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ABSTRACT

We develop a novel data-driven framework as an alternative to dynamic flux bal-
ance analysis, bypassing the demand for deep domain knowledge and manual ef-
forts to formulate the optimization problem. The proposed framework is end-to-
end, which trains a structured neural ODE process (SNODEP) model to estimate
flux and balance samples using gene-expression time-series data. SNODEP is de-
signed to circumvent the limitations of the standard neural ODE process model,
including restricting the latent and decoder sampling distributions to be normal
and lacking structure between context points for calculating the latent, thus more
suitable for modeling the underlying dynamics of a metabolic system. Through
comprehensive experiments (156 in total), we demonstrate that SNODEP not only
predicts the unseen time points of real-world gene-expression data and the flux
and balance estimates well but can even generalize to more challenging unseen
knockout configurations and irregular data sampling scenarios, all essential for
metabolic pathway analysis. We hope our work can serve as a catalyst for build-
ing more scalable and powerful models for genome-scale metabolic analysis.

1 INTRODUCTION

A distinctive characteristic of deep neural networks is their capability to implicitly learn complicated
features and dynamics from data, significantly saving human effort in composing those handcrafted
features and devising complex models. Therefore, there has been a growing interest in using them
in a variety of scientific contexts, such as quantum chemistry (von Glehn et al., 2022), tokamak
controller design (Degrave et al., 2022), climate sciences (Lam et al., 2022; Nguyen et al., 2023),
molecule generation (Hoogeboom et al., 2022) and drug discovery (Askr et al., 2023), to name a
few. For drug discovery problems in particular, it is essential to answer the questions of where and
how the drug should be targeted. The machine learning community has attracted increased atten-
tion in molecular design to address the latter question (Luo et al., 2022; Corso et al., 2022). On
the other hand, metabolic pathway analysis techniques, such as flux balance analysis (FBA) (Orth
et al., 2010) and dynamic FBA (Mahadevan et al., 2002), have been shown highly effective in find-
ing drug targets (Sen & Orešič, 2023). These methods are widely used to study the effect of drugs
or environmental stress simulated by gene knockouts on unwanted cells, such as cancer cells, by
curbing their metabolism (Raškevičius et al., 2018). Nevertheless, several key parameters, includ-
ing the optimization objective and constraints for the reaction flux in their linear programming (LP)
formulation, must be determined using domain expertise for each case, largely limiting their gener-
ality and scalability. In this work, we aim to develop scalable data-driven methods that can directly
predict the behavior of metabolic systems with time-varying flux, thus avoiding the manual effort
required to build FBA models.

More specifically, we achieve this by leveraging single-cell RNA sequencing (scRNA-seq) time-
series data (Chen et al., 2019) and using single-cell flux estimation analysis (scFEA) technique from
Alghamdi et al. (2021) to estimate flux and balance of the metabolic system, because scRNA-seq
can churn out data in bulk, and getting time-series single-cell gene-expression data is much less
labor intensive than getting actual flux-balance time-series data. The challenge, however, lies in that
gene expression trajectories for individual cells cannot be tracked over time since cells die once their
gene expression is read. Instead, we only have gene expression samples from different cells at each
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timestep, which can be viewed as samples from a time-varying distribution resembling a random
process. In fact, it’s well known that gene transcription is stochastic, especially when considered at
the single cell level (Thattai & Van Oudenaarden, 2001). Thus, the amounts of molecules produced,
or the chemical concentration, from a collection of cells can be considered to be sampled from some
distribution, with the amounts of mRNA molecules showing a Poisson-like behavior in a steady state
as shown in Thattai & Van Oudenaarden (2001).

Since the time-varying metabolic concentrations are known to follow a non-linear ordinary differ-
ential equation (ODE), we propose a novel Structured Neural ODE Process (SNODEP) architecture
that is built on top of the standard neural ODE processes (Norcliffe et al., 2021) to predict the under-
lying dynamics of the metabolic system. We note that standard neural ODE processes have several
design choices that might not help to model the ODE dynamics in our case, like lack of structure in
the encoder to get the latent distribution from the context points and the use of Gaussian parametric
family for latent posterior and decoder distributions. Consequently, we design the architecture of
SNODEP to bypass these shortcomings, showing improved performance in tasks such as predicting
gene-expression distributions on unseen timesteps, predicting metabolic-flux and metabolic-balance
distribution on unseen timesteps, and predicting the corresponding distributions for gene-knockout
cases, considering both regularly and irregularly sampled data, all for several metabolic pathways.

Contributions. We formulate the prediction problem of metabolic flux and balance as a stochastic
neural processing task, where the goal is to learn the underlying dynamics by predicting their time-
varying distributions under different configurations (Section 2). We propose an end-to-end training
framework, which first defines the intermediary steps required to estimate metabolic flux and bal-
ance from scRNA-seq data and then learns a novel SNODEP model that can predict the unseen time
points of flux and balance and their dynamics under gene-knockout configurations (Section 3.2).
The proposed SNODEP architecture is designed by addressing a few limitations of the standard ar-
chitecture of neural ODE processes (Section 3.1); thus, it is more suitable to model the time-varying
distributions from metabolic systems. Comprehensive experiments on real-world datasets and vari-
ous metabolic pathways demonstrate that SNODEP is highly effective in modeling the dynamics of
gene expressions and predicting metabolic flux and balance, consistently outperforming alternative
models such as standard neural ODE processes (Sections 4.2-4.4). We also showcase the superiority
of SNODEP under gene-knockout variations and scenarios with irregularly sampled data (Section
4.5), suggesting its versatility and strong potential in solving challenges in biomedical domains.

1.1 RELATED WORK

Metabolic Pathway Analysis. Genome-scale metabolic models (GSMMs) have proven to be pow-
erful tools in the design of therapeutic treatments. For instance, Raškevičius et al. (2018) employed
GSMMs to identify therapeutic windows for cancer treatment, while Larsson et al. (2020) used them
to simulate gene knockouts in a Glioblastoma cancer cell model, identifying potential therapeutic
targets and predicting side effects in healthy brain tissue. Despite their importance, GSMMs are
time-consuming and require significant domain expertise to build. Recent studies have explored
integrating machine learning techniques with GSMMs, as reviewed in Sahu et al. (2021). From a
dynamical standpoint, Costello & Martin (2018) framed pathway dynamics prediction as a machine
learning problem, using XGBoost models to predict such dynamics, but their framework is not end-
to-end. More recently, Aghaee et al. (2024) introduced a graph neural network model to simulate
the dynamic behavior of metabolites in oxidative stress pathways in bacterial cell cultures for syn-
thetic data. In addition, RNA velocity (La Manno et al., 2018) estimates the time derivative of gene
expressions but needs spliced and unspliced mRNA counts, usually not reported in the experiments.
Similarly, Klumpe et al. (2023) investigated single-cell time series prediction, albeit also using syn-
thetic data with no specific focus on metabolic pathways. To the best of our knowledge, our work is
the first to comprehensively study the dynamically varying flux and balance of metabolic pathways
derived from real-world single-cell gene expression time-series data.

Neural ODE. The neural ODE family of models has shown strong capabilities in modeling dynamic
systems, particularly when the underlying dynamics are known to follow an ODE (Rubanova et al.,
2019). While latent neural ODEs have been applied to interpolation and extrapolation tasks, they
are not suitable for modeling random processes. In contrast, neural processes (NP) (Garnelo et al.,
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Figure 1: Overall pipeline of our framework for predicting time-varying distributions, such as gene
expressions, flux, and balance, with (green) and without (orange) gene knockouts.

2018) can be used for modeling time-varying distributions, but they have no consideration for the
underlying dynamics. These observations motivate us to explore models like neural ODE processes
(NODEP) (Norcliffe et al., 2021), where the dynamics are defined over the parametric space of these
distributions. Other models, such as those proposed in Kidger et al. (2021), assume a noisy evolution
of dynamics, which does not align with our prediction problems of time-varying distributions in
metabolic systems. Our work adapts standard neural ODE processes (Norcliffe et al., 2021) to better
suit our specific settings, showing improvements across various tasks and metabolic pathways.

2 PROBLEM FORMULATION

Classical methods like DFBA estimate time-varying metabolic flux and balance by solving an op-
timization problem to maximize the biomass at each timestep (see Appendix B.1 for more details).
Our work proposes to directly train a model on scFEA-estimated flux-balance values until a certain
timestep and then predict the distributions of gene expression, flux, and balance in future timesteps,
expecting that the trained model will learn the underlying dynamics. Figure 1 illustrates the overview
of our pipeline. Due to page limits, we defer more details on scFEA proposed by Alghamdi et al.
(2021) to Appendix B.2. Below, we provide detailed descriptions of our problem setup. The key
notations and their descriptions are provided in Appendix A.

Predicting Gene Expression, Flux and Balance. Suppose we have a gene count matrix of dimen-
sion K × N , where N is the total number of cells and K is the total number of genes, with gene
counts measured at each regular timestep t and total V timesteps. Let Bt be the index set repre-
senting the cells whose gene counts ∈ RK are observed at time t. Then, we have

∑
t |Bt| = N ,

indicating that all N cells get their expressions counted over various timesteps.

For a metabolic pathway, we only extract the relevant d genes from the total set of K genes. Let
gi,t ∈ Rd be the gene-expression array for cell i ∈ Bt at time t, and Gt ∈ Rd×|Bt| be the corre-
sponding matrix. For a certain metabolic pathway with u modules and v metabolites and each batch
Bt of cells at time t, we estimate the flux mf and balance mb using the scFEA framework detailed
in Appendix B.2. Specifically, we define:

• Sf
t : {gi,t}i∈Bt

→ {mf
i,t}i∈Bt

as the mapping that estimates the flux mf
i,t ∈ Ru for each

cell i based on its gene expression. Let Mf
t ∈ Ru×|Bt| be the matrix of the flux samples.

• Sb
t : {gi,t}i∈Bt

→ {mb
i,t}i∈Bt

as the analogous mapping for estimating the metabolic
balance mb

i,t ∈ Rv . Let Mb
t ∈ Rv×|Bt| be the matrix of the balance samples.

We note that scFEA was originally developed for static-FBA, but since the static-DFBA formulation
(Equation 4) can be interpreted as solving the static-FBA for different timesteps, we use scFEA to
estimate flux-balance values for different timesteps.

Gene-knockout. Gene knockout is a way to understand how a gene influences the metabolic net-
work, for example, in understanding how essential genes in pathogens affect metabolic pathways
to design drugs to inhibit those pathways (Larsson et al., 2020); it’s also widely used in synthetic
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biology Dalvie et al. (2021). In the gene-knockout simulations in FBA models, the constraints of
the reaction fluxes affected by essential genes are usually modified (Maranas & Zomorrodi, 2016).
In contrast, we train a model on certain gene-knockout configurations and then predict the distribu-
tion on unseen configurations and timesteps. To simulate gene-knockout conditions, we randomly
sample S subsets of k most expressed genes, set the gene-expression of genes from those subsets
to zero (See Algorithm 1 for more details), and estimate the flux-balance values again based on the
scFEA techniques. For s ∈ {1, 2, . . . , S}, we analogously define {m̃f

i,t}s,i∈Bt
and {m̃b

i,t}s,i∈Bt

as gene-knockout flux and balance estimates, respectively, where we use M̃f
s,t ∈ Ru×|Bs,t| and

M̃b
s,t ∈ Rv×|Bs,t| to denote the corresponding matrix of samples.

Essentially, our framework assumes that metabolic flux and balance from scRNA-seq data can be es-
timated using scFEA techniques, that knocking out a subset of genes does not change the expression
levels of the rest of the genes, and that gene essentiality and gene expression levels are correlated.

Learning Objective. For each timestep t ∈ {t1, t2, . . . , tV }, we collect samples of gene ex-
pression {gi,t}i∈Bt , flux {mf

i,t}i∈Bt and balance {mb
i,t}i∈Bt and their gene-knockout samples

{{m̃f
i,t}j,i∈Bt , {m̃b

i,t}j,i∈Bt} with cells Bt using previous steps. We assume these samples are drawn
from some underlying distributions corresponding to gene expression G(θg(t)), flux Mf (θf (t)),
balance M b(θb(t)) and their gene knockout versions {M̃f (θf (t)), M̃

b(θb(t))}, respectively. The
goal is to learn a model F : t → Y (θt) that can predict the underlying dynamics of time-varying dis-
tributions, which depend on some latent distribution L. In our setup, F is considered as an encoder-
decoder neural network, with a different network for each distribution in {G,Mf ,M b, M̃f , M̃ b}.

Let C < T < V be the length of context, target, and total available time points, respectively. Given a
distribution Y , let yi ∼ Y (θt) for any i ∈ {1, . . . , V }. When we say yi ∼ Y (θt), it means a random
sample from the set {yi,t}i∈Bt

. During training, our model’s encoder takes as input the context data,
which includes samples from context points C = {(t1, y1), . . . , (tC , yC)}. The decoder then predicts
samples from the target points T = {(t1, y1), . . . , (tT , yT )}. During inference, the model is used to
predict every timestep available, including hitherto unseen timesteps V = {(t1, y1), . . . , (tV , yV )}.
In the following discussions, we denote IC = {1, . . . , C} and IT = {1, . . . , T} for simplicity.

3 METHODOLOGY

3.1 ISSUES WITH STANDARD NEURAL ODE PROCESS

The standard neural ODE process (NODEP) model (Norcliffe et al., 2021) employs an encoder-
decoder model architecture, where the context points {(ti, yi)}i∈IC are used to calculate the latent
distributions L0(θl0) and D(θd), and the latent l0 ∼ L0 evolves over target timesteps {ti}i∈IT ,
according to an ODE that is modeled by a neural network fw as follows:

l(ti) = l0 +

∫ ti

t0

fw(l(t), d, t)dt. (1)

The time-evolving latent distributions are then fed into a decoder to obtain the target distributions:
{Ni(yi|µw1(l(ti)), σw2(l(ti)))}i∈IT . Although NODEP has been shown effective in modeling ODE
dynamics for scientific discovery, there are a few limitations with NODEP if applied to our settings:

1. The latent and decoding distributions are treated as Normal. This is not the best choice of dis-
tributions to model gene-expression data, which is usually discrete and Poisson-like (Thattai
& Van Oudenaarden, 2001) and confirmed by Figures 9a and 9b in Appendix E.

2. The encoded representation ri = fe({tCi , yCi }) is calculated using context points without any
particular structure in NODEP. These ri’s are then order-invariantly aggregated to give r, and
finally D ∼ qD(d|C) = N (d|µD(r), diag(σD(r))), similarly for L0. The order between the
context points and their sequential dependence on each other is not efficiently utilized. En-
forcing this sequential dependence can be highly useful for guiding the ODE decoder because
otherwise, it might lead to unintended attention to certain context points.

This sequential dependence of context points is even more important for irregularly sampled data,
where an order-invariant encoder might lead to different representations for different timesteps sam-
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Figure 2: Illustration of the overall pipeline of the proposed SNODEP architecture.

pled, even though the underlying condition is the same. This further motivates us to employ a
GRU-ODE encoder to capture the underlying dynamics and thus not be sensitive to irregularity.

3.2 STRUCTURED NEURAL ODE PROCESS (SNODEP)

Encoder with Regularly Sampled Data. To address the above issues, we propose a modified ar-
chitecture where the encoder leverages Long Short-Term Memory (LSTM) (Hochreiter, 1997). The
LSTM encoder is designed to capture dependencies between context points across time, allowing
for a more informed and contextually-aware calculation of latent distributions L0(θl0) and D(θd).
We run the LSTM backward since we want the initial value of the latent variable l0. Formally, the
encoder takes the context sequence {(ti, yi)}i∈IC and computes hidden representations {hi}i∈IC :

hbwd
i = LSTMbwd(yi, h

bwd
i+1 ), for i ∈ IC .

Encoder with Irregularly Sampled Data. Recurrent networks assume inputs to be regularly spaced
and have no consideration for the actual time the input was sampled, not applicable to irregularly
sampled data (Rubanova et al., 2019). Thus, our hidden state varies according to a GRU-ODE:

ĥbwd
i−1 = hbwd

i +

∫ ti−1

ti

gϕ(h
bwd(t)) dt, hbwd

i−1 = GRU(yi, ĥ
bwd
i−1 ), for i ∈ IC ,

where gϕ is the network supposed to capture the time-dependent underlying dynamics of the hidden
state, and GRU stands for the Gated Recurrent Unit (Cho, 2014), a gating mechanism typically
employed in recurrent neural networks. For irregular data, our encoder uses the final hidden state
hbwd
0 to calculate the parameters of the initial latent l0 and control d, which then evolves to give

us the time-varying probability distributions. But in Rubanova et al. (2019), the hbwd
0 is used to

get the initial latent, l0 which then evolves directly, giving us quantities of interest and there’s no
time-varying distribution involved. For both regular and irregular scenarios, the final hidden state
from the backward pass gives us the representation r = [hbwd

0 ], which is then used to parameterize
the latent distributions L0 and D, via a feed-forward layer (FFW in Figure 2).

Latent distributions. The latent distributions, L0(θl0) and D(θd), are chosen based on the dataset.
For gene-expression data, we model the latent distribution as a LogNormal distribution, to resemble
the Poisson-like nature of the data:

l0 ∼ LogNormal(µL0
(r), σL0

(r)), d ∼ LogNormal(µD(r), σD(r)),

whereas for metabolic-flux and balance data, we use a Gaussian distribution:

l0 ∼ N (µL0
(r),diag(σL0

(r))), d ∼ N (µD(r),diag(σD(r))).

where µL0
, σL0

, µD and σD are learned functions. Using LogNormal ensures that we can resemble
the Poisson-like nature of gene-expression data while still being able to use the re-parametrization
trick (Kingma & Welling, 2013).
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Table 1: Illustration of considered pathways with the number of genes, metabolites, and modules.

Pathway Num Genes Num Metabolites Num Modules
M171 623 70 168

MHC-i 281 6 9

Iron Ions 136 8 15

Glucose-TCACycle 84 11 15

Decoder. The decoder relies on evolving the latent variable l(t) over time based on a neural ODE.
For a given latent state at time t0, the evolution is governed by:

l(ti) = l0 +

∫ ti

t0

fθ(l(t), d, t) dt,

where fθ represents the dynamics defined by the Neural ODE, and d is used for tuning the trajectory.
At each target time {ti}i∈IT , the latent state l(ti) is used to determine the target distributions. For
gene expressions, we model the predicted distributions as a Poisson distribution:

yi ∼ Poisson(λy(l(t))) for i ∈ IT .
Whereas for metabolic flux and balances, we model the predicted distributions as a Gaussian:

yi ∼ N (µy(l(t)), σy(l(t))) for i ∈ IT ,
where λy , µy and σy are again learned functions. The decoding distributions are meant to capture the
nature of the corresponding data. The output distribution is motivated by the nature of distribution
that we observe in the datasets as seen in Figure 9. During inference, we use the learned fθ to give
latent values over unseen timesteps, from V , as well.

3.3 OPTIMIZATION OBJECTIVE

Since the generative process is highly nonlinear, the true posterior is intractable. Thus, the model is
trained using the amortized variational inference method using the evidence lower bound (ELBO):

Eq(l0,d|T )

[∑

i∈IT

log Y (yi | l0, d, ti) + log

(
L0 (l0 | C)
L0 (l0 | T )

)
+ log

(
D (d | C)
D (d | T )

)]
, (2)

where the expectation is taken over joint latent distribution q(l0, d) = L0(θl0)×D(θd).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We use the gene-expression time-series dataset from Ori et al. (2021), which investigates
the differentiation of human pluripotent stem cells into lung and hepatocyte progenitors using single-
cell RNA sequencing to map the transcriptional changes during this process. The gene-count matrix
has dimensions 10667× 26936, with 10667 cells and 26936 genes. The gene expression is counted
regularly across 16 days in batches with Bt being the index set of cells being counted on day t and
|B0|+ |B1|+ . . .+ |B15| = 10667. For each cell batch Bt and a given metabolic pathway, we only
consider genes responsible for encoding the metabolites from the pathway. Table 1 summarizes
the four metabolic pathways from Alghamdi et al. (2021) we considered in this study. Alghamdi
et al. (2021) considered the metabolic reactions from the KEGG database (Kanehisa & Goto, 2000),
import and export reactions, and reorganized them into modules based on the topological structure.
This reorganization is, in essence, the simplification of the system of reactions by coercing connected
reactions into a module. Thus, when we say flux or balance, we mean it with regard to a module.

Methods. We compare performances on model architectures, including neural process (NP) (Gar-
nelo et al., 2018), neural ODE process (NODEP) (Norcliffe et al., 2021), and our structured neural
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Figure 3: Comparison of test-MSE in log-scale between NP, NODEP, and SNODEP across different
metabolic pathways on ground-truth gene-expression time-series data.

ODE process (SNODEP). We treat NP architecture as a baseline model to get insights on model-
ing our problems as a differentiable random process without considering the underlying dynamics.
We also compare performances between NODEP and SNODEP, which have a neural-ODE decoder,
with the latter exploiting sequential relationships between the context points via its encoder.

Hyperparameters. We vary the context length on the largest metabolic pathway, M171, to specify
the hyperparameter setup for context length and train-test splits (see Appendix D). We observe that
setting the context length as 8 had a small test-MSE, corresponding to a 80/20 split for train and
test timesteps available. Thus for the experiments below, we set our context as IC = {0, 1, . . . , 8}
and our target as IT = {0, 1, · · · , 12}, while at inference, we predict for all the timesteps IV =

{0, 1, . . . , 15}. Our training input is a sample y ∼ Π
|T |
t=0Y (θy(t)) with context being y[0 : |C|] and

target being y[0 : |T |]. And during testing, we sample y ∼ Π
|V|
t=0Y (θy(t)). For gene-knockout

experiments, we set the train-test split of gene-knockout subsets as 80/20.

Evaluation Metric. We use the MSE loss to measure model performance in predicting unseen
timesteps of time-varying distributions. Let s ∼ Ys and s∗ ∼ Ys∗ , where Ys is the learned distribu-
tion, and Ys∗ is the ground-truth distribution, where s, s∗ ∈ R. Let µr and Var(r) be the mean and
variance for any random variable r. Then the Mean Squared Error (MSE) is given by:

E
[
(µs − s∗)

2
]
= E

[
µ2
s + s∗

2 − 2µss∗
]
= Var(s∗) + (µs − µs∗)

2.

Assuming independence between dimensions, MSE =
∑d

i=1 Var(s∗, i)+(µs,i−µs∗,i)
2 for s ∈ Rd.

For gene-expression data, assume Ys = Poisson(λ) and Ys∗ = Poisson(λ∗). We thus get MSE =∑d
i=1

[
λ∗,i + (λi − λ∗,i)2

]
. Note that gene-expression data is usually very sparse (Figures 9a and

9b), and hence λg is usually very low. So in this case, minimizing MSE essentially boils down to
getting as close to the Poisson approximation as possible. For metabolic flux and balance data, sup-
pose Ys = N (µ, σ2) and Ys∗ = N (µ∗, σ∗2). Then, we have MSE =

∑d
i=1

[
σ2
∗,i + (µi − µ∗,i)2

]
.

Since we observe the estimated flux and balance are of low variances (Figures 9c-9f), minimizing
MSE essentially boils down to bringing the model mean µ closer to ground-truth mean µ∗.

4.2 GENE-EXPRESSION

Ideally, we would like to collect the ground-truth metabolic flux and balance at an individual cell
or tissue level. However, this is difficult because there is very little data on them. Gene-expression
counts can be considered as a rough approximation for the concentration of proteins, metabolites,
and enzymes they encode since they are highly correlated. Specifically, mRNA molecules are tran-
scribed at a certain rate from the template DNA strand, which are then translated into proteins
at some rate. Thus, we explore the timestep prediction task on log-normalized and scaled gene-
expression time-series data. Here, Y = G(θg(t)), which is defined in Section 2.

From Figure 3, we can clearly see that SNODEP achieves much lower MSE across different path-
ways, showing the efficacy of our proposed SNODEP. Both setting the sampling distribution as
Poisson and using the contextual information for the latent variables, in conjunction, help in obtain-
ing better performance. Even though we are working with ground-truth gene expressions, this result
should encourage further study on ground-truth flux datasets.
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(a) Predicting Metabolic-flux without Gene-knockout

(b) Predicting Metabolic-flux with Gene-knockout

Figure 4: Comparison of test-MSE in log-scale between NP, NODEP, and SNODEP across different
metabolic pathways on the scFEA-estimated metabolic-flux data with and without gene-knockout.

4.3 METABOLIC-FLUX

Applying techniques from single-cell flux estimation analysis on the gene-expression data, we ob-
tain samples of metabolic fluxes for the metabolic pathways. Specifically for each time t, given a
metabolic pathway with d genes and u modules with gene-expression matrix Gt ∈ Rd×|Bt|, we get
Sf
t (Gt) = Mf

t , where Mf
t ∈ Ru×|Bt| is the flux values for cell batch Bt. From Figure 4a, we can ob-

serve that SNODEP performs generally better than the other two methods across different metabolic
pathways, though the difference is not visually significant in some of them. We hypothesize that
this is due to the nature of distributions as seen for some modules in Figures 9c and 9d, they have
low variances, and if the mean of the distributions varies in an uncomplicated manner like linear or
Markovian, incorporating the context in the latent is expected not to help much.

Gene-knockout. Gene-knockout experiments are meant to simulate the effect of disturbances in
the pathway, such as the effect of any drug or environmental stress. Algorithm 1 in Appendix C
describes the algorithmic form for our creation of knockout data. We model this by assuming that
the gene expression level is correlated with how sensitive the metabolic pathway is with respect
to the enzymes/proteins encoded by the gene. We consider k most-expressed genes in the dataset
and sample random subsets of these k genes with the maximum cardinality of k//2. We call these
random subsets as knockout sets where the gene expression for the genes contained is set to zero.
We again calculate flux samples using scFEA (Appendix B.2) corresponding to each of knockout
set, with train and test containing data corresponding to different knockout sets. In our experiments,
we set k = 20 and the number of subsets S = 5 for all pathways. Figure 4b shows that our
methodology is robust to gene knockout predictions, and overall, SNODEP performs better than NP
and NODEP. This validates that we can use our model to predict behaviors of unseen gene knockout
configurations experiments and unseen timesteps.

4.4 METABOLIC-BALANCE

Once we get the flux values for all the modules, we can immediately obtain the change in con-
centration of a particular metabolite, known as the balance in flux balance analysis, by multiplying
the flux with the stoichiometric matrix. We thus perform analogous experiments as in Section 4.3,
where for each time t for a metabolic pathway with d genes and v metabolites with gene-expression
matrix Gt ∈ Rd×|Bt| we get Sb

t (Gt) = Mb
t , with Mb

t ∈ Rv×|Bt| as defined in Section 2. Figure 5a

8
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(a) Predicting Metabolic-balance without Gene-knockout

(b) Predicting Metabolic-balance with Gene-knockout

Figure 5: Comparison of test-MSE in log-scale between NODEP and SNODEP across metabolic
pathways on scFEA-estimated metabolic-balance data with and without gene-knockout.

shows SNODEP generally outperforms NODEP, especially for the Iron Ions pathway. We believe
that the performance is similar in pathways like MHC-i and M171 due to the simplistic nature of
distributions (Figures 9e and 9f), akin to what we have mentioned in Section 4.3. Similar to the pre-
vious section, we follow the steps mentioned in Algorithm 1 to get the metabolic balance samples
corresponding to gene knockout, and the test MSE is shown in Figure 5b. We can observe that the
overall performance of SNODEP is better than that of NP and NODEP for all pathways.

4.5 IRREGULARLY SAMPLED TIMESTEPS

Data collection in experiments involving temporal profiling of gene expression is often performed
irregularly (Rade et al., 2023; Nouri et al., 2023). Therefore, we also performed experiments where
the points are irregularly sampled. To tackle the irregularity, we use GRU-ODE (Rubanova et al.,
2019) to calculate latent distributions 3. Our context IC and target IT are similarly chosen to earlier
sections, and we randomly set data from a fraction of timesteps to zero for each batch. During test
time, we predict the remaining unseen timesteps. Figure 6 depicts heatmap visualizations of the
difference between MSE of NODEP and SNODEP with GRU-ODE encoder. Entries in the heatmap
with a positive value indicate that our SNODEP outperforms NODEP, and the higher the value is,
the better the performance is. The negative values, where NODEP has a smaller test-MSE, are very
low. We clearly see that SNODEP outperforms NODEP most of the time, especially towards lower
frequencies, confirming the value of our model on irregularly sampled data.

5 CONCLUSION AND FUTURE WORK

In this work, we have shown how to get the time-varying metabolic flux of a system using genomics
data rather than metabolomics data, which is much harder to procure. Through our framework, we
intend to use the learned dynamics to generate quantities from future time steps and unseen gene-
knockout configurations without any particular domain expertise. Nevertheless, we want to point out
that our results with respect to flux and balance and their corresponding gene-knockout results are
on data estimated via scFEA. Ideally, we would’ve preferred a gene-expression time-series that was
sampled keeping metabolic pathways in mind, meaning time-series for normal conditions and sev-
eral metabolic stresses, along with ground-truth metabolic flux and balance measurement. Such an
experiment should also have the alternative DFBA formulation available so that we can benchmark

9
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Figure 6: Heatmap of test-MSE difference (×10−2) between NODEP and SNODEP with GRU-
ODE encoder across metabolic pathways for flux, balance, and their knockout versions. Frequency
refers to the fraction of the timesteps present. In Appendix F, we provide the corresponding tables.

our method with it. However, we could not find such an open-sourced dataset, so we provided our
evaluations on scFEA estimated values instead of an ideal real-world dataset. Apart from such an
evaluation, several future directions could be taken, like making the scFEA methods differentiable,
enabling a single end-to-end differentiable pipeline, incorporating hypergraph structure into them,
modifying the loss and distribution appropriately for the sparsity of gene-expression data, and ex-
ploring non-parametric probability estimations for the decoder, to name a few. We believe our work
can also be helpful for integrating genomic and metabolomic data by using our pre-trained frame-
work to fine-tune metabolomic data, for example. In conclusion, we believe our work can serve as a
starting point for several interesting directions in making metabolic analysis more scalable.
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A TERMINOLOGY

The key notations and terms used throughout this paper are defined below for clarity.

A.1 INDICES AND SETS

• t ∈ {t1, t2, . . . , tV }: Discrete timesteps where measurements are collected, with V repre-
senting the total number of timesteps.

• Bt: The set of cells whose gene counts are measured at timestep t, such that the total
number of cells across all timesteps is N =

∑
t |Bt|.

• IC = {1, . . . , C}: Index set representing context points (i.e., the known timesteps used
during model training).

• IT = {1, . . . , T}: Index set representing target points (i.e., the timesteps over which the
model makes predictions).

• V: The set of including unseen timesteps for which we aim to make predictions.

A.2 GENE EXPRESSION DATA

• K: Total number of genes measured.

• N : Total number of cells.

• gi,t ∈ Rd: Gene-expression vector for cell i at time t, with d representing the number of
genes relevant to a particular metabolic pathway.

• Gt ∈ Rd×|Bt|: Gene-expression matrix at time t for the set of cells Bt.

A.3 METABOLIC QUANTITIES

• mf
i,t ∈ Ru: Metabolic-flux vector for cell i at time t, with u representing the number of

modules.

• mb
i,t ∈ Rv: Metabolic-balance vector for cell i at time t, with v representing the number of

metabolites.

• Mf
t ∈ Ru×|Bt|: Matrix of metabolic-fluxes for the set of cells Bt at time t.

• Mb
t ∈ Rv×|Bt|: Matrix of metabolic-balances for the set of cells Bt at time t.

A.4 GENE-KNOCKOUT QUANTITIES

• S: The subset of gene-knockout configurations sampled.

• k: The number of most expressed genes selected for knockout.

• g̃i,t,s ∈ Rd: Gene expression vector for cell i at time t under the s-th knockout configura-
tion (where s ∈ {1, . . . , S}).

• G̃t,s ∈ Rd×|Bt|: Gene-expression matrix at time t for the set of cells Bt under the s-th
knockout configuration.

• m̃f
i,t,s ∈ Ru: Metabolic-flux vector for cell i at time t under the s-th knockout configura-

tion.

• m̃b
i,t,s ∈ Rv: Metabolic-balance vector for cell i at time t under the s-th knockout configu-

ration.

• M̃
f

s,t ∈ Ru×|Bs,t|: Matrix of metabolic-fluxes for the set of cells Bt at time t under the s-th
knockout configuration.

• M̃
b

s,t ∈ Rv×|Bs,t|: Matrix of metabolic-balances for the set of cells Bt at time t under the
s-th knockout configuration.
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A.5 LATENT VARIABLES AND NEURAL ODE PROCESS

• L0(θl0): Latent distribution of the initial state of the hidden representation l0 for the cells,
parameterized by θl0 .

• D(θd): Latent distribution of an auxiliary variable d, parameterized by θd, used to control
the trajectory of the latent variables.

• l(ti) ∈ Rz: Latent state at time ti evolved from l0 over time, where z denotes the latent
dimension.

A.6 NEURAL NETWORKS AND FUNCTIONS

• fθ: Neural network modeling the evolution of the latent state l(t) through a Neural ODE.
• gϕ: Neural network modeling the evolution of the hidden state in the irregularly sampled

case.
• µL0

(r), σL0
(r): Mean and standard deviation functions for the latent distribution L0, pa-

rameterized by the hidden representation r.
• µD(r), σD(r): Mean and standard deviation functions for the latent distribution D.
• µy(l(t)), σy(l(t)): Functions parameterizing the distribution of target outputs (gene ex-

pression, metabolic flux, or balance) at time t, based on the evolved latent state l(t).
• λy(l(t)): Rate parameter for the Poisson distribution used to model gene-expression data.

A.7 DISTRIBUTIONS AND LOSS FUNCTION

• G(θg(t)): Distribution of gene expression at time t, parameterized by θg(t).

• Mf (θf (t)): Distribution of flux at time t, parameterized by θf (t).

• M b(θb(t)): Distribution of balance at time t, parameterized by θb(t).

• M̃f (θf (t)): Distribution of flux under gene-knockout at time t, parameterized by θf (t).

• M̃ b(θb(t)): Distribution of balance under gene-knockout at time t, parameterized by θb(t).
• Y (θt): General distribution (i.e., gene expression, flux and balance, and their gene-

knockout variations) at time t, parameterized by θt.
• ELBO: Evidence lower bound, the objective function used for model optimization, combin-

ing the log-likelihood of observed data and the Kullback-Leibler (KL) divergence between
the true and approximate posterior distributions.
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Figure 7: Different types of GPR relationships. G, E and R denote genes, enzymes and reactions,
respectively. Solid arrows are enzyme production, while dashed arrows denote catalyzing a reaction.

B BACKGROUND

B.1 FLUX BALANCE ANALYSIS

Flux balance analysis (FBA) is by far the most widely used computational method for analyzing
stoichiometric-based genome-scale metabolic models. In this section, we introduce the optimization
formulation of FBA and the meaning of the terms in the formulation. We refer readers to Maranas
& Zomorrodi (2016) for a more detailed description.

Static FBA. In its most general form, FBA is formulated as an LP problem (Dantzig, 2002) max-
imizing or minimizing a linear combination of reaction fluxes subject to the conservation of mass,
thermodynamic, and capacity constraints. The most widely used objective function in the FBA of
metabolic networks is the maximization of the biomass reaction flux built upon the assumption that
a cell is striving to maximally allocate all its available resources towards growth or maximizing the
biomass, which is a predefined reaction that includes all the components required for cell growth
like amino acids, nucleotides, lipids, and cofactors, etc. The formulation is as follows:

maximize z =
∑

j∈{biomass}
cjvj

subject to
∑

j∈J

Sijvj = 0, ∀i ∈ I

LBj ≤ vj ≤ UBj , ∀j ∈ J.

(3)

Equation 3 assumes that the time constants for metabolic reactions are very small, hence a pseudo
steady state constraint S · v = 0. Here, z is the combination of reaction fluxes involved in the
biomass, vj is the j-th reaction flux, I is the set of all reactants, J is the set of the reactions, Sij

is the stoichiometric coefficient of reactant i in reaction j. LBj and UBj are the lower and upper
bounds on the rate of flux for reaction j, which depend on several factors such as reversibility based
on Gibbs Free Energy (∆G), type of reaction, etc. These constraint values typically are hard to
determine since they need to be meticulously determined experimentally for each case.

Depending on the use case, the constraints and the objective change. For example, in the case of
simulating gene knockouts, we set vj = 0,∀j ∈ JKO, and gauge the gene essentiality via the GPR
relationships (see Figure 7), by targeting the biomass to be less than a threshold (no cell growth)
when we want to kill cells, e.g., cancer cells. In metabolic engineering, we want overproduction of
a target metabolic so our objective changes accordingly, and we can try different substrates, growth
conditions, and gene knockout/knockin combinations towards overproduction.
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Dynamic FBA. There are, however, processes where the time constants of the reactions are higher,
like in the case of transcriptional regulation (minutes) or cellular growth (several minutes or hours)
(Maranas & Zomorrodi, 2016). In such cases, the steady-state assumption S · v = 0 isn’t valid.
Mahadevan et al. (2002) forego this steady-state assumption and study dynamic flux balance analysis
in the context of Diauxic growth in E. Coli. Their study explores two separate formulations of
dynamic FBA, namely (a) Dynamic Optimization-based DFBA and (b) Static Optimization-based
DFBA. In (a), the optimization objective is integrated over the entire time duration via a dynamic
function, while in (b), the batch is divided into intervals, and the LP is solved at the starting timestep
of each interval. More precisely, (b) has the following formulation:

maximize z(t) =
∑

j∈{biomass}
cjvj(t)

subject to xi(t+∆T ) ≥ 0, ∀i ∈ I

vj(t) ≥ 0, ∀j ∈ J

ĉ(z(t))v(t) ≤ 0, ∀t ∈ [t0, tf ]

|vi(t)− vi(t−∆T )| ≤ v̇imax∆T, ∀t ∈ [t0, tf ], ∀i ∈ I

xi(t+∆T ) = xi(t) +
∑

j∈J

Sijvj∆T, ∀i ∈ I.

(4)

Here, z is the combination of reaction fluxes involved in the biomass, xi is i-th reactant balance, vj is
j-th reaction flux, I is the set of all reactants, J is the set of the reactions, and Sij is the stoichiometric
coefficient of reactant i in reaction j. In addition, ĉ is a function representing nonlinear constraints
that could arise due to consideration of kinetic expressions for fluxes, and t0 and tf denote the initial
and the final timestamps, respectively.

The static-DFBA formulation has much fewer parameters to solve for and is, therefore, more scal-
able. We would like to highlight the fact that static DFBA can be treated as a series of static FBAs
that are solved locally for each timestep. In our work, for estimating metabolic flux from gene
expression using techniques from Alghamdi et al. (2021), we thus solve for flux values for each
timestep at the beginning of an interval.

B.2 SINGLE-CELL FLUX ESTIMATION ANALYSIS

Singe-cell flux estimation analysis (scFEA) (Alghamdi et al., 2021) is a computational method to
infer single-cell fluxome from single-cell RNA-sequencing (scRNA-seq) data. And we use it to esti-
mate metabolic flux for the gene-expression data considered in our study. In scFEA, they reorganize
the metabolic maps extracted from the KEGG database (Kanehisa & Goto, 2000), transporter clas-
sification database (Saier et al., 2006), biosynthesis pathways, etc., into factor graphs of metabolic
modules and metabolites. We use the provided genes for metabolic pathway mappings in scFEA for
several organisms to estimate metabolic fluxes.

Flux estimation is a neural network-based optimization problem where the likelihood of tissue-level
flux is minimized. In particular, the network iteratively minimizes the flux balance, L∗

k with respect
to each intermediate metabolite Ck:

L∗
k =

N∑

j=1

( ∑

m∈FCk
in

Flux(j)m −
∑

m′∈FCk
out

Flux
(j)
m′

)2

+
∑

k′

Wk′

N∑

j=1

( ∑

m∈F
C
k′

in

Flux(j)m −
∑

m′∈F
C
k′

out

Flux
(j)
m′

)2

.

(5)

Let Gm
j = {Gm

i1,j
, . . . , Gm

im,j} be the set of genes associated with metabolic module Fm, then here
Flux(j)m = fm

nn(Gm
j |θm), flux of Fm for j-th cell, is modeled as a multi-layer fully connected neural

network with input Gm
j and θm being the parameters. Here, Ck′ denotes the Hop-2 neighbors of Ck

in the factor graph. FCk

in and FCk
out are the set of modules involved in production and consumption

of Ck respectively. The optimization problem of scFEA can be thought of as finding the optimal
neural network configuration that gives us reaction fluxes from gene expressions, such that the total
flux regarding metabolites is minimized when considered across all tissues.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C GENE KNOCKOUT ALGORITHM

Algorithm 1 Gene-knockout Flux and Balance Calculation

Require: Gene-expression dataset Gt for time t for a pathway with genes H = {g1, g2, . . . , gd},
number of most expressed genes k, number of subsets S

1: Identify the top k most expressed genes: Hk = {gi1 , gi2 , . . . , gik}
2: for j = 1, . . . , S do
3: Randomly sample subset Ss ⊆ Hk where |Ss| ≤ k/2
4: Set gi = 0 for all gi ∈ Ss and let the new dataset be G̃t

5: Calculate flux samples M̃f
t = Sf

t (G̃t) and balance samples M̃b
t = Sb

t (G̃t) using the
scFEA method described in Appendix B.2 for each knockout set Ss

6: Add the knockout information to samples m̃f = [m̃f , bg] and m̃b = [m̃b, bg] where bg is
a binary array such that:

bgi =

{
0 if gi is in the knockout set Ss,
1 otherwise.

7: end for
8: Divide {{m̃f

i,t}s,i∈Bt , {m̃b
i,t}s,i∈Bt}s∈{1···S} into train and test sets with different knockout sets

D EFFECT OF VARYING CONTEXT LENGTH

To perform our experiments in Section 4, we need to know how many context-target timesteps our
model needs to be able to predict the remaining time steps properly. For this, we used the gene-
expression data of the M171 pathway since it is the largest, and for a context length C, our extra
target length is C//2. In Figure 8, we see that our model is able to learn optimally after C = 6
context steps or C + C//2 = 9 total steps. With little context, the model essentially learns next-
step prediction (e.g., for C = 2 or 3, C//2 = 1), which does not perform well. This experiment
thus validates that with enough context, our model can learn the latent dynamics and can be used to
generate data from future unseen timesteps.

Figure 8: Curve plot of final test-MSE (in log scale) vs. context length.
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E DATASET VISUALIZATION

(a) Gene-expression: ALDOA (b) Gene-expression: GGCT

(c) Flux: M23 (d) Flux: M112

(e) Balance: Glutamine (f) Balance: Threonine

Figure 9: Kernel density estimate plots for the time-varying distributions of some gene, metabolite
balance, and module flux from the largest metabolic pathway M171 for the first five days.
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F IRREGULARLY SAMPLED DATA

We provide the detailed results in table format of the heatmap visualization for our experiments with
irregularly sampled data (Figure 6) For each setting, the lowest value is highlighted in bold.

Table 2: Test-MSE (×10−2) across different cases and frequencies for M171 pathway.

Case Frequency NODEP SNODEP Diff(GRU-ODE)
flux (knockout) 0.8 0.9434 0.5451 0.3983
flux (knockout) 0.6 1.6365 0.4743 1.1622
flux (knockout) 0.4 8.5318 0.3745 8.1573

balance (knockout) 0.8 0.9452 0.6174 0.3278
balance (knockout) 0.6 1.5794 0.5397 1.0397
balance (knockout) 0.4 8.5747 0.3985 8.1762

flux 0.8 0.0232 0.0285 -0.0053
flux 0.6 0.0185 0.0245 -0.0060
flux 0.4 0.0138 0.0188 -0.0050

balance 0.8 0.0196 0.0255 -0.0059
balance 0.6 0.0163 0.0202 -0.0039
balance 0.4 0.0113 0.0160 -0.0047

Table 3: Test-MSE (×10−2) across different cases and frequencies for MHC-i pathway.

Case Frequency NODEP SNODEP Diff(GRU-ODE)
flux (knockout) 0.8 1.5262 1.4450 0.0812
flux (knockout) 0.6 1.7510 1.2789 0.4721
flux (knockout) 0.4 5.8514 0.9251 4.9263

balance (knockout) 0.8 1.7747 1.4393 0.3354
balance (knockout) 0.6 2.2862 1.2553 1.0309
balance (knockout) 0.4 3.8700 0.9410 2.9290

flux 0.8 1.0332 0.9609 0.0723
flux 0.6 0.8438 0.7881 0.0557
flux 0.4 0.5904 0.5262 0.0642

balance 0.8 0.1697 0.1722 -0.0025
balance 0.6 0.1484 0.1494 -0.0010
balance 0.4 0.1179 0.1123 0.0056
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Table 4: Test-MSE (×10−2) across different cases and frequencies for Iron Ions pathway.

Case Frequency NODEP SNODEP Diff(GRU-ODE)
flux (knockout) 0.8 3.0829 3.2716 -0.1887
flux (knockout) 0.6 3.0149 2.6521 0.3628
flux (knockout) 0.4 2.2513 1.9470 0.3043

balance (knockout) 0.8 3.3664 3.2149 0.1515
balance (knockout) 0.6 3.0049 2.6651 0.3398
balance (knockout) 0.4 2.6629 2.0024 0.6605

flux 0.8 0.8134 0.7822 0.0312
flux 0.6 0.6596 0.6310 0.0286
flux 0.4 0.4470 0.4137 0.0333

balance 0.8 0.6903 0.6788 0.0115
balance 0.6 0.5861 0.5693 0.0168
balance 0.4 0.4098 0.3900 0.0198

Table 5: Test-MSE (×10−2) across different cases and frequencies for Glucose-TCACycle pathway.

Case Frequency NODEP SNODEP Diff(GRU-ODE)
flux (knockout) 0.8 5.4157 5.4325 -0.0168
flux (knockout) 0.6 4.6533 4.6676 -0.0143
flux (knockout) 0.4 3.4707 3.5078 -0.0371

balance (knockout) 0.8 5.6183 5.4531 0.1652
balance (knockout) 0.6 4.8713 4.8077 0.0636
balance (knockout) 0.4 3.5659 3.5082 0.0577

flux 0.8 0.6731 0.6308 0.0423
flux 0.6 0.5547 0.5210 0.0337
flux 0.4 0.3964 0.3741 0.0223

balance 0.8 0.3372 0.3329 0.0043
balance 0.6 0.2996 0.2881 0.0115
balance 0.4 0.2090 0.2113 -0.0023
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