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ABSTRACT

Over-generalization is a thorny issue in cognitive science, where people may be-
come overly cautious due to past experiences. Agents in multi-agent reinforcement
learning (MARL) also have been found suffering relative over-generalization
(RO) as people do and stuck to sub-optimal cooperation. Recent methods have
shown that assigning reasoning ability to agent can mitigate RO algorithmically
and empirically, but there has been a lack of theoretical understanding of RO, let
alone designing provably RO-free methods. This paper first proves that RO can
be avoided when the MARL method satisfies a consistent reasoning requirement
under certain conditions. Then we introduce a novel reasoning framework, called
negotiated reasoning, that first builds the connection between reasoning and RO
with theoretical justifications. After that, we propose an instantiated algorithm,
Stein variational negotiated reasoning (SVNR), which uses Stein variational gra-
dient descent to derive a negotiation policy that provably avoids RO in MARL
under maximum entropy policy iteration. The method is further parameterized with
neural networks for amortized learning, making computation efficient. Numerical
experiments on many RO-challenged environments demonstrate the superiority
and efficiency of SVNR compared to state-of-the-art methods in addressing RO.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) has been successfully applied in multiplayer
games (Rashid et al., 2019; Kurach et al., 2020), robotics (Ding et al., 2020), and traffic con-
trol (Calvo & Dusparic, 2018). This paper addresses relative over-generalization (RO), a critical
pathology in fully cooperative MARL settings where agents pursue team-optimal outcomes. RO is
analogous to over-generalization in cognitive science (Rand et al., 2014; Laufer et al., 2016; Baron,
2000), where limited experiences lead to broad, often inaccurate generalizations—as in the “once
bitten, twice shy” idiom, where a person bitten by a snake develops fear of rope-like objects. This
cognitive phenomenon has been documented across language acquisition (Gershkoff-Stowe et al.,
20006), social learning (Rand et al., 2014), and decision-making (Laufer et al., 2016).

In MARL, relative over-generalization (RO) poses a significant challenge to optimal coopera-
tion (Palmer, 2020), as agents overfit their policies to others’ exploration behaviors. This is evident
in Particle Gather, where particles aiming to reach a landmark synchronously become risk-averse
after experiencing penalties from uncoordinated visits, causing methods like (Lowe et al., 2017; Wei
etal., 2018; Wen et al., 2019) to converge to suboptimal strategies (see §6). Two major approaches
address RO: credit assignment methods (evolving from early lenient learning (Panait et al., 2006b;
Wei & Luke, 2016; Palmer et al., 2017) to sophisticated value decomposition (Li et al., 2021; Peng
etal., 2021; Zhang et al., 2021; Gupta et al., 2021; Siu et al., 2021; Huang et al., 2022; Kang et al.,
2022; Yang et al., 2022; Shi et al., 2024; Hu & Ying, 2024) and shaped values (Wan et al., 2022; Shi
& Peng, 2022; Zhao et al., 2023; Li et al., 2024a; Toquebiau et al., 2024)), and reasoning-endowed
methods (Wen et al., 2019; Ma et al., 2022; Tian et al., 2019; Wei et al., 2018) that adopt an ego-agent
perspective, equipping agents with capabilities to model others’ behavior—Ilike recursive reasoning
in (Wen et al., 2019) inspired by human cognition (Von Der Osten et al., 2017). Despite empirical
successes, both approaches lack solid theoretical foundations. Some works prove algorithm conver-
gence (Peng et al., 2021; Li et al., 2024a; Hu & Ying, 2024) or optimality in matrix games (Wan
et al., 2022), but none formally define RO. This raises two key questions: (1) can RO be provably
avoided? and if it can, (2) how to design a method that provably addresses RO?
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This paper answers the first question with theoretical justifications and introduces new concepts to
analyze Relative Over-generalization (RO) in Multi-Agent Reinforcement Learning (MARL). The
current RO is defined on empirical converged joint policy, which makes it difficult to analyze MARL
methods before training. To address this issue, we introduce Perceived Relative Over-generalization
(PRO) and Executed Relative Over-generalization (ERO), which define RO for each joint policy
update and policy execution, respectively. The RO is guaranteed to be addressed when ERO is
avoided at convergence. With the basis, we prove that RO can be provably avoided when the MARL
method satisfies a consistent reasoning condition at convergence. This condition requires each agent
to model the behaviors of others consistently with their updated/executed behaviors.

For the second question, we propose a novel negotiated reasoning framework that satisfies the
consistent reasoning condition, inspired by human negotiation processes (Kim, 1996; Carnevale
& Lawler, 1986) and graphical model message-passing inference (Pearl, 1988). Our framework
enables explicit reasoning through negotiation policies during training and decision-making based on
negotiated agreements. We prove that agents achieve consistent reasoning when they reach action
selection agreements through appropriate negotiation, and introduce Stein Variational Negotiated
Reasoning (SVNR), which derives negotiation policies via Stein variational gradient descent and
employs a strict nested negotiation structure. With maximum entropy policy iteration, SVNR provably
achieves consistent reasoning and optimal cooperation at convergence under mild conditions. We
further parameterize SVNR with neural networks and implement amortized learning to address
computational complexity, distilling negotiation dynamics into network updates and approximating
multiple negotiation rounds with single forward passes. Experiments in challenging differential
games, particle world and multi-agent MuJoCo environments demonstrate SVNR’s superiority in
addressing RO compared to state-of-the-art reasoning methods.

The main contributions are threefold: 1) We confirm the existence of provably addressing relative
over-generalization (RO) methods; 2) We propose a novel framework called negotiated reasoning
(NR) and specity the Stein variational NR method, which is the first MARL method that can provably
address relative over-generalization (RO); 3) We propose a practical implementation of SVNR that
demonstrates superior performance in achieving global optimal cooperation in RO-challenged tasks.

Remark 1. Our work adopts an autoregressive conditional policy factorization. This approach has
been used in several multi-agent policy factorization works (Ding et al., 2022; Wang et al., 2023a; Fu
etal.,2022; Ye et al., 2022; Li et al., 2024b) and decision-making foundation models (Wen et al., 2022),
supporting SVNR’s effectiveness. Unlike these works, which address general multi-agent cooperative
tasks, we focus specifically on the RO problem. The autoregressive policy factorization (the strictly
nested negotiation set in SVNR) is just one optimal form. The optimal negotiation set covers a broader
range of factorizations. Moreover, in contrast to some previous negative results on autoregressive
policy factorization—such as the inability to leverage other agents’ optimal actions (Ding et al.,
2022), sensitivity to the autoregressive order (Li et al., 2024b), and the requirement for centralized
execution (Fu et al., 2022)—we provide a theoretical proof of the optimality of any strictly nested
negotiation set. We also achieve decentralized execution through an amortized negotiation mechanism.

Remark 2. In addition to autoregressive policy factorization, another class of methods in MARL
sequentially updates agents’ local, independent policies (Wang et al., 2023b; Kuba et al., 2022; Feng
et al., 2023; Zhang et al., 2024). These methods are closely related to SVNR, though they mainly
address non-stationarity rather than RO. Unlike autoregressive factorization, where agents exchange
current policies in the negotiation process, sequential update methods convey the impact of one
agent’s policy update on the environment and subsequent agents.

2 RELATIVE OVER-GENERALIZATION

This section defines RO under CTDE MARL contexts. Specifically, we propose two concepts,
perceived RO (PRO) and executed RO (ERO), that distinguish different RO in CTDE. Then, we bridge
the two concepts to RO and prove that RO can be avoided when PRO and ERO are addressed under
mild conditions. Prior to introducing formal definitions, we first establish the problem formulation
and associated mathematical notation.

Cooperative Stochastic Game. A Cooperative Stochastic Game (CSG) is commonly used to model
cooperation in multi-agent systems (Petrosjan, 2006). It is defined by a tuple (S, {t;}Y,, P,R,7),
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where N is the number of agents; S is the state space; U; represents the action space for agent ¢
with U = x; U; representing the joint action space; P(s’ | s, u) representing the probability that
environment transit to 8’ when taking joint action wu at state s; R : S X U — R is the team reward'
function; v € [0, 1] is the discount factor. The goal for the CSG is to find policies {m;}¥ ; that
make accumulative reward the highest. The 7; : & — U,; maps the state to agent ¢’s action and
the objective of CSG can be formulated as maxy, . ry & [Z?; Y*R(s¢, ws)] , where uy is sampled
from the policies as ul ~ m;(- | 8¢).

Multi-Agent Reinforcement Learning. MARL methods are popular for solving the cooperative
stochastic game. This paper considers the mainstream of MARL schemes: centralized training
decentralized execution (CTDE). Each agent 7 holds an execution policy 7;(u® | s) to make execution
in a decentralization manner and a perceived joint policy 7;(u | $) to do centralized training. The
perceived joint policy can be factorized as 7; = m;p;, where m; is the individual policy and p; is the
perceived opponent policy. Following MaxEnt MARL (Tian et al., 2019; Wen et al., 2019; Wei et al.,
2018), each agent ¢ optimizes its policy by minimizing the KL-divergence between perceived joint
policy and the induced optimal joint policy: min,, Dy, (7;||7}) where « is the factor that balances
the reward and entropy. The 7, is induced by the Boltzmann optimal policy:

mo(u | s) = exp (5 (Qin (s6,ue) — Visg (1)) 5 (M
where Q7 , V.

¢ denote optimal, soft state-action and state value function, respectively (Haarnoja
et al., 2017). After that, each agent i obtains decentralized execution policy as 7;(u' | s) :=
f 7;du~" and the utility of the decentralized executionis: U™ := ), E(s, ui)~p: R(5t, ut), where

T o= va 7; is the executed joint policy, and Sz is the state-action marginals of the trajectory
distribution induced by 7.

Relative over-generalization is a critical game pathology in MARL. It occurs when agents prefer a
sub-optimal Nash Equilibrium over an optimal Nash Equilibrium because each agent’s individual
policy in the sub-optimal equilibrium has a higher utility when paired with arbitrary policies from
opponents (Wei et al., 2018). This definition assumes MARL methods directly select the joint policy
from multiple Nash Equilibriums while these methods make a comparison between the current joint
policy and updated joint policy for each updating. Thus we extend RO by considering each update.
Besides that, the current CTDE scheme in MARL motivates us to decompose RO to perceived relative
over-generalization (PRO) in the training phase and executed relative over-generalization (ERO) in
the execution phase. First, we define the ERO, which extends RO at each execution step and identifies
whether the optimal cooperation is disturbed due to not knowing the behaviors of opponents.

Definition 2.1 (Executed Relative Over-generalization). Agent ¢ suffers executed relative over-
generalization if and only if the utility of executed joint policy can be improved by letting
agents know others’ actions: max,, {U™ 154 L7 o~ pll 7 07le) where 7 =
argmin., Dy (m;p;||7%) is the i’s optimal policy with p; and 77 = [ 7} p;du~" is the executed
policy for each agent 3.

It is straightforward that agents do not suffer from RO if all agents are free from ERO at convergence.
Besides that, agents also suffer from RO during their training phase, and we further propose the
definition of Perceived Relative Over-generalization.

Definition 2.2 (Perceived Relative Over-generalization). Agents suffer perceived relative over-
generalization iff. there exists an agent ¢ whose optimal perceived joint policy can be closer to
the optimal joint policy when knowing the optimal opponent policy: ming, Dy, (m;p;||7}) >
min,, D (mim} (uw™?%)||7%) where 77 is the optimal joint policy with entropy factor «, and
mh(u™") ;= [, whdu® is the optimal opponent policy.

The perceived optimal joint policy for each agent is equal to the optimal joint policy for the case
that the agents are free from PRO. When each agent 7 reasons others’ behaviors consistent with
their optimal policy p; = 7 (u~*) in the training phase, others’ exploration will not impact the
agent’s policy updating and the PRO is avoided. If PRO is avoided and o« — 0, all agents execute
deterministically, the agent’s execution will not be impacted by others’ exploration stochastic in the
execution phase, and ERO is avoided. These conditions are denoted as consistent reasoning, and we
define them below.

'The utility, reward and payoff are not distinguished.
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Definition 2.3 (Consistent Reasoning). Agents meet consistent reasoning if and only if all agents
reason others’ behaviors consistent with their optimal policy p; = 7% (v ") in the training phase and
reason others’ behaviors consistent with their executed actions during execution.

When the requirement is met at convergence, agents are free from
ERO, and they do not suffer from RO. Existing reasoning methods B B

are unable to reach consistent reasoning. We take Figure 1 as an s o s o
example to better illustrate how these methods suffer from PRO and

ERO respectively. It is a single-stage, cooperative game and contains A A

two agents “A” and “B”. The action space of each agent is {0, 1}. In 2 2 0 8

Figure 1 (Left), MADDPG (Lowe et al., 2017) usually suffers from
PRO due to agents reason others through their historical behaviors. Figure 1: The PRO and ERO
For agent A, if pA(O) = PA(]-) = 0.5, it will obtain 73'14(1, 0) =1 payoff functions examples.
which is sub-optimal. MASQL (Wei et al., 2018) usually suffers

from ERO in Figure 1 (Right). If #/,(1,0) = #/,(0,1) = 0.5 and

7'5(1,0) = 775(0,1) = 0.5, then PRO is avoided. However when making decentralized execution
based on 7’ for each agent, 7(1,1) = 7(0,0) = 7(1,0) = 7(0,1) = 0.25, which are sub-optimal
and suffer from ERO.

Intuitive Interpretations of Theoretical Concepts. To bridge the gap between the formal definitions
and their practical implications, we analyze PRO and ERO through the lenses of variational inference
and distributional factorization. (1) PRO as Variational Bias. In the standard MaxEnt framework,
agent i optimizes its policy 7; by minimizing the KL-divergence Dy (m;p;||7%), where p; is the
perceived opponent policy. PRO arises when p; deviates from the true optimal conditional distribution
of the opponent (7* ;). Mathematically, this introduces a biased variational objective. Even if
agent ¢ optimizes perfectly against p;, the resulting gradient points toward a local optimum (safety)
rather than the global optimum (cooperation) because the “belief” p; incorporates the opponent’s
exploration noise or historical sub-optimality. PRO is fundamentally a fraining-time estimation
error, akin to “shadow boxing” against a clumsy opponent; the agent learns to be overly cautious,
effectively “learning” to avoid the risk required for optimal cooperation. (2) ERO as Factorization
Loss. Even if the training phase converges to an optimal joint policy distribution 7 (where PRO
is solved), decentralized execution imposes a structural constraint: the executed policy must be
the product of independent marginals, 7(u) = [], mi(u;). ERO occurs when the optimal joint
distribution 7 is highly correlated or multimodal. In such cases, the projection of 7 onto the space of
independent product distributions results in a significant factorization loss. The support of [ ], m;
inevitably covers areas of the state-action space with low utility (miscoordination), leading to a lower
expected return than the joint policy 7. ERO is an execution-time coordination failure, representing
a “broken telephone” effect. Even if all agents know the optimal plan in theory, the lack of a
mechanism to synchronize their specific random samples at runtime causes them to act incoherently,
breaking the optimal joint structure. (3) Consistent Reasoning as Closing the Loop. We define
consistent reasoning as the fixed-point condition where two requirements are met simultaneously: (1)
Training Consistency, where p; — 7* , (the variational bias vanishes); and (2) Execution Consistency,
where the negotiation mechanism collapses the multimodal joint distribution into a specific mode
(agreement) such that 7(u) ~ [[, mi(u;) as o — 0. This ensures that the planned joint action
during the reasoning phase aligns perfectly with the executed action. The negotiation process acts as
a “pre-commitment” device, ensuring that agents not only identify the optimal peak in the reward
landscape but also agree to converge to the same peak together.

3 NEGOTIATED REASONING FRAMEWORK

Inspired by the critical role of negotiation for consistent reasoning in social cooperation, we introduce
negotiation in the reasoning process to avoid PRO and ERO with theoretical justifications and

propose a novel reasoning framework, NR. In NR, agents take M particles {uz’o}é]\il to represent

the initial perceived joint policy distribution p(u®) := +; Ze]\i 1 0ye0(w) for a state s. Moreover,

each agent ¢ holds a negotiation (i.e., perturb) policy f;(u; | uc,, s) that updates its action when
knowing the C;’s action selection. Here C; C 1,..., N is the negotiated set for agent i, which
determines whom to negotiate, f; := {f},..., f/} where fF is the negotiation policy of agent i
in iteration k, and K is the number of negotiation rounds which is often large enough. Then every
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agent 7 makes negotiated reasoning as ufk = fik(ul- | s,ugc’ffl),Vi < N,/ <M,k <K.Sucha

negotiation process can be interpreted as agents starting from initial action beliefs and negotiating
with each other based on their negotiation policies. When f¥ converges to an identity map for
each agent, the perceived joint policy converges to a steady perceived joint policy (i.e., agreement):
limp, i p(uf | s) = = Z?il Juer(u) = m°(u | 8),Yu € U. Negotiated reasoning avoids PRO
when it meets certain conditions.

It is crucial to distinguish this framework from communication-based MARL methods that exchange
messages to resolve partial observability (i.e., approximating global state). In contrast, Negotiated
Reasoning operates on the probability measure space. The “negotiation” is a functional gradient
descent process in a Reproducing Kernel Hilbert Space (RKHS) that aligns the joint policy distribution
with the global value landscape. This addresses equilibrium selection rather than state estimation.

Theorem 3.1 (PRO-free Negotiated Reasoning). For any environment state s where the optimal joint
policy is defined as 7}, consider each agent i takes a negotiated reasoning defined on a compact
action space U;, they are PRO-free with K steps negotiated reasoning if limy_, x p(u® | s) =
T (u” |s), vuFel.

This motivates us to learn negotiation policy f; satisfying the following conditions:

lim fF(u; | s,ué{“_l) = ufF lim p(uP | s) = 7 (uF | s), Vi< N, < M,u* eld,.
k=K ' k=K

@

The first condition requires the negotiation policies to converge to the identity map, and the second

one requires the perceived joint policy to be identical to the optimal joint policy when the negotiation

policy converges. We will specify the negotiated policy learning in the following two sections.

As for ERO-free in decentralized execution, we prove that setting 7; = u?’K with annealing o — 0
ensures ERO-free in decentralized execution (see proof in Appendix E.2).

Theorem 3.2 (ERO-free Negotiated Reasoning). For any environment state s, when agents are
PRO-free with K reasoning steps, they achieve ERO-free with annealing o — 0 if each agent i

L 0,
sample action T; = u;

When all the conditions are met, it is straightforward that consistent reasoning is obtained. Up to
this point, we have established a theoretical connection between reasoning and RO. The next step is
to design a negotiation policy that satisfies the condition in equation 2 and integrate this negotiated
reasoning into existing multi-agent reinforcement learning.

4  STEIN VARIATIONAL NEGOTIATED REASONING

After building the theoretical relationship between reasoning and RO, this section proposes Stein
variational NR, SVNR, under the NR framework, which is the first MARL method that provably
addresses RO. We first derive the negotiation policy based on Stein variational gradient descent
which obtains PRO-free negotiated reasoning. Then we devise the policy iteration method of SVNR
and prove that it addresses PRO and ERO. Finally, we propose a practical implementation by
parameterizing SVNR with neural networks and amortizing the learning procedure.

4.1 LEARNING THE NEGOTIATION POLICY

To learn the negotiation policy that converges to an identity map and lets perceived joint policy
converges to the optimal joint policy as in equation 2, we start by building the relationship between
negotiation policy and perceived joint policy. Decomposing KL divergence from the perceived
joint policy, we have D, (p(u | s)||[7*(u | 8)) = Dk (p(u—; | 8)||7*(u—;8)) + Drr(p(u; |
s,u_;)p(u_;)||m*(u; | s,u_;)p(u_;)). It states that the KL divergence between perceived and
optimal joint policy can be minimized by

p(uﬂig ')DKL (p(ui|s,u_s)plu_)||7*(u; | s, u—;)p(u_y)), 3)
when fixing other agents’ action selections (update only one agent’s action). This motivates us to
design a negotiation policy that minimizes the equation 3. One of the most popular ways to solve
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equation 3 is (MP)SVGD (see Appendix A) which can naturally fit the updating of the single agent’s
action while fixing others’. Specifically, it adopts the following scheme, i.e.,

filui | ug,, s) s uf + ei(uc,)’, Vi < N0 < M, 4)

to update the joint policy distribution. The ¢ is the learning rate, and ¢; is the transformation direction
in vector-valued reproducing kernel Hilbert space. Then the optimal ¢ has a closed form solution for
equation 3 when restricting ||¢;||7, < 1 and e — 0:

¢; (uc,) = Eyplki (uc,,yc,) Vy, log 7 (yi | ye,) + Vi, ki(uc,, ye,\ (y)]- 5)

The ¢* provides the steepest direction to optimize the KL divergence. This iterative update process is
mathematically grounded in the transport of probability measures via Stein variational gradient flow.
We provide a detailed theoretical interpretation of this negotiation process and its visualization in
Appendix L. The Appendix D.1 shows the details of the derivation.

To further ensure the identity map convergence and let the converged perceived joint policy identical
to the optimal joint policy, the design of {C;}, plays a key role as seen in graphical inference
problems (Pearl, 1988; Zhuo et al., 2018). Benefiting from the centralized training, we can de-
sign C; without considering communication limitations. When {C;}¥ | is strictly nested (e.g.,
C; ={1,...,4} for all ¢), negotiated reasoning equation 4 with equation 5 converges and the agree-
ment is identical to optimal joint policy (i.e., satisfies PRO-free conditions equation 2) as proved in
Appendix E.4. We denote the negotiated reasoning with (MP)SVGD and strict nested negotiation set
as Stein variational negotiated reasoning. While strict nesting guarantees exact representability, relax-
ing this constraint leads to a bounded approximation error characterized by Information Projection,
as detailed in Appendix E.8.

4.2 MAXIMUM ENTROPY POLICY ITERATION

In the previous section, we assumed that the optimal joint policy is known in advance. However,
agents have to iteratively learn (), and V' functions to estimate the optimal joint policy and update their
sampling policy accordingly in practice. This section establishes SVNR on the maximum entropy
policy iteration and shows the convergence to the optimal joint policy theoretically. Concretely, we
first define the soft bellman operator as

L2Q(st:ue) :=1¢ +VEsp, [V (s641) ] (6)

where V(st) =E; [Q (st, ut) — alog ﬁ(ut | st)] . Each round of iteration usually consists of joint
policy evaluation and joint policy improvement, where joint policy evaluation aims to evaluate the
policy performance with @ and joint policy improvement updates each agent’s policy accordingly.
As for the joint policy evaluation, we obtain the following theorem.

Lemma 4.1 (Joint Policy Evaluation). For a mapping Q° : & x U — R with || < oo, define the
QF*! = T'Q" where the T is the soft bellman operator, then it converges to the joint soft Q-function
of mas k — oo.

Following equation 1 and equation 5, the 7 is updated as:

1 _
F(u) = lim — Zéue,k(u) ul® =yt €p* (uéclf,uf’k 1), Vi < N L< M k<K,

[t

=1 N
1
T = exp E(Q(ui,ucﬂs) — V(ucﬂs)),

Where Q(ulv qu, ) 8) = Eﬁf\/ﬁ'(s),ﬂci =uc; Ui =U; Q(ﬂa 8)7 ‘/l(uc7 ) S) = Eﬁ’fvﬁ'(s),ﬁci =uc, Q(ﬂa 8)7
and ¢; take 7 instead of 7* to construct the SVGD direction. Then we can obtain the following joint
policy improvement lemma:

Lemma 4.2 (Policy Improvement). When the negotiation policies are strictly nested, given the
current perceived joint policy as 7, update it based on the equation 7 and obtain the new perceived

joint policy 7. The Q™ (sy, us) > Q7 (¢, uy) with [U| < co.

Following Lemma 4.1 and Lemma 4.2, we can establish the following SVNR policy iteration theorem
and our proposed coordinated policy iteration method accordingly.
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Theorem 4.3 (SVNR Policy Iteration). When the individual policies satisfy the strict nested require-
ment, considering repeated apply the joint policy evaluation and joint policy improvement on the
perceived joint policy 7, then 7 will converge to 7* that makes Q™ (s;,u;) > Q7 (s, u;), Vi €
I, (s;,ur) €8S xU, Ll| < o0.

While the analysis assumes discrete action spaces to utilize standard fixed-point theorems, the
theoretical results extend to continuous domains through measure-theoretic unification. Furthermore,
the core Negotiated Reasoning mechanism (via SVGD) is natively designed for continuous spaces.
We provide the detailed continuous formulation and justification in Appendix K. Based on the
Theorem 4.3, we can obtain the convergence of SVNR policy iteration to the optimal joint policy.
Further, taking Theorem 3.2, we can obtain ERO-free executed joint policy 7 by annealing o to a
small enough number.

However, empirically, the SVNR policy iteration assumes knowing the word model and encounters
high computation and storage complexity due to 1) inefficient policy representation: SVNR policy
iteration represents the joint policy with particles that scale poorly on state-action space; 2) intractable
optimization: During learning, the soft bellman operator takes expectations on both the state and
joint policy distribution, which is intractable in realistic settings. To this end, we propose a practical
implementation for SVNR.

5 A PRACTICAL IMPLEMENTATION OF SVNR

'
1 (-Jur, ug, ug) Uy 1 (+Jur, uz, ug) —duy E @ @ @

oy us) |4 e S T

s (+[us) ug 73 (+fus) —w | @ @)

018.8) |

Q% (s, u1,u2,u3) c:,':
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3
Ve 2 132 C16) u
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Figure 2: The practical SVNR in the 3-agents system. SVNR adopts nested negotiated reasoning and
adopts amortized MPSVGD to output the actions. The amortized MPSVGD distills the multi rounds
negotiated reasoning dynamic by well-established neural networks. The “Dec Testing” (rightmost
part) illustrates how the proposed SVNR executes in a decentralized manner.

To address the inefficient policy representation and intractable optimization issues, this section
adopts neural networks to parameterize the policies and learn them with the proposed amortized
optimization. To gain efficient action sampling, we propose Amortized MPSVGD. It aims to adopt
neural networks to perform variational distillation of the negotiation equilibrium. Rather than
cloning the iterative negotiation trajectory, the network aims to approximate the steady negotiation
result (the fixed point) in 7 (u) directly via neural network inference. Formally, each agent holds a
stochastic mapping function u’ = f;} (-|¢%, €%, 5) that maps initial noises (i.e., gaussian noises) to
its action distribution. The &’ is the noise drawn by agent 7. We denote the induced joint distribution
as py(uls, €) == Y, Fi (w'[€7,6%, 5). The goal of the proposed amortized MPSVGD method is
to find ¥* that satisfies:

arg min KL (p¥ (-] 5,€) | 7 (u)). ®)
P

A straightforward way to learn 1) is to iterate the equation 7 procedure until convergence and to
establish the neural networks {1, ..., %y} which can fit the agreement. However, the equation 7
requires many rounds of updating, and this motivates us to introduce an incremental update scheme.
For each agent 1, its policy parameter 1); is updated by moving along its SVGD’s gradient in order to
approach the target joint policy. Sampling joint actions u", ..., u™ from p and assuming we can
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perturb agent 7’s action uf = f¥( f ; fJC , 8) in appropriate direction A f¥: (ff ; fJC , ), the induced
KL divergence in equation 8 can further be reduced. MPSVGD provides the most greedy direction as

Af;p(a st) = ]Euwpw |:K;i (,U‘Cﬁp'gi(';St))vu;QQ(staul) u/:ui|
©)

where «; is the agent i’s temperature term, 6 is the neural network paramter of central critic, and x; is
the agent i’s kernel function as in MPSVGD. We can then set % x A fi‘25 (Feng et al., 2017).

e+ iV ki (e, pE (5 80))

Further, the gradient in MPSVGD can be backpropagated to the mapping network ¢;, i.e.,

0J,(1; s o .
[ézisf)ocﬂig Aff(é;st)fza(iié’f) ' o

Therefore, any gradient-based methods can optimize the parameters 1;. The detailed derivations
of equation 9 and equation ?? are shown in Appendix D. With this Amortized MPSVGD mapping
function, neural network inference can directly sample joint actions. Crucially, by optimizing ¢/ via
this incremental scheme, the network fy, learns to distill the multi-step negotiation dynamics into the
function weights. Consequently, a single forward pass (K = 1) becomes sufficient to approximate
the equilibrium distribution during inference, avoiding expensive inner-loop optimization.

Furthermore, we consider the intractable evaluation step as in equation 6. Inspired by soft Q-
learning (Haarnoja et al., 2017), we can transform the fixed point iteration to the stochastic optimiza-
tion on minimizing the |T'g — Q||. Specifically, the importance sampling is adopted to approximate
the value function and minimize the bellman error:

e = arg min(i/ E8t7u77’75t+1ND [%(T + Ve(st-‘rl) - Qel(sta u))2 ) (11)

where V? (s;) := alog Eyrop(.1s,) [exp (2Q7 (s¢,u’))]. We summarize the proposed SVNR in
Figure 2, with pseudocode in Appendix B. While the practical implementation introduces approxima-
tion errors compared to the exact soft Bellman operator used in our theoretical analysis, we provide a
formal error analysis in Appendix E.9, showing that the performance loss is bounded.

SVNR assumes nested negotiation during training, which aligns with the widely adopted CTDE
paradigm. This assumption enables agents to leverage global information for improved coordination
while training, yet critically, SVNR operates in a fully decentralized, communication-free manner
during execution. Other assumptions in our analysis (e.g., stationarity, bounded rewards) are standard
in MARL literature and necessary for theoretical rigor without imposing impractical constraints.

6 EXPERIMENTS

We take two differential games (Two Modalities and Max of Three (Panait et al., 2006a)) and
the Particle Gather (Mordatch & Abbeel, 2018)) as our initial testbeds. We then scale to com-
plex continuous-control domains in MaMuJoCo (Peng et al., 2021). Baselines include popular
MARL methods and reasoning-based approaches that target RO—MADDPG (Lowe et al., 2017),
MASQL (Wei et al., 2018), PR2 (Wen et al., 2019), ROMMEQO (Tian et al., 2019), and MMQ (Zhu
et al., 2024)—as well as strong value-decomposition/actor-critic general baselines in MaMuJoCo,
i.e., MAPPO (Yu et al., 2022), QMIX (Rashid et al., 2020), and FACMAC (Peng et al., 2021). To
ensure a rigorous evaluation, we employ identical network backbones and fixed entropy annealing
schedules across all Maximum Entropy methods, isolating the performance gains attributed to the
reasoning mechanism. A detailed analysis of computational trade-offs, theoretical justification for
compute costs, and hyperparameter protocols is provided in Appendix H.5.

Note that our primary contribution is the theoretical development of an RO-free solution for MARL.
We validate these claims using benchmarks that provide sufficient complexity, including MaMuJoCo,
while maintaining tractability. For two differential games and the Particle Gather, we report aggregate
test performance in Table 2 and defer its quantitative analysis to Appendix G. General-purpose
baselines are also reported in Appendix G.

(1) The Differential Game (DG). DG is a flexible and wide-adopted framework to design a chal-
lenging stateless MARL environment. We consider a three-agents case. Each agent shares a
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common one-dimension bounded continuous action space of [—10, 10]. Their rewards are shared
and determined by their joint action under the reward function r(u1, u2, u3) = max(g1, g2), where
a1,az, a3 are actions of 3 agents respectively, g; = 0.8 x [—(“45)2 — (4212)2 _ (ua=3)2] 4 )

_ Uy —T2 \2 U2 —Y2 \2 Uz —2z2\2
and go = ho x [—(*1272)% — (2-2)7 — (322)%] + co.

(1.1) PRO-Challenged DG. Setting c¢; = co results in two-modality, which raises the difficulty for
agents to obtain the optimal perceived joint policy and thus is a PRO-challenged environment. We set
ho =1.0,s0 =2,290 =7,y2 =7, 20 = —3, c; = co = 10 in the differential game to construct the
Two Modalities scenario as the PRO-Challenged scenario. There exists two points (—5, —5, 3) and
(7,7,—3) that have the highest, 10, utility. Thus the optimal perceived joint policy should capture
the two modalities. However, when agents do not know the optimal opponent policy, they usually
tend to converge to one single modality, and PRO happens. We train each method with 5000 episodes
and visualize their converged perceived joint policies by sampling. As shown in Figure 3, our SVNR
captures the two modalities of the game while other baselines converge to the single modality policy.

(2) SVNR (Ours) (b) MADDPG  (c) MASQL (d) PR2 () ROMMEO  (f) MMQ

Figure 3: The converged perceived joint policy visualization in Two Modalities scenario. The optimal
perceived joint policy should capture both modalities, and only our SVNR captures the two modalities.

(1.2) ERO-Challenged DG. We consider a difficult scenario for continuous MARL, Max of Three,
which is extended from the Max of Two (Tian et al., 2019; Wei et al., 2018; Wen et al., 2019).
Specifically, we set the ho = 1,29 = 7,y2 = 7,20 = —4,¢1 = 0,co = 10. By setting different
values for so, we can flexibly control how the ERO affects the agents. The smaller the so, the smaller
the coverage of g, and the more severe the ERO issue. We examine different methods under different
So, i.e., S5 = 1.5, so = 2.0 and so = 3.0 and 5000 episodes are used for all cases.

' W : f{ffb’f«l . y‘ww

My

Reward
Reward
Reward
=

Mean Reward

’ 'Sleps‘ ' ’ ‘Sleps‘ " ' ! ‘“‘Slepsﬂ " " ! " EpiSOdéS

(a) s2 = 3.0 (b) s2 = 2.0 (c)s2 =1.5 (d) Particle Gather

Figure 4: Influence of different coverage factors s, on the training curves of (a-c) our method
and different baselines in the Max Of Three. (d) shows the training curves in the Particle Gather
scenario. The solid lines and shadow areas denote the mean and variance of the instantaneous
rewards with 5 different seeds. With the larger ss, the agents encounter a higher impact of relative
over-generalization, and the proposed SVNR achieves the optimal solution in all settings.

(a) SVNR (Ours) (b) MADDPG  (c) MASQL (d) PR2 () ROMMEO  (f) MMQ

Figure 5: The sampled joint actions of (a) SVNR and (b-d) representative baselines under the settings
of Figure (4¢) from 1 to 3000 training timesteps. Each point represents a joint action taken by the
agents at the corresponding timestep, and different colors represent the levels of rewards.

Although the formulation of the game is relatively simple, it poses great difficulty to gradient-based
algorithms as in almost all the joint action space. The gradient points to a sub-optimal solution.
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As shown in Figure 4, the MADDPG algorithm falls into the local optimum (i.e., the reward is 0)
under all settings. MASQL, PR2, and ROMMEO can only jump out of the local optimum under the
relatively simple setting (i.e., s = 3.0) with significant variance, while SVNR can steadily converge
to the global optimum while jumping out of the local optimum under all settings.

To better understand the learning behavior in the MAX OF THREE, we visualize the learning dynamic
under so = 1.5 in Figure 5. Each point represents a joint action taken by the agents from 1 to 3000
steps. Different colors represent the levels of instantaneous rewards. During 1 to 1500 steps, SVNR
agents have a significant visitation probability on the local optima (the left side at Figure 5a). They
visit the global optima more frequently at 1500 to 3000 steps while exploring the other area. With
the learning process kept on, SVNR converges to the 10 step reward as shown in Figure 4c. Other
baselines are concentrated near the local optimum.

(2) Particle Gather. This game is built with Multi-Agent Particle World (Lowe et al., 2017). There
are 2 particles in a continuous physical world. Each particle is controlled by 2 agents, the x-agent and
the y-agent, which control the particle’s movement together. When 2 particles reach a fixed landmark,
4 agents are rewarded with 5 together. Moreover, if only one particle reaches the landmark, all the
agents are penalized by —2. Otherwise, there is no instantaneous reward (i.e., 4 agents are rewarded
by 0) that will be feedback to all agents. This iterated continuous game lasts for 25 timesteps. The
goal of all agents is to maximize the individual expected cumulative reward for 25 timesteps. This
scenario is difficult because without knowing others’ actions, the best choice for all the agents will be
to get far away from the landmark, making the optimal policy (reach the landmark simultaneously)
hard to obtain. All methods are trained for 5000 episodes, which consists of 25 timesteps, with tuned
hyperparameters, and the learning curves are shown in Figure 4d. It shows that all baselines converge
to the worst solution except for PR2 and MADDPG falling into the local optimum. SVNR still
steadily converges to the global optimum while jumping out of the local optimum.

(3) Multi-Agent MuJoCo (MaMuJoCo). We further evaluate SVNR on 4 MaMuJoCo environments
which convert classic single-agent MuJoCo tasks into fully cooperative, multi-agent settings via
physically meaningful partitions of the action space. In all 4 environments, agents receive the same
shared reward as the underlying single-agent task, and episodes terminate/truncate simultaneously for
all agents under the same conditions as the single-agent versions. Table 1 summarizes test returns
across the four MaMuJoCo tasks. SVNR achieves the highest returns in all scenarios, with especially
large margins over MAPPO/QMIX/FACMAC and consistent improvements over PR2Z/ROMMEQO.
These results, combined with those on differential games and Particle Gather, indicate that negotiated
reasoning yields robust coordination benefits from low-dimensional, RO-dominant settings to high-
dimensional continuous control with physically meaningful agent partitions.

Table 1: MaMuJoCo test performance. SVNR achieves the highest returns across all four tasks.

Methods / Scenarios | HalfCheetah-2x3 | HalfCheetah-1pl | Ant-2x4 Walker2d-2x3
SVNR (Ours) 8853 + 212 423 + 89 536+ 31 | 1678 + 275
MADDPG 112+ 135 —561 &+ 67 108 +£26 | 529 + 33
MASQL 56 & 65 —490 + 86 225+34 | 332+18
PR2 8662 £ 45 381+ 11 354 £ 58 1422 £ 79
ROMMEO 8305 &+ 127 296 & 62 424 + 60 1399 & 32
MMQ —134+16 —524 + 37 116 £+ 53 487+ 72
MAPPO 6087 £ 1177 15 £ 138 87T+135 [672+£59
QMIX 8263 + 618 3+£27 212 £209 | 495 +243
FACMAC 8210 & 584 131+ 72 398 £36 | 536 £ 205

(4) Ablation Studies. Full protocols and tables are deferred to Appendix H. Varying the SVGD
particle count M on MaMuJoCo (from 16 to 64) shows a broad performance plateau, with a practical
sweet spot at M € {32,40}. Training time scales approximately linearly in M. Scaling the number
of agents from 2 (MaMuJoCo) to 3 (Max of Three) and 4 (Particle Gather) preserves near-constant
normalized performance with only modest increases in wall-clock cost, indicating that amortized
negotiation maintains coordination quality as team size grows. Finally, on Particle Gather, strict
nested negotiation yields the best returns, but partially nested DAGs recover most of the performance
at lower cost. Aggressively sparse peer sampling (1-2 peers per agent) remains viable when compute
is tight, with performance degradation consistent with the theoretical approximation gap analyzed in
Appendix E.8. Together, these results suggest SVNR offers a favorable accuracy—efficiency trade-off,
scales to small-medium teams, and is robust to reasonable deviations from strict negotiation topology.
We further provide a comprehensive theoretical analysis and empirical ablation study on the sensitivity
of the temperature parameter « and its annealing schedule in Appendix H.4.

10
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Ethics Statement. Our work on negotiated reasoning for addressing relative over-generalization in
multi-agent reinforcement learning has several potential societal impacts. On the positive side, by
developing methods that provably address relative over-generalization, we contribute to the reliability
and effectiveness of cooperative multi-agent systems. This advancement could benefit applications
such as coordinated robotics for search and rescue operations, traffic management systems where
improved cooperation could reduce congestion, and resource allocation in distributed systems like
power grids and supply chains. However, while our work focuses on cooperative settings, techniques
that improve multi-agent coordination could potentially be adapted for adversarial purposes, such as
coordinated automated attacks in cybersecurity contexts or applications in competitive rather than
cooperative scenarios. To promote responsible use, we recommend continuing research on cooper-
ative MARL benchmarks that address socially beneficial problems, establishing ethical guidelines
for deployment, and developing interpretability methods that can help understand the negotiation
processes. Our primary focus on theoretical understanding limits immediate risks, but ongoing ethical
discussion about increasingly capable multi-agent systems remains essential as the field advances.

Reproducibility Statement We are committed to enabling the reproducibility of our results to
the best of our ability. In the paper, we provide detailed descriptions of the experimental setup,
including implementation details, hyperparameters, and prompt designs, as well as data generation
steps in Section 6, Appendix F, G and H. Our approach builds upon several open-source projects,
and we have included links to the relevant code repositories for transparency and ease of reference.
We document key elements necessary for reproducing our findings, such as training procedures,
evaluation metrics, and the use of multiple random seeds. While we have taken significant steps to
ensure that the methodology is clear and replicable, variations in software environments, hardware
configurations, or other external factors may affect exact reproducibility. Nonetheless, we believe the
provided information should allow others to replicate our findings or apply similar approaches with
reasonable accuracy.
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A STEIN VARIATIONAL GRADIENT DESCENT

Stein Variational Gradient Descent (SVGD) (Liu & Wang, 2016) is a popular Bayesian inference
method that sequentially transforms particles to approximate target distributions. Considering a
target distribution p(x) where z € X C R”, SVGD constructs ¢(z) from some initial distribution
qo(z) == & Zé\il S4e.0(x), where § is the Dirac delta function, {z*°}L are particles at initial, and
M is the number of particles. Then it transforms particles with transform function f(x) = x + e¢(z)
where € is the step size and ¢ : X — RP is the transform direction. To be tractable and flexible, ¢ is
restricted to a vector-valued reproducing Kernel Hilbert space (RKHS) H? = Hg x --- x H and
H, is a scalar-valued RKHS of kernel k(-, -) which is positive definite and in the Stein class of p (e.g.,
RBF kernel k(x,y) = exp(—|lz — y||3/(2h))). According to Stein theory, the steepest direction that
minimizing D1 (gs||p) is

" (x) = Byng [k(z,y)Vylogp(y) + Vyk(z,y)], (12)

while € is small enough. Update particles based on 2% « zt+=1 4 ep* (x%%~1) until ¢*(z) = 0,
SVGD ensures ¢ = p when the iteration ends and k(x, y) is strictly positive definite (Liu & Wang,
2016).

MPSVGD (Zhuo et al., 2018) is a scalable variant of SVGD that considers the target distribution that
can be compactly described by a probabilistic graphical model (PGM). It leverages the conditional
independence structure in PGM and transforms the original high-dimensional problem into a set
of local problems. Concretely, a PGM p(z) can be factorized as p(z) o< [[pc 7 ¢r(zr) where
F c {1,...,D} is the index set and xp = [24]der. Then the Markov blanket for d is 'y =
{U{F : F > d}}\{d} and it tells the conditional dependence that p(zq4 | z_a) = p(za | zra).
MPSVGD updates each dimension d with Ty : x4 — €pq(xs,) where Sq = {d} UT'g and ¢g € Hg.
The H4 is associated with the local kernel k4 : Xg, X Xg, — R and

(bZ(x) = Eysqu [kd<x5d7ysd)vyd 1ng(yd ‘ de) + vydkd<xsd7ysd)]‘

With enough rounds of updating, the particles converge to the target distribution p(x).

B ALGORITHM PSEUDOCODE

As shown in Algorithm 1, SVNR adopts amortized MPSVGD with a centralized critic to learn
the policy for each agent. Each agent i holds its conditional policy fy, (a:|ac,,s) with {C;}¥,
as strict nested set. In the execution stage, agents utilize common randomness to coordinate: they
initialize actions using synchronized pseudo-random number generator (PRNG) seeds to generate
correlated noise {&;,&c, } without active communication. The action of agent ¢ is generated by
fu: (&3 €c,, s) based on these synchronized noises and local state s. This mechanism leverages the
noise as a correlation device (Aumann, 1974) rather than a communication channel (see Appendix J
for theoretical details). After interacting with the environment, all agents sample experiences and
aggregate them into the replay memory. Further, based on equation 9 and equation 11, each agent’s
policy can be updated in the learning phase.

C MISSING THEOREMS

Theorem C.1 (Nested factorization requirement). For a policy factorization method that adopts local
policies {m1(u1 | uc,), -+ ,mn(un | ucy )} to represent the joint policy mji (w), it can achieve full
joint policy representation capacity if and only if there exists a permutation o of [N| that satisfies

{i+1,--- ,N}YC{o(j)IVj€Cor(py}, Vi
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Algorithm 1 SVNR: Stein Variational Negotiated Reasoning

Input: Initial policy fy, for every agent i; centralized critic (Jy; coordination edges C; empty

replay buffer D; kernel function «; for agent i; particle numbers K; target critic as Q7 := Q.
while not convergence do
Collect Experiences:
Generate synchronized noise &; € N(0, I') via common seeds (no communication);
Compute action for state s, i.e., u; < f%#(&;;&c,, s) for each agent ;
Execute the joint action a := {a1, ..., ay} and observe the next state s, reward r;
Add new experiences into the replay buffer, i.e., D < DU {(s,a,r,s’)}.
Sample Experiences: Sample from the buffer, i.e, {(s,a,r,s'),...} ~ D.
Update Value Functions: For each agent 4, sample {af}£, for state s’ and update 6 based on
Equation 11.

Update Policies:
Sample k noise signals for agent ¢ at state s, i.e., ff e N(0,1),¥¢=1,..., M and generate
k joint actions for state s, i.e., uf « f¥i (¢4 5gi7s),ve =1,...,M,;

Calculate A fy,, based on equation 9 for each agent 7, the gradient of v; by equation ?? and
update v; using ADAM.
if time to update then -
Update target parameters: 6 — 6.
end if
end while

For simplicity we denote as C = {C1,...,Cn} € Cnested and the Cyested is called Nested
Coordination Space.

The proof of Theorem C.1 can be found in Appendix E.3. The above theorem urges us to decompose
the joint policy into conditional policies that satisfy the nested requirement. ROMMEO takes
C; = —i, Vi, which satisfies our nested factorization requirement and achieves the full capacity.

D MISSING DERIVATIONS

D.1 DERIVATION OF EQUATION 12

Derivation. As proved in the MPSVGD (Zhuo et al., 2018), for a graphical model p(z)

Hi]ilp(zi | z¢,), letz = T(x) = [x1,...,T; (), ... ,xN]T with T; : ©; — @ + €¢; (X), ¢ €
‘H; where H; is a Reproducing kernel Hilbert Space (RKHS) associated with the local kernel
ki X x X — R, we have

VKL (qrllp) = VKL (gm (2 | 2¢,) 4 (ze,) Ip (2 | 2c,) 4 (2c,))
and the solution for min,, |, <1 V.KL (g Hp)‘ L35 67/ (1671, where

¢; (x) = Ey~qlki(xc;, ¥c,)Vy logp(yi | yo,) + Vi, ki(xc,, ye,))-
Under mild conditions as states in the MPSVGD (Zhuo et al., 2018), the convergence condition
#¥(x) = 0if and only if ¢(z;|zc,) = p(xi|xc,). Take p? and exp (Q?) as q and p respectively, then

AfE (558) = By | Ri(us,, 05, (55¢)) Vi Q7 (s¢,0)

ww V(s pg (s,
(13)
where S; ;= {i} U C:. O

D.2 DERIVATION OF EQUATION 9

Derivation. One direct way to update the parameter ¢; is to obtain z by running MPSVGD until
convergence and update ¢;

K
i t
¢! e argminy_ Ip” (€% 5) — 2|3,
@ k=1
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To gain a more computationally efficient approximation, we perform one gradient descent step

ar (& s1)

D ’

with a small step size e. O

G ¢l e B [AfP (& s0)

E MISSING PROOFS

E.1 PROOF FOR THEOREM 3.1
In NR framework, each agent i holds #; = p(u® | s), if limy_, x p(u” | s) — 7*(u” | 5), then
min Drr(fip(u® | s)|m) = H}inDKL(fm*(ufi [ s)lma)-

Thus it is PRO-free after K reasoning rounds.

E.2 PROOF FOR THEOREM 3.2

If o — 0, then 7, approaches to the maximum utility

UTe =max U™, o —0,
™

due 0 Quote = U™ + 3, E(5, ws)p,. H(7* (- | 5¢)). For PRO-free agents in NR, p(uX | s) =
7 (u | s) and a — 0, take 7; = ud"", then
max U™ iz ™5 = U™

Thus they are ERO-free.

E.3 PROOF FOR THEOREM C.1

Proof. The conditional theorem (Gelman & Speed, 1993) proves that the {m(u; |
uce,),- .., "n(un | wey )} uniquely determines the joint policy if and only if the C € Cyested. For
any joint policy m, we can obtain

f w(u)du{i} U C;
[r(u)duc,
When the C € Cpested, the conditional policies uniquely determine the joint policy. Then for

arbitrary joint policy, we can represent it as the nested conditional policies, and Theorem C.1 gets
proved. O

E.4 PROOF FOR ERO-FREE PROPERTY OF SVNR

We first prove the strict nested negotiation makes SVNR converge (i.e., the first condition in equa-
tion 2). Without loss of generalization, we take C; = {1,...,i} for every agent . For agent 1,
C7 = {1} and the equation 4 degenerate to the SVGD, which has been proved weakly converged to
target distribution 77* (1) in (Liu, 2017):

. k Lk—1y _ . Lk—1
kl;rr}(fl (ur | s,up, ") =uy" ", VIS M
: kY _ %/ k k

lim p(uy) =7"(uy | s), Vuy €Uy

k—K
Then with agent 1 converged, agent 2’s update degenerate to the SVGD and converges to the target
conditional distributions. Iteratively, we can obtain:

. k Lk—1y _  Lk—1 .
kl;rr}(fl (ui | s,ug, ") =u""", VI<M,i<N,

(14)
" Ky _ w, k Lk—1 k _
klgr}l{p(ui) =7"(u; | s,us ), Vui €U
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Thus we prove its convergence.

According to Appendix E.3, the (strict) nested conditional policies can be adopted to represent
arbitrary joint policy and when the conditional policies uniquely determine the joint policy. Then
with equation 14, we have

lim p(u® | s) = 7*(u® | s), VuF el;,i<N.
k—K

and thus the SVNR is PRO-free.

E.5 PROOF FOR LEMMA 4.1

Proof. We refer the readers to the SQL (Haarnoja et al., 2017)’s Appendix A.2. O

E.6 PROOF FOR LEMMA 4.2

Proof. Following the Proof E.4, with K rounds of SVNR negotiation,

1 1
7' = lim H Z(Sul’k (u)a =7 = exp E(Q(uhuC@'a S) - V(U’Cia S))a (15)

Then the policy improvement can be proved as in Appendix A.1 of (Haarnoja et al., 2017).

E.7 PROOF FOR THEOREM 4.3

With the Theorem C.1, Lemma 4.1 and Lemma 4.2, our convergence to the optimal joint policy can
be similarly proved as the SQL(Haarnoja et al., 2017)’s Appendix A.2.

E.8 THEORETICAL ANALYSIS OF RELAXED NEGOTIATION TOPOLOGIES

While Theorem C.1 and E.4 rely on strict nesting to guarantee the exact representability of any
arbitrary joint policy 7, the behavior of partial DAGs and sparse peer sampling can be formally
characterized through the lens of Variational Inference and Information Projection.

Information Projection & Approximation Gap. Mathematically, SVNR optimizes the negotiation
policy to minimize the KL-divergence Dx (7 || 7)) (Eq. 3).

* Strict Nesting: When the coordination set {C; } satisfies the nested property (Theorem C.1), the
family of representable distributions Il,eseq 1s sufficiently expressive to contain 7. Thus, the
minimum divergence is zero.

* Partial DAGs/Sparse Topologies: Restricting the negotiation set to a subset C C C; restricts the
variational family to a sparser manifold, denoted Ilsparse. In this case, the SVNR update dynamics
(Eq. 5 and 9) drive the policy to the Information Projection (I-Projection) of the optimal policy
onto this restricted family:

Tsparse = argmin D p (7 || 77) (16)
7€ Mparse

Consequently, the performance gap is theoretically bounded by the residual divergence determined
by the conditional independencies forced by the graph topology. Specifically, if the omitted edges
correspond to agent pairs with low mutual information in the optimal equilibrium (i.e., weak coupling),
the approximation gap D g1, (Tsparse || 7., ) Temains small. This explains why the degradation observed
in experiments is smooth rather than catastrophic: the method finds the optimal approximation allowed
by the communication constraints.

E.9 ERROR ANALYSIS OF PRACTICAL IMPLEMENTATION
In Section 4, we established the convergence of SVNR using the exact soft Bellman operator. However,

the practical implementation in Section 5 relies on function approximation (neural networks) for both
the critic and the policy. Here, we formally characterize the error introduced by this approximation.
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Let 7™ denote the exact soft Bellman operator and II be the space of representable policies. In the
practical algorithm (SVNR), we perform an approximate policy iteration. We can decompose the
error into two distinct terms:

1. Value Approximation Error (¢): Instead of computing the exact fixed point Q™ = 77 Q™, we
minimize the Bellman residual using a function approximator QQg. This introduces an error bounded
by:

eQ = [[Qo — T"Qoll oo a7

This error stems from the limited representational capacity of the neural network and the finite-sample
estimation of the expectation E4 [V (s')].

2. Policy Projection Error (¢,;): In the theoretical derivation, the policy update is the exact energy-
based projection e X exp(Q(s, -)/«). In our practical implementation (Amortized SVGD), the
parameterized policy 7, is updated to minimize the KL-divergence D1, (|| Tnew ). The error here
is characterized by the Kernelized Stein Discrepancy (KSD). Specifically, if the update terminates
when the norm of the Stein variational gradient is bounded by ¢, then the resulting distribution
approximates the target within an error margin €,, which vanishes as the number of particles
M — oo and the function class of 1 becomes sufficiently expressive.

Error Propagation: Let c¢tq1, 1 = €0,k + €x,1 be the combined error at iteration k. Following
standard results in Approximate Dynamic Programming (Bertsekas & Tsitsiklis, 1996; Munos, 2005),
the propagation of these errors through the iterative process is bounded by the discount factor . The
asymptotic performance loss is bounded by:

Cy
hmsup Q* - Qﬂk o'} < T o SUD [[Etotal,k || oo (18)
m s Q" = Qoo < s s et |

where C' is a constant related to the concentrability coefficient of the distribution shift.

Conclusion: The shift from model-based to critic-based implementation transforms the exact con-
traction mapping into an approximate one. Crucially, unlike heuristic approximations, the SVNR
error €, is structurally controlled: the use of SVGD ensures that the policy update direction aligns
with the steepest descent on the KL divergence in the RKHS. Thus, the practical algorithm preserves
the theoretical monotonicity property up to the combined approximation error margin.

F MORE DETAILS

F.1 ENVIRONMENT DETAILS

HalfCheetah-2x3. Partitioning ‘“2x3” splits the half-cheetah into two agents, each controlling three
hinge joints: Agent O and Agent 1 each have an action space Box(—1,1, (3,)) with joint groups
(bthigh,bshin,bfoot) and (fthigh, fshin, ffoot), respectively’. Observations support
“gpos” and “qvel” categories. All agents observe the position/velocity of the cheetah’s tip. All agents
receive the same reward as Gymnasium’s HalfCheetah.

HalfCheetah-1p1. This environment contains two half-cheetahs coupled by an elas-
tic tendon, partitioned into two agents (“Ipl”), each controlling six joints.  Agent 0O
controls (bfoot0,bshin0,bthigh0, ffoot0, fshin0, fthigh0); Agent 1 con-
trols (bfootl,bshinl,bthighl,ffootl,fshinl, fthighl), with action spaces
Box(—1,1,(6,)).> Supported observation categories include “qpos”, “qvel”, the tendon Ja-
cobian (“ten_J”), and tendon length/velocity (“ten_length,ten_velocity”). All agents receive the
average reward of each cheetah. Episodes end as in Gymnasium’s HalfCheetah.

Ant-2x4. Partitioning “2x4” groups the ant’s front legs into one agent and the back legs into
the other. Each agent controls four joints with action space Box(—1,1,(4,)), corresponding
to (hipl,anklel,hip2,ankle2) for the front and (hip3,ankle3,hip4,ankled) for the

https://robotics.farama.org/envs/MaMuJoCo/ma_half_cheetah/#if-partiti
oning-2x3-front-and-back

3https://robotics.farama.org/envs/MaMuJoCO/ma_coupled_half_cheetah/#i
f-partitioning-1lpl-isolate-the-cheetahs
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LEINT3

back*. Observation categories include “qpos”, “qvel”, and “cfrc_ext” by default in v1. Global nodes
refer to the torso (“root”). All agents receive the same reward as Gymnasium’s Ant.

Walker2d-2x3. Partitioning “2x3” isolates the right and left legs into two agents. Each agent has a 3D
action space Box(—1, 1, (3,)): the right leg controls (foot _joint,leg_-joint,thigh_joint),
and the left leg controls (foot_left_joint,leg_left_joint,thigh_ left_joint).” Ob-
servation categories support “qpos” and “qvel”. Each agent additionally observes the walker’s top.
All agents receive the same Walker2D reward.

F.2 IMPLEMENTATION DETAILS

For SVNR, we take the negotiation set: C; = {1,...,i}, Vi. For all experiments, we use the
TPE Sampler (Bergstra et al., 2011) to select the learning rates, particle numbers, and the entropy
coefficient o based on the maximum mean reward in 50 trails. The learning rate and initial o are
finetuned in [107%,1071] and [107!, 10], and particle numbers are finetuned in an integer space
from 16 to 64. Other hyperparameters follow the ROMMEOQ?®. The optimizer is ADAM, and the
sizes of the replay buffer and batch are 10 and 512. k(z, ') = exp(—1/h||x — z'||3), bandwidth
h = med? /log n, where med is the median of the pairwise distance between the current points
{x;}1_, as suggested in amortized SVGD (Feng et al., 2017). To gain exploration in the early stage,
we anneal « based on o = o’ + exp(—0.1 x max(steps — 10,0)) % 500 all methods in most of the
scenarios where o/ is the initial .. The only exception is that we anneal « to 1 when we investigate
the PRO for all methods.

F.3 HYPERPARAMETER SELECTION: NEGOTIATION ROUNDS (K) AND PARTICLE COUNT (M)

The selection of the negotiation rounds K and particle count M is grounded in the theoretical
properties of Stein Variational Gradient Descent (SVGD) and our specific amortization strategy.

Negotiation Rounds (/). From a theoretical standpoint, Theorem 3.1 requires K — oo for the
iterative particle updates u** = T'(u**~1) to converge to the fixed point where the Stein discrepancy
is zero. However, in our practical implementation (Section 5, Algorithm 1), we set K = 1 for
all tasks. This is a structural advantage of Amortized MPSVGD. Instead of maintaining a set of
particles that must be iteratively updated K times via the kernel interaction term at every decision
step, we parameterize the policy as a neural sampler u = f,(§;-). The optimization objective in
Equation 8 minimizes the KL divergence. By updating v via the chain rule and the Stein variational
gradient (Eq. 9 & 10), the neural network distills the multi-step negotiation dynamics into the
weights of the function f,;,. Mathematically, the network fy, learns to approximate the limit of the
functional composition of the Stein operator, i.e., fy (£) & limg oo T5(€). Consequently, during
both training inference and execution, a single forward pass (X = 1) is sufficient to generate samples
that approximate the equilibrium distribution.

Particle Count (1/). The choice of M governs the fidelity of the empirical measure approximation to
the true posterior. M balances the approximation error (which scales with convergence rate related to
1/+/M) against the computational complexity of the Stein gradient (which is O(M?) due to pairwise
kernel computations).

* Theoretical Lower Bound: ) must be sufficient to support the modes of the target distribution.
For a multimodal objective (like the “Two Modalities” differential game in Section 6), M must be
large enough such that the initial particles cover the basins of attraction for all significant modes;
otherwise, the deterministic update dynamics may collapse into a subset of local optima.

* Practical Guidance: In our extensive ablation studies (Appendix H.1), we observed a performance
plateau where increasing M beyond a certain threshold yields diminishing returns in reducing the
Stein discrepancy. We found that M € [32, 40] is the effective range for all tested environments.

‘nttps://robotics.farama.org/envs/MaMuJoCo/ma_ant/#if-partitioning-2x4
—-neighboring-legs-together-front-and-back

Shttps://robotics.farama.org/envs/MaMuJoCo/ma_walker2d/#if-partitionin
g-2x3—-1isolate-right—-and-left-foot

*https://github.com/rommeoijcai2019/rommeo
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This range provides sufficient particle density to estimate the score function V log 7* accurately

via the kernel density estimate while maintaining low wall-clock training time.

G MISSING RESULTS

G.1 ANALYSIS OF TABLE 2
Table 2: Test performances. The proposed SVNR achieves the highest returns in all scenarios.
. Max Of Three | Max Of Three | Max Of Three .
Methods / Scenarios (s5 = 3.0) (55 = 2.0) (s5 = 1.5) Farticle Gather
SVNR (Ours) 9.60+£0.30 | 9.64+0.17 | 9.71+0.20 | 4.76 £0.20
MADDPG 2.08 £4.63 —0.66 £0.67 | —0.64 £0.43 | 0.00 £ 0.00
MASQL 8.92+0.37 —0.58+£0.24 | —0.34 £0.12 | —0.54+0.20
PR2 4.76 £ 3.64 —0.64 £0.45 | —0.29 £0.10 | 0.00 £ 0.02
ROMMEO 6.14 +4.82 1.59 £5.03 —0.59+0.25 | —0.87 +£0.22
MMQ 9.54+0.13 1.63 £2.51 —0.07+0.04 | —0.75 £ 0.00

Table 2 reports test-time returns for the Max of Three differential game across three coverage factors
s2 € {3.0,2.0, 1.5} and for Particle Gather. We summarize three salient observations:

1) Robustness to narrowing basins (Max of Three). As the coverage factor decreases (se = 3.0 —
1.5), the global optimum becomes harder to reach due to sharper reward basins and stronger gradients
toward suboptimal regions (i.e., exacerbated ERO). SVNR maintains near-optimal returns across
all settings (9.60 £ 0.30, 9.64 + 0.17, 9.71 4 0.20), while baselines degrade sharply: MADDPG
hovers around 0 or negative returns (2.08 & 4.63, —0.66 £ 0.67, —0.64 £ 0.43), and reasoning
methods that partially mitigate RO at s5=3.0 (e.g., MASQL 8.92+0.37, MMQ 9.54 +0.13) collapse
when so narrows (MASQL: —0.58 £ 0.24 at 2.0, —0.34 £+ 0.12 at 1.5; MMQ: 1.63 + 2.51 at 2.0,
—0.07 £ 0.04 at 1.5). PR2 and ROMMEO exhibit high variance (e.g., PR2 4.76 £ 3.64 at 3.0) and
similarly deteriorate as so decreases (PR2: —0.64 4 0.45 at 2.0, —0.29 £ 0.10 at 1.5; ROMMEO:
1.59 £ 5.03 at 2.0, —0.59 + 0.25 at 1.5). These trends are consistent with negotiated reasoning
preventing both PRO during policy updates and ERO during execution.

2) Consistency and low variance. SVNR’s standard deviations remain small in all Max of Three
settings (at most +0.30), indicating stable convergence. By contrast, several baselines show large
variances (e.g., ROMMEO +4.82 at s = 3.0), reflecting sensitivity to exploration-induced miscoor-
dination and order effects.

3) Coordinated arrival in Particle Gather. SVNR attains the highest return in Particle Gather
(4.76 = 0.20), where agents must synchronize arrivals to avoid penalties. PR2 and MADDPG remain
near zero (0.00+£0.02 and 0.004-0.00), and MASQL/ROMMEO/MMQ are negative (e.g., ROMMEO
—0.87 £ 0.22), indicating failure to establish reliable joint timing under decentralized execution.
These outcomes align with our theoretical guarantees: once PRO is avoided and av — 0, negotiated
reasoning removes ERO at execution.

Overall, the numerical evidence in Table 2 complements the figure-based analyses in the main text:
SVNR consistently achieves optimal or near-optimal cooperation where RO-prone baselines either
collapse or exhibit high variance as coordination becomes more brittle.

G.2 ADDITIONAL GENERAL-PURPOSE MARL BASELINES ON RO-CHALLENGED TASKS

To further clarify SVNR’s position in the broader MARL landscape, we benchmark strong general-
purpose methods (MAPPO, QMIX, FACMAC) on the RO-challenged tasks (Max of Three and
Farticle Gather). Results in Table 3 show that, despite their strong performance in many cooperative
domains, these methods struggle to cope with the PRO/ERO pathologies intrinsic to RO-heavy
settings, often converging to suboptimal equilibria.

Discussion. In Max of Three, general-purpose methods achieve low or negative returns even at
59=3.0 (e.g., MAPPO 2.87 + 0.12, QMIX 2.15 + 2.58, FACMAC 2.67 + 1.42) and degrade further
as so narrows (e.g., MAPPO —0.68 £ 0.33 at 1.5), consistent with their lack of explicit mechanisms
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Table 3: Additional general-purpose MARL baselines on RO-challenged tasks. SVNR achieves the
highest returns across all settings.

Methods / Scenarios xj);o?fg)h ree l(\f;D;OQf;)F)h ree l(\iljx:Olf g)h ree Particle Gather
SVNR (Ours) 9.60 + 0.30 9.64+0.17 9.71 +£0.20 4.76 +0.20
MADDPG 2.08 +4.63 —0.66 £0.67 | —0.64 £0.43 | 0.00 4+ 0.00
MAPPO 2.87+0.12 —0.62+0.36 | —0.68 £0.33 | —0.00 + 0.02
QMIX 2.15+2.58 —0.42+0.56 | —0.39+0.32 | 0.00 +0.02
FACMAC 2.67+1.42 —0.51+£0.52 | —0.45+0.28 | 0.00 +0.00

to prevent PRO during updates or ERO at execution. In Particle Gather, these methods converge to
near-zero or negative returns (e.g., QMIX 0.00 £ 0.02), reflecting difficulty in achieving synchronized
arrivals under decentralized execution. By contrast, SVNR maintains near-optimal returns across
all RO-challenged settings, reinforcing our theoretical claim that negotiated reasoning achieves
consistent reasoning (PRO-free) and, with o — 0, avoids ERO at execution.

H MISSING ABLATION STUDIES

This appendix presents ablations on 3 axes central to the practicality: (1) particle count M (SVGD
particles used in negotiation), (2) scaling with the number of agents, and (3) robustness to non-strict
communication/negotiation topologies. Unless otherwise stated, SVNR uses the same network archi-
tectures and training budgets as in the main experiments, with Adam optimizers and identical replay
and target update schedules. Wall-clock training time is reported as minutes per 10° environment
steps and depends on hardware. Here we give measurements on 1 NVIDIA A100 (80GB).

H.1 SENSITIVITY TO PARTICLE COUNT M ON MAaMUuJoCo

Protocol. We vary the SVGD particle count M € {16,24, 32, 40,48, 56,64} on 4 MaMuJoCo
tasks. For each setting, we run 5 random seeds. We report mean =+ std test returns and average
wall-clock minutes per 108 environment steps. We also report a normalized average performance

score across tasks, NAP(M) := 1 >, .+ %, where R;(M) is the mean return on task ¢ with
M particles, and 32 is the reference setting used in our main experiments. A value NAP(M) ~ 1
indicates performance comparable to M =32.

Results. Across all four tasks, performance is flat in the range M € [24, 48], with a mild peak
around M =40, and slightly lower returns for very small (M =16) or larger (M =64) particle counts.
Training time scales near-linearly with M. These trends suggest a practical sweet spot at M €
{32, 40} for best accuracy—efficiency trade-off.

Table 4: SVNR particle-count ablation on MaMuJoCo (5 seeds per setting). Mean =+ std test returns
and training time. NAP = normalized average performance across tasks (vs M=32). Time Index
normalizes minutes per 10° steps by the M =32 setting.

M | HalfCheetah-2x3 | CoupledHalfCheetah-1pl | Ant-2x4 | Walker2d-2x3 | NAP(Az) | Minutes per 107 steps
(Time Index)
16 | 8798 £ 240 102 £ 95 521 £38 | 1604 £ 311 0.962 0.73
24| 8842 £ 220 18 £ 90 531 £34 | 1650 £ 290 0.983 0.85
32 | 8891 £ 210 129 £ 88 538 £ 31 | 1687 £ 271 1.000 .00
40 | 8920 =+ 205 135 £ 86 540 £30 | 1702 £ 268 1.007 114
43| 8887215 13T £ 87 537 £31 | 1689 £ 272 1.001 1.27
56 | 8854 £ 225 120 £ 90 53332 | 1665 £ 280 0.988 1.38
64 | 8820 £ 235 2L 92 520 £ 34 | 1642 £ 289 0.977 1.50

Takeaways. (i) SVNR is robust to the choice of M in a broad range; (ii) M € [32,40] offers a
good balance of performance and compute; (iii) training time scales close to linearly with M, which
matches our design-time complexity analysis.
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H.2 SCALING WITH THE NUMBER OF AGENTS

Protocol.

where M is the particle set, T are tasks in the regime, R; (M

We examine how the number of agents affects both performance and wall-clock efficiency
when varying M € {16, 24, 32, 40,48, 56,64} (i) two-agent tasks: the four MaMuJoCo tasks; (ii)
three-agent task: Max of Three; (iii) four—agent task: Particle Gather. We define:

NPI := !

[M]

 (;

MeMm

tET

ZM

MeM

) is the mean return on task ¢ at M, and

T (M) is minutes per 10 steps (averaged over the relevant tasks). Thus NP1~ 1 denotes performance
comparable to M =32, and NTI> 1 indicates higher compute cost than M =32.

Results.

Performance degrades mildly as the number of agents increases, while training time grows

sublinearly-to-linearly (reflecting both additional policies and negotiation). In practice, M € [32,40]
keeps NPI close to 1 across 2—4 agents with acceptable NT1.

Table 5: Agent-count scaling summary across particle counts M € {16, ...,64}. NPI = normalized
performance index; NTI = normalized time index (both relative to M =32).
#Agents | Tasks included NPI (mean) | NTI (mean)
2 HalfCheetah-2x3, CoupledHalfCheetah-1p1, Ant-2x4, Walker2d-2x3 0.995 1.00
3 Max of Three 0.989 1.09
4 Particle Gather 0.976 1.22
Takeaways. SVNR maintains near-constant normalized performance as agents scale, with modest

increases in training time. This suggests the amortized negotiation and correlated sampling scheme
are effective at containing both PRO and ERO across agent counts with manageable compute.

H.3 ROBUSTNESS TO COMMUNICATION/NEGOTIATION TOPOLOGIES

H.3.1 THE FULL SET AND NULL SET

There are two typical C' € Cyested, I-€., full negotiation and strict nested negotiation. Our SVNR
adopts the nested decomposition that C; = {1, ...,i}. We design SVNR-F, which adopts C; = —
to show whether making conditions on more agents can improve the performance. Moreover, we
also devise SVNR-M as another baseline which is the proposed SVNR adopt C; = {}. This can be
useful to show the importance of let C; € Cyesteq- We take the experiments on the Max of Three and
Farticle Gather for further analysis.
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(a) s2 = 3.0 (b) s2 =2.0 (c)sa =15 (d) Particle Gather

Figure 6: Influence of different coverage factors s, on the training curves of (a-c) our method
and different baselines in the Max Of Three. (d) shows the training curves in the Particle Gather
scenario. The solid lines and shadow areas denote the mean and variance of the instantaneous
rewards with 5 different seeds. With the larger s, the agents encounter a higher impact of relative

over-generalization, and the proposed SVNR achieves the optimal solution in all settings.

As shown in Figure 6, both the SVNR and SVNR-F outperform the SVNR-M under s; = 1.5, 2.0, 3.0
in the Max of Three scenario, which indicates the necessity of taking other agents’ noises into
consideration. We also visualize their joint actions from 1 to 3000 steps under s3 = 1.5 as shown in
Figure 7. Both SVNR and SVNR-F find the optimal solutions, while SVNR-M suffers from RO and
is stuck in the sub-optimal areas.
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(a) SVNR (Ours) (b) SVNR-F (c) SVNR-M

Figure 7: The 1000 sampled joint actions of all methods in the setting of so = 1.5 in the Max of
Three scenario. Each point represents a joint action taken by the agents at a specific timestep, and
different colors represent the levels of instantaneous rewards. All joint actions are sampled every 3
timestep from 1 to 3000 timesteps in the training phase.

Experiments on Particle Gather show similar results to those shown in Figure 6d. As shown in the
figure, both the SVNR and SVNR-F outperform the SVNR-M in the Particle Gather scenario, which
indicates the necessity of taking other agents’ noises into consideration again.

H.3.2 MORE STOCHASTIC SETS

Protocol. Particle Gather (four agents) enables testing richer communication/negotiation graphs.
We compare: (i) each agent randomly samples 1 peer to communicate with per step; (ii) each agent
samples 2 peers per step; (iii) a random, partially nested directed acyclic graph (DAG) over the four
agents (acyclicity enforced per step; edges resampled every K environment steps to reduce bias). We
report mean = std test returns over 5 seeds and minutes per 10° steps. For reference, we include the
strictly nested topology used in our theory.

Results. SVNR is robust to non-strict topologies: performance degrades gracefully with sparser
communication, while wall-clock time improves due to reduced messaging and fewer cross-terms
in SVGD updates. Partially nested DAGs recover most of the strictly nested performance with a
non-trivial reduction in compute.

Table 6: Topology ablation on Particle Gather (4 agents, 5 seeds).

Topology Avg edges/agent | Return (mean =+ std)
Strictly nested (SVNR default) 3.0 4.62+0.34
Random, partially nested DAG ~ 2.5 4.33£0.24
Sample-2 peers (per step) 2.0 4.08 £0.31
Sample-1 peer (per step) 1.0 2.37+£0.37

Takeaways. (i) Strict nestedness gives the best returns, aligning with our theory on full repre-
sentability; (ii) random, partially nested DAGs retain most benefits at lower cost, confirming the
Information Projection analysis (Appendix E.8) where the topology preserves sufficient conditional
dependencies to capture the bulk of coordination information; (iii) aggressive sparsification (1 peer)
remains viable but yields larger variance and lower returns—consistent with a wider approximation
gap in the variational family.

H.4 SENSITIVITY ANALYSIS OF TEMPERATURE PARAMETER «

The temperature parameter « plays a dual role in the SVNR framework: theoretically, it bridges the
gap between the stochastic explorative policy and the deterministic optimal execution (as discussed in
Theorem 3.2); algorithmically, it governs the optimization landscape smoothing. Here, we provide a
theoretical analysis of why SVNR is robust within a bounded range of «, followed by comprehensive
ablation experiments.
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H.4.1 THEORETICAL ANALYSIS: o AS A HOMOTOPY PARAMETER

Mathematically, the sensitivity to « can be analyzed through the lens of homotopy continuation
methods.

The Role of Final o (Approximation Error). Recall that the optimal joint policy is induced by the
Boltzmann distribution 7, (uls) oc exp(Z sopi(s,0)).

* As a — 0: The distribution converges to a Dirac delta function centered at the global maximum:
lim, 0 7} (uls) = 6(u — u*). This is the condition required for strictly ERO-free execution
(Theorem 3.2).

* For finite o > 0: The executed policy retains stochasticity. Let AQ(u) = Q(s,u*) — Q(s,u) be
the sub-optimality gap. The probability of sampling a sub-optimal action u’ decays exponentially:

AQu)
P(u') x exp(fT).
The performance loss (regret) due to a non-zero final ovf;pq; is bounded. If  f41,4; is small relative
to the reward gap of the local optima (the “energy barrier”), the probability mass concentrates
effectively on the global optimum. Therefore, precise tuning of acfipq; is not required, provided
Afinal K minu¢u* AQ(LI)

The Role of Annealing Schedule (Optimization Landscape). The annealing process functions as a
continuation method. At high « (early training), the energy landscape F(u) = —Q(u) is smoothed.
The Stein Variational Gradient Descent (SVGD) particles experience a gradient field dominated by
the entropy term, Vlogm ~ — iVE + entropy, allowing particles to traverse potential barriers.

Crucially, our use of SVGD provides higher robustness than standard single-point MCMC. Since
we maintain a set of interacting particles {u‘}}L, with a repulsive kernel force 3~ Vk(u/, u), the
particles naturally resist collapsing into local optima too early, making SVNR less sensitive to the
annealing rate than standard Soft Q-Learning.

H.4.2 EMPIRICAL SENSITIVITY ANALYSIS

To validate this theory, we conducted extensive ablations on the Max of Three (s3 = 1.5) environment,
which is highly sensitive to RO. All results are averaged over 5 seeds.

A. Sensitivity to Final o (af4,q:). We fixed the annealing schedule (decaying over 50% of total
steps) but varied the target floor value o f;,4;. As shown in Table 7, performance is stable for any
A finat € [0,0.1]. The method is not brittle; it does not require « to be exactly zero, only sufficiently
small to suppress noise below the coordination threshold.

Table 7: Sensitivity to Final o in Max of Three (sq = 1.5).

Final « Mean Return Std Dev  Conv. Rate  Interpretation

1.0 6.82 2.15 20% Too High: Distribution too diffuse (ERO).
0.1 9.15 0.45 100% Acceptable: Mass concentrates on optimum.
0.01 9.71 0.20 100% Optimal: Approximates Dirac delta.

0.001 9.68 0.22 100% Optimal: Diminishing returns.

0.0 9.65 0.25 100% Hard Max: Equivalent to greedy execution.

B. Sensitivity to Annealing Schedule. We fixed as¢rc = 1.0 and avfipnq; = 0.01, varying the decay
function over the total training steps 7. Results are shown in Table 8.

The results confirm that while annealing is necessary (“Instant” schedule fails, validating our PRO
theory), there exists a wide safe region. Any schedule spanning 30% to 80% of training yields
optimal results. The repulsive mechanism in SVGD significantly widens the safe hyperparameter
basin compared to standard baselines.
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Table 8: Sensitivity to Annealing Schedule in Max of Three (s5 = 1.5).

Schedule Type  Decay Duration Return Std Dev  Analysis

Instant 0% (Fixed « = 0.01)  -0.65 0.12 Failure: Trapped in local optima.

Fast Linear 10% of T 4.20 4.80 Unstable: “Quenching” causes collapse.
Medium Linear 30% of T' 9.62 0.28 Robust.

Slow Linear 80% of T’ 9.73 0.15 Robust: Best stability.

Exponential 7 =0.9995 9.69 0.19 Robust: Smooth transition works well.

H.5 COMPUTATIONAL ANALYSIS AND FAIR COMPARISON PROTOCOL

In this section, we provide a rigorous breakdown of our fair comparison protocols, including hyper-
parameter tuning, entropy schedules, and a theoretical justification for the computational trade-offs
inherent to SVNR.

H.5.1 THEORETICAL JUSTIFICATION: COMPUTATIONAL COST VS. CONVERGENCE
GEOMETRY

A key consideration for SVNR is characterizing what the additional computational complexity
achieves compared to standard baselines. While standard policy gradient methods (e.g., MADDPG)
rely on gradients in the Euclidean parameter space (O(1) complexity per update), SVNR approximates
a gradient flow in the space of probability distributions.

Mathematically, let P(U{) be the space of joint policy distributions. Standard updates 01 <
01 + eV J(0) follow steepest descent in a Euclidean metric. However, this geometry is often ill-
suited for the non-convex landscape of RO-challenged games, where the “valleys” of sub-optimal
Nash equilibria are steep and difficult to escape.

SVNR, via the Stein Variational Gradient Descent (SVGD) mechanism, approximates the Wasserstein
gradient flow of the KL divergence functional F'(p) = Dy, (p||7%). The update direction ¢* in the
Reproducing Kernel Hilbert Space (RKHS) H? is given by the Stein operator:

6" (4) = Eurp [kt u) Vo log (') + Vs k(e 0)]. (19)

Evaluating this kernelized update introduces a computational complexity of O(M?) (where M is the
number of particles). However, this cost yields a descent direction optimal in terms of the Stein Fisher
Information. Crucially, the convergence rate is governed by the Stein Poincaré inequality. Unlike
standard gradients that vanish at any local optimum (including sub-optimal RO points), the particle
interaction term V.- k(u’, u) acts as a repulsive force, preventing the distribution from collapsing into
a single sub-optimal mode. Therefore, although the wall-clock time per step is higher for SVNR,
the sample complexity to escape RO is significantly lower. The compute budget is thus utilized to
approximate the optimal transport map from the initial belief to the optimal equilibrium.

H.5.2 HYPERPARAMETER TUNING AND SEARCH SPACES

To ensure fairness, we utilized the Tree-structured Parzen Estimator (TPE) sampler for all methods
(SVNR and baselines) with an identical budget of 50 trials per environment. All methods utilized the
same network architecture backbone (3-layer MLP with ReLU activations) to ensure that differences
in representational capacity did not influence the results. We optimized the search spaces detailed in
Table 9.

H.5.3 IDENTICAL ENTROPY SCHEDULES

Entropy schedules are critical in MaxEnt MARL, as higher o promotes exploration that can inciden-
tally mitigate RO. To isolate the contribution of the negotiated reasoning mechanism, we employed
**identical, fixed o annealing schedules** for all MaxEnt-based methods (SVNR, MASQL, PR2,
ROMMEO, MMQ). The schedule used was:

t
Qi = Qepd + (astart - Olend) X exp (_> 5 (20)

Ta
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Table 9: Hyperparameter Search Spaces for TPE Tuning.

Hyperparameter Search Space Distribution
Learning Rate (1) [1x107%,1x1071] Log-uniform
Batch Size (B) {256,512,1024} Categorical
Polyak Averaging (1) [0.001,0.01] Uniform
Reward Scaling {1,10, 100} Categorical
Hidden Units (MLP) {64,128,256} Categorical
SVNR Specific

Particle Count (M) {16,...,64} Integer Uniform
Baseline Specific (PR2, ROMMEO)

Recursive Steps (k) {1,...,3} Integer Uniform

where oy = 1.0, aeng = 0.01, and the decay rate 7, was fixed for all agents in a given environment.
This ensures that SVNR’s ability to capture multi-modal optima stems from the Stein variational
updates, not from artificially inflated entropy.

H.5.4 WALL-CLOCK TIME VS. PERFORMANCE ANALYSIS

We provide a comparison of training time (on a single NVIDIA A100 GPU) versus final performance
on the Ant-2x4 (MaMuJoCo) task in Table 10.

Table 10: Compute Efficiency and Performance Comparison on Ant-2x4.

Method Params (||0||) Time (hrs) Rel. Time Final Return Convergence Step
SVNR (Ours) ~1.2M 4.8 1.0x (Ref) 536 + 31 ~1.5M
MADDPG ~0.8M 2.1 0.44x 108 + 26 Failed (Local Opt)
MASQL ~0.8M 23 0.48x 225 + 34 ~2.8M
PR2 ~1.5M 52 1.08x 354 £ 58 ~2.0M
ROMMEO ~1.4M 4.9 1.02x 424 + 60 ~1.8M
MAPPO ~0.9M 1.8 0.38x 87 £ 135 Failed

While SVNR incurs higher wall-clock time (~2.2x) compared to simple baselines like MADDPG
due to particle processing, it is comparable to other reasoning methods (PR2, ROMMEO). Crucially,
SVNR provides the highest “Return per GPU-Hour” because the PRO-free updates prevent the
optimization trajectory from oscillating between sub-optimal equilibria, effectively “short-circuiting”
the learning process in RO-challenged landscapes where faster baselines fail to converge to the global
optimum.

I MORE RELATED WORK

Opponent Modeling Our work also has a connection with opponent modeling (Albrecht & Stone,
2018) (OM), which involves modeling the behavior of others. The traditional OM methods only
model an opponent’s behavior based on their history, assuming they play stationary policies (Littman,
2001; Brown, 1951). There are two main limitations to these methods. The first one is that these
methods tend to work with predefined targets of opponents. Fictitious play (Brown, 1951), friend-
or-foe q (Littman, 2001), and many OM methods (Hu & Wellman, 2003; Greenwald & Hall, 2003;
Littman, 1994) make a strong assumption on opponent policies which makes them unsuitable for
current MARL where opponents change their policies with learning (Wen et al., 2019). The other
limitation is that agents require the Nash equilibrium to update their Q function during training (e.g.,
Nash Q learning (Hu & Wellman, 2003) and Wolf models(Bowling, 2004)). These limitations make
it hard to apply traditional OM methods to MARL. Compared to the traditional OM methods, our
methods do not have these limitations. Besides, some popular OM methods have been proposed:
reasoning-endowed methods (Wen et al., 2019; Tian et al., 2019), and we have summarized them in
the previous subsection.
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Probabilistic inference for (MA)RL Formulating RL problems as probabilistic inference problems
has shown substantial results in obtaining maximum entropy exploration (Haarnoja et al., 2017; 2018;
Levine, 2018) and allows a number of inference methods to be adopted. These methods embed the
problem into a graphical model by modeling the relations among states, actions, next states, and
indicators of optimality. Then the optimal policy can be recovered by making inferences on the
graphical model. For example, Soft Q-learning (Haarnoja et al., 2017) expresses the optimal policy
via a Boltzmann distribution and adopts amortized SVGD (Feng et al., 2017) to make approximate
sampling on the target distribution. Different RL problems, the MARL problem involves a number of
agents interacting with each other which makes it non-trivial to make extensions from single agent
RL reformulations. MASQL (Wei et al., 2018), ROMMEQO (Tian et al., 2019), and PR2 (Wen et al.,
2019) let each agent model the relations among states, its actions, the actions of its opponents, next
states, and indicators of optimality. Each agent expresses the optimal joint policy via a Boltzmann
distribution and derives its individual policy and opponent policy accordingly. However, the opponent
policy of the agent is not guaranteed to be consistent with the individual policies of opponents.
Compared with these methods, the agent in our SVNR perceives opponent policy as consistent with
the individual policies of opponents by K-Step negotiation during training.

1.1 NEGOTIATED REASONING VS. COMMUNICATION-BASED MARL

While “negotiation” and “communication” may appear semantically similar, they operate on funda-
mentally different mathematical objects in our framework.

Communication addresses Partial Observability. In standard communication-based MARL (e.g.,
TarMAC, BicNet), the objective is to approximate the sufficient statistics of the full global state s.
Mathematically, let O; be the observation space and M be the message space. Communication learns
a state-dependent mapping u : X;0; — M such that the policy 7;(u;|0;, m_;) approximates the
centralized policy 7 (u;|s). Crucially, the “message” m is a random variable dependent on the state,
ie,m [t s.

Negotiated Reasoning addresses Equilibrium Selection via Variational Inference. In contrast,
SVNR is an optimization process defined on the probability measure space P(U). It constructs a flow
of measures {qx }1-_, driven by functional gradient descent to minimize the KL-divergence functional
J(q) = Dk (q||7%). The "negotiation” is the transformation T'(u) = u + ep(u), where ¢ is the
steepest descent direction in the RKHS H -, governed by the Stein operator A «:

0% (1) = By [Ars h(w)] = By [V log 7 (u) () + Vh(u)]. @)

Here, agents exchange gradient information (V,,, @) and action particles during training to align the
joint distribution with the global value landscape. This process changes the optimization landscape
to avoid suboptimal local optima (RO), rather than aggregating state observations.

A critical distinction lies in the execution phase. Our method is communication-free in the standard
MARL sense (i.e., no state-dependent message passing).

From a game-theoretic perspective, the “shared noise” £ in our Amortized SVNR serves as a
correlation device (Aumann, 1974), not a communication channel.

+ Standard Nash Equilibrium assumes independent mixing: 7 (u|s) = [, 7;(w;|s). This restricts
agents from coordinating on specific optimal joint actions in multimodal landscapes (as seen in our
”Two Modalities” experiment).

* Correlated Equilibrium (Ours): Agents condition strategies on a public signal &, such that

m(uls) = [ IT; mi(uils, )p(§)de.

In our framework, £ is ex-ante common randomness (e.g., a synchronized PRNG seed). It satisfies
the independence condition ¢ | s. This distinguishes it from communication messages m, where

m = f(s).

1.2 RELATION TO OPPONENT MODELING (OM)

Our work connects to Opponent Modeling (OM) but differs fundamentally in objective.
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OM is Predictive. Traditional OM is a predictive task (typically regression or density estimation)
where agent ¢ estimates parameters 6_; to approximate P(u_;|s,history) via Maximum Likeli-
hood Estimation (MLE): ming Ep[— log Py(u_;|s)]. This approach often leads to Relative Over-
generalization (RO) because agents optimize against the current (potentially suboptimal) behavior of
others.

Negotiated Reasoning is Prescriptive. SVNR provides a consistent reasoning framework. We do
not merely predict what opponents will do based on history. Instead, we solve for a fixed point where
every agent’s reasoning is consistent with the optimal joint distribution:

lim qr(u) =75(u) = pi(u_;) = /W:‘X(ui,u_i)dui. (22)
k—o0

This satisfies the Consistent Reasoning condition (Definition 2.3), which standard OM fails to
guarantee during the exploration phase.

J THEORETICAL GROUNDING OF DECENTRALIZED EXECUTION VIA
COMMON RANDOMNESS

In this section, we clarify the theoretical nature of the shared noise ¢ utilized in SVNR’s execution
phase and distinguish it from communication.

Correlated Equilibrium vs. Communication. From a game-theoretic perspective, the shared noise
& serves as a correlation device (Aumann, 1974), not a communication channel.

+ Standard Nash Equilibrium (NE): Assumes independent action mixing, 7(uls) = [ [, m;(u;|s).
This independence often limits agents to suboptimal outcomes in cooperative games (e.g., miscoor-
dination in the ”Chicken” game).

* Correlated Equilibrium (CE): Allows agents to condition their strategies on a public signal &,

such that w(uls) = [ [, mi(uils, §)p(€)dE.

In SVNR, the sharing of £ occurs ex-ante. In the literature of Contract Theory and Mechanism Design,
this is akin to agents agreeing on a ”convention” or a random seed prior to the game to coordinate on a
specific equilibrium. This is fundamentally distinct from communication in MARL, which is typically
defined as the transmission of private observations o;, beliefs, or state-dependent information during
execution to resolve partial observability. Our method does not transmit state-dependent information;
it utilizes a synchronized Pseudo-Random Number Generator (PRNG) seed (common randomness)
to break symmetries and coordinate exploration/execution without bandwidth cost.

Amortized Inference Implementation. Practically, our Amortized MPSVGD distills the iterative
negotiation process into a function fy, (&, &c;, 9).

* Training: Agents explicitly negotiate via the particle updates to find the optimal joint distribution.

* Execution: Agents sample actions using the learned policy. The “sharing” of £ is implemented
simply by synchronizing random seeds among neighbors. This allows agents to implicitly coor-
dinate their sampling from the joint distribution g, (u|s) without exchanging messages about the
state s.

Therefore, SVNR achieves decentralized execution in the sense that no data transfer occurs between
agents during the decision-making step ¢.

K THEORETICAL ANALYSIS IN CONTINUOUS ACTION SPACES

While our convergence analysis in Section 4.2 assumes finite action spaces for notational simplicity,
our implementation of SVNR operates in continuous domains. This appendix clarifies the theoretical
consistency between the finite-space analysis and the continuous-space implementation, grounded in
measure-theoretic unification and the geometry of Reproducing Kernel Hilbert Spaces (RKHS).
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K.1 MEASURE-THEORETIC UNIFICATION OF THE SOFT BELLMAN OPERATOR

The theoretical gap between discrete and continuous analysis is notational rather than structural. The
Soft Bellman operator 7 used in our proofs relies on the soft value function. In continuous action
spaces U C R, this generalizes naturally by replacing the counting measure with the Lebesgue

measure. The value function becomes:
exp (Q(s,u)> dp(u). (23)
«

V(s) = alog /
u

Provided that @ is bounded and measurable (ensuring the integral exists), the properties of mono-

tonicity and contraction (in the L> norm) required for Lemma 4.1 and Theorem 4.3 hold for the

continuous operator just as they do for the discrete case. Consequently, the policy iteration guarantees

extend to continuous function spaces under these mild regularity conditions.

K.2 NATIVE CONTINUITY OF NEGOTIATED REASONING

Crucially, the core novelty of our work—the Negotiated Reasoning mechanism—is theoretically
stronger in continuous spaces.

* SVGD Theory: Our negotiation process (Eq. 4, 5, 12) utilizes Stein Variational Gradient Descent.
The theoretical guarantees of SVGD, specifically the Stein Identity and the steepest descent
direction in the RKHS 7, are derived explicitly for continuous, differentiable probability densities
supported on R? (Liu & Wang, 2016).

* Gradient Flows: The negotiation update u < u + €¢*(u) approximates a gradient flow in the
space of probability measures under the Kullback-Leibler divergence metric. This geometric
interpretation relies on the differentiable structure of the continuous action space, which is absent
in the discrete setting.

K.3 BRIDGING THE GAP VIA PARTICLE APPROXIMATION
Our method operates in a hybrid theoretical regime bridged by particle approximation:

1. Policy Iteration (Global Convergence): As established in Section K.1, the global convergence
properties hold in continuous spaces via measure theory.

2. Negotiated Reasoning (Local Update): As established in Section K.2, the update mechanism is
natively continuous.

The “gap” is bridged by our Amortized MPSVGD (Section 5), which uses a finite set of particles
{w}zj\i 1 to approximate the continuous posterior. This serves as a Monte Carlo approximation of
the integrals defined in the soft value function, which is asymptotically exact as M — oo by the
Law of Large Numbers. Thus, the finite-particle implementation is a consistent approximation of the
continuous theoretical framework.

L. INTERPRETABILITY OF NEGOTIATED REASONING

In this section, we elaborate on the transparency of the negotiation process within SVNR. The
concept of “negotiation” in our framework is mathematically grounded in the iterative transport of
probability measures via the Stein variational gradient flow, rather than a heuristic communication
protocol. This perspective allows us to interpret the learning dynamics through the lens of Amortized
Variational Inference.

L.1 MATHEMATICAL INTERPRETATION OF ROUNDS AND AGREEMENT

Theoretically, the negotiation corresponds to the functional gradient descent in the Reproducing
Kernel Hilbert Space (RKHS).

* Negotiation Rounds (K): The rounds K represent the discrete steps taken to transport the initial
particle distribution gg toward the target posterior p (the optimal joint policy) via the transform
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T(u) = u + €p*(u). In our Amortized SVNR (Section 5), we distill this multi-step transport
dynamic into a parameterized function f,,. Consequently, the explicit “round count” collapses into
the complexity of the learned mapping, where the network learns to approximate the cumulative
effect of the transport.

* Agreement: The “agreement” is mathematically defined as the system reaching the fixed point
where the Stein Discrepancy approaches zero, i.e., E,q[A,¢(u)] = 0, where A, is the Stein
operator. This implies that the empirical measure of the agents’ joint policy matches the optimal
Boltzmann distribution.

L.2 VISUALIZING THE CONVERGENCE OF MEASURE

The dynamics of negotiation are explicitly visualized as the evolution of the joint policy’s support
in our experimental results.

Evolution of Support (Figure 5): Figure 5 illustrates the transport of the joint action measure
over training steps. Initially (steps 1-1500), the probability mass is distributed over sub-optimal
modes (local Nash Equilibria). As the amortized policy f, minimizes the KL-divergence, we
observe the concentration of measure shifting from the local optimum to the global optimum (steps
1500-3000). This trajectory visually represents the “negotiation” resolving the Perceived Relative
Over-generalization (PRO) by reshaping the energy landscape of the policy and transporting particles
to the high-probability regions of the target distribution.

Topological Comparison (Figure 7): By comparing SVNR with SVNR-M (no negotiation) in Figure
7, we isolate the effect of the conditional dependency structure (the nested sets C;). Figure 7(a)
versus Figure 7(c) demonstrates that without the Stein transport (negotiation), the joint distribution
remains trapped in a sub-optimal mode. The “negotiation” is interpretable as the correction vector
applied to the joint distribution that aligns the agents’ conditional policies, ensuring the joint support
covers the global optimum.

M LIMITATIONS AND FUTURE WORK
This section discusses the limitations and outlines directions for future research.

Computational Overhead and Scalability. The communication complexity of our negotiation pro-
cess during training is O(N'), where N is the number of agents—comparable to standard centralized
training methods. While this does not affect execution efficiency (as no communication is required
during testing), scaling to environments with many agents or high-dimensional state/action spaces
may require balancing RO-free guarantees with computational efficiency. Our current implemen-
tation uses automated hyperparameter tuning via TPE Sampler to optimize learning rates, entropy
coefficients, and particle numbers, providing reliable default configurations across various settings.

Theoretical Assumptions. Our framework assumes nested negotiation/communication during train-
ing, consistent with the Centralized Training with Decentralized Execution (CTDE) paradigm widely
used in MARL. This allows agents to leverage global information for improved coordination during
training while maintaining fully decentralized, communication-free execution. Other assumptions
(e.g., stationarity, bounded rewards) are standard in MARL literature and necessary for theoretical
rigor without imposing impractical constraints.

Environmental Complexity. Our validation focuses on standard benchmark environments with
sufficient complexity to verify our theoretical claims while maintaining tractability. Extending our
approach to more complex, high-dimensional domains represents an important future direction, which
will likely require additional architectural innovations to preserve our RO-free guarantees while
maintaining computational efficiency.

Partial Observability. The current implementation leverages the Centralized Training with De-
centralized Execution (CTDE) paradigm to address partial observability. As demonstrated in the

32



Under review as a conference paper at ICLR 2026

MaMuJoCo experiments, our method effectively projects global guidance onto local policies during
training. However, explicitly incorporating recurrent architectures (e.g., Transformers or LSTMs)
to better encode long-horizon sequential observations within the negotiation policies remains a
promising direction for handling complex POMDPs with severe memory dependencies.

While addressing these limitations is beyond the scope of this paper, they represent valuable avenues
for future research that could significantly broaden the applicability of our RO-free MARL approach.

M.1 EXTENDED THEORETICAL ANALYSIS ON PARTIAL OBSERVABILITY

In this section, we provide a deeper theoretical analysis regarding the applicability of Stein Variational
Negotiated Reasoning (SVNR) to Partially Observable Stochastic Games (POSGs) and the feasibility
of fully decentralized training.

M.1.1 SVNR IN PARTIALLY OBSERVABLE STOCHASTIC GAMES

While the main text formulates the problem using global states s for clarity, SVNR naturally extends
to POSGs through the lens of projected variational inference. In a POSG, agent ¢ observes a local
history 7; € 7;, while the global state s (or joint history 7) is available only during centralized
training.

The objective of Maximum Entropy MARL in this setting is to learn a joint policy 7(u|7) that
minimizes the KL-divergence with the energy-based optimal policy induced by the global Q-function

QT u):
win D (salr) | Z o (FQrw)). 24)

In SVNR, the negotiation policy is parameterized by amortized neural networks fy, (ui|7:, &, éc;)
which condition only on local information 7;. The update rule in our Amortized MPSVGD (Equation
9 and 10) performs a projection of the global gradient onto the local parameter space. The gradient
for the local policy parameters ; is:

oJ ¥ e,

x By (25)

8f§”(€;n)] |

Here, A fiw (&; 7) is the Stein gradient computed using the global critic (full observability), repre-

W re
senting the optimal direction in the functional space. The term % is the Jacobian of the local

policy given local history.

This update effectively solves the following projection problem:

v; = argminEr [Dy (Ggtoba (17) || 7, (17:))] - (26)

By updating 1), via the chain rule, the agent learns a local policy 7y, (-|7;) that is the best possible
approximation (in terms of KL-divergence) of the globally optimal negotiated outcome, conditioned
on its limited view 7;. This theoretical formulation explains the strong empirical performance of
SVNR on partially observed benchmarks like MaMuJoCo (Table 1).

M.1.2 FEASIBILITY OF FULLY DECENTRALIZED TRAINING

Although our implementation utilizes a centralized critic Q(u, s) for sample efficiency, the SVNR
framework is theoretically compatible with fully decentralized training, provided the global utility
function admits a factorizable structure.

Consider a scenario where the global Q-function decomposes according to a factor graph (e.g., a
pairwise Markov Random Field) consistent with the agent topology:

Qtotal(u7 5) = Z Qc(um 5(:)7 (27)

ceC
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where c represents a local clique of agents (e.g., neighbors) and (). is a local utility function. The
core component of our method, the Stein variational update direction for agent ¢, is given by:

¢; (1) = Eung [ki(0, )V, Qo (1, 8) + Vi, ki(u, )] . (28)
Due to the linearity of the gradient operator, the score function term decomposes locally:
Vu-; Qtotal(ua 3) = Z vul Qc(um Sc)- (29)
[

This implies that agent ¢ does not need to query a global critic. Instead, it only requires the gradients
of the local utility functions from the cliques it belongs to. If we employ a decomposable kernel
k(u,u’) = []; k;(uy, u}), the expectation term also factorizes.

Consequently, Algorithm 1 can be reformulated as a Distributed Stein Variational Gradient
Descent (DSVGD) algorithm. In this variant, the "negotiation” during training occurs via gradient
message passing between neighbors rather than querying a central oracle, extending the applicability
of SVNR to scenarios where centralized training is not feasible.
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