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ABSTRACT

In the context of condition monitoring for structures and industrial assets, the es-
timation of unknown inputs, usually referring to acting loads, is of salient impor-
tance for guaranteeing safe and performant engineered systems. In this work, we
propose a novel method for estimating unknown inputs from measured outputs,
particularly for the case of dynamical systems with known or learned dynamics.
The objective is to search for those system inputs that will reproduce the actual
measured outputs, which can be reformulated as a Partially Observable Markov
Decision Process (POMDP) problem and solved with well-established planning
algorithms for POMDPs. The cross-entropy method is adopted in this paper for
solving the POMDP due to its efficiency and robustness. The proposed method is
demonstrated using simulated dynamical systems for structures with known dy-
namics, as well as a real wind turbine with learned dynamics, which is inferred
via use of a Replay Overshooting (RO) scheme, a deep learning-based dynamics
method for learning stochastic dynamics.

1 INTRODUCTION

Across a range of scientific fields, including structural engineering, robotics, economics, and bi-
ology, it is essential to obtain information on the external inputs that are applied onto dynamical
systems (Sanchez & Benaroya, 2014; Rajamani et al., 2017). To what concerns the domains of
Structural Health Monitoring (SHM) and Prognostics and Health Management (PHM), in particu-
lar, the assessment of performance or condition, e.g in terms of fatigue accumulation and reliability,
can be evaluated more efficiently under adequate estimation of the acting loads. One typical such
application is input estimation for vehicles (e.g. via estimation of the road roughness profile); a use
case which has found increasing use in recent years, as part of the so called on board monitoring or
mobile sensing platforms (Jin et al., 2022; Kang et al., 2019; Xue et al., 2020). However, for real-
world dynamical systems, it is difficult, if not impossible, to acquire direct measurements of acting
inputs (excitation) due to the fact that these inputs are of distributed and temporally continuous na-
ture, as well as due to the typically sparse and noisy available observations from limited sensors.
This is the case, for instance, with wind loads acting on wind turbines or towering structures. As a
consequence, various approaches have been proposed for estimating unknown inputs from the mea-
surable outputs, in what is typically referred to as an inverse problem, which requires the evaluation
of the invertibility of dynamical systems, as studied in (Sain & Massey, 1969; Silverman, 1969; Hou
& Patton, 1998; Maes et al., 2015).

The problem of unknown input estimation has long been investigated under the class of input or
input-state estimation methods, such as unknown input observers (Valcher, 1999; Sundaram & Had-
jicostis, 2007), optimal filters (Darouach & Zasadzinski, 1997; Gillijns & De Moor, 2007), gen-
eralized inverse approaches (Ansari & Bernstein, 2019), and Kalman-based input-state estimation
methods(Maes et al., 2016; Azam et al., 2017), including augmented Kalman filters (AKF) (Lourens
et al., 2012) and dual Kalman filters (DKF) (Azam et al., 2015). These well-established methods
require explicit definition of system dynamics (usually state-space) models, which hardens the inte-
gration with deep learning frameworks.
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In this paper, we investigate the input estimation problem from a new perspective. The input estima-
tion problem for a dynamical system bears similarities to sequential decision-making problems, with
the main distinction residing in the objective. Typically, for decision-making problems, the ultimate
goal is to find the system inputs that can maximize the rewards or minimize the costs associated
to some policy, which includes actions and observations. On the other hand, the input estimation
problem seeks the inputs that reproduce the measured system responses, which are regarded as the
actual reference outputs. With such a consideration, the input estimation problem can be formu-
lated as a Partially Observable Markov Decision Process (POMDP), with the primary difference
to a typical decision-making problem pertaining to the definition of reward/cost functions. Under
this premise, a number of state-of-the-art model predictive control and model-based reinforcement
learning algorithms can be repurposed to solve the POMDP problem for input estimation. Since
the reformulated MDP has relatively simple reward functions and the proposed method is model-
based, which assumes the underlying dynamics model is either known or learned, we choose the
cross-entropy method for policy search due to its efficiency and robustness (Mannor et al., 2003).

2 LITERATURE REVIEW

Model-based Reinforcement Learning and Dynamics Modeling Model-based reinforcement
learning (MBRL) refers to a vast family of approaches that rely on explicit estimates of the transi-
tion or dynamics function Moerland et al. (2020). Model-based reinforcement learning comprises
two phases: 1) learning a forward dynamics model from observed data, which is more commonly
referred to as system identification in the control literature; and 2) utilizing the inferred dynamics
model to predict the distribution over state trajectories resulting from applying a sequence of actions,
often by means of model-predictive control (MPC). By calculating the expected reward over state
trajectories, it is possible to assess multiple candidate action sequences, and identify the optimal one.
Learning reliable predictive models of high-dimensional dynamics is often the bottleneck in scal-
ing model-based approaches to complex tasks (Atkeson & Schaal, 1997), and various approaches
utilize different dynamics learning models and planning methods for the two phases. Nagabandi
et al. (2018) use deterministic NN models and MPC with random shooting to achieve data-efficient
control in higher dimensional tasks than can be modeled by Gaussian Processes. Chua et al. (2018)
proposed PETS by fusing uncertainty-aware deep network dynamics models with sampling-based
uncertainty propagation. On the basis of probabilistic neural networks serving as the dynamics
model, the cross-entropy method is applied to search for the optimal policy. Igl et al. (2018) pro-
posed the Deep Variational RL, which directly uses a network to output distribution of the latent state
from the observation, with a particle filter approximating the intractable computation of the belief
update. Many other approaches solve POMDPs by Recurrent Neural Networks (RNNs). One typi-
cal instance is the Deep Recurrent Q-network (DRQN), introduced by Hausknecht & Stone (2015),
which employs RNNs to integrate historical trajectory and is robust to partial observability on Atari
games.

Model Predictive Control Model predictive control (MPC) (Camacho & Alba, 2013)) is a class
of control methods that plan an optimized sequence of actions based on a model. Learning-based
MPC (Hewing et al., 2020) has a tight connection with MBRL, particularly for nonlinear and black-
box models. In general, at each time step, MPC obtains an optimal action sequence by sampling
multiple sequences and applying the first action of the sequence to the environment. Formally, at
time step t0, a MPC agent will search for an action sequence ut0:t0+H by optimizing:

max
ut0:t0+H

Ezt+1∼p(zt+1|zt,ut)

[ t0+H∑
t=t0

r(zt,ut)
]
, (1)

where H denotes the planning horizon. Then, only the first action ut from the action sequence will
be selected and applied to the environment, and the same process is repeated. As a black-box op-
timization problem, black-box MPC employs zero-order, or gradient-free, optimization methods to
solve Eq. 1. The random shooting, a simple Monte Carlo method, is used in the Mb-Mf (Nagabandi
et al., 2018). The random shooting method uniformly and randomly samples a number of action
sequences ut:t+H from the space of action sequences. Following the transition function, the current
state zt is transited to zt+H by applying the action sequences as defined in the model. Evaluation
of action sequences is based on the returns gathered throughout the transition process. The action
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sequence with the highest reward will be preserved as the solution of Eq. 1. The random shoot-
ing method is straightforward to implement and does not demand a great deal of computational
resources. However, because it samples from the same distribution at every iteration, it suffers from
low efficiency of the random sampling process and high variance. Thus, when dealing with higher
dimensional action spaces and longer decision horizons, it could fail to sample a high reward ac-
tion sequence. Recent advances in MPC methods have centered on altering the sampling strategies
(Chua et al., 2018; Hafner et al., 2019) and the sample space (Wang & Ba, 2019). Replacing the
random shooting method with the cross-entropy method (CEM) (Botev et al., 2013), PETS (Chua
et al., 2018), and PlaNet (Hafner et al., 2019) improve the optimization efficiency. Instead of sam-
pling randomly and uniformly at every iteration, CEM samples the action sequences from an initial
multivariate normal distribution, and then update the sampling distribution according to the evalua-
tion of the sampled sequences so that the mean value gradually moves toward the the high-reward
sequences, which will then be sampled with a higher probability. This principle resembles many
other gradient-free optimization methods (Hansen, 2016; Yu et al., 2016; Hu et al., 2017). As a re-
sult, other gradient-free optimization methods can also be used to solve Eq. 1 and integrated into the
proposed framework. We choose to use CEM throughout this work because of its effectiveness and
because it solved all the considered tasks. The algorithm and its properties are detailed in Section
3.2.

3 BACKGROUND

3.1 PARTIALLY OBSERVABLE MARKOV DECISION PROCESS

A partially observable Markov decision process (POMDP) is defined by a tuple (Z,X ,U , f, g, r),
where Z is the state space, X is the observation space, and U is the action (input) space, while
f, g and r are the respective transition, observation and reward functions (Sutton et al., 1998). The
system dynamics is described by the following stochastic equations, which reflect the Markovian
assumption:

zt = f(zt−1,ut−1) + wt,

xt = g(zt) + vt,

rt = r(xt,ut−1).

(2)

The latent states zt evolve according to the transition function f , for an imposed instantaneous
input and a random noise disturbance wt. Subsequently, we observe a noisy or partially observed
observation according to the observation function g, contaminated with another random noise vt,
reflecting measurement and modeling imprecision; and finally we receive a reward rt based on the
reward function r, the generated observation, and the imposed input. The ultimate goal is to search
for a policy u1:T that maximizes the sum of rewards (or minimizes costs).

At a high level, all standard reinforcement learning algorithms follow the same loop: the agent
interacts with the POMDP by using a trail policy, which may or may not match the true policy,
by observing the current observation xt, selecting an action ut, then observing the resulting next
observation xt+1 and a reward value rt+1 = r(xt+1,ut). This procedure is repeated for multiple
iterations, and the agent uses the observed tuple (xt,ut,xt+1, rt+1) to update its policy. In this
paper, we propose to apply a similar framework for the input estimation problem in dynamical
systems. In this case, the policies to be optimized are the system inputs.

3.2 CROSS ENTROPY METHOD

Among numerous RL algorithms, the cross-entropy method (CEM) is selected in this paper for
input estimation on availability of a dynamics model. The selection is motivated by the efficiency
and robustness of this approach given the dynamics model and the reward function (Mannor et al.,
2003; De Boer et al., 2005), which is the case for the scenarios we considered. CEM is a sampling-
based optimization algorithm that infers an input sequence distribution that optimizes the objective
reward function. As detailed in Alg. 1, it begins by initializing a standard normal Gaussian belief
over optimal input sequences, where t represents the current step and H is the length of the input
estimation horizon.
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As there is no backward value iteration from the last time step to the first, the complexity of the CEM
algorithm increases only marginally in terms of the decision horizon, which is one of the advantages
of CEM. The main difference brought by longer decision horizon is sampling a vector of higher
dimension, and this does not require significantly higher computational resources. Additionally, it
is a sampling-based approach and hence derivative-free, which also makes the algorithm fast.

Algorithm 1 Cross-Entropy Method (CEM)

Initialize: θ0 Parameter of the belief distribution
H Input estimation horizon
I Optimization iterations
K Candidates per iteration
ρ Quantile of candidates to be selected

for iteration i = 1, 2, ..., I do
Draw a set of candidate solutions u(k) = (u

(k)
t , ...,u

(k)
t+H), k = 1, ...,K, from the current

belief distribution f(·; θi)
Calculate the performances S(u(k)) for k = 1, ...,K
Rank the K performances r(k) from smallest to largest: r(1) ≤ r(2) ≤ ... ≤ r(K) (ties are
broken arbitrarily).
Compute the sample (1− ρ)-quantile of the performances, given by r̂ = r(⌈(1− ρ)K⌉), and
let the elite set N denote the indices of k for which r(u(k)) ≥ r̂

Calculate estimated parameter θ̂i of the belief distribution based on the samples of the elite
set {k ∈ N : u(k)}
Update the parameter vector according to θi+1 = (1− αi)θi + αiθ̂i+1

end for
return the first input ut in the input sequence

The CEM algorithm is most-commonly implemented using a constant smoothing parameter (Ru-
binstein & Kroese, 2004), that is, αt = α for all t, where α ∈ (0, 1]. In general, this yields a
significantly faster rate of convergence of the sampling distribution f(·; θi) compared with decreas-
ing smoothing schemes, which is a main reason for its popularity. For this special yet important
case, the theorem in Appendix A shows that the sampling distribution always converges to a unit
mass located at some candidate and that the limiting probability of generating the optimal solution
can be made arbitrarily close to 1 by selecting a sufficiently small value of α. It is noted that using
a smaller value of α effectively reduces the rate of convergence of f(·; θi) from the initial uniform
distribution to a unit mass. Therefore, when adopting a constant smoothing parameter, competing
objectives are formed, namely achieving the optimal solution with high probability, and achieving
a fast rate of convergence of the sampling distribution. For the majority of applications, including
what we consider in this work, choosing α = 1 delivers accurate results while maintaining a high
solution speed.

3.3 THE UNKNOWN INPUT ESTIMATION PROBLEM RECAST AS A POMDP

To formulate the unknown input estimation problem as a POMDP, the reward function is defined as

r(ût) = ∥x̂t − xt∥. (3)

The objective is to find a candidate input ût that can minimize the difference between the observation
that is generated from this candidate input and the true (measured) observation. The key idea is to
define the reward function as the difference between the generated observation from the candidate
input and the true observation, and then solve the POMDP based on a priori known or an inferred
dynamics model.

The advantage of reformulating the input estimation as a POMDP is twofold: 1) When the dy-
namics model is available, it is straightforward to solve the reformulated POMDP with different
well-established MPC algorithms, which provides ample solution schemes. 2) When the dynamics
model is not available, it is possible to apply MBRL methods for coupling this scheme with deep
learning-based dynamics models in order to accomplish simultaneous input estimation and dynam-
ics model learning. In this work, we mainly investigate the use of the proposed framework for cases
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Algorithm 2 Unknown Input Estimation with CEM

Input: H Input estimation horizon
I Optimization iterations
K Candidates per iteration
n Number of top candidates to be selected

Initialize the belief distribution over inputs ut:t+H ∼ N(0, I)
for iteration i = 1, 2, ..., I do

Draw a set of candidate solutions u
(k)
t:t+H , k = 1, ...,K, from the current belief

N(µi, diag(σi))
Evaluate the rewards rk for k = 1, ...,K
Rank the K rewards rk and note their indices k an elite set N = {k ∈ {1, ...,K} :
rk is one of the minimal n rewards}
Update µi+1 = 1

n

∑
k∈N u

(k)
t:t+H and σi+1 = 1

n−1

∑
k∈N |u(k)

t:t+H − µi+1|
end for
return the first input ut

where the dynamics is known a priori or inferred (learned) by means of deep learning methods. The
task of simultaneous estimation and learning is left for future work.

4 SIMULATION AND EXPERIMENTAL RESULTS

We first demonstrate the proposed method on a simulated structural system. The performance and
applicability are investigated based on different types of input-measurement sets. The problem of
mobile sensing is examined, where the inputs correspond to road and rail profiles, for the case of
road versus railway infrastructure, respectively. These example demonstrate potential on real-world
problems of practical value. Finally, the proposed method is applied on the further problem of input
estimation using a real-world dataset obtained from a wind turbine. Here, a deep learning-based
dynamics model is first inferred from the available data. The results validate the effectiveness and
robustness of the proposed framework and indicate how deep learning-based dynamics modeling
methods can be integrated into the framework.

4.1 STRUCTURAL SYSTEM

Figure 1: Illustration of the simulated 10-DOF structural system.

In this section, we implement the proposed framework on a simulated 10 Degree of Freedom (10-
DOF) structural system, which is shown in Fig. 1. The structural system is governed by the follow-
ing differential equations:

Mq̈(t) +Cq̇(t) +Kq(t) = Suu(t), (4)

where the displacement vector q = [q1, ..., q10]
T ; the mass matrix M = diag(m1, ...,m10), and

m1 = ... = m10 = 1; the damping matrix C = diag(c1, ..., c10), and c1 = ... = c10 = 1; and the
stiffness matrix

K =



k1 + k2 −k2 0 . . . 0 0
−k2 k2 + k3 −k3 . . . 0 0
0 −k3 k3 + k4 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . k9 + k10 −k10
0 0 0 . . . −k10 k10

 ,
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where k1 = ... = k10 = 1. In order to embed this within the POMDP framework, the afore-
mentioned differential equation can be brought in state-space form, by introducing the state vector
z = [qT , q̇T ]T . Consequently, Eq. 4 can be rewritten in a first order ODE form:

ż(t) = Acz(t) +Bcu(t), (5)

where the system matrices are

Ac =

[
0 I

−M−1K −M−1C

]
, Bc =

[
0

M−1Su

]
. (6)

Eq. 5 can be further discretized in time, using for example a zero order hold (zoh) scheme, which
leads into the following formulation:

zt+1 = Azt +But (7)

As for the observation equation, we consider the most general case, where a combination of the
displacement, velocities and accelerations of this system can be measured, and thus the measurement
vector can be formulated as the following form by using Eq. 4:

xt = Czt +Dut, (8)

where

C =

 Sd 0
0 Sv

SaM
−1K SaM

−1C

 , D =

 0
0

SaM
−1Su

 . (9)

Here, Sd, Sv and Sa are the selection matrices that determine which DOFs in terms of available
displacements, velocities and accelerations are measured.

We conduct a comprehensive investigation on the proposed method in terms of various traits: 1)
input type (random, sinusoidal, and sine-swept inputs) and input localization; and 2) measurement
availability.

To illustrate the workings of the proposed method, we evaluate the method for different input types,
including random noise (sampled from N (0, 1)), harmonic inputs (generated as sin(t)) and swept
sine inputs (generated by sin(t2)). We first set the fourth, fifth and sixth DOFs to be loaded with the
same type of inputs, for the three different types respectively, while all other DOFs remain unloaded,
as shown in Fig. 1, so as to investigate its capability of input localization. Then we also test scenarios
where all three different types of inputs are applied to the fourth, fifth and sixth DOFs respectively
and simultaneously, while other DOFs of the inputs are set to be zero. For a comparison across
various input types, accelerations of all DOFs are assumed as available measurements. We evaluate
the root mean square error (RMSE) for the simulation cases. As an instance, the input estimation

Table 1: Performance for different input types

Input type RMSE Measurement availability RMSE

Random noise .0219 Displacement .0105
Sine .0068 Velocity .0317
Sinesweep .0064 Acceleration .0553
Mixed .0116 Mixed .0341

The results reveal that the proposed method can effectively tackle diverse input types, and can further
estimate whether external inputs are applied on remaining DOFs, thus delivering input localization
information.

Additionally, we wish to investigate the efficacy of the proposed approach under availability of
diversified measurements, i.e., different quantities from the possible set of displacement, velocity
and acceleration outputs. In accounting for such a mixed measurement case, it is assumed that the
displacements of the first 5 DOFs and the accelerations of the last 5 DOFs are measured. The results
are presented in the right hand side of Table 1. It is observed that the proposed method achieved
high accuracy for all the considered scenarios, which demonstrates the effectiveness of the proposed
method under different availability of measurements.
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Figure 2: Input estimation results for scenario with mixed input types.

4.2 ROAD AND RAILWAY PROFILE

Figure 3: Road condition evaluation via in-
put estimation algorithms. mf ,mr, and mH

represent the masses of the front tire, rear
tire, and the car body, respectively.

The degraded road surface reduces the driving com-
fort and poses traffic safety concerns; if not main-
tained promptly, the repair costs might increase. Al-
though high-accuracy profilers equipped with lasers,
inertia sensors, and cameras have been developed,
their use is not practical for frequently evaluating the
road network, owing to their high initial and opera-
tion costs. Lower cost alternatives often suffer from
poorer precision, unless boosted with an appropriate
processing or data analysis technique. Here, we sug-
gest a scheme that can be appropriate for such a use
case.

In accounting for the interacting vehicle/road-
surface system, a half-car model is used. Its formu-

lation is similar to what was presented in Section 4.1, albeit with different system matrices M, C
and K. The state vector is defined as z = [zH , θ, zf , zr], where zH , zf and zr are the displacements
of the car body, front tire and rear tire, respectively, corresponding to the half car structure shown in
Fig. 3; and θ is the pitching angle of the car body. The system matrices are detailed in Appendix E.
We assume an accelerometer is mounted on the car body, allowing to track acceleration. By check-
ing the invertibility condition stated in Appendix B, it is verified that a mere measurement of the
acceleration of the car body is enough for identifying the input (i.e. the road profile). The road is
simulated as a sinusoidal function, which represents large wavelength variation in terms of an uphill
and downhill profile, with addition of random noise, for representing shorter-wavelength variation,
corresponding to the local roughness of the road. The estimation results are shown in the Fig. 4a,
with the average RMSE of 4.14× 10−4 and the average R2 of 0.9991. It can be observed that both
large-scale patterns and the local roughness can be accurately identified, using only the acceleration
of the car body.

Further to road surface roughness evaluation, in an affiliated domain of transport infrastructure,
namely railways, rail roughness also needs to be evaluated for ensuring safety and comfort. Tra-
ditionally, rail roughness monitoring relies on visual methods or on highly specialized diagnostic
vehicles equipped with optical and inertial sensors that gather geometric data (Hoelzl et al., 2022).
Alternative approaches deploy in-service diagnostic vehicles, or even revenue trains, which more
frequently run the network. These are equipped with acceleration sensors that collect vibration data,
which are then exploited to extract rail roughness profiles (Dertimanis et al., 2020).

For this application, a simple system consisting of a wheelset running on a track is adopted. The
wheelset is modelled as a rigid body with 6 degrees of freedom (three translations and three ro-
tations). The track is assumed to be rigid with known roughness, which constitutes the baseline
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(a) Road profile estimation. (b) Rail profile estimation.

Figure 4: Estimation results of road and rail profiles.

for assessing the roughness profile obtained via acceleration data from the wheelset. To extract
rail roughness (in the vertical direction), vertical acceleration measurements, corrupted with noises,
from the wheelset are deployed. This system satisfies the invertibility condition of Section B, which
implies that vertical acceleration measurements from the wheelset are sufficient to obtain the rough-
ness profile of the rails. Fig. 4b shows the measured (true) rail profile and the one obtained via
acceleration measurements (estimated rail profile), with the average RMSE of 4.39× 10−6 and the
average R2 of 0.9999, demonstrating the applicability and performance of the proposed method.

4.3 WIND TURBINE

Figure 5: Position of sensors on the experimentally tested wind turbine blade. A total of eight
accelerometers, ai, are mounted on the blade, marked with a red color. Some strain information is
also collected, sij , but remains unused here. The data from the accelerometers serve as measured
outputs, while the data from the force transducer f1 reflect the input excitation. The figure is reused
from (Ou et al., 2021)

Among various application fields of Structural Health Monitoring (SHM), the assessment of wind
turbine structures is gaining increased attention due to their critical significance and competitiveness
as a renewable energy resource. To further demonstrate the value of the proposed framework for
SHM of wind energy infrastructure, we validate use of the proposed scheme for vibration monitoring
of operational wind turbines. The data used in this paper were obtained and illustrated in (Ou et al.,
2021) by experimentally testing a small-scale wind turbine blade.

Replay Overshooting Replay Overshooting (RO), originally proposed in Li et al. (2021), is a deep
learning framework to capture the dynamics of complex systems. The framework can be described
in the form of a nonlinear state space model:

zt = fθt(zt−1,ut−1) + wt, (transition) (10)
xt = gθo(zt) + vt, (observation) (11)

where fθt and gθo are learnable functions (i.e., not defined a priori) governing the transition and
observation models, both parameterized by neural networks with parameters θ = θt

⋃
θo. The

process, wt, and observation, vt, noise sources are assumed to follow Gaussian distributions, with
respective covariances set as learnable parameters during the training process.

Within this framework, the model of Eq. 11 can be learned by maximizing an evidence lower bound
of the data log-likelihood

log p(x) ≥ L(θ, ϕ;x) = Eqϕ(z|x,u)[log pθo(x|z)]− KL
(
qϕ(z|x,u)||pθt(z,u)

)
, (12)
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It is worth noting that, while most of the dynamical VAE setups (Girin et al., 2020; Krishnan et al.,
2017; Rangapuram et al., 2018; Fraccaro et al., 2017; Chung et al., 2015; Karl et al., 2017; Higgins
et al., 2017), which extend VAEs to a dynamical version by considering the temporal evolution of the
latent variables, or deep state space models, use an additional neural network as the inference model.
However, here the inference model of the RO follows the format of an Extended Kalman Filter,
which is a well-established Bayesian filter approximation for nonlinear systems of known nonlinear
functions. The RO in essence extends the EKF framework to a learnable observer representation
This alleviates the need for deriving a separate inference network, qϕ, parameterized by a parameter
vector ϕ that is independent of parameters within fθt and gθo . Since the objective ELBO largely
depends on the goodness of reconstruction and inference, a separate inference network can weaken
the training of the transition and observation models.

Figure 6: Input estimation of the wind turbine blade.

Here, we use RO as a means to demonstrating applicability of the herein suggested POMDP ap-
proach to input estimation, even for cases where a model is not known a priori (as was the case in
the previous examples). Thus, the RO serves for recovering an underlying (latent) dynamics model
under availability of data. With this learned model, we can use the presented POMDP framework to
conduct model-based input estimation. In this example, we infer a dynamics model using RO based
on the acceleration measurements collected from accelerometers a1 to a8, which serve as system
outputs, while the data collected from the force transducer f1 serve as information on the system
input. For the training purpose, the system inputs are also required to be measured for learning an
input-output dynamics model, and simultaneous model learning and input estimation will be consid-
ered for future work. Then, based on the learned dynamics model, we utilize the proposed POMDP
approach to conduct input estimation on further test datasets, this time assuming that the input is
unmeasured (unknown). The results are shown in Fig. 6, with a RMSE of 0.129, and the R2 for the
linear regression between the ground-truth and estimation is 0.87, indicating a strong consistency
between the both. It is observed that the input estimation is sufficiently accurate, even for use of a
learned dynamics model, which intrinsically contains modeling errors and approximations. Since
in a real-world scenario, such modeling errors are ubiquitous, it is important to establish flexible
inference schemes, which account for uncertainties. This is a trait of the proposed POMDP ap-
proach, where, further, the accumulated errors during the input estimation process do not grow to be
unbounded.

5 CONCLUSION

In this work, we investigate the input estimation problem from a new perspective by reformulating it
as a Partially Observable Markov Decision Process (POMDP). The ground-truth system inputs are
shown to be well-approximated by iteratively selecting those candidate inputs, whose corresponding
outputs can best approximate the actual measurements, and then updating the belief distribution of
the inputs. We show the applicability of the proposed methodology in theory and real-world appli-
cations, and adopt a straight forward algorithm, the cross-entropy method, to solve the reformulated
POMDP. Different model-based reinforcement learning frameworks and dynamics modeling meth-
ods can be integrated into the proposed methodology. This work aims to set the idea of such a use
case for POMDPs in place. The influence of various reinforcement learning methods and a thorough
comparison against further input estimation frameworks are left for further work.
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A CONVERGENCE OF CROSS ENTROPY METHOD

We have the following three theorems for the convergence properties of CEM. The detailed proof
can be found in Costa et al. (2007).

Theorem 1. (Necessary condition) The optimal solution is generated eventually by the CE algo-
rithm with probability 1 only if the smoothing condition

∑∞
i=1

∏t
m=1(1− am) = ∞.

Theorem 2. (Sufficient condition) The optimal solution is generated eventually by the CE algorithm
with probability 1 if the smoothing condition

∑∞
i=1

∏t
m=1(1− am)n = ∞.

Theorem 3. The sequence of probability mass function f(·; θi), i ≥ 1, converges with probability 1
to a unit mass located at some candidate θ only if

∑∞
t=1 αt = ∞.
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B INVERTIBILITY CONDITIONS

If the unknown input u can be uniquely identified from the output x, the system is called invertible.
The conditions for invertibility have already been well studied in the literature (Sain & Massey,
1969). Here, we state a sufficient and necessary condition for invertibility of linear dynamical sys-
tems with different kinds of measurements.
Theorem 4. The system is invertible if and only if the matrix N has full column rank, where

N =



D 0 . . . 0
CB D . . . 0
CAB CB . . . 0

...
...

...
CAn−1B CAn−2B . . . D
CAnB CAn−1B . . . CB

...
...

...
CA2n−1B CA2n−2B . . . CAn−1B


(13)

and n is the dimension of the state space.

If the system is not invertible, there would be infinitely many candidate inputs that can generate the
same output, which makes the search for the true system inputs impossible, since the problem is
intrinsically ill-conditioned.

C REPLAY OVERSHOOTING: EXTENDED KALMAN FILTERS WITH
LEARNABLE DYNAMICS MODELS

C.1 EXTENDED KALMAN FILTERING AND SMOOTHING

The Extended Kalman Filter (EKF) has been a popular choice for nonlinear state estimation and
parameter identification in engineering problems, mainly due to its ease of implementation, robust-
ness and suitability for real-time applications. It assumes a sequence of measurements x1:T from a
monitored dynamical system, which are generated by some latent states z1:T that are not necessarily
directly observed. The transition from a state zt−1 to the next state zt is termed as transition, and
the process from a state zt1 to its corresponding observation xt is termed as observation. The EKF
assumes that the transition and observation models are given, as described by the following two
equations:

zt = f(zt−1,ut−1) + wt, (transition) (14)
xt = g(zt) + vt, (observation) (15)

where f and g are two known linear/nonlinear functions governing the transition and observation
models, and wt ∼ N (0,Qt), vt ∼ N (0,Rt) are Gaussian noise sources with mean zero and
covariances Qt and Rt, respectively. EKF assumes that the inferred posterior distributions of latent
states are based on past and current observations x1:t and driving force u1:t, and follow a Gaussian
distribution:

q(zt|x1:t,u1:t) = N (µt|t,Σt|t). (16)
Here µt|t and Σt|t represent the mean and covariance of the posterior distribution. The Kalman Fil-
ter (KF) (Kalman, 1960) offers a closed-form of the posterior distributions q(zt|x1:t,u1:t) of latent
states and provides exact inference for linear systems. The EKF conducts approximate inference,
employing a linearization of the nonlinear equations. For EKF, the inference of the posterior distri-
bution is obtained by iteratively executing the following two steps. The first step predict is to com-
pute the posterior distribution q(zt|x1:t−1,u1:t−1) = N (µt|t−1,Σt|t−1), which is simply based on
previous observations x1:t−1. The second step update pertains in updating the posterior distribution
from the predict step using the current observation xt, which gives q(zt|x1:t,u1:t) = N (µt|t,Σt|t)

The EKF is a recursive filtering method for conducting inference based on x1:t, i.e., the observations
until the present time t. Since we assume that a sequence of observations x1:T is available, it is
possible and reasonable to further update the inference of posterior distributions with the whole
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sequence of observations, with respect to a time step within the sequence. This process is termed
as smoothing. The Rauch-Tung-Striebel smoothing (Rauch et al., 1965) is a Kalman smoothing
algorithm to infer such posterior distributions q(zt|x1:T ,u1:T ) = N (µt|T ,Σt|T ) of latent states
based on the whole sequence of available observations.

A salient limitation of the EKF when applied to learning dynamical systems lies in the requirement
for the transition model f and the observation model g to be explicitly defined or at least of known
functional format. However, this is not practically feasible when applied to real-world complex
systems. In tackling this limitation, the key idea of the proposed RO is to replace f and g by
learnable functions, typically by neural networks. By doing this, the transition and observation
models turn to be trainable and efficiently learned by minimizing the defined loss function, making
the RO a flexible tool for learning the dynamics of complex systems. Also, another benefit compared
to VAEs, where the inference model is parameterized by neural networks, is that the inference model
of the RO follows a closed-form model. In this section, we will detail the modeling and training of
the RO framework.

In Eqs. 14 and 15, if we replace f and g by learnable transition and observation functions, the
framework can be described as:

zt = fθt(zt−1,ut−1) + wt, (transition) (17)
xt = gθo(zt) + vt, (observation) (18)

where fθt and gθo are the learnable functions governing the transition and observation models, both
parameterized by neural networks with parameters θ = θt

⋃
θo. The process noise sources wt and

observation noise vt are assumed to follow Gaussian distributions, with respective time-invariant co-
variances, i.e., wt ∼ N (0,Q) and vt ∼ N (0,R) for all time steps t. The time-invariant covariances
Q and R are also set as learnable parameters during the training process.

The inference model of the RO follows the format of the EKF. This is different from the infer-
ence model in VAEs, where qϕ is a separate inference network parameterized by ϕ independent of
parameters within fθt and gθo . Since the objective ELBO largely depends on the goodness of recon-
struction and inference, a separate inference network is thus weakening the training of the transition
and observation models.

C.2 EVIDENCE LOWER BOUND AND TRAINING

With Kalman filters conducting inference, the parameters to be learned are summarized in the vector
θ, which includes neural network parameters of both the transition model fθt and the observation
model gθx . In addition, the initial values µ0|0 and Σ0|0 and covariances Q, R for respective noises
are also parameters to be learned. Similar to the VAE, the training of ROs is embedded in the vari-
ational inference methodology, with the EKF algorithm charged with conducting inference. Given
any inference model qϕ(zt|x) and Markovian property implied by the dynamics, the ELBO in Eq.
12 can be expressed in a factorized form (x1:T and u1:T are abbreviated as x and u in the following
formulations for simplicity):

L(θ, ϕ;x) =
T∑

t=1

(
Eqϕ(zt|x,u)[log pθo(xt|zt)]

− Eqϕ(zt−1|x,u)
[
KL

(
qϕ(zt|x,u)||pθt(zt|zt−1,ut−1)

)])
,

(19)

where, in the RO, qϕ(zt|x,u) is actually qθ(zt|x,u), which alleviates the requirement of additional
parameters, further to θ, within the transition and observation models, and thus L(θ, ϕ;x) reduces
to L(θ;x). Since the posterior distributions qθ(zt|x,u) can be computed in closed form by EKF,
the distributions in Eq. 19 can thus be computed explicitly given zt ∼ N (µt|T ,Σt|T ). Thus, the
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ELBO Eq. 19 can be computed in a surrogate way as:

L(θ;x) = −1

2

T∑
t=1

[
log |Ct|TΣt|TC

T
t|T +R|

+ (xt − gθo(µt|T ))
T (Ct|TΣt|TC

T
t|T )

−1(xt − gθo(µt|T )) + dx log(2π)

+ log
|At−1|TΣt−1|TA

T
t−1|T +Q|

|Σt|T |
− dz + Tr((At−1|TΣt−1|TA

T
t−1|T +Q)−1Σt|T )

+ (fθt(µt−1|T )− µt|T )
T (At−1|TΣt−1|TA

T
t−1|T +Q)−1(fθt(µt−1|T )− µt|T )

]
,

(20)

where A·|· =
∂f(µ·|·,ut−1)

∂µ·|·
is the Jacobian of f at µ·|·, and C·|· =

∂g(µ·|·)

∂µ·|·
is the Jacobian of g at

µ·|·.

Typically, the variational objective function for the dynamical VAE framework focuses on the recon-
struction loss, which is heavily dependent on the inference model (encoder) and observation model
(decoder), whereas the transition model plays a minor role in the variational objective and works
as an intermediate process for training. This often results in an accurate inference model and a less
meaningful transition model, which is not applicable for prediction because the transition model
cannot reflect the true underlying dynamics. Therefore, it is necessary that the objective function
also takes the accuracy of the transition model into consideration to ensure its closeness to the true
latent dynamic process. To address this issue, we adopt the overshooting method proposed in Li
et al. (2021), which is termed as replay overshooting. The key point lies in simply introducing the
prediction loss of the generative model into the objective function. After obtaining a sequence of
means and covariances {(µt|T ,Σt|T )}, the initial value (µ̄0, Σ̄0) = (µ0|T ,Σ0|T ) will be further
used for prediction process. Then similarly as the prediction step in EKF, the predicted values are
obtained via the generative model as:

µ̄t = f(µ̄t−1,ut), (21)

Σ̄t = At−1Σ̄t−1A
T
t−1 +Q, (22)

and we receive another set of distributions q̄(zt) = N (µ̄t, Σ̄t) from the generative model. The
final reconstruction loss is composed of the both sets of posterior distributions, i.e., the posterior
distributions obtained from the Kalman inference model as well as those obtained from the transition
model, weighted by α (in this paper, we set α = 0.5). These form the objective function combined
with the KL loss, expressed as:

L(θ; x) =
T∑

t=1

(
αEqθ(zt)[log pθ(xt|zt)] + (1− α)Eq̄θ(zt)[log pθ(xt|zt)]

− Eqθ(zt−1)[KL(q(zt)||p(zt|zt−1,ut))]
)
,

(23)

where the first and third term are the same as in Eq. 20, while the second term is for overshooting.

The pipeline of the RO is summarized in Algorithm 3.

Algorithm 3 Replay Overshooting

Initialize parameters θ,µ0|0,Σ0|0,Q,R
while θ not converged do

for batch b = 1, ..., B do
(µt|t,Σt|t) = EKF(θ,x1:T ,Q,R)
(µt|T ,Σt|T ) = EKS(θ,x1:T ,Q,R)

(µ̄t, Σ̄t) = EKP(θ,µ0|0,Σ0|0,Q,R)
Compute the objective value L(θ;x)
Update θ,µ0|0,Σ0|0,Q,R with stochastic
gradient ascent on L

end for
end while
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D IMPLEMENTATION DETAILS

For transparency and reproducibility purposes, we here further provide the details of the employed
architectures of the adopted Replay Overshooting method for learning dynamics, as follows. The
architecture of each network is presented in the following format: hidden units of the first hidden
layer + hidden units of the second hidden layer + number of outputs for mean value and number of
outputs for covariance. Each number of units is followed by the activation function employed for
that layer.

• Input: 300 timesteps of 1 dimension
• Latent Space: 16 dimensions
• Transition Network (fθt ): 128 Softplus + 128 Softplus + 128 Softplus + 16 Linear
• Emission Network (gθo ): 128 Softplus + 128 Softplus + 128 Softplus + 16 Linear

Since at the very first stage of the training process, the accumulated error over a long sequence due
to an inaccurate dynamics model can lead to exploding gradients, it is not feasible to directly train
over the whole range of sequences. Here a ramped training strategy is adopted, where the training
data length increases gradually from 2 to T as the training proceeds. It is easier to train on shorter
sequences at the beginning, and the model gradually adapts to increasing length and incoming new
data, thus ensuring a stable training process.

E HALF-CAR MODEL

A half-car model is here used to simulate the vehicle dynamics. The corresponding system matrices
serve as the dynamics model describing the vehicle, which allows to conduct model-based input
estimation for the road profile. The system matrices for the half-car model are as follows:

M =

 mH 0 0 0
0 Iy 0 0
0 0 mf 0
0 0 0 mr

 ,

C =

 cf + cr Lrcr − Lfcf −cf −cr
Lrcr − Lfcf L2

fcf + L2
rcr Lfcf −Lrcr

−cf Lfcf cf 0
−cr −Lrcr 0 cr

 ,

K =

 kf + kr Lrkr − Lfkf −kf −kr
Lrkr − Lfkf L2

fkf + L2
rkr Lfkf −Lrkr

−kf Lfkf kf + ktf 0
−kr −Lrkr 0 kr + ktr

 ,

(24)

where mH = 2200, Iy = 1100,mf = 106,mr = 152, cf = cr = 2500, kf = 2 × 104, kr =
2.6× 104, ktf = ktr = 4× 105.
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