

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 NEGOTIATED REASONING: ON PROVABLY ADDRESS- ING RELATIVE OVER-GENERALIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Over-generalization is a thorny issue in cognitive science, where people may become overly cautious due to past experiences. Agents in multi-agent reinforcement learning (MARL) also have been found suffering *relative over-generalization* (RO) as people do and stuck to sub-optimal cooperation. Recent methods have shown that assigning *reasoning* ability to agent can mitigate RO algorithmically and empirically, but there has been a lack of theoretical understanding of RO, let alone designing provably RO-free methods. This paper first proves that RO can be avoided when the MARL method satisfies a consistent reasoning requirement under certain conditions. Then we introduce a novel reasoning framework, called negotiated reasoning, that first builds the connection between reasoning and RO with theoretical justifications. After that, we propose an instantiated algorithm, Stein variational negotiated reasoning (SVNR), which uses Stein variational gradient descent to derive a negotiation policy that provably avoids RO in MARL under maximum entropy policy iteration. The method is further parameterized with neural networks for amortized learning, making computation efficient. Numerical experiments on many RO-challenged environments demonstrate the superiority and efficiency of SVNR compared to state-of-the-art methods in addressing RO.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) has been successfully applied in multiplayer games (Rashid et al., 2019; Kurach et al., 2020), robotics (Ding et al., 2020), and traffic control (Calvo & Dusparic, 2018). This paper addresses relative over-generalization (RO), a critical pathology in fully cooperative MARL settings where agents pursue team-optimal outcomes. RO is analogous to over-generalization in cognitive science (Rand et al., 2014; Laufer et al., 2016; Baron, 2000), where limited experiences lead to broad, often inaccurate generalizations—as in the “once bitten, twice shy” idiom, where a person bitten by a snake develops fear of rope-like objects. This cognitive phenomenon has been documented across language acquisition (Gershkoff-Stowe et al., 2006), social learning (Rand et al., 2014), and decision-making (Laufer et al., 2016).

In MARL, relative over-generalization (RO) poses a significant challenge to optimal cooperation (Palmer, 2020), as agents overfit their policies to others’ exploration behaviors. This is evident in *Particle Gather*, where particles aiming to reach a landmark synchronously become risk-averse after experiencing penalties from uncoordinated visits, causing methods like (Lowe et al., 2017; Wei et al., 2018; Wen et al., 2019) to converge to suboptimal strategies (see §6). Two major approaches address RO: credit assignment methods (evolving from early lenient learning (Panait et al., 2006b; Wei & Luke, 2016; Palmer et al., 2017) to sophisticated value decomposition (Li et al., 2021; Peng et al., 2021; Zhang et al., 2021; Gupta et al., 2021; Siu et al., 2021; Huang et al., 2022; Kang et al., 2022; Yang et al., 2022; Shi et al., 2024; Hu & Ying, 2024) and shaped values (Wan et al., 2022; Shi & Peng, 2022; Zhao et al., 2023; Li et al., 2024a; Toquebiau et al., 2024)), and reasoning-endowed methods (Wen et al., 2019; Ma et al., 2022; Tian et al., 2019; Wei et al., 2018) that adopt an ego-agent perspective, equipping agents with capabilities to model others’ behavior—like recursive reasoning in (Wen et al., 2019) inspired by human cognition (Von Der Osten et al., 2017). Despite empirical successes, both approaches lack solid theoretical foundations. Some works prove algorithm convergence (Peng et al., 2021; Li et al., 2024a; Hu & Ying, 2024) or optimality in matrix games (Wan et al., 2022), but none formally define RO. This raises two key questions: (1) **can RO be provably avoided?** and if it can, (2) **how to design a method that provably addresses RO?**

This paper answers the first question with theoretical justifications and introduces new concepts to analyze Relative Over-generalization (RO) in Multi-Agent Reinforcement Learning (MARL). The current RO is defined on empirical converged joint policy, which makes it difficult to analyze MARL methods before training. To address this issue, we introduce *Perceived Relative Over-generalization* (PRO) and *Executed Relative Over-generalization* (ERO), which define RO for each joint policy update and policy execution, respectively. The RO is guaranteed to be addressed when ERO is avoided at convergence. With the basis, we prove that RO can be provably avoided when the MARL method satisfies a *consistent reasoning* condition at convergence. This condition requires each agent to model the behaviors of others consistently with their updated/executed behaviors.

For the second question, we propose a novel negotiated reasoning framework that satisfies the consistent reasoning condition, inspired by human negotiation processes (Kim, 1996; Carnevale & Lawler, 1986) and graphical model message-passing inference (Pearl, 1988). Our framework enables explicit reasoning through negotiation policies during training and decision-making based on negotiated agreements. We prove that agents achieve consistent reasoning when they reach action selection agreements through appropriate negotiation, and introduce Stein Variational Negotiated Reasoning (SVNR), which derives negotiation policies via Stein variational gradient descent and employs a strict nested negotiation structure. With maximum entropy policy iteration, SVNR provably achieves consistent reasoning and optimal cooperation at convergence under mild conditions. We further parameterize SVNR with neural networks and implement amortized learning to address computational complexity, distilling negotiation dynamics into network updates and approximating multiple negotiation rounds with single forward passes. Experiments in challenging differential games, particle world and multi-agent MuJoCo environments demonstrate SVNR’s superiority in addressing RO compared to state-of-the-art reasoning methods.

The main contributions are threefold: 1) We confirm the existence of provably addressing relative over-generalization (RO) methods; 2) We propose a novel framework called negotiated reasoning (NR) and specify the Stein variational NR method, which is the first MARL method that can provably address relative over-generalization (RO); 3) We propose a practical implementation of SVNR that demonstrates superior performance in achieving global optimal cooperation in RO-challenged tasks.

Remark 1. Our work adopts an autoregressive conditional policy factorization. This approach has been used in several multi-agent policy factorization works (Ding et al., 2022; Wang et al., 2023a; Fu et al., 2022; Ye et al., 2022; Li et al., 2024b) and decision-making foundation models (Wen et al., 2022), supporting SVNR’s effectiveness. Unlike these works, which address general multi-agent cooperative tasks, we focus specifically on the RO problem. The autoregressive policy factorization (the strictly nested negotiation set in SVNR) is just one optimal form. The optimal negotiation set covers a broader range of factorizations. Moreover, in contrast to some previous negative results on autoregressive policy factorization—such as the inability to leverage other agents’ optimal actions (Ding et al., 2022), sensitivity to the autoregressive order (Li et al., 2024b), and the requirement for centralized execution (Fu et al., 2022)—we provide a theoretical proof of the optimality of any strictly nested negotiation set. We also achieve decentralized execution through an amortized negotiation mechanism.

Remark 2. In addition to autoregressive policy factorization, another class of methods in MARL sequentially updates agents’ local, independent policies (Wang et al., 2023b; Kuba et al., 2022; Feng et al., 2023; Zhang et al., 2024). These methods are closely related to SVNR, though they mainly address non-stationarity rather than RO. Unlike autoregressive factorization, where agents exchange current policies in the negotiation process, sequential update methods convey the impact of one agent’s policy update on the environment and subsequent agents.

2 RELATIVE OVER-GENERALIZATION

This section defines RO under CTDE MARL contexts. Specifically, we propose two concepts, perceived RO (PRO) and executed RO (ERO), that distinguish different RO in CTDE. Then, we bridge the two concepts to RO and prove that RO can be avoided when PRO and ERO are addressed under mild conditions. Prior to introducing formal definitions, we first establish the problem formulation and associated mathematical notation.

Cooperative Stochastic Game. A Cooperative Stochastic Game (CSG) is commonly used to model cooperation in multi-agent systems (Petrosjan, 2006). It is defined by a tuple $(\mathcal{S}, \{\mathcal{U}_i\}_{i=1}^N, P, \mathcal{R}, \gamma)$,

108 where N is the number of agents; \mathcal{S} is the state space; \mathcal{U}_i represents the action space for agent i
 109 with $\mathcal{U} = \times_i \mathcal{U}_i$ representing the joint action space; $P(\mathbf{s}' \mid \mathbf{s}, \mathbf{u})$ representing the probability that
 110 environment transit to \mathbf{s}' when taking joint action \mathbf{u} at state \mathbf{s} ; $\mathcal{R} : \mathcal{S} \times \mathcal{U} \rightarrow \mathbb{R}$ is the team reward¹
 111 function; $\gamma \in [0, 1]$ is the discount factor. The goal for the CSG is to find policies $\{\pi_i\}_{i=1}^N$ that
 112 make accumulative reward the highest. The $\pi_i : \mathcal{S} \rightarrow \mathcal{U}_i$ maps the state to agent i 's action and
 113 the objective of CSG can be formulated as $\max_{\pi_1, \dots, \pi_N} \mathcal{E} [\sum_{t=1}^{\infty} \gamma^t \mathcal{R}(\mathbf{s}_t, \mathbf{u}_t)]$, where \mathbf{u}_t is sampled
 114 from the policies as $\mathbf{u}_t^i \sim \pi_i(\cdot \mid \mathbf{s}_t)$.

115 **Multi-Agent Reinforcement Learning.** MARL methods are popular for solving the cooperative
 116 stochastic game. This paper considers the mainstream of MARL schemes: centralized training
 117 decentralized execution (CTDE). Each agent i holds an execution policy $\bar{\pi}_i(\mathbf{u}^i \mid \mathbf{s})$ to make execution
 118 in a decentralization manner and a *perceived* joint policy $\hat{\pi}_i(\mathbf{u} \mid \mathbf{s})$ to do centralized training. The
 119 *perceived* joint policy can be factorized as $\hat{\pi}_i = \pi_i \rho_i$, where π_i is the individual policy and ρ_i is the
 120 perceived opponent policy. Following MaxEnt MARL (Tian et al., 2019; Wen et al., 2019; Wei et al.,
 121 2018), each agent i optimizes its policy by minimizing the KL-divergence between perceived joint
 122 policy and the induced optimal joint policy: $\min_{\pi_i} D_{KL}(\hat{\pi}_i \parallel \pi_{\alpha}^*)$ where α is the factor that balances
 123 the reward and entropy. The π_{α}^* is induced by the Boltzmann optimal policy:

$$\pi_{\alpha}^*(\mathbf{u} \mid \mathbf{s}) := \exp\left(\frac{1}{\alpha}(Q_{\text{soft}}^*(\mathbf{s}_t, \mathbf{u}_t) - V_{\text{soft}}^*(\mathbf{s}_t))\right), \quad (1)$$

124 where Q_{soft}^* , V_{soft}^* denote optimal, soft state-action and state value function, respectively (Haarnoja
 125 et al., 2017). After that, each agent i obtains decentralized execution policy as $\bar{\pi}_i(\mathbf{u}^i \mid \mathbf{s}) :=$
 126 $\int \hat{\pi}_i d\mathbf{u}^{-i}$ and the utility of the decentralized execution is: $U^{\bar{\pi}} := \sum_t \mathbb{E}_{(\mathbf{s}_t, \mathbf{u}_t) \sim \beta_{\bar{\pi}}} \mathcal{R}(\mathbf{s}_t, \mathbf{u}_t)$, where
 127 $\bar{\pi} := \prod_i^N \bar{\pi}_i$ is the executed joint policy, and $\beta_{\bar{\pi}}$ is the state-action marginals of the trajectory
 128 distribution induced by $\bar{\pi}$.

129 Relative over-generalization is a critical game pathology in MARL. It occurs when agents prefer a
 130 sub-optimal Nash Equilibrium over an optimal Nash Equilibrium because each agent's individual
 131 policy in the sub-optimal equilibrium has a higher utility when paired with arbitrary policies from
 132 opponents (Wei et al., 2018). This definition assumes MARL methods directly select the joint policy
 133 from multiple Nash Equilibria while these methods make a comparison between the current joint
 134 policy and updated joint policy for each updating. Thus we extend RO by considering each update.
 135 Besides that, the current CTDE scheme in MARL motivates us to decompose RO to perceived relative
 136 over-generalization (PRO) in the training phase and executed relative over-generalization (ERO) in
 137 the execution phase. First, we define the ERO, which extends RO at each execution step and identifies
 138 whether the optimal cooperation is disturbed due to not knowing the behaviors of opponents.
 139

140 **Definition 2.1** (Executed Relative Over-generalization). Agent i suffers executed relative over-
 141 generalization if and only if the utility of executed joint policy can be improved by letting
 142 agents know others' actions: $\max_{\pi_i} \{U^{\pi_i(\mathbf{u}^i \mid \mathbf{s}, \mathbf{u}^{-i})} \prod_{j \neq i} \bar{\pi}_j^*(\mathbf{u}^j \mid \mathbf{s})\} > U^{\prod_j \bar{\pi}_j^*(\mathbf{u}^j \mid \mathbf{s})}$ where $\pi_i^* =$
 143 $\arg \min_{\pi_i} D_{KL}(\pi_i \rho_i \parallel \pi_{\alpha}^*)$ is the i 's optimal policy with ρ_i and $\bar{\pi}_i^* = \int \pi_i^* \rho_i d\mathbf{u}^{-i}$ is the executed
 144 policy for each agent i .

145 It is straightforward that agents do not suffer from RO if all agents are free from ERO at convergence.
 146 Besides that, agents also suffer from RO during their training phase, and we further propose the
 147 definition of *Perceived Relative Over-generalization*.

148 **Definition 2.2** (Perceived Relative Over-generalization). Agents suffer perceived relative over-
 149 generalization iff. there exists an agent i whose optimal perceived joint policy can be closer to
 150 the optimal joint policy when knowing the optimal opponent policy: $\min_{\pi_i} D_{KL}(\pi_i \rho_i \parallel \pi_{\alpha}^*) >$
 151 $\min_{\pi_i} D_{KL}(\pi_i \pi_{\alpha}^*(\mathbf{u}^{-i}) \parallel \pi_{\alpha}^*)$ where π_{α}^* is the optimal joint policy with entropy factor α , and
 152 $\pi_{\alpha}^*(\mathbf{u}^{-i}) := \int_{\mathbf{u}^{-i}} \pi_{\alpha}^* d\mathbf{u}^{-i}$ is the optimal opponent policy.

153 The perceived optimal joint policy for each agent is equal to the optimal joint policy for the case
 154 that the agents are free from PRO. When each agent i reasons others' behaviors consistent with
 155 their optimal policy $\rho_i = \pi_{\alpha}^*(\mathbf{u}^{-i})$ in the training phase, others' exploration will not impact the
 156 agent's policy updating and the PRO is avoided. If PRO is avoided and $\alpha \rightarrow 0$, all agents execute
 157 deterministically, the agent's execution will not be impacted by others' exploration stochastic in the
 158 execution phase, and ERO is avoided. These conditions are denoted as consistent reasoning, and we
 159 define them below.

160 ¹The utility, reward and payoff are not distinguished.

162 **Definition 2.3** (Consistent Reasoning). Agents meet consistent reasoning if and only if all agents
 163 reason others’ behaviors consistent with their optimal policy $\rho_i = \pi_\alpha^*(\mathbf{u}^{-i})$ in the training phase and
 164 reason others’ behaviors consistent with their executed actions during execution.
 165

166 When the requirement is met at convergence, agents are free from
 167 ERO, and they do not suffer from RO. Existing reasoning methods
 168 are unable to reach consistent reasoning. We take Figure 1 as an
 169 example to better illustrate how these methods suffer from PRO and
 170 ERO respectively. It is a single-stage, cooperative game and contains
 171 two agents “A” and “B”. The action space of each agent is $\{0, 1\}$. In
 172 Figure 1 (Left), MADDPG (Lowe et al., 2017) usually suffers from
 173 PRO due to agents reason others through their historical behaviors.
 174 For agent A, if $\rho_A(0) = \rho_A(1) = 0.5$, it will obtain $\hat{\pi}'_A(1, 0) = 1$
 175 which is sub-optimal. MASQL (Wei et al., 2018) usually suffers
 176 from ERO in Figure 1 (Right). If $\hat{\pi}'_A(1, 0) = \hat{\pi}'_A(0, 1) = 0.5$ and
 177 $\hat{\pi}'_B(1, 0) = \hat{\pi}'_B(0, 1) = 0.5$, then PRO is avoided. However when making decentralized execution
 178 based on $\hat{\pi}'$ for each agent, $\bar{\pi}(1, 1) = \bar{\pi}(0, 0) = \bar{\pi}(1, 0) = \bar{\pi}(0, 1) = 0.25$, which are sub-optimal
 and suffer from ERO.

179 **Intuitive Interpretations of Theoretical Concepts.** To bridge the gap between the formal definitions
 180 and their practical implications, we analyze PRO and ERO through the lenses of variational inference
 181 and distributional factorization. **(1) PRO as Variational Bias.** In the standard MaxEnt framework,
 182 agent i optimizes its policy π_i by minimizing the KL-divergence $D_{\text{KL}}(\pi_i \rho_i \parallel \pi_\alpha^*)$, where ρ_i is the
 183 *perceived* opponent policy. PRO arises when ρ_i deviates from the true optimal conditional distribution
 184 of the opponent (π_{-i}^*). Mathematically, this introduces a **biased variational objective**. Even if
 185 agent i optimizes perfectly against ρ_i , the resulting gradient points toward a local optimum (safety)
 186 rather than the global optimum (cooperation) because the “belief” ρ_i incorporates the opponent’s
 187 exploration noise or historical sub-optimality. PRO is fundamentally a *training-time estimation*
 188 *error*, akin to “shadow boxing” against a clumsy opponent; the agent learns to be overly cautious,
 189 effectively “learning” to avoid the risk required for optimal cooperation. **(2) ERO as Factorization**
 190 **Loss.** Even if the training phase converges to an optimal joint policy distribution $\hat{\pi}$ (where PRO
 191 is solved), decentralized execution imposes a structural constraint: the executed policy must be
 192 the product of independent marginals, $\bar{\pi}(u) = \prod_i \pi_i(u_i)$. ERO occurs when the optimal joint
 193 distribution $\hat{\pi}$ is highly correlated or multimodal. In such cases, the projection of $\hat{\pi}$ onto the space of
 194 independent product distributions results in a significant **factorization loss**. The support of $\prod_i \pi_i$
 195 inevitably covers areas of the state-action space with low utility (miscoordination), leading to a lower
 196 expected return than the joint policy $\hat{\pi}$. ERO is an *execution-time coordination failure*, representing
 197 a “broken telephone” effect. Even if all agents know the optimal plan *in theory*, the lack of a
 198 mechanism to synchronize their specific random samples at runtime causes them to act incoherently,
 199 breaking the optimal joint structure. **(3) Consistent Reasoning as Closing the Loop.** We define
 200 consistent reasoning as the fixed-point condition where two requirements are met simultaneously: (1)
 201 *Training Consistency*, where $\rho_i \rightarrow \pi_{-i}^*$ (the variational bias vanishes); and (2) *Execution Consistency*,
 202 where the negotiation mechanism collapses the multimodal joint distribution into a specific mode
 203 (agreement) such that $\hat{\pi}(u) \approx \prod_i \pi_i(u_i)$ as $\alpha \rightarrow 0$. This ensures that the *planned* joint action
 204 during the reasoning phase aligns perfectly with the *executed* action. The negotiation process acts as
 205 a “pre-commitment” device, ensuring that agents not only identify the optimal peak in the reward
 206 landscape but also agree to converge to the *same* peak together.
 207

3 NEGOTIATED REASONING FRAMEWORK

209 Inspired by the critical role of negotiation for consistent reasoning in social cooperation, we introduce
 210 negotiation in the reasoning process to avoid PRO and ERO with theoretical justifications and
 211 propose a novel reasoning framework, NR. In NR, agents take M particles $\{\mathbf{u}^{\ell,0}\}_{\ell=1}^M$ to represent
 212 the initial perceived joint policy distribution $p(\mathbf{u}^0) := \frac{1}{M} \sum_{\ell=1}^M \delta_{\mathbf{u}^{\ell,0}}(\mathbf{u})$ for a state s . Moreover,
 213 each agent i holds a negotiation (*i.e.*, perturb) policy $f_i(u_i \mid \mathbf{u}_{C_i}, s)$ that updates its action when
 214 knowing the C_i ’s action selection. Here $C_i \subseteq 1, \dots, N$ is the negotiated set for agent i , which
 215 determines whom to negotiate, $f_i := \{f_i^1, \dots, f_i^K\}$ where f_i^k is the negotiation policy of agent i
 in iteration k , and K is the number of negotiation rounds which is often large enough. Then every

<table border="1" style="margin: auto;"> <tr> <td></td> <td style="text-align: center;">B</td> <td></td> </tr> <tr> <td style="text-align: center;">A</td> <td style="text-align: center;">3</td> <td style="text-align: center;">0</td> </tr> <tr> <td></td> <td style="text-align: center;">2</td> <td style="text-align: center;">2</td> </tr> </table>		B		A	3	0		2	2	<table border="1" style="margin: auto;"> <tr> <td></td> <td style="text-align: center;">B</td> <td></td> </tr> <tr> <td style="text-align: center;">A</td> <td style="text-align: center;">3</td> <td style="text-align: center;">0</td> </tr> <tr> <td></td> <td style="text-align: center;">0</td> <td style="text-align: center;">3</td> </tr> </table>		B		A	3	0		0	3
	B																		
A	3	0																	
	2	2																	
	B																		
A	3	0																	
	0	3																	

Figure 1: The PRO and ERO payoff functions examples.

agent i makes negotiated reasoning as $u_i^{\ell,k} = f_i^k(u_i \mid \mathbf{s}, \mathbf{u}_{C_i}^{\ell,k-1})$, $\forall i \leq N, \ell \leq M, k \leq K$. Such a negotiation process can be interpreted as agents starting from initial action beliefs and negotiating with each other based on their negotiation policies. When f_i^k converges to an identity map for each agent, the perceived joint policy converges to a steady perceived joint policy (*i.e.*, agreement): $\lim_{k \rightarrow K} p(\mathbf{u}^k \mid \mathbf{s}) := \frac{1}{M} \sum_{\ell=1}^M \delta_{\mathbf{u}^{\ell,k}}(\mathbf{u}) \rightarrow \pi^*(\mathbf{u} \mid \mathbf{s}), \forall \mathbf{u} \in \mathcal{U}$. Negotiated reasoning avoids PRO when it meets certain conditions.

It is crucial to distinguish this framework from communication-based MARL methods that exchange messages to resolve partial observability (*i.e.*, approximating global state). In contrast, Negotiated Reasoning operates on the *probability measure space*. The “negotiation” is a functional gradient descent process in a Reproducing Kernel Hilbert Space (RKHS) that aligns the joint policy distribution with the global value landscape. This addresses equilibrium selection rather than state estimation.

Theorem 3.1 (PRO-free Negotiated Reasoning). *For any environment state s where the optimal joint policy is defined as π_α^* , consider each agent i takes a negotiated reasoning defined on a compact action space \mathcal{U}_i , they are PRO-free with K steps negotiated reasoning if $\lim_{k \rightarrow K} p(\mathbf{u}^k \mid \mathbf{s}) = \pi^*(\mathbf{u}^k \mid \mathbf{s}), \forall \mathbf{u}^k \in \mathcal{U}$.*

This motivates us to learn negotiation policy f_i satisfying the following conditions:

$$\lim_{k \rightarrow K} f_i^k(u_i \mid \mathbf{s}, \mathbf{u}_{C_i}^{\ell,k-1}) = u_i^{\ell,k-1}, \lim_{k \rightarrow K} p(\mathbf{u}^k \mid \mathbf{s}) = \pi^*(\mathbf{u}^k \mid \mathbf{s}), \forall i \leq N, \ell \leq M, \mathbf{u}^k \in \mathcal{U}. \quad (2)$$

The first condition requires the negotiation policies to converge to the identity map, and the second one requires the perceived joint policy to be identical to the optimal joint policy when the negotiation policy converges. We will specify the negotiated policy learning in the following two sections.

As for ERO-free in decentralized execution, we prove that setting $\bar{\pi}_i = u_i^{0,K}$ with annealing $\alpha \rightarrow 0$ ensures ERO-free in decentralized execution (see proof in Appendix E.2).

Theorem 3.2 (ERO-free Negotiated Reasoning). *For any environment state s , when agents are PRO-free with K reasoning steps, they achieve ERO-free with annealing $\alpha \rightarrow 0$ if each agent i sample action $\bar{\pi}_i = u_i^{0,K}$.*

When all the conditions are met, it is straightforward that consistent reasoning is obtained. Up to this point, we have established a theoretical connection between reasoning and RO. The next step is to design a negotiation policy that satisfies the condition in equation 2 and integrate this negotiated reasoning into existing multi-agent reinforcement learning.

4 STEIN VARIATIONAL NEGOTIATED REASONING

After building the theoretical relationship between reasoning and RO, this section proposes Stein variational NR, SVNR, under the NR framework, which is the first MARL method that provably addresses RO. We first derive the negotiation policy based on Stein variational gradient descent which obtains PRO-free negotiated reasoning. Then we devise the policy iteration method of SVNR and prove that it addresses PRO and ERO. Finally, we propose a practical implementation by parameterizing SVNR with neural networks and amortizing the learning procedure.

4.1 LEARNING THE NEGOTIATION POLICY

To learn the negotiation policy that converges to an identity map and lets perceived joint policy converges to the optimal joint policy as in equation 2, we start by building the relationship between negotiation policy and perceived joint policy. Decomposing KL divergence from the perceived joint policy, we have $D_{KL}(p(\mathbf{u} \mid \mathbf{s}) \parallel \pi^*(\mathbf{u} \mid \mathbf{s})) = D_{KL}(p(\mathbf{u}_{-i} \mid \mathbf{s}) \parallel \pi^*(\mathbf{u}_{-i} \mid \mathbf{s})) + D_{KL}(p(u_i \mid \mathbf{s}, \mathbf{u}_{-i}) \parallel \pi^*(u_i \mid \mathbf{s}, \mathbf{u}_{-i}))$. It states that the KL divergence between perceived and optimal joint policy can be minimized by

$$\min_{p(u_i \mid \mathbf{s}, \mathbf{u}_{-i})} D_{KL}(p(u_i \mid \mathbf{s}, \mathbf{u}_{-i}) \parallel \pi^*(u_i \mid \mathbf{s}, \mathbf{u}_{-i})), \quad (3)$$

when fixing other agents’ action selections (update only one agent’s action). This motivates us to design a negotiation policy that minimizes the equation 3. One of the most popular ways to solve

equation 3 is (MP)SVGD (see Appendix A) which can naturally fit the updating of the single agent's action while fixing others'. Specifically, it adopts the following scheme, *i.e.*,

$$f_i(u_i | \mathbf{u}_{C_i}^\ell, \mathbf{s}) : u_i^\ell + \epsilon \phi_i(\mathbf{u}_{C_i})^\ell, \forall i \leq N, \ell \leq M, \quad (4)$$

to update the joint policy distribution. The ϵ is the learning rate, and ϕ_i is the transformation direction in vector-valued reproducing kernel Hilbert space. Then the optimal ϕ has a closed form solution for equation 3 when restricting $\|\phi_i\|_{\mathcal{H}_i} \leq 1$ and $\epsilon \rightarrow 0$:

$$\phi_i^*(\mathbf{u}_{C_i}) = \mathbb{E}_{\mathbf{y} \sim p}[k_i(\mathbf{u}_{C_i}, \mathbf{y}_{C_i}) \nabla_{y_i} \log \pi^*(y_i | \mathbf{y}_{C_i}) + \nabla_{y_i} k_i(\mathbf{u}_{C_i}, \mathbf{y}_{C_i \setminus \{i\}})]. \quad (5)$$

The ϕ^* provides the steepest direction to optimize the KL divergence. This iterative update process is mathematically grounded in the transport of probability measures via Stein variational gradient flow. We provide a detailed theoretical interpretation of this negotiation process and its visualization in Appendix L. The Appendix D.1 shows the details of the derivation.

To further ensure the identity map convergence and let the converged perceived joint policy identical to the optimal joint policy, the design of $\{C_i\}_{i=1}^N$ plays a key role as seen in graphical inference problems (Pearl, 1988; Zhuo et al., 2018). Benefiting from the centralized training, we can design C_i without considering communication limitations. When $\{C_i\}_{i=1}^N$ is strictly nested (*e.g.*, $C_i = \{1, \dots, i\}$ for all i), negotiated reasoning equation 4 with equation 5 converges and the agreement is identical to optimal joint policy (*i.e.*, satisfies PRO-free conditions equation 2) as proved in Appendix E.4. We denote the negotiated reasoning with (MP)SVGD and strict nested negotiation set as Stein variational negotiated reasoning. While strict nesting guarantees exact representability, relaxing this constraint leads to a bounded approximation error characterized by Information Projection, as detailed in Appendix E.8.

4.2 MAXIMUM ENTROPY POLICY ITERATION

In the previous section, we assumed that the optimal joint policy is known in advance. However, agents have to iteratively learn Q , and V functions to estimate the optimal joint policy and update their sampling policy accordingly in practice. This section establishes SVNR on the maximum entropy policy iteration and shows the convergence to the optimal joint policy theoretically. Concretely, we first define the soft bellman operator as

$$\Gamma_{\hat{\pi}} Q(\mathbf{s}_t, \mathbf{u}_t) := r_t + \gamma \mathbb{E}_{\mathbf{s}_{t+1}}[V(\mathbf{s}_{t+1})], \quad (6)$$

where $V(\mathbf{s}_t) = \mathbb{E}_{\hat{\pi}}[Q(\mathbf{s}_t, \mathbf{u}_t) - \alpha \log \hat{\pi}(\mathbf{u}_t | \mathbf{s}_t)]$. Each round of iteration usually consists of joint policy evaluation and joint policy improvement, where joint policy evaluation aims to evaluate the policy performance with Q and joint policy improvement updates each agent's policy accordingly. As for the joint policy evaluation, we obtain the following theorem.

Lemma 4.1 (Joint Policy Evaluation). For a mapping $Q^0 : \mathcal{S} \times \mathcal{U} \rightarrow \mathbb{R}$ with $|\mathcal{U}| < \infty$, define the $Q^{k+1} = \Gamma_{\hat{\pi}} Q^k$ where the Γ is the soft bellman operator, then it converges to the joint soft Q -function of $\hat{\pi}$ as $k \rightarrow \infty$.

Following equation 1 and equation 5, the $\hat{\pi}$ is updated as:

$$\hat{\pi}(\mathbf{u}) = \lim_{k \rightarrow K} \frac{1}{M} \sum_{\ell=1}^M \delta_{u^{\ell,k}}(\mathbf{u}), u_i^{\ell,k} = u^{\ell,k-1} + \epsilon \phi_i^*(\mathbf{u}_{C_i}^{\ell,k}, u_i^{\ell,k-1}), \forall i \leq N, \ell \leq M, k \leq K, \quad (7)$$

$$\tilde{\pi} = \exp \frac{1}{\alpha} (Q(u_i, \mathbf{u}_{C_i}, \mathbf{s}) - V(\mathbf{u}_{C_i}, \mathbf{s})),$$

where $Q(u_i, \mathbf{u}_{C_i}, \mathbf{s}) = \mathbb{E}_{\bar{\mathbf{u}} \sim \hat{\pi}(\mathbf{s}), \bar{\mathbf{u}}_{C_i} = \mathbf{u}_{C_i}, \bar{\mathbf{u}}_i = u_i} Q(\bar{\mathbf{u}}, \mathbf{s})$, $V_i(\mathbf{u}_{C_i}, \mathbf{s}) = \mathbb{E}_{\bar{\mathbf{u}}' \sim \hat{\pi}(\mathbf{s}), \bar{\mathbf{u}}_{C_i} = \mathbf{u}_{C_i}} Q(\bar{\mathbf{u}}, \mathbf{s})$, and ϕ_i^* take $\tilde{\pi}$ instead of π^* to construct the SVGD direction. Then we can obtain the following joint policy improvement lemma:

Lemma 4.2 (Policy Improvement). When the negotiation policies are strictly nested, given the current perceived joint policy as $\hat{\pi}$, update it based on the equation 7 and obtain the new perceived joint policy $\hat{\pi}'$. The $Q^{\hat{\pi}'}(\mathbf{s}_t, \mathbf{u}_t) \geq Q^{\hat{\pi}}(\mathbf{s}_t, \mathbf{u}_t)$ with $|\mathcal{U}| < \infty$.

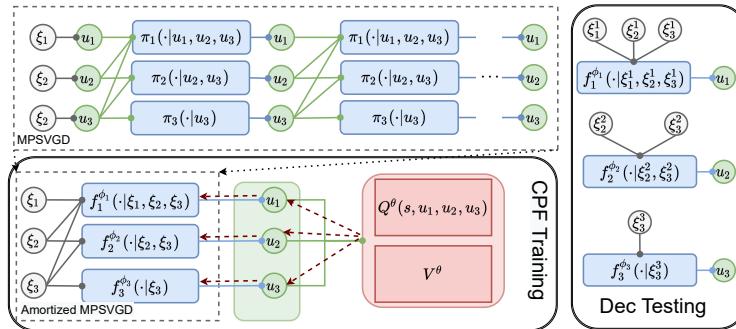
Following Lemma 4.1 and Lemma 4.2, we can establish the following SVNR policy iteration theorem and our proposed coordinated policy iteration method accordingly.

324 **Theorem 4.3** (SVNR Policy Iteration). *When the individual policies satisfy the strict nested requirement,*
 325 *considering repeated apply the joint policy evaluation and joint policy improvement on the*
 326 *perceived joint policy $\hat{\pi}$, then $\hat{\pi}$ will converge to π^* that makes $Q^{\pi^*}(s_t, u_t) \geq Q^{\hat{\pi}}(s_t, u_t)$, $\forall \hat{\pi} \in$*
 327 *Π , $(s_t, u_t) \in \mathcal{S} \times \mathcal{U}$, $|\mathcal{U}| < \infty$.*

329 While the analysis assumes discrete action spaces to utilize standard fixed-point theorems, the
 330 theoretical results extend to continuous domains through measure-theoretic unification. Furthermore,
 331 the core Negotiated Reasoning mechanism (via SVGD) is natively designed for continuous spaces.
 332 We provide the detailed continuous formulation and justification in Appendix K. Based on the
 333 Theorem 4.3, we can obtain the convergence of SVNR policy iteration to the optimal joint policy.
 334 Further, taking Theorem 3.2, we can obtain ERO-free executed joint policy $\bar{\pi}$ by annealing α to a
 335 small enough number.

336 However, empirically, the SVNR policy iteration assumes knowing the word model and encounters
 337 high computation and storage complexity due to 1) *inefficient policy representation*: SVNR policy
 338 iteration represents the joint policy with particles that scale poorly on state-action space; 2) *intractable*
 339 *optimization*: During learning, the soft bellman operator takes expectations on both the state and
 340 joint policy distribution, which is intractable in realistic settings. To this end, we propose a practical
 341 implementation for SVNR.

5 A PRACTICAL IMPLEMENTATION OF SVNR



356 Figure 2: The practical SVNR in the 3-agents system. SVNR adopts nested negotiated reasoning and
 357 adopts amortized MPSVGD to output the actions. The amortized MPSVGD distills the multi rounds
 358 negotiated reasoning dynamic by well-established neural networks. The “Dec Testing” (rightmost
 359 part) illustrates how the proposed SVNR executes in a decentralized manner.

361 To address the inefficient policy representation and intractable optimization issues, this section
 362 adopts neural networks to parameterize the policies and learn them with the proposed amortized
 363 optimization. To gain efficient action sampling, we propose Amortized MPSVGD. It aims to adopt
 364 neural networks to perform **variational distillation** of the negotiation equilibrium. Rather than
 365 cloning the iterative negotiation trajectory, the network aims to approximate the steady negotiation
 366 result (the fixed point) in $\hat{\pi}(u)$ directly via neural network inference. Formally, each agent holds a
 367 stochastic mapping function $u^i = f_{\psi^i}(\cdot | \xi^i, \xi^{C_i}, s)$ that maps initial noises (i.e., gaussian noises) to
 368 its action distribution. The ξ^i is the noise drawn by agent i . We denote the induced joint distribution
 369 as $p_{\psi}(u|s, \xi) := \prod_{i=1}^N f_{\psi^i}(u^i | \xi^i, \xi^{C_i}, s)$. The goal of the proposed amortized MPSVGD method is
 370 to find ψ^* that satisfies:

$$\arg \min_{\hat{\psi}} \text{KL} \left(p^{\hat{\psi}}(\cdot | s, \xi) \| \hat{\pi}(u) \right). \quad (8)$$

374 A straightforward way to learn ψ is to iterate the equation 7 procedure until convergence and to
 375 establish the neural networks $\{\psi_1, \dots, \psi_N\}$ which can fit the agreement. However, the equation 7
 376 requires many rounds of updating, and this motivates us to introduce an incremental update scheme.
 377 For each agent i , its policy parameter ψ_i is updated by moving along its SVGD’s gradient in order to
 378 approach the target joint policy. Sampling joint actions u^1, \dots, u^M from p and assuming we can

378 perturb agent i 's action $u_i^j = f^{\psi_i}(\xi_i^j; \xi_{C_i}^j, \mathbf{s})$ in appropriate direction $\Delta f^{\psi_i}(\xi_i^j; \xi_{C_i}^j, \mathbf{s})$, the induced
 379 KL divergence in equation 8 can further be reduced. MPSVGD provides the most greedy direction as
 380

$$381 \Delta f_i^\psi(\cdot; \mathbf{s}_t) = \mathbb{E}_{\mathbf{u} \sim p^\psi} \left[\kappa_i(\mathbf{u}_{C_i}, p_{C_i}^\psi(\cdot; \mathbf{s}_t)) \nabla_{u_i} Q^\theta(\mathbf{s}_t, \mathbf{u}')|_{\mathbf{u}'=\mathbf{u}} + \alpha_i \nabla_{\mathbf{u}'_i} \kappa_i(\mathbf{u}'_{C_i}, p_{C_i}^\psi(\cdot; \mathbf{s}_t))|_{\mathbf{u}'=\mathbf{u}} \right], \quad (9)$$

383 where α_i is the agent i 's temperature term, θ is the neural network parameter of central critic, and κ_i is
 384 the agent i 's kernel function as in MPSVGD. We can then set $\frac{\partial J_p(\phi; \mathbf{s}_t)}{\partial u_i} \propto \Delta f_i^\phi$ (Feng et al., 2017).
 385

386 Further, the gradient in MPSVGD can be backpropagated to the mapping network ϕ_i , i.e.,

$$387 \frac{\partial J_p(\psi; \mathbf{s}_t)}{\partial \psi_i} \propto \mathbb{E}_\xi \left[\Delta f_i^\psi(\xi; \mathbf{s}_t) \frac{\partial f_i^\psi(\xi; \mathbf{s}_t)}{\partial \psi_i} \right]. \quad (10)$$

390 Therefore, any gradient-based methods can optimize the parameters ψ_i . The detailed derivations
 391 of equation 9 and equation ?? are shown in Appendix D. With this Amortized MPSVGD mapping
 392 function, neural network inference can directly sample joint actions. Crucially, by optimizing ψ via
 393 this incremental scheme, the network f_ψ learns to distill the multi-step negotiation dynamics into the
 394 function weights. Consequently, a single forward pass ($K = 1$) becomes sufficient to approximate
 395 the equilibrium distribution during inference, avoiding expensive inner-loop optimization.

396 Furthermore, we consider the intractable evaluation step as in equation 6. Inspired by soft Q -
 397 learning (Haarnoja et al., 2017), we can transform the fixed point iteration to the stochastic optimization
 398 on minimizing the $\|\Gamma_Q - Q\|$. Specifically, the importance sampling is adopted to approximate
 399 the value function and minimize the bellman error:

$$401 \theta^{\text{new}} = \arg \min_{\theta} \mathbb{E}_{\mathbf{s}_t, \mathbf{u}, r, \mathbf{s}_{t+1} \sim D} \left[\frac{1}{2} (r + V^\theta(\mathbf{s}_{t+1}) - Q^{\theta'}(\mathbf{s}_t, \mathbf{u}))^2 \right], \quad (11)$$

403 where $V^\theta(\mathbf{s}_t) := \alpha \log \mathbb{E}_{\mathbf{u}' \sim p(\cdot | \mathbf{s}_t)} [\exp(\frac{1}{\alpha} Q^\theta(\mathbf{s}_t, \mathbf{u}'))]$. We summarize the proposed **SVNR** in
 404 Figure 2, with pseudocode in Appendix B. While the practical implementation introduces approxima-
 405 tion errors compared to the exact soft Bellman operator used in our theoretical analysis, we provide a
 406 formal error analysis in Appendix E.9, showing that the performance loss is bounded.

407 SVNR assumes nested negotiation during training, which aligns with the widely adopted CTDE
 408 paradigm. This assumption enables agents to leverage global information for improved coordination
 409 while training, yet critically, SVNR operates in a **fully decentralized, communication-free** manner
 410 during execution. Other assumptions in our analysis (e.g., stationarity, bounded rewards) are standard
 411 in MARL literature and necessary for theoretical rigor without imposing impractical constraints.

413 6 EXPERIMENTS

415 We take two differential games (*Two Modalities* and *Max of Three* (Panait et al., 2006a)) and
 416 the *Particle Gather* (Mordatch & Abbeel, 2018)) as our initial testbeds. We then scale to com-
 417 plex continuous-control domains in MaMuJoCo (Peng et al., 2021). Baselines include popular
 418 MARL methods and reasoning-based approaches that target RO—MADDPG (Lowe et al., 2017),
 419 MASQL (Wei et al., 2018), PR2 (Wen et al., 2019), ROMMEO (Tian et al., 2019), and MMQ (Zhu
 420 et al., 2024)—as well as strong value-decomposition/actor-critic general baselines in MaMuJoCo,
 421 i.e., MAPPO (Yu et al., 2022), QMIX (Rashid et al., 2020), and FACMAC (Peng et al., 2021). To
 422 ensure a rigorous evaluation, we employ identical network backbones and fixed entropy annealing
 423 schedules across all Maximum Entropy methods, isolating the performance gains attributed to the
 424 reasoning mechanism. A detailed analysis of computational trade-offs, theoretical justification for
 425 compute costs, and hyperparameter protocols is provided in Appendix H.5.

426 Note that our primary contribution is the **theoretical development** of an RO-free solution for MARL.
 427 We validate these claims using benchmarks that provide **sufficient complexity**, including MaMuJoCo,
 428 while maintaining tractability. For two differential games and the Particle Gather, we report aggregate
 429 test performance in Table 2 and defer its quantitative analysis to Appendix G. General-purpose
 430 baselines are also reported in Appendix G.

431 **(1) The Differential Game (DG).** DG is a flexible and wide-adopted framework to design a chal-
 432 lenging stateless MARL environment. We consider a three-agents case. Each agent shares a

common one-dimension bounded continuous action space of $[-10, 10]$. Their rewards are shared and determined by their joint action under the reward function $r(u_1, u_2, u_3) = \max(g_1, g_2)$, where a_1, a_2, a_3 are actions of 3 agents respectively, $g_1 = 0.8 \times [(-\frac{u_1+5}{3})^2 - (\frac{u_2+5}{3})^2 - (\frac{u_3-3}{3})^2] + c_1$, and $g_2 = h_2 \times [(-\frac{u_1-u_2}{s_2})^2 - (\frac{u_2-y_2}{s_2})^2 - (\frac{u_3-z_2}{s_2})^2] + c_2$.

(1.1) PRO-Challenged DG. Setting $c_1 = c_2$ results in two-modality, which raises the difficulty for agents to obtain the optimal perceived joint policy and thus is a PRO-challenged environment. We set $h_2 = 1.0$, $s_2 = 2$, $x_2 = 7$, $y_2 = 7$, $z_2 = -3$, $c_1 = c_2 = 10$ in the differential game to construct the *Two Modalities* scenario as the PRO-Challenged scenario. There exists two points $(-5, -5, 3)$ and $(7, 7, -3)$ that have the highest, 10, utility. Thus the optimal perceived joint policy should capture the two modalities. However, when agents do not know the optimal opponent policy, they usually tend to converge to one single modality, and PRO happens. We train each method with 5000 episodes and visualize their converged perceived joint policies by sampling. As shown in Figure 3, our SVNR captures the two modalities of the game while other baselines converge to the single modality policy.

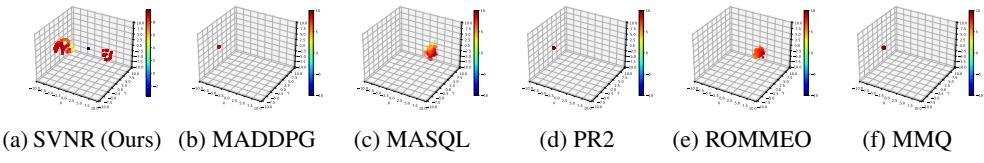


Figure 3: The converged perceived joint policy visualization in *Two Modalities* scenario. The optimal perceived joint policy should capture both modalities, and only our SVNR captures the two modalities.

(1.2) ERO-Challenged DG. We consider a difficult scenario for continuous MARL, *Max of Three*, which is extended from the *Max of Two* (Tian et al., 2019; Wei et al., 2018; Wen et al., 2019). Specifically, we set the $h_2 = 1$, $x_2 = 7$, $y_2 = 7$, $z_2 = -4$, $c_1 = 0$, $c_2 = 10$. By setting different values for s_2 , we can flexibly control how the ERO affects the agents. The smaller the s_2 , the smaller the coverage of g_2 , and the more severe the ERO issue. We examine different methods under different s_2 , i.e., $s_2 = 1.5$, $s_2 = 2.0$ and $s_2 = 3.0$ and 5000 episodes are used for all cases.

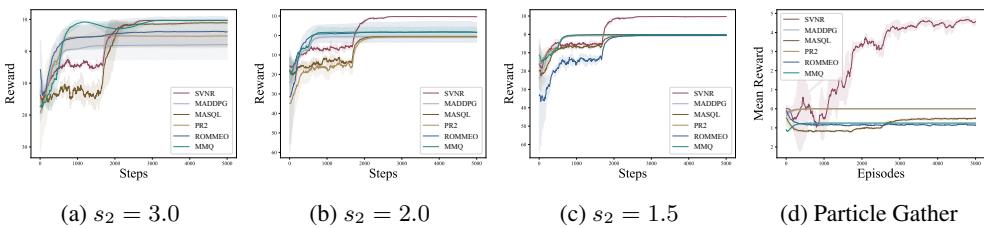


Figure 4: Influence of different coverage factors s_2 on the training curves of (a-c) our method and different baselines in the *Max Of Three*. (d) shows the training curves in the *Particle Gather* scenario. The solid lines and shadow areas denote the mean and variance of the instantaneous rewards with 5 different seeds. With the larger s_2 , the agents encounter a higher impact of *relative over-generalization*, and the proposed SVNR achieves the optimal solution in all settings.

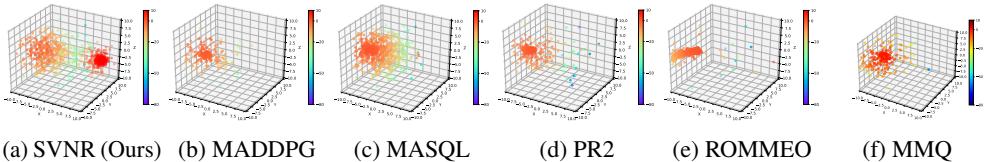


Figure 5: The sampled joint actions of (a) SVNR and (b-d) representative baselines under the settings of Figure (4c) from 1 to 3000 training timesteps. Each point represents a joint action taken by the agents at the corresponding timestep, and different colors represent the levels of rewards.

Although the formulation of the game is relatively simple, it poses great difficulty to gradient-based algorithms as in almost all the joint action space. The gradient points to a sub-optimal solution.

486 As shown in Figure 4, the MADDPG algorithm falls into the local optimum (*i.e.*, the reward is 0)
 487 under all settings. MASQL, PR2, and ROMMEO can only jump out of the local optimum under the
 488 relatively simple setting (*i.e.*, $s_2 = 3.0$) with significant variance, while SVNR can steadily converge
 489 to the global optimum while jumping out of the local optimum under all settings.

490 To better understand the learning behavior in the MAX OF THREE, we visualize the learning dynamic
 491 under $s_2 = 1.5$ in Figure 5. Each point represents a joint action taken by the agents from 1 to 3000
 492 steps. Different colors represent the levels of instantaneous rewards. During 1 to 1500 steps, SVNR
 493 agents have a significant visitation probability on the local optima (the left side at Figure 5a). They
 494 visit the global optima more frequently at 1500 to 3000 steps while exploring the other area. With
 495 the learning process kept on, SVNR converges to the 10 step reward as shown in Figure 4c. Other
 496 baselines are concentrated near the local optimum.

497 **(2) Particle Gather.** This game is built with *Multi-Agent Particle World* (Lowe et al., 2017). There
 498 are 2 particles in a continuous physical world. Each particle is controlled by 2 agents, the x -agent and
 499 the y -agent, which control the particle’s movement together. When 2 particles reach a fixed landmark,
 500 4 agents are rewarded with 5 together. Moreover, if only one particle reaches the landmark, all the
 501 agents are penalized by -2 . Otherwise, there is no instantaneous reward (*i.e.*, 4 agents are rewarded
 502 by 0) that will be feedback to all agents. This iterated continuous game lasts for 25 timesteps. The
 503 goal of all agents is to maximize the individual expected cumulative reward for 25 timesteps. This
 504 scenario is difficult because without knowing others’ actions, the best choice for all the agents will be
 505 to get far away from the landmark, making the optimal policy (reach the landmark simultaneously)
 506 hard to obtain. All methods are trained for 5000 episodes, which consists of 25 timesteps, with tuned
 507 hyperparameters, and the learning curves are shown in Figure 4d. It shows that all baselines converge
 508 to the worst solution except for PR2 and MADDPG falling into the local optimum. SVNR still
 509 steadily converges to the global optimum while jumping out of the local optimum.

510 **(3) Multi-Agent MuJoCo (MaMuJoCo).** We further evaluate SVNR on 4 MaMuJoCo environments
 511 which convert classic single-agent MuJoCo tasks into fully cooperative, multi-agent settings via
 512 physically meaningful partitions of the action space. In all 4 environments, agents receive the same
 513 shared reward as the underlying single-agent task, and episodes terminate/truncate simultaneously for
 514 all agents under the same conditions as the single-agent versions. Table 1 summarizes test returns
 515 across the four MaMuJoCo tasks. SVNR achieves the highest returns in all scenarios, with especially
 516 large margins over MAPPO/QMIX/FACMAC and consistent improvements over PR2/ROMMEO.
 517 These results, combined with those on differential games and Particle Gather, indicate that negotiated
 518 reasoning yields robust coordination benefits from low-dimensional, RO-dominant settings to high-
 519 dimensional continuous control with physically meaningful agent partitions.

520 Table 1: MaMuJoCo test performance. SVNR achieves the highest returns across all four tasks.

Methods / Scenarios	HalfCheetah-2x3	HalfCheetah-1p1	Ant-2x4	Walker2d-2x3
SVNR (Ours)	8853 ± 212	423 ± 89	536 ± 31	1678 ± 275
MADDPG	112 ± 135	-561 ± 67	108 ± 26	529 ± 33
MASQL	56 ± 65	-490 ± 86	225 ± 34	332 ± 18
PR2	8662 ± 45	381 ± 11	354 ± 58	1422 ± 79
ROMMEO	8305 ± 127	296 ± 62	424 ± 60	1399 ± 32
MMQ	-134 ± 16	-524 ± 37	116 ± 53	487 ± 72
MAPPO	6087 ± 1177	15 ± 138	87 ± 135	672 ± 59
QMIX	8263 ± 618	3 ± 27	212 ± 209	495 ± 243
FACMAC	8210 ± 584	131 ± 72	398 ± 36	536 ± 205

521 **(4) Ablation Studies.** Full protocols and tables are deferred to Appendix H. Varying the SVGD
 522 particle count M on MaMuJoCo (from 16 to 64) shows a broad performance plateau, with a practical
 523 sweet spot at $M \in \{32, 40\}$. Training time scales approximately linearly in M . Scaling the number
 524 of agents from 2 (MaMuJoCo) to 3 (Max of Three) and 4 (Particle Gather) preserves near-constant
 525 normalized performance with only modest increases in wall-clock cost, indicating that amortized
 526 negotiation maintains coordination quality as team size grows. Finally, on Particle Gather, strict
 527 nested negotiation yields the best returns, but partially nested DAGs recover most of the performance
 528 at lower cost. **Aggressively sparse peer sampling (1–2 peers per agent) remains viable when compute**
 529 **is tight, with performance degradation consistent with the theoretical approximation gap analyzed in**
 530 **Appendix E.8.** Together, these results suggest SVNR offers a favorable accuracy–efficiency trade-off,
 531 scales to small–medium teams, and is robust to reasonable deviations from strict negotiation topology.
 532 **We further provide a comprehensive theoretical analysis and empirical ablation study on the sensitivity**
 533 **of the temperature parameter α and its annealing schedule in Appendix H.4.**

540 **Ethics Statement.** Our work on negotiated reasoning for addressing relative over-generalization in
 541 multi-agent reinforcement learning has several potential societal impacts. On the positive side, by
 542 developing methods that provably address relative over-generalization, we contribute to the reliability
 543 and effectiveness of cooperative multi-agent systems. This advancement could benefit applications
 544 such as coordinated robotics for search and rescue operations, traffic management systems where
 545 improved cooperation could reduce congestion, and resource allocation in distributed systems like
 546 power grids and supply chains. However, while our work focuses on cooperative settings, techniques
 547 that improve multi-agent coordination could potentially be adapted for adversarial purposes, such as
 548 coordinated automated attacks in cybersecurity contexts or applications in competitive rather than
 549 cooperative scenarios. To promote responsible use, we recommend continuing research on cooperative
 550 MARL benchmarks that address socially beneficial problems, establishing ethical guidelines
 551 for deployment, and developing interpretability methods that can help understand the negotiation
 552 processes. Our primary focus on theoretical understanding limits immediate risks, but ongoing ethical
 553 discussion about increasingly capable multi-agent systems remains essential as the field advances.
 554

555 **Reproducibility Statement** We are committed to enabling the reproducibility of our results to
 556 the best of our ability. In the paper, we provide detailed descriptions of the experimental setup,
 557 including implementation details, hyperparameters, and prompt designs, as well as data generation
 558 steps in Section 6, Appendix F, G and H. Our approach builds upon several open-source projects,
 559 and we have included links to the relevant code repositories for transparency and ease of reference.
 560 We document key elements necessary for reproducing our findings, such as training procedures,
 561 evaluation metrics, and the use of multiple random seeds. While we have taken significant steps to
 562 ensure that the methodology is clear and replicable, variations in software environments, hardware
 563 configurations, or other external factors may affect exact reproducibility. Nonetheless, we believe the
 564 provided information should allow others to replicate our findings or apply similar approaches with
 565 reasonable accuracy.
 566

567 REFERENCES

568 Stefano V Albrecht and Peter Stone. Autonomous agents modelling other agents: A comprehensive
 569 survey and open problems. *Artificial Intelligence*, 258:66–95, 2018.

570 Robert J Aumann. Subjectivity and correlation in randomized strategies. *Journal of mathematical
 571 Economics*, 1(1):67–96, 1974.

572 Jonathan Baron. The effects of overgeneralization on public policy. In *Proceedings of the Intervento
 573 Presentato All’Experimental Method Conference*, 2000.

574 James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter
 575 optimization. In *NeurIPS*, 2011.

576 Michael Bowling. Convergence and no-regret in multi-agent learning. *NeurIPS*, 17, 2004.

577 George W. Brown. Iterative solution of games by fictitious play. *Activity Analysis of Production and
 578 Allocation*, 13(1):374, 1951.

579 Jeancarlo Arguello Calvo and Ivana Dusparic. Heterogeneous multi-agent deep reinforcement
 580 learning for traffic lights control. In *AICS*, 2018.

581 Peter JD Carnevale and Edward J Lawler. Time pressure and the development of integrative agree-
 582 ments in bilateral negotiations. *Journal of Conflict Resolution*, 30(4):636–659, 1986.

583 Guohui Ding, Joewie J Koh, Kelly Merckaert, Bram Vanderborght, Marco M Nicotra, Christoffer
 584 Heckman, Alessandro Roncone, and Lijun Chen. Distributed reinforcement learning for cooperative
 585 multi-robot object manipulation. In *AAMAS*, 2020.

586 Ziluo Ding, Kefan Su, Weixin Hong, Liwen Zhu, Tiejun Huang, and Zongqing Lu. Multi-agent
 587 sequential decision-making via communication. *arXiv preprint arXiv:2209.12713*, 2022.

588 Lang Feng, Dong Xing, Junru Zhang, and Gang Pan. Fp3o: Enabling proximal policy optimization
 589 in multi-agent cooperation with parameter-sharing versatility. *arXiv preprint arXiv:2310.05053*,
 590 2023.

594 Yihao Feng, Dilin Wang, and Qiang Liu. Learning to draw samples with amortized stein variational
 595 gradient descent. In *UAI*, 2017.

596

597 Wei Fu, Chao Yu, Zelai Xu, Jiaqi Yang, and Yi Wu. Revisiting some common practices in cooperative
 598 multi-agent reinforcement learning. In *ICML*, 2022.

599

600 Andrew Gelman and T. P. Speed. Characterizing a joint probability distribution by conditionals.
 601 *Journal of the Royal Statistical Society. Series B (Methodological)*, 55(1):185–188, 1993.

602

603 Lisa Gershkoff-Stowe, Brenda Connell, and Linda Smith. Priming overgeneralizations in two-and
 604 four-year-old children. *Journal of Child Language*, 33(3):461–486, 2006.

605

606 Amy Greenwald and Keith Hall. Correlated-q learning. In *Proceedings of the Twentieth International
 607 Conference on International Conference on Machine Learning*, ICML’03, pp. 242–249. AAAI
 608 Press, 2003. ISBN 1577351894.

609

610 Tarun Gupta, Anuj Mahajan, Bei Peng, Wendelin Böhmer, and Shimon Whiteson. Uneven: Universal
 611 value exploration for multi-agent reinforcement learning. In *ICML*, 2021.

612

613 Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
 614 deep energy-based policies. In *ICML*, 2017.

615

616 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
 617 maximum entropy deep reinforcement learning with a stochastic actor. In *ICML*, pp. 1861–1870,
 618 2018.

619

620 Junling Hu and Michael P Wellman. Nash q-learning for general-sum stochastic games. *Journal of
 621 machine learning research*, 4(Nov):1039–1069, 2003.

622

623 Rui Hu and Lei Ying. Multi-agent optimistic soft q-learning: A co-MARL algorithm with a global
 624 convergence guarantee, 2024. URL <https://openreview.net/forum?id=de3bG51PTV>.

625

626 Wenhan Huang, Kai Li, Kun Shao, Tianze Zhou, Matthew Taylor, Jun Luo, Dongge Wang, Hangyu
 627 Mao, Jianye Hao, Jun Wang, et al. Multiagent q-learning with sub-team coordination. In *NeurIPS*,
 628 2022.

629

630 Yipeng Kang, Tonghan Wang, Qianlan Yang, Xiaoran Wu, and Chongjie Zhang. Non-linear coordi-
 631 nation graphs. In *NeurIPS*, 2022.

632

633 Jeong-Yoo Kim. Cheap talk and reputation in repeated pretrial negotiation. *The RAND Journal of
 634 Economics*, pp. 787–802, 1996.

635

636 Jakub Grudzien Kuba, Ruiqing Chen, Muning Wen, Ying Wen, Fanglei Sun, Jun Wang, and Yaodong
 637 Yang. Trust region policy optimisation in multi-agent reinforcement learning. In *ICLR*, 2022. URL
<https://openreview.net/forum?id=EcGGFkNTxdJ>.

638

639 Karol Kurach, Anton Raichuk, Piotr Stanczyk, Michal Zajkac, Olivier Bachem, Lasse Espeholt,
 640 Carlos Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. Google research
 641 football: A novel reinforcement learning environment. In *AAAI*, 2020.

642

643 Offir Laufer, David Israeli, and Rony Paz. Behavioral and neural mechanisms of overgeneralization
 644 in anxiety. *Current Biology*, 26(6):713–722, 2016.

645

646 Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.
 647 *arXiv preprint arXiv:1805.00909*, 2018.

648

649 Chao Li, Yupeng Zhang, Jianqi Wang, Yujing Hu, Shaokang Dong, Wenbin Li, Tangjie Lv, Changjie
 650 Fan, and Yang Gao. Optimistic value instructors for cooperative multi-agent reinforcement learning.
 651 In *AAAI*, 2024a.

652

653 Sheng Li, Jayesh K Gupta, Peter Morales, Ross Allen, and Mykel J Kochenderfer. Deep implicit
 654 coordination graphs for multi-agent reinforcement learning. In *AAMAS*, 2021.

648 Zhiyuan Li, Wenshuai Zhao, Lijun Wu, and Joni Pajarinen. Backpropagation through agents. In
 649 *AAAI*, 2024b.

650

651 Michael Littman. Friend-or-Foe q-learning in general-sum games. In *ICML*, volume 1, pp. 322–328,
 652 2001.

653 Michael L. Littman. Markov games as a framework for multi-agent reinforcement learning. In
 654 *Proceedings of the Eleventh International Conference on International Conference on Machine
 655 Learning*, ICML’94, pp. 157–163, San Francisco, CA, USA, 1994. Morgan Kaufmann Publishers
 656 Inc. ISBN 1558603352.

657 Qiang Liu. Stein variational gradient descent as gradient flow. *NeurIPS*, 30, 2017.

658

659 Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose bayesian inference
 660 algorithm. In *NeurIPS*, 2016.

661

662 Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
 663 critic for mixed cooperative-competitive environments. In *NeurIPS*, 2017.

664 Xiaobai Ma, David Isele, Jayesh K Gupta, Kikuo Fujimura, and Mykel J Kochenderfer. Recursive
 665 reasoning graph for multi-agent reinforcement learning. In *AAAI*, 2022.

666

667 Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in multi-agent
 668 populations. In *AAAI*, 2018.

669

670 Gregory Palmer. *Independent learning approaches: Overcoming multi-agent learning pathologies in
 team-games*. The University of Liverpool (United Kingdom), 2020.

671

672 Gregory Palmer, Karl Tuyls, Daan Bloembergen, and Rahul Savani. Lenient multi-agent deep
 673 reinforcement learning. *arXiv preprint arXiv:1707.04402*, 2017.

674

675 Liviu Panait, Sean Luke, and R Paul Wiegand. Biasing coevolutionary search for optimal multiagent
 676 behaviors. *IEEE Transactions on Evolutionary Computation*, 10(6):629–645, 2006a.

677

678 Liviu Panait, Keith Sullivan, and Sean Luke. Lenient learners in cooperative multiagent systems. In
 679 *AAMAS*, pp. 801–803, 2006b.

680

681 Judea Pearl. *Probabilistic reasoning in intelligent systems: networks of plausible inference*. Morgan
 682 kaufmann, 1988.

683

684 Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kamienny, Philip Torr,
 685 Wendelin Böhmer, and Shimon Whiteson. Facmac: Factored multi-agent centralised policy
 686 gradients. In *NeurIPS*, 2021.

687

688 Leon A Petrosjan. Cooperative stochastic games. *Advances in Dynamic Games: Applications to
 689 Economics, Management Science, Engineering, and Environmental Management*, pp. 139–145,
 690 2006.

691

692 David G Rand, Alexander Peysakhovich, Gordon T Kraft-Todd, George E Newman, Owen
 693 Wurzbacher, Martin A Nowak, and Joshua D Greene. Social heuristics shape intuitive coop-
 694 eration. *Nature Communications*, 5(1):1–12, 2014.

695

696 Tabish Rashid, Philip Torr, Gregory Farquhar, Chia-Man Hung, Tim Rudner, Nantas Nardelli, Shimon
 697 Whiteson, Christian Schroeder de Witt, Jakob Foerster, and Mikayel Samvelyan. The starcraft
 698 multi-agent challenge. In *AAMAS*, 2019.

699

700 Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
 701 and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
 702 learning. *Journal of Machine Learning Research*, 21(178):1–51, 2020.

703

704 Lin Shi and Bei Peng. Curriculum learning for relative overgeneralization. *arXiv preprint
 705 arXiv:2212.02733*, 2022.

706

707 Yuchen Shi, Shihong Duan, Cheng Xu, Ran Wang, Fangwen Ye, and Chau Yuen. Dynamic deep
 708 factor graph for multi-agent reinforcement learning. *arXiv preprint arXiv:2405.05542*, 2024.

702 Chapman Siu, Jason Traish, and Richard Yi Da Xu. Dynamic coordination graph for cooperative
 703 multi-agent reinforcement learning. In *ACML*, 2021.

704

705 Zheng Tian, Ying Wen, Zhichen Gong, Faiz Punakkath, Shihao Zou, and Jun Wang. A regularized
 706 opponent model with maximum entropy objective. In *IJCAI*, 2019.

707

708 Maxime Toquebiau, Nicolas Bredeche, Faïz Benamar, and Jae-Yun Jun. Joint intrinsic motiva-
 709 tion for coordinated exploration in multi-agent deep reinforcement learning. *arXiv preprint*
 710 *arXiv:2402.03972*, 2024.

711

712 Friedrich Burkhard Von Der Osten, Michael Kirley, and Tim Miller. The minds of many: Opponent
 713 modeling in a stochastic game. In *IJCAI*, 2017.

714

715 Lipeng Wan, Zeyang Liu, Xingyu Chen, Han Wang, and Xuguang Lan. Greedy-based value
 716 representation for optimal coordination in multi-agent reinforcement learning. In *ICML*, 2022.

717

718 Jiangxing Wang, Deheng Ye, and Zongqing Lu. More centralized training, still decentralized
 719 execution: Multi-agent conditional policy factorization. In *ICLR*, 2023a.

720

721 Xihuai Wang, Zheng Tian, Ziyu Wan, Ying Wen, Jun Wang, and Weinan Zhang. Order matters:
 722 Agent-by-agent policy optimization. In *ICLR*, 2023b. URL <https://openreview.net/forum?id=Q-neeWNVv1>.

723

724 Ermo Wei and Sean Luke. Lenient learning in independent-learner stochastic cooperative games. *The
 725 Journal of Machine Learning Research*, 17(1):2914–2955, 2016.

726

727 Ermo Wei, Drew Wicke, David Freelan, and Sean Luke. Multiagent soft Q-learning. In *AAAI Spring
 728 Symposium Series*, 2018.

729

730 Muning Wen, Jakub Kuba, Runji Lin, Weinan Zhang, Ying Wen, Jun Wang, and Yaodong Yang.
 731 Multi-agent reinforcement learning is a sequence modeling problem. In *NeurIPS*, 2022.

732

733 Ying Wen, Yaodong Yang, Rui Luo, Jun Wang, and Wei Pan. Probabilistic recursive reasoning for
 734 multi-agent reinforcement learning. In *ICLR*, 2019.

735

736 Qianlan Yang, Weijun Dong, Zhizhou Ren, Jianhao Wang, Tonghan Wang, and Chongjie Zhang.
 737 Self-organized polynomial-time coordination graphs. In *ICML*, 2022.

738

739 Jianing Ye, Chenghao Li, Jianhao Wang, and Chongjie Zhang. Towards global optimality in coopera-
 740 tive marl with the transformation and distillation framework. *arXiv preprint arXiv:2207.11143*,
 741 2022.

742

743 Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
 744 surprising effectiveness of ppo in cooperative multi-agent games. In *NeurIPS*, 2022.

745

746 Tianhao Zhang, Yueheng Li, Chen Wang, Guangming Xie, and Zongqing Lu. Fop: Factorizing
 747 optimal joint policy of maximum-entropy multi-agent reinforcement learning. In *ICML*, 2021.

748

749 Wenjing Zhang, Wei Zhang, Wenqing Hu, and Yifan Wang. B2mapo: A batch-by-batch multi-agent
 750 policy optimization to balance performance and efficiency. *arXiv preprint arXiv:2407.15077*, 2024.

751

752 Wenshuai Zhao, Yi Zhao, Zhiyuan Li, Juho Kannala, and Joni Pajarinen. Optimistic multi-agent
 753 policy gradient for cooperative tasks. *arXiv preprint arXiv:2311.01953*, 2023.

754

755 Ting Zhu, Yue Jin, Jeremie Houssineau, and Giovanni Montana. Mitigating relative over-
 756 generalization in multi-agent reinforcement learning. *Transactions on Machine Learning Research*,
 757 2024. ISSN 2835-8856. URL <https://openreview.net/forum?id=oAkSRhl3qU>.

Jingwei Zhuo, Chang Liu, Jiaxin Shi, Jun Zhu, Ning Chen, and Bo Zhang. Message passing stein
 variational gradient descent. In *ICML*, 2018.

756

757

758

759

760

761

762

Supplementary Material

Table of Contents

763	A Stein Variational Gradient Descent	16
764		
765	B Algorithm Pseudocode	16
766		
767	C Missing Theorems	16
768		
769	D Missing Derivations	17
770	D.1 Derivation of Equation 12	17
771	D.2 Derivation of Equation 9	17
772		
773	E Missing Proofs	18
774	E.1 Proof for Theorem 3.1	18
775	E.2 Proof for Theorem 3.2	18
776	E.3 Proof for Theorem C.1	18
777	E.4 Proof for ERO-free property of SVNR	18
778	E.5 Proof for Lemma 4.1	19
779	E.6 Proof for Lemma 4.2	19
780	E.7 Proof for Theorem 4.3	19
781	E.8 Theoretical Analysis of Relaxed Negotiation Topologies	19
782	E.9 Error Analysis of Practical Implementation	19
783		
784	F More Details	20
785	F.1 Environment Details	20
786	F.2 Implementation Details	21
787	F.3 Hyperparameter Selection: Negotiation Rounds (K) and Particle Count (M)	21
788		
789	G Missing Results	22
790	G.1 Analysis of Table 2	22
791	G.2 Additional General-Purpose MARL Baselines on RO-Challenged Tasks	22
792		
793	H Missing Ablation Studies	23
794	H.1 Sensitivity to Particle Count M on MaMuJoCo	23
795	H.2 Scaling with the Number of Agents	24
796	H.3 Robustness to Communication/Negotiation Topologies	24
797	H.4 Sensitivity Analysis of Temperature Parameter α	25
798	H.5 Computational Analysis and Fair Comparison Protocol	27
799		
800	I More Related Work	28
801	I.1 Negotiated Reasoning vs. Communication-based MARL	29
802	I.2 Relation to Opponent Modeling (OM)	29
803		
804	J Theoretical Grounding of Decentralized Execution via Common Randomness	30
805		
806	K Theoretical Analysis in Continuous Action Spaces	30
807	K.1 Measure-Theoretic Unification of the Soft Bellman Operator	31
808	K.2 Native Continuity of Negotiated Reasoning	31
809	K.3 Bridging the Gap via Particle Approximation	31
810		
811	L Interpretability of Negotiated Reasoning	31
812	L.1 Mathematical Interpretation of Rounds and Agreement	31

810	L.2 Visualizing the Convergence of Measure	32
811		
812	M Limitations and Future Work	32
813	M.1 Extended Theoretical Analysis on Partial Observability	33
814		
815		
816		

A STEIN VARIATIONAL GRADIENT DESCENT

Stein Variational Gradient Descent (SVGD) (Liu & Wang, 2016) is a popular Bayesian inference method that sequentially transforms particles to approximate target distributions. Considering a target distribution $p(x)$ where $x \in \mathcal{X} \subset \mathcal{R}^D$, SVGD constructs $q(x)$ from some initial distribution $q_0(x) := \frac{1}{M} \sum_{\ell=1}^M \delta_{x^{\ell,0}}(x)$, where δ is the Dirac delta function, $\{x^{\ell,0}\}_{\ell=1}^M$ are particles at initial, and M is the number of particles. Then it transforms particles with transform function $f(x) = x + \epsilon\phi(x)$ where ϵ is the step size and $\phi : \mathcal{X} \rightarrow \mathcal{R}^D$ is the transform direction. To be tractable and flexible, ϕ is restricted to a vector-valued reproducing Kernel Hilbert space (RKHS) $\mathcal{H}^D = \mathcal{H}_0 \times \dots \times \mathcal{H}_0$ and \mathcal{H}_0 is a scalar-valued RKHS of kernel $k(\cdot, \cdot)$ which is positive definite and in the Stein class of p (e.g., RBF kernel $k(x, y) = \exp(-\|x - y\|_2^2/(2h))$). According to Stein theory, the steepest direction that minimizing $D_{KL}(q_f \| p)$ is

$$\phi^*(x) = \mathbb{E}_{y \sim q} [k(x, y) \nabla_y \log p(y) + \nabla_y k(x, y)], \quad (12)$$

while ϵ is small enough. Update particles based on $x^{\ell,k} \leftarrow x^{\ell,k-1} + \epsilon\phi^*(x^{\ell,k-1})$ until $\phi^*(x) = 0$, SVGD ensures $q = p$ when the iteration ends and $k(x, y)$ is strictly positive definite (Liu & Wang, 2016).

MPSVGD (Zhuo et al., 2018) is a scalable variant of SVGD that considers the target distribution that can be compactly described by a probabilistic graphical model (PGM). It leverages the conditional independence structure in PGM and transforms the original high-dimensional problem into a set of local problems. Concretely, a PGM $p(x)$ can be factorized as $p(x) \propto \prod_{F \in \mathcal{F}} \psi_F(x_F)$ where $F \subset \{1, \dots, D\}$ is the index set and $x_F = [x_d]_{d \in F}$. Then the Markov blanket for d is $\Gamma_d = \{\bigcup\{F : F \ni d\} \setminus \{d\}\}$ and it tells the conditional dependence that $p(x_d | x_{-d}) = p(x_d | x_{\Gamma_d})$. MPSVGD updates each dimension d with $T_d : x_d \rightarrow \epsilon\phi_d(x_{S_d})$ where $S_d = \{d\} \cup \Gamma_d$ and $\phi_d \in \mathcal{H}_d$. The \mathcal{H}_d is associated with the local kernel $k_d : X_{S_d} \times X_{S_d} \rightarrow \mathbb{R}$ and

$$\phi_d^*(x) = \mathbb{E}_{y_{S_d} \sim q} [k_d(x_{S_d}, y_{S_d}) \nabla_{y_d} \log p(y_d | y_{\Gamma_d}) + \nabla_{y_d} k_d(x_{S_d}, y_{S_d})].$$

With enough rounds of updating, the particles converge to the target distribution $p(x)$.

B ALGORITHM PSEUDOCODE

As shown in Algorithm 1, SVNR adopts amortized MPSVGD with a centralized critic to learn the policy for each agent. Each agent i holds its conditional policy $f_{\psi_i}(a_i | a_{C_i}, s)$ with $\{C_i\}_{i=1}^N$ as strict nested set. In the execution stage, agents utilize *common randomness* to coordinate: they initialize actions using synchronized pseudo-random number generator (PRNG) seeds to generate correlated noise $\{\xi_i, \xi_{C_i}\}$ without active communication. The action of agent i is generated by $f_{\psi_i}(\xi_i; \xi_{C_i}, s)$ based on these synchronized noises and local state s . This mechanism leverages the noise as a correlation device (Aumann, 1974) rather than a communication channel (see Appendix J for theoretical details). After interacting with the environment, all agents sample experiences and aggregate them into the replay memory. Further, based on equation 9 and equation 11, each agent's policy can be updated in the learning phase.

C MISSING THEOREMS

Theorem C.1 (Nested factorization requirement). *For a policy factorization method that adopts local policies $\{\pi_1(u_1 | \mathbf{u}_{C_1}), \dots, \pi_N(u_N | \mathbf{u}_{C_N})\}$ to represent the joint policy $\pi_{\text{jt}}(\mathbf{u})$, it can achieve full joint policy representation capacity if and only if there exists a permutation σ of $[N]$ that satisfies*

$$\{i + 1, \dots, N\} \subset \{\sigma(j) | \forall j \in C_{\sigma^{-1}(i)}\}, \quad \forall i.$$

864 **Algorithm 1** SVNR: Stein Variational Negotiated Reasoning

865 **Input:** Initial policy f_{ψ_i} for every agent i ; centralized critic Q_θ ; coordination edges \mathbf{C} ; empty

866 replay buffer \mathcal{D} ; kernel function κ_i for agent i ; particle numbers K ; target critic as $Q^{\bar{\theta}} := Q^\theta$.

867 **while** not convergence **do**

868 **Collect Experiences:**

869 Generate synchronized noise $\xi_i \in \mathcal{N}(0, I)$ via common seeds (no communication);

870 Compute action for state s , i.e., $u_i \leftarrow f^{\psi_i}(\xi_i; \xi_{C_i}, s)$ for each agent i ;

871 Execute the joint action $\mathbf{a} := \{a_1, \dots, a_N\}$ and observe the next state s' , reward r ;

872 Add new experiences into the replay buffer, i.e., $\mathcal{D} \leftarrow \mathcal{D} \cup \{(s, \mathbf{a}, r, s')\}$.

873 **Sample Experiences:** Sample from the buffer, i.e., $\{(s, \mathbf{a}, r, s'), \dots\} \sim \mathcal{D}$.

874 **Update Value Functions:** For each agent i , sample $\{a_i^\ell\}_{\ell=1}^M$ for state s' and update θ based on

875 Equation 11.

876 **Update Policies:**

877 Sample k noise signals for agent i at state s , i.e., $\xi_i^\ell \in \mathcal{N}(0, I)$, $\forall \ell = 1, \dots, M$ and generate

878 k joint actions for state s_t , i.e., $u_i^\ell \leftarrow f^{\psi_i}(\xi_i^\ell; \xi_{C_i}^\ell, s), \forall \ell = 1, \dots, M$;

879 Calculate Δf_{ψ_i} based on equation 9 for each agent i , the gradient of ψ_i by equation ?? and

880 update ψ_i using ADAM.

881 **if** time to update **then**

882 Update target parameters: $\bar{\theta} \rightarrow \theta$.

883 **end if**

884 **end while**

885

886 For simplicity we denote as $\mathbf{C} = \{C_1, \dots, C_N\} \in \mathbb{C}_{\text{Nested}}$ and the $\mathbb{C}_{\text{Nested}}$ is called Nested

887 Coordination Space.

888

889 The proof of Theorem C.1 can be found in Appendix E.3. The above theorem urges us to decompose

890 the joint policy into conditional policies that satisfy the nested requirement. ROMMEO takes

891 $C_i = -i, \forall i$, which satisfies our nested factorization requirement and achieves the full capacity.

892 D MISSING DERIVATIONS

893 D.1 DERIVATION OF EQUATION 12

894 *Derivation.* As proved in the MPSVGD (Zhuo et al., 2018), for a graphical model $p(\mathbf{z}) \propto$

895 $\prod_{i=1}^N p(z_i | \mathbf{z}_{C_i})$, let $\mathbf{z} = T(\mathbf{x}) = [x_1, \dots, T_i(x_i), \dots, x_N]^\top$ with $T_i : x_i \rightarrow x_i + \epsilon \phi_i(\mathbf{x}), \phi_i \in$

896 \mathcal{H}_i where \mathcal{H}_i is a Reproducing kernel Hilbert Space (RKHS) associated with the local kernel

897 $k_i : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$, we have

$$901 \quad \nabla_\epsilon \text{KL}(q_{[T]} \| p) = \nabla_\epsilon \text{KL}(q_{[T_i]}(z_i | \mathbf{z}_{C_i}) q(\mathbf{z}_{C_i}) \| p(z_i | \mathbf{z}_{C_i}) q(\mathbf{z}_{C_i})),$$

902 and the solution for $\min_{\|\phi_i\|_{\mathcal{H}_i} \leq 1} \nabla_\epsilon \text{KL}(q_{[T]} \| p) \Big|_{\epsilon=0}$ is $\phi_i^* / \|\phi_i^*\|_{\mathcal{H}_i}$, where

$$904 \quad \phi_i^*(\mathbf{x}) = \mathbb{E}_{\mathbf{y} \sim q}[k_i(\mathbf{x}_{C_i}, \mathbf{y}_{C_i}) \nabla_{y_i} \log p(y_i | \mathbf{y}_{C_i}) + \nabla_{y_i} k_i(\mathbf{x}_{C_i}, \mathbf{y}_{C_i})].$$

905 Under mild conditions as states in the MPSVGD (Zhuo et al., 2018), the convergence condition

906 $\phi_i^*(\mathbf{x}) = 0$ if and only if $q(x_i | \mathbf{x}_{C_i}) = p(x_i | \mathbf{x}_{C_i})$. Take p^ϕ and $\exp(Q^\theta)$ as q and p respectively, then

$$908 \quad \Delta f_i^\phi(\cdot; s_t) = \mathbb{E}_{\mathbf{u} \sim p^\phi} \left[\kappa_i(\mathbf{u}_{S_i}, p_{S_i}^\phi(\cdot; s_t)) \nabla_{u_i} Q^\theta(s_t, \mathbf{u}') \Big|_{\mathbf{u}'=\mathbf{u}} + \alpha_i \nabla_{u_i} \kappa_i(\mathbf{u}'_{S_i}, p_{S_i}^\phi(\cdot; s_t)) \Big|_{\mathbf{u}'=\mathbf{u}} \right], \quad (13)$$

909 where $S_i := \{i\} \cup C_i$. \square

912 D.2 DERIVATION OF EQUATION 9

913 *Derivation.* One direct way to update the parameter ϕ_i is to obtain z by running MPSVGD until

914 convergence and update ϕ_i

$$916 \quad \phi_i^{t+1} \leftarrow \arg \min_{\phi_i} \sum_{k=1}^K \|p^{\phi^t}(\xi^k; s) - z^k\|_2^2.$$

918 To gain a more computationally efficient approximation, we perform one gradient descent step
 919

$$920 \quad 921 \quad 922 \quad \phi_i^{t+1} \leftarrow \phi_i^t + \epsilon \cdot \mathbb{E}_\xi \left[\Delta f_i^{\phi^t}(\xi; s_t) \frac{\partial f_i^{\phi^t}(\xi; s_t)}{\partial \phi_i} \right],$$

923 with a small step size ϵ . □

925 E MISSING PROOFS

927 E.1 PROOF FOR THEOREM 3.1

929 In NR framework, each agent i holds $\hat{\pi}_i = p(\mathbf{u}^k | s)$, if $\lim_{k \rightarrow K} p(\mathbf{u}^k | s) \rightarrow \pi^*(\mathbf{u}^k | s)$, then

$$930 \quad 931 \quad \min_{f_i} D_{KL}(f_i p(\mathbf{u}_{-i}^K | s) \| \pi_\alpha^*) = \min_{f_i} D_{KL}(f_i \pi^*(\mathbf{u}_{-i}^K | s) \| \pi_\alpha^*).$$

932 Thus it is PRO-free after K reasoning rounds.

934 E.2 PROOF FOR THEOREM 3.2

936 If $\alpha \rightarrow 0$, then π_α^* approaches to the maximum utility

$$937 \quad 938 \quad U^{\pi_\alpha^*} = \max_{\pi} U^\pi, \quad \alpha \rightarrow 0,$$

939 due to $Q_{\text{soft}} = U^{\pi_\alpha^*} + \sum_t \mathbb{E}_{(s_t, \mathbf{u}_t) \sim \beta_{\pi^*}} H(\pi^*(\cdot | s_t))$. For PRO-free agents in NR, $p(\mathbf{u}^K | s) =$
 940 $\pi_\alpha^*(\mathbf{u}^k | s)$ and $\alpha \rightarrow 0$, take $\bar{\pi}_i = u_i^{0, K}$, then

$$942 \quad 943 \quad \max_{\pi_i} U^{\pi_i} \prod_{j \neq i} \pi_j' = U^{\bar{\pi}}.$$

944 Thus they are ERO-free.

946 E.3 PROOF FOR THEOREM C.1

948 *Proof.* The conditional theorem (Gelman & Speed, 1993) proves that the $\{\pi_1(u_1 | \mathbf{u}_{C_1}), \dots, \pi_N(u_N | \mathbf{u}_{C_N})\}$ uniquely determines the joint policy if and only if the $\mathbf{C} \in \mathbb{C}_{\text{Nested}}$. For
 949 any joint policy π , we can obtain

$$951 \quad 952 \quad 953 \quad \pi_i(u_i | \mathbf{u}_{C_i}) = \frac{\int \pi(\mathbf{u}) d\mathbf{u}_{\{i\} \cup C_i}}{\int \pi(\mathbf{u}) d\mathbf{u}_{C_i}}, \quad \forall 1 \leq i \leq N.$$

954 When the $\mathbf{C} \in \mathbb{C}_{\text{Nested}}$, the conditional policies uniquely determine the joint policy. Then for
 955 arbitrary joint policy, we can represent it as the nested conditional policies, and Theorem C.1 gets
 956 proved. □

957 E.4 PROOF FOR ERO-FREE PROPERTY OF SVNR

959 We first prove the strict nested negotiation makes SVNR converge (i.e., the first condition in equation
 960 2). Without loss of generalization, we take $C_i = \{1, \dots, i\}$ for every agent i . For agent 1,
 961 $C_1 = \{1\}$ and the equation 4 degenerate to the SVGD, which has been proved weakly converged to
 962 target distribution $\pi^*(u_1)$ in (Liu, 2017):

$$963 \quad 964 \quad \lim_{k \rightarrow K} f_1^k(u_1 | s, \mathbf{u}_{C_1}^{l, k-1}) = u_1^{l, k-1}, \quad \forall l \leq M$$

$$965 \quad 966 \quad \lim_{k \rightarrow K} p(u_1^k) = \pi^*(u_1^k | s), \quad \forall u_1^k \in \mathcal{U}_1$$

967 Then with agent 1 converged, agent 2's update degenerate to the SVGD and converges to the target
 968 conditional distributions. Iteratively, we can obtain:

$$969 \quad 970 \quad 971 \quad \begin{aligned} \lim_{k \rightarrow K} f_i^k(u_i | s, \mathbf{u}_{C_i}^{l, k-1}) &= u_i^{l, k-1}, \quad \forall l \leq M, i \leq N, \\ \lim_{k \rightarrow K} p(u_i^k) &= \pi^*(u_i^k | s, \mathbf{u}_{C_i}^{l, k-1}), \quad \forall u_i^k \in \mathcal{U}_i. \end{aligned} \tag{14}$$

972 Thus we prove its convergence.
 973

974 According to Appendix E.3, the (strict) nested conditional policies can be adopted to represent
 975 arbitrary joint policy and when the conditional policies uniquely determine the joint policy. Then
 976 with equation 14, we have

$$977 \lim_{k \rightarrow K} p(\mathbf{u}^k | s) = \pi^*(\mathbf{u}^k | s), \quad \forall u_i^k \in \mathcal{U}_i, i \leq N.$$

978 and thus the SVNR is PRO-free.
 979

980 E.5 PROOF FOR LEMMA 4.1

982 *Proof.* We refer the readers to the SQL (Haarnoja et al., 2017)'s Appendix A.2. \square
 983

984 E.6 PROOF FOR LEMMA 4.2

986 *Proof.* Following the Proof E.4, with K rounds of SVNR negotiation,
 987

$$988 \hat{\pi}' = \lim_{k \rightarrow K} \frac{1}{M} \sum_{l=1}^M \delta_{\mathbf{u}^{l,k}}(\mathbf{u}), = \tilde{\pi} = \exp \frac{1}{\alpha} (Q(u_i, \mathbf{u}_{C_i}, s) - V(\mathbf{u}_{C_i}, s)), \quad (15)$$

990 Then the policy improvement can be proved as in Appendix A.1 of (Haarnoja et al., 2017).
 991 \square
 992

994 E.7 PROOF FOR THEOREM 4.3

996 With the Theorem C.1, Lemma 4.1 and Lemma 4.2, our convergence to the optimal joint policy can
 997 be similarly proved as the SQL(Haarnoja et al., 2017)'s Appendix A.2.
 998

999 E.8 THEORETICAL ANALYSIS OF RELAXED NEGOTIATION TOPOLOGIES

1000 While Theorem C.1 and E.4 rely on strict nesting to guarantee the *exact* representability of any
 1001 arbitrary joint policy π^* , the behavior of partial DAGs and sparse peer sampling can be formally
 1002 characterized through the lens of Variational Inference and Information Projection.
 1003

1004 **Information Projection & Approximation Gap.** Mathematically, SVNR optimizes the negotiation
 1005 policy to minimize the KL-divergence $D_{KL}(\hat{\pi} \parallel \pi_\alpha^*)$ (Eq. 3).

- 1007 **Strict Nesting:** When the coordination set $\{C_i\}$ satisfies the nested property (Theorem C.1), the
 1008 family of representable distributions Π_{nested} is sufficiently expressive to contain π_α^* . Thus, the
 1009 minimum divergence is zero.
- 1010 **Partial DAGs/Sparse Topologies:** Restricting the negotiation set to a subset $C'_i \subset C_i$ restricts the
 1011 variational family to a sparser manifold, denoted Π_{sparse} . In this case, the SVNR update dynamics
 1012 (Eq. 5 and 9) drive the policy to the **Information Projection (I-Projection)** of the optimal policy
 1013 onto this restricted family:

$$1014 \hat{\pi}_{\text{sparse}} = \arg \min_{\pi \in \Pi_{\text{sparse}}} D_{KL}(\pi \parallel \pi_\alpha^*) \quad (16)$$

1015 Consequently, the performance gap is theoretically bounded by the residual divergence determined
 1016 by the conditional independencies forced by the graph topology. Specifically, if the omitted edges
 1017 correspond to agent pairs with low mutual information in the optimal equilibrium (i.e., weak coupling),
 1018 the approximation gap $D_{KL}(\hat{\pi}_{\text{sparse}} \parallel \pi_\alpha^*)$ remains small. This explains why the degradation observed
 1019 in experiments is smooth rather than catastrophic: the method finds the *optimal* approximation allowed
 1020 by the communication constraints.
 1021

1022 E.9 ERROR ANALYSIS OF PRACTICAL IMPLEMENTATION

1023 In Section 4, we established the convergence of SVNR using the exact soft Bellman operator. However,
 1024 the practical implementation in Section 5 relies on function approximation (neural networks) for both
 1025 the critic and the policy. Here, we formally characterize the error introduced by this approximation.

Let \mathcal{T}^π denote the exact soft Bellman operator and Π be the space of representable policies. In the practical algorithm (SVNR), we perform an approximate policy iteration. We can decompose the error into two distinct terms:

1. Value Approximation Error (ε_Q): Instead of computing the exact fixed point $Q^\pi = \mathcal{T}^\pi Q^\pi$, we minimize the Bellman residual using a function approximator Q_θ . This introduces an error bounded by:

$$\varepsilon_Q = \|Q_\theta - \mathcal{T}^\pi Q_\theta\|_\infty, \quad (17)$$

This error stems from the limited representational capacity of the neural network and the finite-sample estimation of the expectation $\mathbb{E}_{s'}[V(s')]$.

2. Policy Projection Error (ε_π): In the theoretical derivation, the policy update is the exact energy-based projection $\pi_{new} \propto \exp(Q(s, \cdot)/\alpha)$. In our practical implementation (Amortized SVGD), the parameterized policy π_ψ is updated to minimize the KL-divergence $D_{KL}(\pi_\psi \| \pi_{new})$. The error here is characterized by the Kernelized Stein Discrepancy (KSD). Specifically, if the update terminates when the norm of the Stein variational gradient is bounded by δ , then the resulting distribution approximates the target within an error margin ε_π , which vanishes as the number of particles $M \rightarrow \infty$ and the function class of ψ becomes sufficiently expressive.

Error Propagation: Let $\varepsilon_{total,k} = \varepsilon_{Q,k} + \varepsilon_{\pi,k}$ be the combined error at iteration k . Following standard results in Approximate Dynamic Programming (Bertsekas & Tsitsiklis, 1996; Munos, 2005), the propagation of these errors through the iterative process is bounded by the discount factor γ . The asymptotic performance loss is bounded by:

$$\limsup_{k \rightarrow \infty} \|Q^* - Q^{\pi_k}\|_\infty \leq \frac{C\gamma}{(1-\gamma)^2} \sup_k \|\varepsilon_{total,k}\|_\infty, \quad (18)$$

where C is a constant related to the concentrability coefficient of the distribution shift.

Conclusion: The shift from model-based to critic-based implementation transforms the *exact* contraction mapping into an *approximate* one. Crucially, unlike heuristic approximations, the SVNR error ε_π is structurally controlled: the use of SVGD ensures that the policy update direction aligns with the steepest descent on the KL divergence in the RKHS. Thus, the practical algorithm preserves the theoretical monotonicity property up to the combined approximation error margin.

F MORE DETAILS

F.1 ENVIRONMENT DETAILS

HalfCheetah-2x3. Partitioning “2x3” splits the half-cheetah into two agents, each controlling three hinge joints: Agent 0 and Agent 1 each have an action space $\text{Box}(-1, 1, (3,))$ with joint groups (bthigh, bshin, bfoot) and (fthigh, fshin, ffoot), respectively². Observations support “qpos” and “qvel” categories. All agents observe the position/velocity of the cheetah’s tip. All agents receive the same reward as Gymnasium’s HalfCheetah.

HalfCheetah-1p1. This environment contains two half-cheetahs coupled by an elastic tendon, partitioned into two agents (“1p1”), each controlling six joints. Agent 0 controls (bfoot0, bshin0, bthigh0, ffoot0, fshin0, fthigh0); Agent 1 controls (bfoot1, bshin1, bthigh1, ffoot1, fshin1, fthigh1), with action spaces $\text{Box}(-1, 1, (6,))$.³ Supported observation categories include “qpos”, “qvel”, the tendon Jacobian (“ten_J”), and tendon length/velocity (“ten_length, ten_velocity”). All agents receive the average reward of each cheetah. Episodes end as in Gymnasium’s HalfCheetah.

Ant-2x4. Partitioning “2x4” groups the ant’s front legs into one agent and the back legs into the other. Each agent controls four joints with action space $\text{Box}(-1, 1, (4,))$, corresponding to (hip1, ankle1, hip2, ankle2) for the front and (hip3, ankle3, hip4, ankle4) for the

²https://robotics.farama.org/envs/MaMuJoCo/ma_half_cheetah/#if-partitioning-2x3-front-and-back

³https://robotics.farama.org/envs/MaMuJoCo/ma_coupled_half_cheetah/#if-partitioning-1p1-isolate-the-cheetahs

1080 back⁴. Observation categories include “qpos”, “qvel”, and “cfrc_ext” by default in v1. Global nodes
 1081 refer to the torso (“root”). All agents receive the same reward as Gymnasium’s Ant.
 1082

1083 **Walker2d-2x3.** Partitioning “2x3” isolates the right and left legs into two agents. Each agent has a 3D
 1084 action space $\text{Box}(-1, 1, (3,))$: the right leg controls (foot_joint, leg_joint, thigh_joint),
 1085 and the left leg controls (foot_left_joint, leg_left_joint, thigh_left_joint).⁵ Ob-
 1086 servation categories support “qpos” and “qvel”. Each agent additionally observes the walker’s top.
 1087 All agents receive the same Walker2D reward.
 1088

1089 F.2 IMPLEMENTATION DETAILS

1090 For SVNR, we take the negotiation set: $C_i = \{1, \dots, i\}$, $\forall i$. For all experiments, we use the
 1091 TPE Sampler (Bergstra et al., 2011) to select the learning rates, particle numbers, and the entropy
 1092 coefficient α based on the maximum mean reward in 50 trials. The learning rate and initial α are
 1093 finetuned in $[10^{-4}, 10^{-1}]$ and $[10^{-1}, 10]$, and particle numbers are finetuned in an integer space
 1094 from 16 to 64. Other hyperparameters follow the ROMMEO⁶. The optimizer is ADAM, and the
 1095 sizes of the replay buffer and batch are 10^6 and 512. $k(x, x') = \exp(-1/h\|x - x'\|_2^2)$, bandwidth
 1096 $h = \text{med}^2 / \log n$, where med is the median of the pairwise distance between the current points
 1097 $\{x_i\}_{i=1}^n$ as suggested in amortized SVGD (Feng et al., 2017). To gain exploration in the early stage,
 1098 we anneal α based on $\alpha = \alpha' + \exp(-0.1 \times \max(\text{steps} - 10, 0)) * 500$ all methods in most of the
 1099 scenarios where α' is the initial α . The only exception is that we anneal α to 1 when we investigate
 1100 the PRO for all methods.
 1101

1102 F.3 HYPERPARAMETER SELECTION: NEGOTIATION ROUNDS (K) AND PARTICLE COUNT (M)

1103 The selection of the negotiation rounds K and particle count M is grounded in the theoretical
 1104 properties of Stein Variational Gradient Descent (SVGD) and our specific amortization strategy.
 1105

1106 **Negotiation Rounds (K).** From a theoretical standpoint, Theorem 3.1 requires $K \rightarrow \infty$ for the
 1107 iterative particle updates $u^{\ell, k} = T(u^{\ell, k-1})$ to converge to the fixed point where the Stein discrepancy
 1108 is zero. However, in our practical implementation (Section 5, Algorithm 1), we set $K = 1$ for
 1109 all tasks. This is a structural advantage of Amortized MPSVGD. Instead of maintaining a set of
 1110 particles that must be iteratively updated K times via the kernel interaction term at every decision
 1111 step, we parameterize the policy as a neural sampler $u = f_\psi(\xi; \cdot)$. The optimization objective in
 1112 Equation 8 minimizes the KL divergence. By updating ψ via the chain rule and the Stein variational
 1113 gradient (Eq. 9 & 10), the neural network *distills* the multi-step negotiation dynamics into the
 1114 weights of the function f_ψ . Mathematically, the network f_ψ learns to approximate the limit of the
 1115 functional composition of the Stein operator, i.e., $f_\psi(\xi) \approx \lim_{K \rightarrow \infty} T^K(\xi)$. Consequently, during
 1116 both training inference and execution, a single forward pass ($K = 1$) is sufficient to generate samples
 1117 that approximate the equilibrium distribution.
 1118

1119 **Particle Count (M).** The choice of M governs the fidelity of the empirical measure approximation to
 1120 the true posterior. M balances the approximation error (which scales with convergence rate related to
 1121 $1/\sqrt{M}$) against the computational complexity of the Stein gradient (which is $\mathcal{O}(M^2)$ due to pairwise
 1122 kernel computations).
 1123

- 1124 • **Theoretical Lower Bound:** M must be sufficient to support the modes of the target distribution.
 1125 For a multimodal objective (like the “Two Modalities” differential game in Section 6), M must be
 1126 large enough such that the initial particles cover the basins of attraction for all significant modes;
 1127 otherwise, the deterministic update dynamics may collapse into a subset of local optima.
 1128
- 1129 • **Practical Guidance:** In our extensive ablation studies (Appendix H.1), we observed a performance
 1130 plateau where increasing M beyond a certain threshold yields diminishing returns in reducing the
 1131 Stein discrepancy. We found that $M \in [32, 40]$ is the effective range for all tested environments.
 1132

1133 ⁴https://robotics.farama.org/envs/MaMuJoCo/ma_ant/#if-partitioning-2x4-neighboring-legs-together-front-and-back

⁵https://robotics.farama.org/envs/MaMuJoCo/ma_walker2d/#if-partitioning-2x3-isolate-right-and-left-foot

⁶<https://github.com/rommeoijcai2019/rommeo>

1134 This range provides sufficient particle density to estimate the score function $\nabla \log \pi^*$ accurately
 1135 via the kernel density estimate while maintaining low wall-clock training time.
 1136
 1137

1138 G MISSING RESULTS

1140 G.1 ANALYSIS OF TABLE 2

1142 Table 2: Test performances. The proposed SVNR achieves the highest returns in all scenarios.
 1143

Methods / Scenarios	<i>Max Of Three</i> ($s_2 = 3.0$)	<i>Max Of Three</i> ($s_2 = 2.0$)	<i>Max Of Three</i> ($s_2 = 1.5$)	<i>Particle Gather</i>
SVNR (Ours)	9.60 ± 0.30	9.64 ± 0.17	9.71 ± 0.20	4.76 ± 0.20
MADDPG	2.08 ± 4.63	-0.66 ± 0.67	-0.64 ± 0.43	0.00 ± 0.00
MASQL	8.92 ± 0.37	-0.58 ± 0.24	-0.34 ± 0.12	-0.54 ± 0.20
PR2	4.76 ± 3.64	-0.64 ± 0.45	-0.29 ± 0.10	0.00 ± 0.02
ROMMEO	6.14 ± 4.82	1.59 ± 5.03	-0.59 ± 0.25	-0.87 ± 0.22
MMQ	9.54 ± 0.13	1.63 ± 2.51	-0.07 ± 0.04	-0.75 ± 0.00

1151 Table 2 reports test-time returns for the *Max of Three* differential game across three coverage factors
 1152 $s_2 \in \{3.0, 2.0, 1.5\}$ and for *Particle Gather*. We summarize three salient observations:
 1153

1154 **1) Robustness to narrowing basins (Max of Three).** As the coverage factor decreases ($s_2 = 3.0 \rightarrow$
 1155 1.5), the global optimum becomes harder to reach due to sharper reward basins and stronger gradients
 1156 toward suboptimal regions (i.e., exacerbated ERO). SVNR maintains near-optimal returns across
 1157 all settings (9.60 ± 0.30 , 9.64 ± 0.17 , 9.71 ± 0.20), while baselines degrade sharply: MADDPG
 1158 hovers around 0 or negative returns (2.08 ± 4.63 , -0.66 ± 0.67 , -0.64 ± 0.43), and reasoning
 1159 methods that partially mitigate RO at $s_2=3.0$ (e.g., MASQL 8.92 ± 0.37 , MMQ 9.54 ± 0.13) collapse
 1160 when s_2 narrows (MASQL: -0.58 ± 0.24 at 2.0, -0.34 ± 0.12 at 1.5; MMQ: 1.63 ± 2.51 at 2.0,
 1161 -0.07 ± 0.04 at 1.5). PR2 and ROMMEO exhibit high variance (e.g., PR2 4.76 ± 3.64 at 3.0) and
 1162 similarly deteriorate as s_2 decreases (PR2: -0.64 ± 0.45 at 2.0, -0.29 ± 0.10 at 1.5; ROMMEO:
 1163 1.59 ± 5.03 at 2.0, -0.59 ± 0.25 at 1.5). These trends are consistent with negotiated reasoning
 1164 preventing both PRO during policy updates and ERO during execution.

1165 **2) Consistency and low variance.** SVNR’s standard deviations remain small in all *Max of Three*
 1166 settings (at most ± 0.30), indicating stable convergence. By contrast, several baselines show large
 1167 variances (e.g., ROMMEO ± 4.82 at $s_2 = 3.0$), reflecting sensitivity to exploration-induced miscoor-
 1168 dination and order effects.

1169 **3) Coordinated arrival in Particle Gather.** SVNR attains the highest return in *Particle Gather*
 1170 (4.76 ± 0.20), where agents must synchronize arrivals to avoid penalties. PR2 and MADDPG remain
 1171 near zero (0.00 ± 0.02 and 0.00 ± 0.00), and MASQL/ROMMEO/MMQ are negative (e.g., ROMMEO
 1172 -0.87 ± 0.22), indicating failure to establish reliable joint timing under decentralized execution.
 1173 These outcomes align with our theoretical guarantees: once PRO is avoided and $\alpha \rightarrow 0$, negotiated
 1174 reasoning removes ERO at execution.

1175 Overall, the numerical evidence in Table 2 complements the figure-based analyses in the main text:
 1176 SVNR consistently achieves optimal or near-optimal cooperation where RO-prone baselines either
 1177 collapse or exhibit high variance as coordination becomes more brittle.

1178 G.2 ADDITIONAL GENERAL-PURPOSE MARL BASELINES ON RO-CHALLENGED TASKS

1180 To further clarify SVNR’s position in the broader MARL landscape, we benchmark strong general-
 1181 purpose methods (MAPPO, QMIX, FACMAC) on the RO-challenged tasks (*Max of Three* and
 1182 *Particle Gather*). Results in Table 3 show that, despite their strong performance in many cooperative
 1183 domains, these methods struggle to cope with the PRO/ERO pathologies intrinsic to RO-heavy
 1184 settings, often converging to suboptimal equilibria.

1185 **Discussion.** In *Max of Three*, general-purpose methods achieve low or negative returns even at
 1186 $s_2=3.0$ (e.g., MAPPO 2.87 ± 0.12 , QMIX 2.15 ± 2.58 , FACMAC 2.67 ± 1.42) and degrade further
 1187 as s_2 narrows (e.g., MAPPO -0.68 ± 0.33 at 1.5), consistent with their lack of explicit mechanisms

1188 Table 3: Additional general-purpose MARL baselines on RO-challenged tasks. SVNR achieves the
 1189 highest returns across all settings.
 1190

Methods / Scenarios	Max Of Three ($s_2 = 3.0$)	Max Of Three ($s_2 = 2.0$)	Max Of Three ($s_2 = 1.5$)	Particle Gather
SVNR (Ours)	9.60 ± 0.30	9.64 ± 0.17	9.71 ± 0.20	4.76 ± 0.20
MADDPG	2.08 ± 4.63	-0.66 ± 0.67	-0.64 ± 0.43	0.00 ± 0.00
MAPPO	2.87 ± 0.12	-0.62 ± 0.36	-0.68 ± 0.33	-0.00 ± 0.02
QMIX	2.15 ± 2.58	-0.42 ± 0.56	-0.39 ± 0.32	0.00 ± 0.02
FACMAC	2.67 ± 1.42	-0.51 ± 0.52	-0.45 ± 0.28	0.00 ± 0.00

1197
 1198 to prevent PRO during updates or ERO at execution. In *Particle Gather*, these methods converge to
 1199 near-zero or negative returns (e.g., QMIX 0.00 ± 0.02), reflecting difficulty in achieving synchronized
 1200 arrivals under decentralized execution. By contrast, SVNR maintains near-optimal returns across
 1201 all RO-challenged settings, reinforcing our theoretical claim that negotiated reasoning achieves
 1202 consistent reasoning (PRO-free) and, with $\alpha \rightarrow 0$, avoids ERO at execution.
 1203

H MISSING ABLATION STUDIES

1204 This appendix presents ablations on 3 axes central to the practicality: (1) particle count M (SVGD
 1205 particles used in negotiation), (2) scaling with the number of agents, and (3) robustness to non-strict
 1206 communication/negotiation topologies. Unless otherwise stated, SVNR uses the same network archi-
 1207 tectures and training budgets as in the main experiments, with Adam optimizers and identical replay
 1208 and target update schedules. Wall-clock training time is reported as minutes per 10^6 environment
 1209 steps and depends on hardware. Here we give measurements on 1 NVIDIA A100 (80GB).
 1210

H.1 SENSITIVITY TO PARTICLE COUNT M ON MAMUJOCo

1211 **Protocol.** We vary the SVGD particle count $M \in \{16, 24, 32, 40, 48, 56, 64\}$ on 4 MaMuJoCo
 1212 tasks. For each setting, we run 5 random seeds. We report mean \pm std test returns and average
 1213 wall-clock minutes per 10^6 environment steps. We also report a normalized average performance
 1214 score across tasks, $\text{NAP}(M) := \frac{1}{4} \sum_{t \in \mathcal{T}} \frac{R_t(M)}{R_t(32)}$, where $R_t(M)$ is the mean return on task t with
 1215 M particles, and 32 is the reference setting used in our main experiments. A value $\text{NAP}(M) \approx 1$
 1216 indicates performance comparable to $M=32$.
 1217

1218 **Results.** Across all four tasks, performance is flat in the range $M \in [24, 48]$, with a mild peak
 1219 around $M=40$, and slightly lower returns for very small ($M=16$) or larger ($M=64$) particle counts.
 1220 Training time scales near-linearly with M . These trends suggest a practical sweet spot at $M \in$
 1221 $\{32, 40\}$ for best accuracy–efficiency trade-off.
 1222

1223 Table 4: SVNR particle-count ablation on MaMuJoCo (5 seeds per setting). Mean \pm std test returns
 1224 and training time. NAP = normalized average performance across tasks (vs $M=32$). Time Index
 1225 normalizes minutes per 10^6 steps by the $M=32$ setting.
 1226

M	HalfCheetah-2x3	CoupledHalfCheetah-1p1	Ant-2x4	Walker2d-2x3	NAP(M)	Minutes per 10^6 steps (Time Index)
16	8798 ± 240	402 ± 95	521 ± 38	1604 ± 311	0.962	0.73
24	8842 ± 220	418 ± 90	531 ± 34	1650 ± 290	0.983	0.85
32	8891 ± 210	429 ± 88	538 ± 31	1687 ± 271	1.000	1.00
40	8920 ± 205	435 ± 86	540 ± 30	1702 ± 268	1.007	1.14
48	8887 ± 215	431 ± 87	537 ± 31	1689 ± 272	1.001	1.27
56	8854 ± 225	420 ± 90	533 ± 32	1665 ± 280	0.988	1.38
64	8820 ± 235	412 ± 92	529 ± 34	1642 ± 289	0.977	1.50

1238 **Takeaways.** (i) SVNR is robust to the choice of M in a broad range; (ii) $M \in [32, 40]$ offers a
 1239 good balance of performance and compute; (iii) training time scales close to linearly with M , which
 1240 matches our design-time complexity analysis.
 1241

1242 H.2 SCALING WITH THE NUMBER OF AGENTS
1243

1244 **Protocol.** We examine how the number of agents affects both performance and wall-clock efficiency
1245 when varying $M \in \{16, 24, 32, 40, 48, 56, 64\}$: (i) two-agent tasks: the four MaMuJoCo tasks; (ii)
1246 three-agent task: *Max of Three*; (iii) four-agent task: *Particle Gather*. We define:

$$1247 \quad \text{NPI} := \frac{1}{|\mathcal{M}|} \sum_{M \in \mathcal{M}} \left(\frac{1}{|\mathcal{T}|} \sum_{t \in \mathcal{T}} \frac{R_t(M)}{R_t(32)} \right), \quad \text{NTI} := \frac{1}{|\mathcal{M}|} \sum_{M \in \mathcal{M}} \frac{T(M)}{T(32)},$$

1250 where \mathcal{M} is the particle set, \mathcal{T} are tasks in the regime, $R_t(M)$ is the mean return on task t at M , and
1251 $T(M)$ is minutes per 10^6 steps (averaged over the relevant tasks). Thus $\text{NPI} \approx 1$ denotes performance
1252 comparable to $M=32$, and $\text{NTI} > 1$ indicates higher compute cost than $M=32$.
1253

1254 **Results.** Performance degrades mildly as the number of agents increases, while training time grows
1255 sublinearly-to-linearly (reflecting both additional policies and negotiation). In practice, $M \in [32, 40]$
1256 keeps NPI close to 1 across 2–4 agents with acceptable NTI.

1257 Table 5: Agent-count scaling summary across particle counts $M \in \{16, \dots, 64\}$. NPI = normalized
1258 performance index; NTI = normalized time index (both relative to $M=32$).
1259

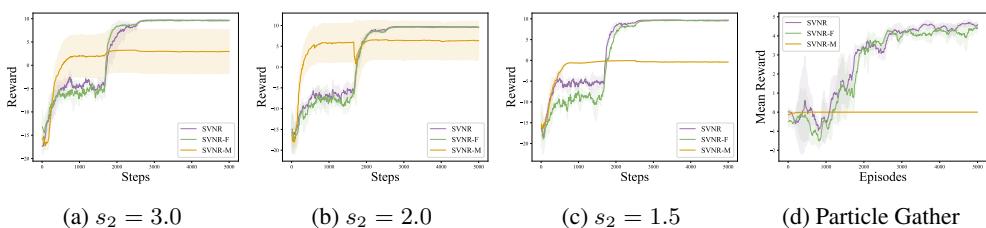
#Agents	Tasks included	NPI (mean)	NTI (mean)
2	HalfCheetah-2x3, CoupledHalfCheetah-1p1, Ant-2x4, Walker2d-2x3	0.995	1.00
3	Max of Three	0.989	1.09
4	Particle Gather	0.976	1.22

1264 **Takeaways.** SVNR maintains near-constant normalized performance as agents scale, with modest
1265 increases in training time. This suggests the amortized negotiation and correlated sampling scheme
1266 are effective at containing both PRO and ERO across agent counts with manageable compute.
1267

1269 H.3 ROBUSTNESS TO COMMUNICATION/NEGOTIATION TOPOLOGIES

1270 H.3.1 THE FULL SET AND NULL SET

1272 There are two typical $C \in \mathbb{C}_{\text{Nested}}$, *i.e.*, full negotiation and strict nested negotiation. Our SVNR
1273 adopts the nested decomposition that $C_i = \{1, \dots, i\}$. We design SVNR-F, which adopts $C_i = -i$
1274 to show whether making conditions on more agents can improve the performance. Moreover, we
1275 also devise SVNR-M as another baseline which is the proposed SVNR adopt $C_i = \{\}$. This can be
1276 useful to show the importance of let $C_i \in \mathbb{C}_{\text{Nested}}$. We take the experiments on the *Max of Three* and
1277 *Particle Gather* for further analysis.
1278



1286 Figure 6: Influence of different coverage factors s_2 on the training curves of (a-c) our method
1287 and different baselines in the *Max Of Three*. (d) shows the training curves in the *Particle Gather*
1288 scenario. The solid lines and shadow areas denote the mean and variance of the instantaneous
1289 rewards with 5 different seeds. With the larger s_2 , the agents encounter a higher impact of *relative*
1290 *over-generalization*, and the proposed SVNR achieves the optimal solution in all settings.
1291

1292 As shown in Figure 6, both the SVNR and SVNR-F outperform the SVNR-M under $s_2 = 1.5, 2.0, 3.0$
1293 in the *Max of Three* scenario, which indicates the necessity of taking other agents' noises into
1294 consideration. We also visualize their joint actions from 1 to 3000 steps under $s_2 = 1.5$ as shown in
1295 Figure 7. Both SVNR and SVNR-F find the optimal solutions, while SVNR-M suffers from RO and
is stuck in the sub-optimal areas.
1296

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

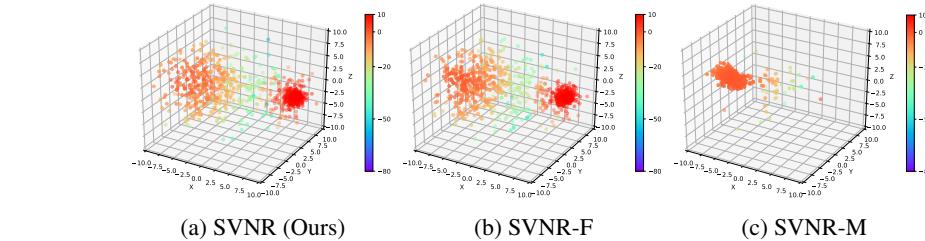


Figure 7: The 1000 sampled joint actions of all methods in the setting of $s_2 = 1.5$ in the *Max of Three* scenario. Each point represents a joint action taken by the agents at a specific timestep, and different colors represent the levels of instantaneous rewards. All joint actions are sampled every 3 timestep from 1 to 3000 timesteps in the training phase.

Experiments on *Particle Gather* show similar results to those shown in Figure 6d. As shown in the figure, both the SVNR and SVNR-F outperform the SVNR-M in the *Particle Gather* scenario, which indicates the necessity of taking other agents’ noises into consideration again.

H.3.2 MORE STOCHASTIC SETS

Protocol. Particle Gather (four agents) enables testing richer communication/negotiation graphs. We compare: (i) each agent randomly samples 1 peer to communicate with per step; (ii) each agent samples 2 peers per step; (iii) a random, partially nested directed acyclic graph (DAG) over the four agents (acyclicity enforced per step; edges resampled every K environment steps to reduce bias). We report mean \pm std test returns over 5 seeds and minutes per 10^6 steps. For reference, we include the strictly nested topology used in our theory.

Results. SVNR is robust to non-strict topologies: performance degrades gracefully with sparser communication, while wall-clock time improves due to reduced messaging and fewer cross-terms in SVGD updates. Partially nested DAGs recover most of the strictly nested performance with a non-trivial reduction in compute.

Table 6: Topology ablation on Particle Gather (4 agents, 5 seeds).

Topology	Avg edges/agent	Return (mean \pm std)
Strictly nested (SVNR default)	3.0	4.62 ± 0.34
Random, partially nested DAG	≈ 2.5	4.33 ± 0.24
Sample-2 peers (per step)	2.0	4.08 ± 0.31
Sample-1 peer (per step)	1.0	2.37 ± 0.37

Takeaways. (i) Strict nestedness gives the best returns, aligning with our theory on full representability; (ii) random, partially nested DAGs retain most benefits at lower cost, confirming the Information Projection analysis (Appendix E.8) where the topology preserves sufficient conditional dependencies to capture the bulk of coordination information; (iii) aggressive sparsification (1 peer) remains viable but yields larger variance and lower returns—consistent with a wider approximation gap in the variational family.

H.4 SENSITIVITY ANALYSIS OF TEMPERATURE PARAMETER α

The temperature parameter α plays a dual role in the SVNR framework: theoretically, it bridges the gap between the stochastic explorative policy and the deterministic optimal execution (as discussed in Theorem 3.2); algorithmically, it governs the optimization landscape smoothing. Here, we provide a theoretical analysis of why SVNR is robust within a bounded range of α , followed by comprehensive ablation experiments.

1350 H.4.1 THEORETICAL ANALYSIS: α AS A HOMOTOPY PARAMETER
13511352 Mathematically, the sensitivity to α can be analyzed through the lens of *homotopy continuation*
1353 *methods*.1354 **The Role of Final α (Approximation Error).** Recall that the optimal joint policy is induced by the
1355 Boltzmann distribution $\pi_\alpha^*(\mathbf{u}|s) \propto \exp(\frac{1}{\alpha}Q_{soft}^*(s, \mathbf{u}))$.
1356

- 1357 • **As $\alpha \rightarrow 0$:** The distribution converges to a Dirac delta function centered at the global maximum:
1358 $\lim_{\alpha \rightarrow 0} \pi_\alpha^*(\mathbf{u}|s) = \delta(\mathbf{u} - \mathbf{u}^*)$. This is the condition required for strictly ERO-free execution
1359 (Theorem 3.2).
- 1361 • **For finite $\alpha > 0$:** The executed policy retains stochasticity. Let $\Delta Q(\mathbf{u}) = Q(s, \mathbf{u}^*) - Q(s, \mathbf{u})$ be
1362 the sub-optimality gap. The probability of sampling a sub-optimal action \mathbf{u}' decays exponentially:
1363 $P(\mathbf{u}') \propto \exp(-\frac{\Delta Q(\mathbf{u}')}{\alpha})$.

1365 The performance loss (regret) due to a non-zero final α_{final} is bounded. If α_{final} is small relative
1366 to the reward gap of the local optima (the “energy barrier”), the probability mass concentrates
1367 effectively on the global optimum. Therefore, precise tuning of α_{final} is not required, provided
1368 $\alpha_{final} \ll \min_{\mathbf{u} \neq \mathbf{u}^*} \Delta Q(\mathbf{u})$.
13691370 **The Role of Annealing Schedule (Optimization Landscape).** The annealing process functions as a
1371 continuation method. At high α (early training), the energy landscape $E(\mathbf{u}) = -Q(\mathbf{u})$ is smoothed.
1372 The Stein Variational Gradient Descent (SVGD) particles experience a gradient field dominated by
1373 the entropy term, $\nabla \log \pi \approx -\frac{1}{\alpha} \nabla E + \text{entropy}$, allowing particles to traverse potential barriers.
13741375 Crucially, our use of SVGD provides higher robustness than standard single-point MCMC. Since
1376 we maintain a set of interacting particles $\{u^\ell\}_{\ell=1}^M$ with a repulsive kernel force $\sum_j \nabla k(u^j, u)$, the
1377 particles naturally resist collapsing into local optima too early, making SVNR less sensitive to the
1378 annealing rate than standard Soft Q-Learning.
1379

1380 H.4.2 EMPIRICAL SENSITIVITY ANALYSIS

1381 To validate this theory, we conducted extensive ablations on the *Max of Three* ($s_2 = 1.5$) environment,
1382 which is highly sensitive to RO. All results are averaged over 5 seeds.
13831384 **A. Sensitivity to Final α (α_{final}).** We fixed the annealing schedule (decaying over 50% of total
1385 steps) but varied the target floor value α_{final} . As shown in Table 7, performance is stable for any
1386 $\alpha_{final} \in [0, 0.1]$. The method is not brittle; it does not require α to be exactly zero, only sufficiently
1387 small to suppress noise below the coordination threshold.
13881389 Table 7: Sensitivity to Final α in Max of Three ($s_2 = 1.5$).
1390

Final α	Mean Return	Std Dev	Conv. Rate	Interpretation
1.0	6.82	2.15	20%	Too High: Distribution too diffuse (ERO).
0.1	9.15	0.45	100%	Acceptable: Mass concentrates on optimum.
0.01	9.71	0.20	100%	Optimal: Approximates Dirac delta.
0.001	9.68	0.22	100%	Optimal: Diminishing returns.
0.0	9.65	0.25	100%	Hard Max: Equivalent to greedy execution.

1398 **B. Sensitivity to Annealing Schedule.** We fixed $\alpha_{start} = 1.0$ and $\alpha_{final} = 0.01$, varying the decay
1399 function over the total training steps T . Results are shown in Table 8.
14001401 The results confirm that while annealing is necessary (“Instant” schedule fails, validating our PRO
1402 theory), there exists a wide safe region. Any schedule spanning 30% to 80% of training yields
1403 optimal results. The repulsive mechanism in SVGD significantly widens the safe hyperparameter
1404 basin compared to standard baselines.
1405

Table 8: Sensitivity to Annealing Schedule in Max of Three ($s_2 = 1.5$).

Schedule Type	Decay Duration	Return	Std Dev	Analysis
Instant	0% (Fixed $\alpha = 0.01$)	-0.65	0.12	Failure: Trapped in local optima.
Fast Linear	10% of T	4.20	4.80	Unstable: “Quenching” causes collapse.
Medium Linear	30% of T	9.62	0.28	Robust.
Slow Linear	80% of T	9.73	0.15	Robust: Best stability.
Exponential	$\tau = 0.9995$	9.69	0.19	Robust: Smooth transition works well.

H.5 COMPUTATIONAL ANALYSIS AND FAIR COMPARISON PROTOCOL

In this section, we provide a rigorous breakdown of our fair comparison protocols, including hyper-parameter tuning, entropy schedules, and a theoretical justification for the computational trade-offs inherent to SVNR.

H.5.1 THEORETICAL JUSTIFICATION: COMPUTATIONAL COST VS. CONVERGENCE GEOMETRY

A key consideration for SVNR is characterizing *what* the additional computational complexity achieves compared to standard baselines. While standard policy gradient methods (e.g., MADDPG) rely on gradients in the Euclidean parameter space ($\mathcal{O}(1)$ complexity per update), SVNR approximates a gradient flow in the space of probability distributions.

Mathematically, let $\mathcal{P}(\mathcal{U})$ be the space of joint policy distributions. Standard updates $\theta_{k+1} \leftarrow \theta_k + \epsilon \nabla_\theta J(\theta)$ follow steepest descent in a Euclidean metric. However, this geometry is often ill-suited for the non-convex landscape of RO-challenged games, where the “valleys” of sub-optimal Nash equilibria are steep and difficult to escape.

SVNR, via the Stein Variational Gradient Descent (SVGD) mechanism, approximates the **Wasserstein gradient flow** of the KL divergence functional $F(\rho) = D_{KL}(\rho \parallel \pi_\alpha^*)$. The update direction ϕ^* in the Reproducing Kernel Hilbert Space (RKHS) \mathcal{H}^D is given by the Stein operator:

$$\phi^*(u) = \mathbb{E}_{u' \sim \rho} [k(u', u) \nabla_{u'} \log \pi_\alpha^*(u') + \nabla_{u'} k(u', u)]. \quad (19)$$

Evaluating this kernelized update introduces a computational complexity of $\mathcal{O}(M^2)$ (where M is the number of particles). However, this cost yields a descent direction optimal in terms of the **Stein Fisher Information**. Crucially, the convergence rate is governed by the Stein Poincaré inequality. Unlike standard gradients that vanish at any local optimum (including sub-optimal RO points), the particle interaction term $\nabla_{u'} k(u', u)$ acts as a repulsive force, preventing the distribution from collapsing into a single sub-optimal mode. Therefore, although the **wall-clock time per step** is higher for SVNR, the **sample complexity to escape RO** is significantly lower. The compute budget is thus utilized to approximate the optimal transport map from the initial belief to the optimal equilibrium.

H.5.2 HYPERPARAMETER TUNING AND SEARCH SPACES

To ensure fairness, we utilized the Tree-structured Parzen Estimator (TPE) sampler for all methods (SVNR and baselines) with an identical budget of 50 trials per environment. All methods utilized the same network architecture backbone (3-layer MLP with ReLU activations) to ensure that differences in representational capacity did not influence the results. We optimized the search spaces detailed in Table 9.

H.5.3 IDENTICAL ENTROPY SCHEDULES

Entropy schedules are critical in MaxEnt MARL, as higher α promotes exploration that can incidentally mitigate RO. To isolate the contribution of the *negotiated reasoning* mechanism, we employed ****identical, fixed α annealing schedules**** for all MaxEnt-based methods (SVNR, MASQL, PR2, ROMMEO, MMQ). The schedule used was:

$$\alpha_t = \alpha_{\text{end}} + (\alpha_{\text{start}} - \alpha_{\text{end}}) \times \exp \left(-\frac{t}{\tau_\alpha} \right), \quad (20)$$

1458
1459
1460 Table 9: Hyperparameter Search Spaces for TPE Tuning.
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470

Hyperparameter	Search Space	Distribution
Learning Rate (η)	$[1 \times 10^{-4}, 1 \times 10^{-1}]$	Log-uniform
Batch Size (B)	$\{256, 512, 1024\}$	Categorical
Polyak Averaging (τ)	$[0.001, 0.01]$	Uniform
Reward Scaling	$\{1, 10, 100\}$	Categorical
Hidden Units (MLP)	$\{64, 128, 256\}$	Categorical
<i>SVNR Specific</i>		
Particle Count (M)	$\{16, \dots, 64\}$	Integer Uniform
<i>Baseline Specific (PR2, ROMMEO)</i>		
Recursive Steps (k)	$\{1, \dots, 3\}$	Integer Uniform

1471
1472 where $\alpha_{\text{start}} = 1.0$, $\alpha_{\text{end}} = 0.01$, and the decay rate τ_α was fixed for all agents in a given environment.
1473 This ensures that SVNR’s ability to capture multi-modal optima stems from the Stein variational
1474 updates, not from artificially inflated entropy.
1475

1476 H.5.4 WALL-CLOCK TIME VS. PERFORMANCE ANALYSIS

1477 We provide a comparison of training time (on a single NVIDIA A100 GPU) versus final performance
1478 on the Ant-2x4 (MaMuJoCo) task in Table 10.
1479

1480
1481 Table 10: Compute Efficiency and Performance Comparison on Ant-2x4.

Method	Params ($\ \theta\ $)	Time (hrs)	Rel. Time	Final Return	Convergence Step
SVNR (Ours)	$\sim 1.2M$	4.8	1.0x (Ref)	536 ± 31	$\sim 1.5M$
MADDPG	$\sim 0.8M$	2.1	0.44x	108 ± 26	Failed (Local Opt)
MASQL	$\sim 0.8M$	2.3	0.48x	225 ± 34	$\sim 2.8M$
PR2	$\sim 1.5M$	5.2	1.08x	354 ± 58	$\sim 2.0M$
ROMMEO	$\sim 1.4M$	4.9	1.02x	424 ± 60	$\sim 1.8M$
MAPPO	$\sim 0.9M$	1.8	0.38x	87 ± 135	Failed

1490 While SVNR incurs higher wall-clock time ($\sim 2.2x$) compared to simple baselines like MADDPG
1491 due to particle processing, it is comparable to other reasoning methods (PR2, ROMMEO). Crucially,
1492 SVNR provides the highest “Return per GPU-Hour” because the PRO-free updates prevent the
1493 optimization trajectory from oscillating between sub-optimal equilibria, effectively “short-circuiting”
1494 the learning process in RO-challenged landscapes where faster baselines fail to converge to the global
1495 optimum.
1496

1497 I MORE RELATED WORK

1498
1499 **Opponent Modeling** Our work also has a connection with opponent modeling (Albrecht & Stone,
1500 2018) (OM), which involves modeling the behavior of others. The traditional OM methods only
1501 model an opponent’s behavior based on their history, assuming they play stationary policies (Littman,
1502 2001; Brown, 1951). There are two main limitations to these methods. The first one is that these
1503 methods tend to work with predefined targets of opponents. Fictitious play (Brown, 1951), friend-
1504 or-foe q (Littman, 2001), and many OM methods (Hu & Wellman, 2003; Greenwald & Hall, 2003;
1505 Littman, 1994) make a strong assumption on opponent policies which makes them unsuitable for
1506 current MARL where opponents change their policies with learning (Wen et al., 2019). The other
1507 limitation is that agents require the Nash equilibrium to update their Q function during training (e.g.,
1508 Nash Q learning (Hu & Wellman, 2003) and Wolf models(Bowling, 2004)). These limitations make
1509 it hard to apply traditional OM methods to MARL. Compared to the traditional OM methods, our
1510 methods do not have these limitations. Besides, some popular OM methods have been proposed:
1511 reasoning-endowed methods (Wen et al., 2019; Tian et al., 2019), and we have summarized them in
the previous subsection.

1512 **Probabilistic inference for (MA)RL** Formulating RL problems as probabilistic inference problems
 1513 has shown substantial results in obtaining maximum entropy exploration (Haarnoja et al., 2017; 2018;
 1514 Levine, 2018) and allows a number of inference methods to be adopted. These methods embed the
 1515 problem into a graphical model by modeling the relations among states, actions, next states, and
 1516 indicators of optimality. Then the optimal policy can be recovered by making inferences on the
 1517 graphical model. For example, Soft Q-learning (Haarnoja et al., 2017) expresses the optimal policy
 1518 via a Boltzmann distribution and adopts amortized SVGD (Feng et al., 2017) to make approximate
 1519 sampling on the target distribution. Different RL problems, the MARL problem involves a number of
 1520 agents interacting with each other which makes it non-trivial to make extensions from single agent
 1521 RL reformulations. MASQL (Wei et al., 2018), ROMMEO (Tian et al., 2019), and PR2 (Wen et al.,
 1522 2019) let each agent model the relations among states, its actions, the actions of its opponents, next
 1523 states, and indicators of optimality. Each agent expresses the optimal joint policy via a Boltzmann
 1524 distribution and derives its individual policy and opponent policy accordingly. However, the opponent
 1525 policy of the agent is not guaranteed to be consistent with the individual policies of opponents.
 1526 Compared with these methods, the agent in our SVNR perceives opponent policy as consistent with
 1527 the individual policies of opponents by K-Step negotiation during training.

1528 I.1 NEGOTIATED REASONING VS. COMMUNICATION-BASED MARL

1529 While "negotiation" and "communication" may appear semantically similar, they operate on funda-
 1530 mentally different mathematical objects in our framework.

1531 **Communication addresses Partial Observability.** In standard communication-based MARL (e.g.,
 1532 TarMAC, BiCNet), the objective is to approximate the sufficient statistics of the full global state s .
 1533 Mathematically, let \mathcal{O}_i be the observation space and \mathcal{M} be the message space. Communication learns
 1534 a state-dependent mapping $\mu : \times_i \mathcal{O}_i \rightarrow \mathcal{M}$ such that the policy $\pi_i(u_i|o_i, m_{-i})$ approximates the
 1535 centralized policy $\pi(u_i|s)$. Crucially, the "message" m is a random variable dependent on the state,
 1536 i.e., $m \not\perp s$.

1537 **Negotiated Reasoning addresses Equilibrium Selection via Variational Inference.** In contrast,
 1538 SVNR is an optimization process defined on the *probability measure space* $\mathcal{P}(\mathcal{U})$. It constructs a flow
 1539 of measures $\{q_k\}_{k=0}^K$ driven by functional gradient descent to minimize the KL-divergence functional
 1540 $J(q) = D_{KL}(q\| \pi_\alpha^*)$. The "negotiation" is the transformation $T(u) = u + \epsilon\phi(u)$, where ϕ is the
 1541 steepest descent direction in the RKHS \mathcal{H}_K , governed by the Stein operator \mathcal{A}_π :

$$1544 \phi^*(u) = \mathbb{E}_{u \sim q}[\mathcal{A}_{\pi^*}h(u)] = \mathbb{E}_{u \sim q}[\nabla \log \pi^*(u)h(u) + \nabla h(u)]. \quad (21)$$

1545 Here, agents exchange gradient information ($\nabla_{u_i} Q$) and action particles during training to align the
 1546 joint distribution with the global value landscape. This process changes the *optimization landscape*
 1547 to avoid suboptimal local optima (RO), rather than aggregating state observations.

1548 A critical distinction lies in the execution phase. Our method is communication-free in the standard
 1549 MARL sense (i.e., no state-dependent message passing).

1550 From a game-theoretic perspective, the "shared noise" ξ in our Amortized SVNR serves as a
 1551 **correlation device** (Aumann, 1974), not a communication channel.

- 1552 • **Standard Nash Equilibrium** assumes independent mixing: $\pi(\mathbf{u}|s) = \prod_i \pi_i(u_i|s)$. This restricts
 1553 agents from coordinating on specific optimal joint actions in multimodal landscapes (as seen in our
 1554 "Two Modalities" experiment).
- 1555 • **Correlated Equilibrium (Ours):** Agents condition strategies on a public signal ξ , such that
 1556 $\pi(\mathbf{u}|s) = \int \prod_i \pi_i(u_i|s, \xi) p(\xi) d\xi$.

1557 In our framework, ξ is *ex-ante* common randomness (e.g., a synchronized PRNG seed). It satisfies
 1558 the independence condition $\xi \perp s$. This distinguishes it from communication messages m , where
 1559 $m = f(s)$.

1560 I.2 RELATION TO OPPONENT MODELING (OM)

1561 Our work connects to Opponent Modeling (OM) but differs fundamentally in objective.

1566 **OM is Predictive.** Traditional OM is a predictive task (typically regression or density estimation)
 1567 where agent i estimates parameters $\hat{\theta}_{-i}$ to approximate $P(u_{-i}|s, \text{history})$ via Maximum Likeli-
 1568 hood Estimation (MLE): $\min_{\theta} \mathbb{E}_{\mathcal{D}}[-\log P_{\theta}(u_{-i}|s)]$. This approach often leads to Relative Over-
 1569 generalization (RO) because agents optimize against the *current* (potentially suboptimal) behavior of
 1570 others.

1571 **Negotiated Reasoning is Prescriptive.** SVNR provides a consistent reasoning framework. We do
 1572 not merely predict what opponents *will* do based on history. Instead, we solve for a fixed point where
 1573 every agent’s reasoning is consistent with the optimal joint distribution:

$$1575 \quad \lim_{k \rightarrow \infty} q_k(u) = \pi_{\alpha}^*(u) \implies \rho_i(u_{-i}) = \int \pi_{\alpha}^*(u_i, u_{-i}) du_i. \quad (22)$$

1577 This satisfies the **Consistent Reasoning** condition (Definition 2.3), which standard OM fails to
 1578 guarantee during the exploration phase.

1581 J THEORETICAL GROUNDING OF DECENTRALIZED EXECUTION VIA 1582 COMMON RANDOMNESS

1584 In this section, we clarify the theoretical nature of the shared noise ξ utilized in SVNR’s execution
 1585 phase and distinguish it from communication.

1587 **Correlated Equilibrium vs. Communication.** From a game-theoretic perspective, the shared noise
 1588 ξ serves as a *correlation device* (Aumann, 1974), not a communication channel.

- 1589 • **Standard Nash Equilibrium (NE):** Assumes independent action mixing, $\pi(\mathbf{u}|s) = \prod_i \pi_i(u_i|s)$.
 1590 This independence often limits agents to suboptimal outcomes in cooperative games (e.g., miscoor-
 1591 dination in the “Chicken” game).
- 1593 • **Correlated Equilibrium (CE):** Allows agents to condition their strategies on a public signal ξ ,
 1594 such that $\pi(\mathbf{u}|s) = \int \prod_i \pi_i(u_i|s, \xi) p(\xi) d\xi$.

1595 In SVNR, the sharing of ξ occurs *ex-ante*. In the literature of Contract Theory and Mechanism Design,
 1596 this is akin to agents agreeing on a “convention” or a random seed prior to the game to coordinate on a
 1597 specific equilibrium. This is fundamentally distinct from *communication* in MARL, which is typically
 1598 defined as the transmission of private observations o_i , beliefs, or state-dependent information during
 1599 execution to resolve partial observability. Our method does **not** transmit state-dependent information;
 1600 it utilizes a synchronized Pseudo-Random Number Generator (PRNG) seed (common randomness)
 1601 to break symmetries and coordinate exploration/execution without bandwidth cost.

1602 **Amortized Inference Implementation.** Practically, our Amortized MPSVGD distills the iterative
 1603 negotiation process into a function $f_{\psi_i}(\xi_i, \xi_{C_i}, s)$.

- 1605 • **Training:** Agents explicitly negotiate via the particle updates to find the optimal joint distribution.
- 1607 • **Execution:** Agents sample actions using the learned policy. The “sharing” of ξ is implemented
 1608 simply by synchronizing random seeds among neighbors. This allows agents to implicitly coor-
 1609 dinate their sampling from the joint distribution $q_{\phi}(\mathbf{u}|s)$ without exchanging messages about the
 1610 state s .

1611 Therefore, SVNR achieves decentralized execution in the sense that no data transfer occurs between
 1612 agents during the decision-making step t .

1614 K THEORETICAL ANALYSIS IN CONTINUOUS ACTION SPACES

1617 While our convergence analysis in Section 4.2 assumes finite action spaces for notational simplicity,
 1618 our implementation of SVNR operates in continuous domains. This appendix clarifies the theoretical
 1619 consistency between the finite-space analysis and the continuous-space implementation, grounded in
 measure-theoretic unification and the geometry of Reproducing Kernel Hilbert Spaces (RKHS).

1620
1621

K.1 MEASURE-THEORETIC UNIFICATION OF THE SOFT BELLMAN OPERATOR

1622
1623
1624
1625

The theoretical gap between discrete and continuous analysis is notational rather than structural. The Soft Bellman operator \mathcal{T} used in our proofs relies on the soft value function. In continuous action spaces $\mathcal{U} \subseteq \mathbb{R}^d$, this generalizes naturally by replacing the counting measure with the Lebesgue measure. The value function becomes:

1626
1627

$$V(s) = \alpha \log \int_{\mathcal{U}} \exp \left(\frac{Q(s, u)}{\alpha} \right) d\mu(u). \quad (23)$$

1628
1629
1630
1631
1632

Provided that Q is bounded and measurable (ensuring the integral exists), the properties of *monotonicity* and *contraction* (in the L^∞ norm) required for Lemma 4.1 and Theorem 4.3 hold for the continuous operator just as they do for the discrete case. Consequently, the policy iteration guarantees extend to continuous function spaces under these mild regularity conditions.

1633

K.2 NATIVE CONTINUITY OF NEGOTIATED REASONING

1634
1635
1636

Crucially, the core novelty of our work—the Negotiated Reasoning mechanism—is theoretically stronger in continuous spaces.

1637

- **SVGD Theory:** Our negotiation process (Eq. 4, 5, 12) utilizes Stein Variational Gradient Descent. The theoretical guarantees of SVGD, specifically the Stein Identity and the steepest descent direction in the RKHS \mathcal{H}^D , are derived explicitly for continuous, differentiable probability densities supported on \mathbb{R}^d (Liu & Wang, 2016).
- **Gradient Flows:** The negotiation update $u \leftarrow u + \epsilon \phi^*(u)$ approximates a gradient flow in the space of probability measures under the Kullback-Leibler divergence metric. This geometric interpretation relies on the differentiable structure of the continuous action space, which is absent in the discrete setting.

1646
1647

K.3 BRIDGING THE GAP VIA PARTICLE APPROXIMATION

1648
1649

Our method operates in a hybrid theoretical regime bridged by particle approximation:

1650
1651
1652
1653

1. **Policy Iteration (Global Convergence):** As established in Section K.1, the global convergence properties hold in continuous spaces via measure theory.
2. **Negotiated Reasoning (Local Update):** As established in Section K.2, the update mechanism is natively continuous.

1654
1655
1656
1657
1658
1659

The “gap” is bridged by our Amortized MPSVGD (Section 5), which uses a finite set of particles $\{u_\ell\}_{\ell=1}^M$ to approximate the continuous posterior. This serves as a Monte Carlo approximation of the integrals defined in the soft value function, which is asymptotically exact as $M \rightarrow \infty$ by the Law of Large Numbers. Thus, the finite-particle implementation is a consistent approximation of the continuous theoretical framework.

1660
1661

L INTERPRETABILITY OF NEGOTIATED REASONING

1662
1663
1664
1665
1666
1667

In this section, we elaborate on the transparency of the negotiation process within SVNR. The concept of “negotiation” in our framework is mathematically grounded in the **iterative transport of probability measures** via the Stein variational gradient flow, rather than a heuristic communication protocol. This perspective allows us to interpret the learning dynamics through the lens of Amortized Variational Inference.

1668
1669

L.1 MATHEMATICAL INTERPRETATION OF ROUNDS AND AGREEMENT

1670
1671
1672

Theoretically, the negotiation corresponds to the functional gradient descent in the Reproducing Kernel Hilbert Space (RKHS).

1673

- **Negotiation Rounds (K):** The rounds K represent the discrete steps taken to transport the initial particle distribution q_0 toward the target posterior p (the optimal joint policy) via the transform

1674 $T(u) = u + \epsilon\phi^*(u)$. In our Amortized SVNR (Section 5), we distill this multi-step transport
 1675 dynamic into a parameterized function f_ψ . Consequently, the explicit “round count” collapses into
 1676 the complexity of the learned mapping, where the network learns to approximate the cumulative
 1677 effect of the transport.

1678 • **Agreement:** The “agreement” is mathematically defined as the system reaching the fixed point
 1679 where the **Stein Discrepancy** approaches zero, i.e., $\mathbb{E}_{u \sim q}[\mathcal{A}_p\phi(u)] \approx 0$, where \mathcal{A}_p is the Stein
 1680 operator. This implies that the empirical measure of the agents’ joint policy matches the optimal
 1681 Boltzmann distribution.

1682 **L.2 VISUALIZING THE CONVERGENCE OF MEASURE**

1683 The dynamics of negotiation are explicitly visualized as the **evolution of the joint policy’s support**
 1684 in our experimental results.

1685 **Evolution of Support (Figure 5):** Figure 5 illustrates the transport of the joint action measure
 1686 over training steps. Initially (steps 1-1500), the probability mass is distributed over sub-optimal
 1687 modes (local Nash Equilibria). As the amortized policy f_ψ minimizes the KL-divergence, we
 1688 observe the **concentration of measure** shifting from the local optimum to the global optimum (steps
 1689 1500-3000). This trajectory visually represents the “negotiation” resolving the Perceived Relative
 1690 Over-generalization (PRO) by reshaping the energy landscape of the policy and transporting particles
 1691 to the high-probability regions of the target distribution.

1692 **Topological Comparison (Figure 7):** By comparing SVNR with SVNR-M (no negotiation) in Figure
 1693 7, we isolate the effect of the conditional dependency structure (the nested sets C_i). Figure 7(a)
 1694 versus Figure 7(c) demonstrates that without the Stein transport (negotiation), the joint distribution
 1695 remains trapped in a sub-optimal mode. The “negotiation” is interpretable as the **correction vector**
 1696 applied to the joint distribution that aligns the agents’ conditional policies, ensuring the joint support
 1697 covers the global optimum.

1698 **M LIMITATIONS AND FUTURE WORK**

1700 This section discusses the limitations and outlines directions for future research.

1701 **Computational Overhead and Scalability.** The communication complexity of our negotiation
 1702 process during training is $O(N)$, where N is the number of agents—comparable to standard centralized
 1703 training methods. While this does not affect execution efficiency (as no communication is required
 1704 during testing), scaling to environments with many agents or high-dimensional state/action spaces
 1705 may require balancing RO-free guarantees with computational efficiency. Our current implemen-
 1706 tation uses automated hyperparameter tuning via TPE Sampler to optimize learning rates, entropy
 1707 coefficients, and particle numbers, providing reliable default configurations across various settings.

1708 **Theoretical Assumptions.** Our framework assumes nested negotiation/communication during
 1709 training, consistent with the Centralized Training with Decentralized Execution (CTDE) paradigm widely
 1710 used in MARL. This allows agents to leverage global information for improved coordination during
 1711 training while maintaining fully decentralized, communication-free execution. Other assumptions
 1712 (e.g., stationarity, bounded rewards) are standard in MARL literature and necessary for theoretical
 1713 rigor without imposing impractical constraints.

1714 **Environmental Complexity.** Our validation focuses on standard benchmark environments with
 1715 sufficient complexity to verify our theoretical claims while maintaining tractability. Extending our
 1716 approach to more complex, high-dimensional domains represents an important future direction, which
 1717 will likely require additional architectural innovations to preserve our RO-free guarantees while
 1718 maintaining computational efficiency.

1719 **Partial Observability.** The current implementation leverages the Centralized Training with De-
 1720 centralized Execution (CTDE) paradigm to address partial observability. As demonstrated in the

1728 MaMuJoCo experiments, our method effectively projects global guidance onto local policies during
 1729 training. However, explicitly incorporating recurrent architectures (e.g., Transformers or LSTMs)
 1730 to better encode long-horizon sequential observations within the negotiation policies remains a
 1731 promising direction for handling complex POMDPs with severe memory dependencies.

1732 While addressing these limitations is beyond the scope of this paper, they represent valuable avenues
 1733 for future research that could significantly broaden the applicability of our RO-free MARL approach.
 1734

1735 M.1 EXTENDED THEORETICAL ANALYSIS ON PARTIAL OBSERVABILITY

1737 In this section, we provide a deeper theoretical analysis regarding the applicability of Stein Variational
 1738 Negotiated Reasoning (SVNR) to Partially Observable Stochastic Games (POSGs) and the feasibility
 1739 of fully decentralized training.

1741 M.1.1 SVNR IN PARTIALLY OBSERVABLE STOCHASTIC GAMES

1743 While the main text formulates the problem using global states s for clarity, SVNR naturally extends
 1744 to POSGs through the lens of *projected variational inference*. In a POSG, agent i observes a local
 1745 history $\tau_i \in \mathcal{T}_i$, while the global state s (or joint history τ) is available only during centralized
 1746 training.

1747 The objective of Maximum Entropy MARL in this setting is to learn a joint policy $\pi(\mathbf{u}|\tau)$ that
 1748 minimizes the KL-divergence with the energy-based optimal policy induced by the global Q-function
 1749 $Q(\tau, \mathbf{u})$:

$$1750 \min_{\pi} D_{\text{KL}} \left(\pi(\mathbf{u}|\tau) \parallel \frac{1}{Z} \exp \left(\frac{1}{\alpha} Q(\tau, \mathbf{u}) \right) \right). \quad (24)$$

1753 In SVNR, the negotiation policy is parameterized by amortized neural networks $f_{\psi_i}(u_i|\tau_i, \xi_i, \xi_{C_i})$
 1754 which condition only on local information τ_i . The update rule in our Amortized MPSVGD (Equation
 1755 9 and 10) performs a **projection** of the global gradient onto the local parameter space. The gradient
 1756 for the local policy parameters ψ_i is:

$$1758 \frac{\partial J}{\partial \psi_i} \propto \mathbb{E}_{\tau, \xi} \left[\Delta f_i^{\psi}(\xi; \tau) \cdot \frac{\partial f_i^{\psi}(\xi; \tau_i)}{\partial \psi_i} \right]. \quad (25)$$

1761 Here, $\Delta f_i^{\psi}(\xi; \tau)$ is the Stein gradient computed using the *global critic* (full observability), repre-
 1762 senting the optimal direction in the functional space. The term $\frac{\partial f_i^{\psi}(\xi; \tau_i)}{\partial \psi_i}$ is the Jacobian of the local
 1763 policy given *local* history.

1764 This update effectively solves the following projection problem:

$$1766 \psi_i^* = \arg \min_{\psi_i} \mathbb{E}_{\tau} [D_{\text{KL}} (q_{\text{global}}(\cdot|\tau) \parallel \pi_{\psi_i}(\cdot|\tau_i))]. \quad (26)$$

1768 By updating ψ_i via the chain rule, the agent learns a local policy $\pi_{\psi_i}(\cdot|\tau_i)$ that is the best possible
 1769 approximation (in terms of KL-divergence) of the globally optimal negotiated outcome, conditioned
 1770 on its limited view τ_i . This theoretical formulation explains the strong empirical performance of
 1771 SVNR on partially observed benchmarks like MaMuJoCo (Table 1).

1773 M.1.2 FEASIBILITY OF FULLY DECENTRALIZED TRAINING

1775 Although our implementation utilizes a centralized critic $Q(\mathbf{u}, s)$ for sample efficiency, the SVNR
 1776 framework is theoretically compatible with fully decentralized training, provided the global utility
 1777 function admits a factorizable structure.

1778 Consider a scenario where the global Q-function decomposes according to a factor graph (e.g., a
 1779 pairwise Markov Random Field) consistent with the agent topology:

$$1781 Q_{\text{total}}(\mathbf{u}, s) = \sum_{c \in \mathcal{C}} Q_c(\mathbf{u}_c, s_c), \quad (27)$$

1782 where c represents a local clique of agents (e.g., neighbors) and Q_c is a local utility function. The
 1783 core component of our method, the Stein variational update direction for agent i , is given by:
 1784

$$1785 \quad \phi_i^*(\mathbf{u}) = \mathbb{E}_{\mathbf{u} \sim q} [k_i(\mathbf{u}, \cdot) \nabla_{u_i} Q_{\text{total}}(\mathbf{u}, s) + \nabla_{u_i} k_i(\mathbf{u}, \cdot)]. \quad (28)$$

1786 Due to the linearity of the gradient operator, the score function term decomposes locally:
 1787

$$1788 \quad \nabla_{u_i} Q_{\text{total}}(\mathbf{u}, s) = \sum_{c: i \in c} \nabla_{u_i} Q_c(\mathbf{u}_c, s_c). \quad (29)$$

1790 This implies that agent i does not need to query a global critic. Instead, it only requires the gradients
 1791 of the local utility functions from the cliques it belongs to. If we employ a decomposable kernel
 1792 $k(\mathbf{u}, \mathbf{u}') = \prod_j k_j(u_j, u'_j)$, the expectation term also factorizes.
 1793

1794 Consequently, Algorithm 1 can be reformulated as a **Distributed Stein Variational Gradient**
 1795 **Descent (DSVGD)** algorithm. In this variant, the "negotiation" during training occurs via gradient
 1796 message passing between neighbors rather than querying a central oracle, extending the applicability
 1797 of SVNR to scenarios where centralized training is not feasible.
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835