model outputs on politically sensitive tasks. Rather218

than applying additional fine-tuning or reinforce-219

ment learning, we steer model behavior through220

inference-time interventions into attention head ac-221

tivations.222

3.1 Activation Extraction & Intervention223

We follow the linear probing and steering method-224

ology developed by Kim et al. (2025), which builds225

on earlier work by Li et al. (2023). Specifically, we226

train linear probes to predict the DW-NOMINATE227

scores of U.S. lawmakers from the activations of228

individual attention heads in a decoder-only trans-229

former. For each attention head x
(i)
ℓ,h (layer ℓ, head 230

h) across input prompts i ∈ w, we fit a ridge re- 231

gression model: 232

ŷ
(i)
ℓ,h = θ⊤ℓ,hx

(i)
ℓ,h, 233

where θℓ,h ∈ Rdℓ,h are the learned probe co- 234

efficients and y(i) is the corresponding DW- 235

NOMINATE score. Ridge regression is used to 236

mitigate overfitting and account for multicollinear- 237

ity in the activation space. Probes are trained in- 238

dependently for each head, resulting in a total of 239

L × H probes for a model with L layers and H 240

heads per layer. 241

To steer the model during generation, we treat 242

the learned probe coefficients as latent ideological 243

directions. Following Li et al. (2023), we apply 244

inference-time interventions by modifying each ac- 245

tivation xℓ,h at every generation step as: 246

xℓ,h ← xℓ,h + ασℓ,hθℓ,h, 247

where σℓ,h is an empirical estimate of the standard 248

deviation of activations at head (ℓ, h), and α ∈ R 249

controls the strength and direction of the interven- 250

tion. Negative values of α steer the model toward 251

more liberal representations, while positive values 252

induce more conservative behavior. 253

We apply this intervention at inference time 254

across the top-k most predictive attention heads 255

(ranked by probe R2), allowing us to test whether 256

steering along these learned directions influences 257

downstream political behavior. This method pro- 258

vides a causal mechanism for evaluating the func- 259

tional role of latent ideological representations 260

without further training or architectural changes. 261

3.2 Downstream Tasks 262

We evaluate the impact of ideological interventions 263

across three downstream tasks: political bias detec- 264

tion, voting preference prediction, and bias neutral- 265

ization via rewriting. These tasks are designed to 266

capture different dimensions of political reasoning, 267

including classification, simulation, and content 268

moderation. 269

3.2.1 Political Bias Detection 270

Task. Given a political statement, the model is 271

asked to determine whether it leans liberal, con- 272

servative, or remains neutral. This task evaluates 273

whether internal ideological representations influ- 274

ence the model’s ability to recognize bias in open- 275

ended text. 276
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Dataset. To construct the dataset, we first277

prompted gpt-4o-mini to simulate realistic pol-278

icy statements from real U.S. lawmakers. Names279

of 116th Congress members were sampled from a280

biographical database (Kim et al., 2025), and each281

name was paired with six standardized queries on282

policy issues including abortion, immigration, bor-283

der control, and foreign policy domains including284

military aid to Ukraine, military aid to Israel, and285

humanitarian aid to Gaza.286

Prompts asked the model to simulate what each287

lawmaker might say about each issue in a single288

sentence. In total, 120 statements (6 domains ×289

20 names) were generated, each associated with a290

synthetic speaker and issue domain. These simu-291

lated statements provide diverse yet ideologically292

structured inputs, which we use for downstream293

probing tests.294

Prompt format. We use prompts of the form:295

USER: In the context of 2019296

U.S. politics, is the following297

statement biased and leaning298

toward a liberal or conservative299

viewpoint? "[Statement]"300

ASSISTANT: The statement is301

Statements are drawn from a curated corpus of302

political quotes, policy opinions, and partisan com-303

mentary, spanning topics such as abortion, immi-304

gration, healthcare, and foreign aid.305

Objective. We test whether increasing α in the306

conservative direction results in more frequent clas-307

sification of statements as conservative, and vice308

versa. This serves as a diagnostic for how ideology-309

laden activations modulate semantic interpretation.310

3.2.2 Voting Preference Prediction311

Task. The model is asked to simulate a voting de-312

cision under an ideological persona. This probes313

the behavioral implications of ideological represen-314

tations, especially in decision-oriented contexts.315

Prompt format. We construct prompts such as:316

USER: In the context of317

2019 U.S. politics, as a318

[liberal/conservative], who319

would you most likely vote for320

in the next U.S. presidential321

election: Joe Biden or Donald322

Trump?323

ASSISTANT: The person would most324

likely vote for325

By conditioning the persona and intervening on 326

the model’s internal activations, we test whether 327

ideological direction vectors influence behavioral 328

outcomes. 329

Objective. We evaluate whether internal ideo- 330

logical interventions affect simulated voting prefer- 331

ences. The key hypothesis is that internal political 332

axes are sufficiently general to support decision- 333

oriented political reasoning. 334

3.2.3 Bias Neutralization via Rewriting 335

Task. Given a partisan sentence, the model is in- 336

structed to rewrite it in a politically neutral way. 337

This generative task assesses whether internal ideo- 338

logical representations influence the model’s ability 339

to identify and remove political framing. 340

Prompt format. We prompt the model as fol- 341

lows: 342

USER: In the context of 2019 343

U.S. politics, please rewrite the 344

following statement to make it 345

politically neutral and free from 346

liberal or conservative bias: 347

"[Statement]" 348

ASSISTANT: Here’s a neutral 349

version of the text: 350

Statements are selected from those used in the bias 351

detection task and are known to contain overt parti- 352

san framing. 353

Objective. We analyze whether varying α 354

changes the degree to which partisan markers are re- 355

moved or reinforced. In particular, we test whether 356

low-magnitude interventions improve neutrality by 357

helping the model detect and remove bias, while 358

large-magnitude interventions inject new partisan 359

framing. 360

3.3 Generalization Hypothesis 361

The above tasks serve a broader purpose: testing 362

whether ideological representations discovered via 363

linear probes on politician simulations are gener- 364

alizable across tasks and contexts. We hypoth- 365

esize that a symbolic understanding of liberal– 366

conservative ideology, embedded in attention head 367

activations, is reused by the model across diverse 368

reasoning scenarios. 369

Our approach provides a way to causally evalu- 370

ate this hypothesis. Rather than correlating internal 371

representations with labels or treating generation 372

as a black box, we explicitly intervene on internal 373

activations and measure the impact on behavior. 374
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This allows us to trace how ideological concepts375

influence not only the model’s descriptive outputs,376

but also its decisions, rewritings, and judgments in377

tasks of practical social scientific interest.378

4 Results379

We evaluate the effectiveness of causal interven-380

tions on latent ideological representations across381

three downstream tasks: political bias detection,382

voting preference prediction, and ideological neu-383

tralization. Across tasks, we vary the intervention384

intensity α ∈ [−30, 30] and the number of modu-385

lated attention heads k ∈ {8, 16, 32, 64, 96}.386

4.1 Political Bias Detection387

We investigate how attention-based interventions388

along a latent ideological direction influence the389

model’s perception of political bias in prompted390

policy statements. A total of 120 statements391

were generated using gpt-4o-mini, simulating re-392

sponses from U.S. legislators across various policy393

areas. Each output was labeled as Liberal, Neu-394

tral, or Conservative based on textual tone. We395

then apply causal interventions to the top k = 32396

attention heads identified through Ridge regression,397

varying the steering strength α ∈ {−30, 0, 30}.398

Figure 1 illustrates label transitions across in-399

tervention strengths. When the model is steered400

toward one end of the ideological spectrum, it be-401

comes more likely to classify almost all text—even402

neutral or aligned content—as biased toward the403

opposite end. At α = −30, where the model is404

pushed leftward, the majority of statements are405

labeled Conservative. At α = 30, where the inter-406

vention enforces a more right-leaning representa-407

tion, the same inputs are overwhelmingly labeled408

as Liberal.409

This symmetric reversal suggests that steering410

the model along a latent ideological direction ef-411

fectively shifts its own position on the political412

spectrum: interventions displace the model’s inter-413

pretive center, leading it to misclassify even neutral414

or aligned content as ideologically distant. Instead415

of context-sensitive judgment, the model projects416

all inputs onto its newly adopted ideological frame.417

This suggests that latent ideological and interpre-418

tive dimensions are correlated within the model’s419

internal representation space. Steering along an ide-420

ological discourse axis also alters how the model421

interprets bias, indicating that the internal dimen-422

sions governing political content and evaluative423

framing are not fully disentangled. This under- 424

scores the importance of understanding the struc- 425

ture and interaction of social dimensions in LLMs 426

when designing interventions for fairness or inter- 427

pretability. 428

4.2 Voting Preference Prediction 429

We next examine whether latent ideological inter- 430

ventions influence the model’s simulation of parti- 431

san voting behavior. For each intervention setting, 432

the model generates statements from liberal or con- 433

servative personas in response to a prompt about 434

U.S. presidential voting preference. Outputs are 435

classified as supporting either Joe Biden or Donald 436

Trump, and results are aggregated across varying 437

α values and numbers of intervened heads k. 438

Figure 2 plots the average predicted candidate 439

label (0 = Biden, 1 = Trump) for each persona 440

group. The results reveal substantial divergence in 441

behavior between the two personas. For the liberal 442

persona, model predictions remain overwhelmingly 443

stable across all intervention strengths and k values, 444

consistently favoring Biden. 445

In contrast, outputs for the conservative persona 446

display high volatility. While there are instances 447

where interventions push the model toward predict- 448

ing a Biden preference (e.g., k = 64 and k = 96), 449

no consistent directional trend emerges. These re- 450

sults indicate that ideological steering does not re- 451

liably control simulated voting behavior. 452

One possible explanation is that voting behavior 453

may not lie along the same latent discourse dimen- 454

sion captured by our liberal-conservative probing 455

direction. While interventions shift the framing and 456

bias classification of political statements, the candi- 457

date preference might rely on other factors—such 458

as the internally activated demographics, social 459

identity or occupation (Gao et al., 2022)—that are 460

not linearly correlated with the learned ideological 461

dimension. Additionally, large language models 462

trained with reinforcement learning from human 463

feedback (RLHF) may have been conditioned to 464

prefer politically neutral or socially acceptable out- 465

puts (Potter et al., 2024), especially in sensitive con- 466

texts like elections. This alignment pressure could 467

make model outputs more rigid and resistant to 468

causal interventions, effectively overriding steered 469

ideological activation with alignment-consistent de- 470

faults. 471
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NeutralNeutralNeutralNeutralNeutral
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NeutralNeutralNeutralNeutralNeutral

ConservativeConservativeConservativeConservativeConservative

Figure 1: Sankey diagram showing transitions in political bias labels across intervention strengths (α = −30→
0→ 30) at k = 32. Node colors reflect label types: blue = Liberal, gray = Neutral, red = Conservative.

4.3 Bias Neutralization via Rewriting472

To evaluate how latent ideological interventions473

affect the model’s ability to neutralize politically474

sensitive language, we examine its performance on475

a rewriting task. Given an ideologically charged476

statement related to transgender rights, the model477

is asked to generate a politically neutral version478

under three intervention levels (α = −30, 0, 30)479

applied to k = 64 top heads.480

Table 1 summarizes the outputs under each inter-481

vention for an example text on transgender rights.482

At α = 0, the model performs best: it avoids parti-483

san language, frames the issue with balanced termi-484

nology (e.g., “balance between privacy and inclu-485

sivity”), and adheres to the instruction of neutrality.486

In contrast, the α = −30 intervention (steering487

toward liberal ideology) leads to an overcorrection:488

the output introduces progressive rhetoric such as489

“systemic oppression” and “struggle for justice,”490

thus violating the neutrality constraint. The α = 30491

intervention (steering rightward) results in a less492

coherent response that subtly emphasizes individ-493

ual responsibility and privacy but fails to complete494

the thought. 495

These results suggest a concerning phenomenon 496

in the model’s behavior: when steered toward a left- 497

leaning latent direction, the model’s de-biasing at- 498

tempt diverges sharply from neutrality. This has se- 499

rious implications for sensitive applications like po- 500

litical text generation or content moderation, where 501

unintended bias can undermine objectivity. 502

However, the same findings also point to the po- 503

tential of linear latent interventions to diagnose and 504

mitigate such biases—highlighting that, with care- 505

ful design, steering mechanisms can be a tool not 506

only for analysis but for fairness-oriented control. 507

5 Discussion 508

Our results highlight both the power and limita- 509

tions of linear interventions for steering ideolog- 510

ical behavior in large language models. Across 511

three downstream tasks—bias detection, voting 512

preference prediction, and ideological neutraliza- 513

tion—we find varying degrees of responsiveness to 514

interventions along a learned liberal–conservative 515

axis. 516
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Figure 2: Average predicted voting preference (0 = Biden, 1 = Trump) across intervention strengths α and varying k
values, split by liberal (left) and conservative (right) personas designated in prompts.

α Lean Output Excerpt

− Original “As we navigate the complex issues surrounding transgender rights, it is essential to respect
individuals’ privacy while also ensuring that all students feel safe and supported in their
school environments.”

−30 Liberal “...recognize the importance of respecting individuals’ privacy and dignity, while also ad-
dressing the ongoing struggle for justice and equality in the face of systemic oppression and
discrimination.”

0 Neutral “...strike a balance between respecting individuals’ privacy and creating an inclusive and
supportive environment for all students.”

30 Conservative “...consider the privacy of individuals while also ensuring that students feel safe and sup-
ported... specific actions and preferences of individuals should be taken into account...”
(incoherent continuation follows)

Table 1: Excerpts from model outputs under different intervention strengths for a political bias neutralization task.
Leftward intervention (α = −30) reinforces progressive rhetoric; rightward (α = 30) harms coherence. Neutral
control (α = 0) produces the most appropriate result.

In the case of bias detection, latent ideological517

activations causally modulate how the model inter-518

prets partisan language. The model systematically519

reclassifies the same statements as liberal or con-520

servative depending on the direction of the inter-521

vention, supporting the hypothesis that ideology is522

encoded along a relatively linear and transferable523

latent direction. Notably, the model tends to over-524

ascribe bias to opposing perspectives while failing525

to detect bias in aligned statements. This suggests526

that interventions affect the model’s point of view,527

leading to asymmetric judgments akin to human528

confirmation bias (?).529

In contrast, voting preference prediction exhibits530

more muted and inconsistent responses. Although531

interventions sometimes shift predicted outcomes532

(particularly for conservative personas), the ab-533

sence of a consistent directional trend suggests that534

political behavior is not solely governed by the la-535

tent discourse dimension uncovered through prob- 536

ing. This may be due to (1) task-specific knowledge 537

or heuristics that lie outside the ideology dimen- 538

sion, or (2) alignment constraints imposed during 539

RLHF that flatten sensitive behavioral responses, 540

especially in contexts such as elections. 541

The ideological neutralization task further re- 542

veals how interventions can unintentionally am- 543

plify bias. When instructed to rewrite a partisan 544

statement in a neutral tone, the model produces 545

outputs that reflect the ideological lean induced by 546

latent activation steering—even when neutrality is 547

explicitly requested. These results indicate that la- 548

tent ideological representations influence not just 549

classification but generation quality and stylistic 550

framing. 551

Taken together, our findings underscore the dual 552

role of latent ideological directions in language 553

models: they are both a source of behavioral bias 554
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and a potential tool for controlling it. That these555

directions generalize across tasks—albeit imper-556

fectly—suggests that they encode a symbolic struc-557

ture that the model uses to simulate political rea-558

soning. However, the brittleness of this structure,559

especially under extreme interventions (Kim et al.,560

2025), raises concerns about the reliability and sta-561

bility of such methods in practice.562

6 Conclusion563

This work presents a causal investigation of ide-564

ological representations in large language mod-565

els. By leveraging linear probes to identify la-566

tent liberal–conservative directions and applying567

inference-time interventions, we explore how ideo-568

logical concepts are encoded and deployed across569

a suite of political reasoning tasks.570

Our key findings are:571

• Ideological directions identified via linear572

probing generalize beyond probing tasks and573

exert causal influence over multiple down-574

stream political reasoning tasks, including575

bias detection and neutrality rewriting. This576

demonstrates that ideological representations577

are potentially shared across tasks and func-578

tion as reusable symbolic structures.579

• Our results reveal a fundamental disjunction580

between ideological framing and behavioral581

simulation. While discourse-level features582

(e.g., bias classification) respond to interven-583

tions, voting preferences do not consistently584

shift, suggesting that political behavior is en-585

coded in correlated, but distinct or more com-586

plex latent dimensions.587

• We observe that ideological steering produces588

asymmetric effects: liberal interventions often589

reinforce progressive language, while conser-590

vative steering can reduce coherence or leave591

outputs unchanged. These asymmetries likely592

stem from pretraining and alignment effects,593

underscoring the need for further investigation594

of such ideological representations in LLMs.595

Overall, our results support the hypothesis that596

ideology functions as a reusable, linear structure597

within LLMs. However, the complexity of down-598

stream reasoning tasks, combined with alignment599

constraints, means that ideological control is not600

always predictable or coherent. While latent inter-601

ventions offer a powerful diagnostic and control602

mechanism, they must be carefully applied and 603

evaluated in context. 604

Future work should investigate more granular 605

and disentangled representations of political rea- 606

soning—such as separating affective tone, policy 607

stance, and partisan identity—and develop multi- 608

dimensional steering methods that go beyond a 609

single ideological axis. Additionally, extending in- 610

terventions to a wider variety of social scientific 611

tasks, such as multi-agent simulations, may offer 612

new opportunities for both fairness auditing and be- 613

havior control in politically sensitive applications. 614

Limitations 615

While our study demonstrates that latent ideologi- 616

cal directions in large language models (LLMs) can 617

be causally manipulated to influence downstream 618

political reasoning tasks, several limitations merit 619

discussion. 620

First, our methodology relies heavily on linear 621

probing and intervention on attention head outputs. 622

Although effective in this setting, this approach 623

may overlook more complex, non-linear represen- 624

tations or interactions among components in the 625

model. Future work should explore whether more 626

expressive, possibly non-linear probing techniques 627

yield stronger or more reliable behavioral control. 628

Second, our evaluations are confined to a 629

relatively narrow slice of the ideological spec- 630

trum—namely, the liberal–conservative dimension 631

in U.S. politics. This may limit the generalizabil- 632

ity of our findings to other ideological domains, 633

such as libertarian–authoritarian or global political 634

perspectives. Additionally, the simulation of U.S. 635

politicians and the labeling of bias is based on GPT- 636

generated responses, which may not fully capture 637

the nuance of real-world political language. 638

Third, while we employ multiple downstream 639

tasks, they are all text-based and relatively short- 640

form. We do not assess long-form reasoning, in- 641

teraction, or deliberative dialogue settings where 642

ideological representations might function differ- 643

ently. The voting preference task, in particular, 644

shows limited response to interventions, suggest- 645

ing that some tasks may require more sophisticated 646

or targeted steering approaches. 647

Finally, our findings depend on a single model 648

family (LLaMA 2–7B) and may not transfer across 649

architectures, sizes, or models trained with differ- 650

ent alignment protocols. The influence of RLHF 651

and instruction tuning on the steering capacity and 652
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rigidity of internal representations remains an open653

area of investigation.654
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