
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARNING POSTERIOR PREDICTIVE DISTRIBUTIONS
FOR NODE CLASSIFICATION FROM SYNTHETIC GRAPH
PRIORS

Anonymous authors
Paper under double-blind review

ABSTRACT

One of the most challenging problems in graph machine learning is generalizing
across graphs with diverse properties. Graph neural networks (GNNs) face a fun-
damental limitation: they require separate training for each new graph, preventing
universal generalization across diverse graph datasets. Reviewer f51fA critical challenge facing
GNNs lies in their reliance on labeled training data for each individual graph, a
requirement that hinders the capacity for universal node classification due to the
heterogeneity inherent in graphs — differences in homophily levels, community
structures, and feature distributions across datasets. Inspired by the success of
large language models (LLMs) that achieve in-context learning through massive-
scale pre-training on diverse datasets, we introduce NodePFN. This universal
node classification method generalizes to arbitrary graphs without graph-specific
training. NodePFN learns posterior predictive distributions (PPDs) by training
only on thousands of synthetic graphs generated from carefully designed priors.
Our synthetic graph generation covers real-world graphs through the use of ran-
dom networks with controllable homophily levels and structural causal models
for complex feature-label relationships. We develop a dual-branch architecture
combining context-query attention mechanisms with local message passing to
enable graph-aware in-context learning. Extensive evaluation on 23 benchmarks
demonstrates that a single pre-trained NodePFN achieves 71.27% average accuracy.
These results validate that universal graph learning patterns can be effectively
learned from synthetic priors, establishing a new paradigm for generalization in
node classification.

1 INTRODUCTION

Graph neural networks (GNNs) have achieved success in tasks on graph-structured data prevalent in
chemistry (Gilmer et al., 2017; Hamilton, 2020), recommender systems (Ying et al., 2018; He et al.,
2020), biology (Bongini et al., 2022), social sciences (Kipf & Welling, 2017; Qiu et al., 2018), etc,
by learning to aggregate neighborhood information through message passing. However, GNNs still
have the limitation that, for node classification (Kipf & Welling, 2017; Bresson & Laurent, 2017;
Hamilton et al., 2017; Xu et al., 2018; Klicpera et al., 2019; Zhou et al., 2020; Zhu et al., 2020a; Luan
et al., 2023), separate GNN models must be trained for the labeled nodes of each new graph. This
dependence on graph-specific training makes generalization across graphs with different properties
challenging. The core issue is that real-world graphs exhibit vastly different structural properties
— varying homophily levels, community structures and features, and degree distributions among
datasets. Reviewer f51fGNNs struggle to handle this diversity without dataset-specific training.

The success of foundation models, particularly large language models (LLMs) (Brown et al., 2020;
Touvron et al., 2023; Achiam et al., 2023) comes from their training paradigm of learning generaliz-
able patterns from massive and diverse datasets. This enables these models to perform in-context
learning, adapting to new datasets without parameter updates by learned patterns during pre-training.
In a manner analogous to the capacity of LLMs to adapt to new samples with only context examples,
we propose a graph model that performs node classification on arbitrary graph datasets. This implies
that a single pre-trained model could perform node classification on arbitrary graph datasets without
needing to be trained specifically for that dataset.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Graph A

GNN A

Predict A

Train

Predict B

GNN B

Train

≠

Real-world Graphs
Graph B

𝒉𝒉 = 𝟎𝟎.𝟏𝟏 𝒉𝒉 = 𝟎𝟎.𝟗𝟗

(a) Standard GNNs

Synthetic Graphs

Train

NodePFN

Predict Synthetic

NodePFN

Inference

Predict A Predict B

Real-world Graphs
Graph A Graph B
𝒉𝒉 = 𝟎𝟎.𝟏𝟏 𝒉𝒉 = 𝟎𝟎.𝟗𝟗𝒉𝒉 = 𝟎𝟎.𝟏𝟏 𝒉𝒉 = 𝟎𝟎.𝟕𝟕 𝒉𝒉 = 𝟎𝟎.𝟗𝟗

(b) Our proposed NodePFN

Figure 1: NodePFN enables universal node classification. (a) Each real-world graph requires its own
trained GNN model. (b) Pre-training on synthetic graphs sampled from controlled priors (varying
homophily (h) from 0.1 to 0.9) produces a single model capable of generalization to arbitrary graphs.

Recent studies have explored applying LLMs to graphs (Li et al., 2024a; Chen et al., 2024b;a; Li
et al., 2024c; Tang et al., 2024; Liu et al., 2024). However, LLMs, primarily trained on textual data,
are better suited for capturing semantic content rather than learning the structural patterns that govern
node classification on diverse graph topologies. While Zhao et al. (2025) introduce a fully inductive
framework, it still requires training on specific source datasets, with performance varying significantly
based on the training dataset choice. Reviewer f51f

We propose a different approach by training on synthetic graphs that systematically cover the diversity
of real-world graphs (see Fig. 1). The key insight is learning the posterior predictive distribution
(PPD) from synthetic priors. Recently, prior-fitted networks (PFNs) have demonstrated that models
trained on synthetic data from carefully designed priors can approximate PPDs for new datasets in a
single forward pass (Müller et al., 2022; Hollmann et al., 2023). This approach enables in-context
learning. That is, the model learns to extract patterns from context examples (labeled nodes) and apply
them to query points (unlabeled nodes), enabling immediate prediction without gradient updates. Reviewer f51fWe
extend this PFN paradigm to graphs by designing synthetic graph priors that systematically control
homophily levels, community structures, and feature-label relationships. We aim to design a model
that predicts the label distribution of query nodes based on labeled context nodes in real graphs, by
learning PPD from various synthetic graphs.

We introduce NodePFN learning PPDs for node classification from synthetic graph priors. During
training, we generate thousands of diverse synthetic graphs, leveraging methods that control class
homophily and community levels to ensure that they include a range of network characteristics found
in real-world benchmarks.

Experimental evaluation on 23 real-world benchmarks shows that NodePFN achieves competitive
performance. Our approach outperforms on both homophily and heterophily graph benchmarks,
surpassing GNN baselines. These extensive experiments validate that the patterns governing node
classification can de facto be learned from synthetic priors.

The contributions of our proposed NodePFN1 are summarized as follows.

• To the best of our knowledge, we are the first to extend the PFN paradigm to graphs, demonstrating
that PPDs for node classification can be learned from synthetic graph prior distributions without
requiring actual training data. (Section 3).

• We design a comprehensive synthetic graph prior by using random networks, incorporating levels
of homophily, community structure, and feature-label relationships. (Section 3.2).

• To enable learning graph-aware context from both labeled examples and topological structure, we
developed a novel dual-branch architecture combining a context-query attention mechanism with
local message passing (Section 3.3).

1We will release our source code upon acceptance on https://sites.google.com/view/
nodepfn.

2

https://sites.google.com/view/nodepfn
https://sites.google.com/view/nodepfn

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• We demonstrate universal node classification across 23 diverse real-world benchmarks using a
single pre-trained model, achieving an average accuracy of 71.27% and strong performance of
65.14% on challenging heterophily graphs where traditional GNNs struggle (Section 4).

2 PRELIMINARIES

In this section, we introduce posterior predictive distribution and prior-data fitted networks. Then, we
address the notation used in our study and node classification

2.1 POSTERIOR PREDICTIVE DISTRIBUTION IN SUPERVISED LEARNING

In supervised learning, the goal is to predict labels for unlabeled data points using labeled training
samples. Given a training set Dtrain = {(xi,yi)}ni=1 and test set Dtest = {xj}mj=1, we aim to predict
labels for the test set. In the Bayesian framework, we model the conditional distribution p(y|x;ϕ)
with parameters ϕ treated as random variables with prior p(ϕ). The goal is to predict labels for a test
point xtest using the posterior predictive distribution (PPD):

p(ytest|xtest,Dtrain) =

∫
p(ytest|xtest, ϕ)p(ϕ|Dtrain)dϕ, (1)

where the posterior distribution follows Bayes’ rule:

p(ϕ|Dtrain) ∝ p(ϕ)

n∏
i=1

p(yi|xi;ϕ). (2)

If the hypothesis class includes the true conditional distribution, there exists a ϕ∗ such that
p(y|x;ϕ∗) = ptrue(y|x) for all (x,y), then the PPD results in optimal prediction.

2.2 PRIOR-DATA FITTED NETWORKS

Prior-data fitted networks (PFNs) (Müller et al., 2022) learn an approximation of the PPD from the
training data using neural networks. Instead of computing the integral in Eq. (1) at test time, PFNs
are trained on synthetic datasets sampled from a prior p(D) to learn:

fθ : (xtest,Dtrain) 7→ p(ytest|xtest,Dtrain). (3)

During training, we sample synthetic datasets from a prior p(D). Each dataset is split into training
and test sets. The PFN fθ with parameters θ is trained to minimize the expected loss:

L(θ) = ED∼p(D) [− log qθ(ytest|xtest,Dtrain)] , (4)
where qθ is the neural network’s approximation of the true PPD. By training on synthetic datasets,
the model learns to extract relevant patterns from context samples and apply them to new queries.

This approach allows the model to perform inference at test time in a single forward pass without
gradient updates, given a new dataset. Through implicit Bayesian inference, the network learns to
marginalize over parameter uncertainty.

2.3 GNNS FOR NODE CLASSIFICATION AND THEIR LIMITATIONS

In the node classification problem, given a graph G = (V, E) with node feature matrix X ∈ R|V|×d

where d is the feature dimension, adjacency matrix A ∈ {0, 1}|V|×|V|, and a set of labeled nodes
Vtrain ⊂ V with their corresponding labels ytest, the goal is to predict labels ŷtest for the unlabeled
node set Vtest = V \ Vtrain.

Homophily in Node Classification. The success of GNNs is believed to be rooted in the homophily
assumption (McPherson et al., 2001), which implies that connected nodes tend to share similar
attributes (Hamilton, 2020). This provides additional useful information in the aggregated features
compared to the original node features, and the effectiveness of node classification can be determined
by the level of edge homophily (Luan et al., 2023; Zhu et al., 2020a), which measures the tendency
of connected nodes to share the same class label. The level of homophily, h, falls within the range of
[0, 1], with a value closer to 1, strong homophily, implying that GNNs are more likely to outperform
than non-graph models, and vice versa.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.4 RANDOM GRAPH MODELS

(a) (b) (c) (d)

Figure 2: Network examples with various graph
priors used in NodePFN training. (a) Sparse ER.
(b) Dense ER. (c) Low homophily cSBM. (d)
High homophily cSBM. For simplicity, class color-
coded nodes are not shown in ER.

We consider 2 random networks. Erdős-Rényi
(ER) model (Erdős & Rényi, 1959) generates
graphs where each edge appears independently
with probability per. This creates graphs with
binomial degree distributions and no inherent
community structure. Stochastic block models
(SBMs) (Holland et al., 1983) control commu-
nity structure through different connection prob-
abilities within and between groups. Contextual
SBMs (cSBMs) (Binkiewicz et al., 2017) ex-
tend SBM by relating community membership
to node labels and allow control over homophily.

3 NODEPFN: PRIOR-FITTED NETWORKS FOR NODE CLASSIFICATION

We introduce NodePFN, a prior-fitted network that learns to approximate PPDs for node classification
from synthetic graph data (see Fig. 3). Unlike traditional GNNs that require task-specific training,
NodePFN performs in-context learning on arbitrary graphs in a single forward pass.

3.1 LEARNING FROM SYNTHETIC GRAPH PRIORS

Given the PPD framework from Section 2, we train a neural network fθ to approximate posterior
predictive distributions for node classification. During training, we sample synthetic graphs G ∼ p(G)
and learn to predict query node labels from context examples:

fθ : (xtest,Dtrain,G) 7→ p(ytest|Dtrain,G), (5)

where Dtrain = {(xv,yv) : v ∈ Vtrain} contains labeled training nodes. This formulation naturally
induces in-context learning: the model learns to extract patterns from training nodes and apply them
to test nodes.

3.2 SYNTHETIC GRAPH PRIORS

As shown in Fig. 3(a), our approach begins with sampling diverse synthetic graph priors that capture
the broad spectrum of structural patterns found in real-world networks.

Feature-Label Relationships via Causal Models. We generate feature-label relationships using
structural causal models (SCMs) (Peters et al., 2017; Pearl, 2009) instantiated as random MLPs. For
each graph, we sample an MLP architecture and convert it to a DAG by dropping random connections.
Gaussian noise propagates through this network to produce node features X from intermediate layers
and labels y from later layers, creating complex non-linear dependencies. Importantly, for cSBM
graphs, these generated labels determine the community assignments, which in turn control the graph
structure through the homophily parameter h.

Graph Structure Generation. We use two random network models as shown in Fig. 2. (i) cSBMs
generate graphs with controlled community structure and homophily. We sample the homophily level
from 0.1 to 0.9. The cSBM creates edges with intra-community probability pin and inter-community
probability pout such that h = pin/(pin + pout). This control over homophily allows us to generate
graphs ranging from strong homophily to heterophily. (ii) ER networks provide unstructured baseline
graphs where edges appear independently with probability per. This ensures the model learns beyond
community-based patterns. The distribution for per generates graphs with varying densities, from
sparse to dense networks. During training, we sample from both networks to ensure comprehensive
coverage of graph structures encountered in practice.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Synthetic Graphs

Synthetic Graph Priors

Labeling

Prior Fitting Parse (Offline)

Contextual Stochastic
Block Models (cSBM) Erdős–Rényi

Structural Causal Models (SCM)

(a) Prior Fitting Parse

Synthetic Graph (𝓖𝓖 = 𝓥𝓥,𝓔𝓔)

Query (𝓓𝓓𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕)
(Unlabeled)

Context (𝓓𝓓𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕)

Cross-Attention

MPNN

Self-Attention
Message
Passing

× 𝐿𝐿

NodePFN Architecture

Encoder

𝐇𝐇(ℓ+𝟏𝟏,𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂) 𝐇𝐇(ℓ+𝟏𝟏,𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎)

𝐇𝐇(ℓ+𝟏𝟏)

(b) Pretraining on NodePFN

Inference of a Real-World Graph

Graph A
(𝓖𝓖𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 = 𝓥𝓥,𝓔𝓔)

Query
(𝓓𝓓𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕)

Context
(𝓓𝓓𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕)

Processing

NodePFN

Predict A

Graph B
(𝓖𝓖𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 = 𝓥𝓥,𝓔𝓔)

Query
(𝓓𝓓𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕)

Context
(𝓓𝓓𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕)

Processing

NodePFN

Predict B

(c) Inference on Real Graph

Figure 3: NodePFN overview. (a) Generation of diverse synthetic graph priors with varying struc-
tural properties. (b) Dual-branch architecture combining local message passing with context-query
attention for in-context learning. (c) Inference on real-world graphs via the pre-trained NodePFN
without task-specific re-training.

3.3 MODEL ARCHITECTURE

Each NodePFN layer consists of two parallel branches that process information complementarily, as
shown in Fig. 3(b).

Context-Query Attention Branch. Following the PFN design (Müller et al., 2022), we use asym-
metric attention patterns to enable in-context learning. The initial representations H(0)

train combine
embeddings of both features and labels, while H

(0)
test uses only feature embeddings (detailed imple-

mentation in Appendix B.5). For Vtrain with observed labels, self-attention allows them to build a
comprehensive understanding of the label distribution:

H
(ℓ+1,attn)
train = SelfAttention(H(ℓ)

train,H
(ℓ)
train,H

(ℓ)
train). (6)

For test nodes Vtest, cross-attention to training nodes enables leveraging the learned patterns:

H
(ℓ+1,attn)
test = CrossAttention(H(ℓ)

test,H
(ℓ)
train,H

(ℓ)
train), (7)

where the attention functions follow the standard formulation. We employ multiple attention heads
with outputs concatenated and linearly projected. This asymmetry ensures test nodes leverage training
information without influencing each other’s predictions.

Local MPNN Branch. In parallel, message passing aggregates neighborhood information to capture
local graph topology:

H(ℓ+1,mpnn) = MPNN(H(ℓ), Ã), (8)

where Ã = D−1/2AD−1/2 is the symmetrically normalized adjacency matrix and D is a degree
matrix. This branch captures structural patterns critical for classification regardless of train/test splits.
In our framework, we use GCN (Kipf & Welling, 2017) for the local MPNN branch.

Layer Fusion. The parallel branches merge with the input via residual connections:

H(ℓ+1) = LayerNorm(H(ℓ) +H(ℓ+1,attn) +H(ℓ+1,mpnn)). (9)

This design enables NodePFN to simultaneously learn from labeled examples via attention and local
graph structure via message passing.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.4 HOW TO TRAIN

We train NodePFN to approximate the PPD by minimizing the expected cross-entropy over synthetic
graphs sampled from our prior:

L(θ) = ED∼p(D)

[
− 1

|Vtest|
∑

v∈Vtest

C∑
c=1

yv,c log fθ(yv,c|xv,Dtrain,G)

]
, (10)

where C is the number of classes, yv,c is the one-hot encoded label for node v and class c, and fθ is
our neural approximation to the true PPD from Eq. (1). For each synthetic graph G, we randomly
partition nodes into Vtrain and Vtest.

3.5 HOW TO INFERENCE

As shown in Fig. 3(c), NodePFN performs direct prediction on a real-world graph Greal with its own
training-test split. Given labeled nodes Vtrain with Dtrain = {(xi, yi) : i ∈ Vtrain} and unlabeled nodes
Vtest, the model computes predictions in a single forward pass.

Given a real-world graph, we perform a preprocessing step (Appendix B.6) on the graph and its
features. After preprocessing, the model processes the graph through L NodePFN layers and outputs
the PPD:

fθ(yv|xv,Dtrain,Greal) = softmax(Wouth
(L)
v), (11)

for each test node v ∈ Vtest. Training nodes incorporate label information through concatenation with
features, while test nodes use only features. This provides calibrated uncertainty estimates as the
model has learned to approximate the true PPD during training. Importantly, no gradient updates or
fine-tuning are required — the pre-trained model generalizes directly to new graphs.

4 EXPERIMENTS

In this section, we present experiments to evaluate the performance of our proposed NodePFN. We
begin by detailing the experimental settings. Next, we investigate the following research questions:

• (RQ1.) Does our NodePFN perform well on various controlled homophily synthetic graphs?
• (RQ2.) Does our NodePFN generalize well for node classification on real-world benchmarks?
• (RQ3.) How does the performance of NodePFN compare against training-free methods?
• (RQ4.) Does NodePFN perform well compared to the baseline for structural node classification?
• (RQ5.) How do components contribute to NodePFN’s effectiveness?

4.1 (RQ1.) CONTROLLED SYNTHETIC GRAPHS

0.00 0.25 0.50 0.75 1.00
Homophily Ratio

40

60

80

100

Te
st

 A
cc

ur
ac

y MLP
GCN

GAT
NodePFN

Figure 4: Experiments on the syn-
thetic Cora Dataset.

Setup. To evaluate the classification capability on various
homophily ratios, we use the synthetic Cora generator Li et al.
(2021). The detailed synthetic datasets are in Appendix B.

Results. Fig. 4 shows the mean test accuracy. MLP maintains
its test accuracy for all homophily rates. GCN and GAT perform
poorly at low homophily rates. Our NodePFN has the best
overall trend without sudden drops. Our prior data contribute to
its stable accuracy for both homophily and heterophily settings
compared with other models.

4.2 (RQ2.) EXPERIMENTS ON REAL-WORLD GRAPH BENCHMARKS

Setup. We evaluate on 23 benchmark datasets for node classification. We compare against MLP,
GCN (Kipf & Welling, 2017), GAT (Veličković et al., 2018), and GraphAny (Zhao et al., 2025)
models. If there are reported results from Zhao et al. (2025), we directly adopt the reported results,
otherwise, we run experiments with their optimal setting. More detailed dataset and evaluation
settings are provided in Appendices A and B.7.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison on homophily and heterophily real-world benchmark datasets. We
report the average accuracy and ranking on each type of dataset, as well as the overall values.

Dataset MLP GCN GAT GraphAny
(Products)

GraphAny
(Arxiv)

GraphAny
(Wisconsin)

GraphAny
(Cora) NodePFN

H
om

op
hi

ly
G

ra
ph

s

AirBrazil 23.08±5.83 42.31±7.98 57.69±14.75 34.61±16.54 34.61±16.09 36.15±16.68 33.07±16.68 75.38±1.88
AirEU 21.25±2.31 41.88±3.60 32.50±8.45 41.75±6.84 41.50±6.50 41.13±6.02 40.50±7.01 57.00±1.21
AirUS 22.88±1.46 46.49±1.81 48.47±4.17 43.57±2.07 43.64±1.83 43.86±1.44 43.46±1.40 61.66±0.31
Cora 48.42±0.63 81.40±0.70 81.70±1.43 79.36±0.23 79.38±0.16 77.82±1.15 80.18±0.13 82.06±0.29
Citeseer 44.40±0.44 63.40±0.63 69.10±1.59 67.94±0.29 68.34±0.23 67.50±0.44 68.90±0.07 67.30±0.83
Pubmed 69.50±1.79 76.60±0.32 77.30±0.60 76.54±0.34 76.36±0.17 77.46±0.30 76.60±0.31 78.00±0.24
WikiCS 72.72±0.43 79.12±0.45 79.27±0.20 75.01±0.54 74.95±0.61 73.77±0.83 74.39±0.71 75.98±0.80
Amazon-Photo 68.20±0.88 91.88±0.79 91.86±1.07 90.64±0.82 90.60±0.82 90.18±0.91 90.14±0.93 90.53±0.13
Amazon-Comp 58.28±2.98 85.83±0.86 87.01±0.50 82.90±1.25 83.04±1.24 82.00±1.14 82.99±1.22 81.42±0.48
DBLP 56.27±0.62 73.02±2.22 73.87±1.35 70.62±0.97 70.90±0.88 70.13±0.77 71.73±0.94 74.71±0.39
Coauthor CS 85.88±0.93 91.83±0.71 88.47±0.79 90.46±0.54 90.45±0.59 90.85±0.63 90.47±0.63 91.55±0.32
Coauthor Physics 87.43±1.98 93.93±0.37 93.01±0.89 92.66±0.52 92.69±0.52 92.54±0.43 92.70±0.54 93.43±0.13
Deezer 54.24±2.15 53.69±2.29 55.99±3.78 52.09±2.78 52.11±2.79 52.13±3.02 51.98±2.79 53.45±0.65

Average Accuracy 56.43 73.05 74.39 71.09 71.14 70.86 71.45 77.39
Average Ranking 7.62 4.92 4.54 4.46 4.31 4.31 4.15 1.69

H
et

er
op

hi
ly

G
ra

ph
s

Cornell 67.57±5.06 35.14±6.51 35.14±3.52 64.86±0.00 65.94±1.48 66.49±1.48 64.86±1.91 71.89±2.76
Texas 48.65±4.01 51.35±2.71 54.05±2.41 73.52±2.96 72.97±2.71 73.51±1.21 71.89±1.48 76.22±7.53
Wisconsin 66.67±3.51 37.25±1.64 52.94±3.10 65.89±2.23 65.10±3.22 71.77±5.98 61.18±5.08 79.22±6.97
Chameleon 38.87±2.21 41.31±3.05 39.83±2.10 39.45±4.20 37.40±3.11 36.67±5.32 37.99±4.54 50.13±3.30
Actor 33.95±0.80 28.55±0.68 27.30±0.22 28.99±0.61 28.60±0.21 29.51±0.55 27.91±0.16 32.99±1.09
Minesweeper 80.00±0.00 81.12±0.37 80.08±0.04 80.27±0.16 80.30±0.13 80.13±0.09 80.46±0.15 80.66±0.25
Tolokers 78.16±0.02 79.93±0.10 78.50±0.55 78.18±0.03 78.18±0.04 78.24±0.03 78.20±0.02 78.61±0.06
Amazon-Ratings 47.90±0.45 47.35±0.26 47.18±0.42 42.70±0.10 42.74±0.12 42.57±0.34 42.84±0.04 44.68±0.48
Questions 97.33±0.06 97.15±0.04 97.11±0.02 97.10±0.01 97.09±0.02 97.11±0.00 97.06±0.03 97.02±0.01
Squirrel 35.55±0.98 38.67±1.84 38.78±2.39 38.92±2.98 37.73±2.31 36.76±3.55 37.25±2.65 43.40±1.03

Average Accuracy 58.17 58.84 59.11 61.39 60.71 61.62 60.56 65.14
Average Ranking 7.20 6.80 6.60 4.90 4.70 4.50 4.60 1.70

Avg. Accuracy 57.30 66.63 67.67 66.24 65.93 66.24 66.00 71.27
Avg. Ranking 7.41 5.86 5.57 4.68 4.50 4.40 4.38 1.70

Results. Table 1 presents a comprehensive comparison of our results on 23 datasets. The results
show that NodePFN achieves the best overall average accuracy of 71.27% using only a single
pre-trained model. In contrast, GraphAny models require training on each specific dataset but still
underperform NodePFN. On homophily and heterophily datasets, NodePFN achieves the highest
average accuracy. Moreover, GraphAny models show inconsistent performance depending on the
characteristics of the training dataset. GraphAny (Cora) performs well on homophily graphs but
worse on Wisconsin, one of the heterogeneous graphs. In contrast, NodePFN consistently performs
well on both graph types without requiring dataset-specific training.

4.3 (RQ3.) COMPARISON WITH TRAINING-FREE METHODS

Table 2: Training-free models vs NodePFN.

Method Cora Pubmed Wisconsin Texas

Linear 52.80±0.00 59.30±0.00 80.00±2.15 32.35±5.30
SGC 78.20±0.00 72.98±0.00 57.64±1.07 46.03±6.86
HGC 22.50±0.00 46.32±0.00 64.32±2.51 57.54±6.30
LabelProp 60.30±0.00 63.44±0.04 16.08±2.15 23.53±5.51
TFGNN 60.03±0.00 40.04±0.01 14.51±3.01 19.91±6.10

NodePFN 82.06±0.29 78.00±0.24 81.18±5.70 76.22±7.53

Setup. NodePFN can be compared with several
training-free methods, which can be tested directly
without training steps. We compare closed-form so-
lution methods that use pseudo-inverse operations
to solve node classification as a regression prob-
lem (Zhao et al., 2025). The methods include
the “Linear” model that predicts directly without
graph convolutions, and closed-form models using
SGC (Wu et al., 2019) and high-pass filter graph convolutions (HGC) (Chien et al., 2021b; Luan
et al., 2022). We also include label propagation (“LabelProp”) (Zhu & Ghahramani, 2002) and
TF-GNNs (Sato, 2024).

Results. In Table 2, the experimental results demonstrate NodePFN’s superior performance on all
datasets compared to training-free baselines. Our NodePFN consistently outperforms all baseline
methods while using a single pre-trained model. This demonstrates that the learned inductive bias

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

GCN GAT Node2Vec LINE GraphAnyTabPFN NodePFN0

20

40

60

80

Ac
cu

ra
cy

 (%
)

AirBrazil AirEU AirUS

Figure 5: Structural node clas-
sification results (GraphAny
trained on Wisconsin).

TabPFN NodePFN
25

50

75

100

Te
st

 A
cc

ur
ac

y
(%

)

Mean: 55.5%

Mean: 71.2%

Figure 6: Comparison of ac-
curacy distributions between
TabPFN and NodePFN.

Table 3: Ablation studies on
NodePFN components.

Ablation Cora Wisconsin Tolokers

w/o ER 81.26 78.82 77.30
w/o cSBM 80.62 80.39 77.18

TabPFN 53.10 72.94 78.18

NodePFN-L6 53.10 72.94 78.00
NodePFN-Seq 80.64 78.82 77.88

NodePFN 82.06 81.18 78.61

of NodePFN surpasses analytical closed-form solutions and highlights the value of the pre-trained
approach for generalizable node classification.

4.4 (RQ4.) STRUCTURAL NODE CLASSIFICATION

Setup. We evaluate NodePFN on Airport datasets (Ribeiro et al., 2017), where the goal is to predict
the “structural role” of each node based only on the network topology without node features (Cui
et al., 2022). Node features are provided as one-hot encoded node identifiers. This setting evaluates
whether NodePFN can learn structural roles when forced to rely primarily on topological patterns. We
include Node2Vec (Grover & Leskovec, 2016) and LINE (Tang et al., 2015) as additional baselines,
since these methods specialize in structural embedding.

Results. As shown in Fig. 5, the results show that NodePFN outperforms all baselines. This
suggests that NodePFN learns robust structural patterns that generalize beyond node features and
effectively identifies meaningful node properties as well as structural roles based on network topology.

4.5 (RQ.5) ABLATION STUDIES

Table 3 demonstrates the robustness of NodePFN’s design through ablation studies. Removing ER
Networks or cSBM shows minimal performance degradation: for homophily datasets, Cora, cSBM
removal causes slight drops, while for heterophily datasets such as Wisconsin and Tolokers (with 10
features and 0.5 homophily ratio), the impact is negligible. This indicates that these priors adapt
well to different graph characteristics. The architectural variant NodePFN-L6, with reduced model
capacity from 29.01M to 14.80M parameters, shows performance drops on Cora. This suggests that
sufficient model capacity is important for learning patterns in highly homophily datasets. NodePFN-
Seq with sequential processing maintains competitive performance, validating the effectiveness of
both parallel and sequential architectures for combining structural information.

We also compare TabPFN, since when all graph-specific priors and MPNN components are removed,
our proposed NodePFN can be reduced to TabPFN. As shown in Fig. 6, NodePFN outperforms
TabPFN on all datasets (see Appendix D for full results). At the same time, TabPFN shows wider
variance and lower overall accuracy, confirming the necessity of graph-aware modeling over treating
nodes as independent tabular data.

5 RELATED WORK

Prior-data Fitted Networks. Müller et al. (2022) introduced PFNs and proved that a Transformer
trained on tasks drawn from a prior can approximate PPDs from in-context examples. Following this
work, Nagler (2023) shows how PFNs approximate PPD and why they can still learn at inference,
and this paradigm has been adapted to specialized domains. TabPFN (Hollmann et al., 2023; 2025)
demonstrates that carefully designed synthetic priors can yield state-of-the-art performance on small
tabular datasets. Also, the PFN has been adapted to time-series forecasting (Dooley et al., 2023) and
Hoo et al. (2024; 2025) analyzes time series via feature engineering and encodes temporal patterns as
tabular features.

Graph Foundation Models. Recent works primarily leverage LLMs for zero-shot learning.
GraphGPT (Tang et al., 2024), GraphLLM (Chai et al., 2023), and LLAGA (Chen et al., 2024a)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

convert graphs to text descriptions, while frameworks that use text-attributed graph datasets (Li
et al., 2024c), such as OFA (Liu et al., 2024), use LLMs to encode node features. More recently,
GOFA (Kong et al., 2024), Graph-R1 (Wu et al., 2025), and ZeroG (Li et al., 2024b) extend this line
of work by exploring joint graph–language modeling, explicit reasoning for zero-shot learning, and
cross-dataset transferability, respectively. These approaches leverage LLMs’ strengths and limitations,
including their dependency on textual attributes. In contrast, our approach requires no LLMs and
works with arbitrary node features.

GNNs for Node Classification. Node classification is a classical graph machine learning task
on which GNNs have recently achieved strong results. GCN (Kipf & Welling, 2017), Graph-
SAGE (Hamilton et al., 2017), and GAT (Veličković et al., 2018) established the foundation of GNNs
by showing strong performance on homophily graph datasets. Additionally, neighborhood aggrega-
tion of GNNs shows stable performance on homophily graph benchmark datasets but struggles with
heterophily graphs (Pei et al., 2020). Sato (2024) proposes training-free GNNs for node classification,
but they are always suboptimal for GNN performance and have limitations that make them inapplica-
ble to heterophily graphs (see Section 4.3). As GNNs may not dominate all graph networks, zero-shot
approaches leveraging pretrained models such as TabPFN can bypass this architecture search.

6 DISCUSSION

Although our primary objective is to demonstrate that universal node classification can be achieved
via synthetic graph priors, the proposed NodePFN has limitations. NodePFN currently requires fixed
maximum class numbers (tested up to 20 classes) and feature dimensions during training, and the
attention mechanism’s quadratic complexity restricts applicability to large-scale graphs. We leave
these limitations for future work.

Despite these limitations, NodePFN’s pre-training paradigm offers significant advantages. Although
the model requires computational resources to train approximately 250,000 synthetic graphs during
pre-training (see Appendix C), this investment is offset across all subsequent inference tasks. This
contrasts with conventional GNNs that require retraining for each new dataset. Extensive experiments
demonstrate that NodePFN achieves universal node classification, thereby justifying this initial
computational overhead.

This universal applicability stems from our focus on structural pattern learning from synthetic priors.
Unlike recent graph foundation models that rely on text-attributed graphs and LLMs (Tang et al.,
2024; Chai et al., 2023; Liu et al., 2024) (as discussed in Section 5), NodePFN operates on graphs
with arbitrary numerical features without requiring semantic understanding.

7 CONCLUDING REMARKS

We presented NodePFN, the first extension of PFNs to graphs, showing that universal node clas-
sification can be learned from synthetic graph priors. A single NodePFN model demonstrates an
average accuracy of 71.27% on 23 benchmarks, particularly outperforming standard GNNs on het-
erophily graphs. This work represents a new paradigm for graph machine learning through synthetic
pre-training, validating that universal patterns can be learned without real-world training data.

Limitations and Future Works. We discussed the limitations of NodePFN in Section 6. Future
work could address these limitations by exploring efficient attention mechanisms for massive graphs
and investigating hybrid approaches that combine our structural pattern learning with semantic
processing from text-attributed graphs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICAL STATEMENTS

In terms of the broader impact of this research on society, we do not see the very negative impacts
that might be expected.

USE OF LLMS

In accordance with ICLR 2026 policy, we acknowledge the use of LLMs in the preparation of
this paper. To achieve perfect grammar and better expression and translation, we use Google
Translate (Google LLC, 2025) and DeepL (DeepL SE, 2025) to improve some text. DeepL has an
LLM-powered feature built in.

REPRODUCIBILITY STATEMENT

To ensure reproducibility and completeness, we have included appendices in this paper. We also
report the model architecture and all training hyperparameters to ensure full reproducibility and
hardware specifications for our experiments in Appendix B. The synthetic graph prior generation and
all associated hyperparameters are described in Appendices B.3 and B.7. We will make the source
code publicly available after acceptance at https://sites.google.com/view/nodepfn.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science, 286
(5439):509–512, 1999.

Norbert Binkiewicz, Joshua T Vogelstein, and Karl Rohe. Covariate-assisted spectral clustering.
Biometrika, 104(2):361–377, 2017.

Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in graph
convolutional networks. In AAAI, 2021.

Pietro Bongini, Niccolò Pancino, Franco Scarselli, and Monica Bianchini. Biognn: how graph neural
networks can solve biological problems. In Artificial Intelligence and Machine Learning for
Healthcare: Vol. 1: Image and Data Analytics, pp. 211–231. Springer, 2022.

Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv preprint
arXiv:1711.07553, 2017.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Ziwei Chai, Tianjie Zhang, Liang Wu, Kaiqiao Han, Xiaohai Hu, Xuanwen Huang, and Yang
Yang. Graphllm: Boosting graph reasoning ability of large language model. arXiv preprint
arXiv:2310.05845, 2023.

Runjin Chen, Tong Zhao, Ajay Jaiswal, Neil Shah, and Zhangyang Wang. Llaga: Large language and
graph assistant. arXiv preprint arXiv:2402.08170, 2024a.

Zhikai Chen, Haitao Mao, Jingzhe Liu, Yu Song, Bingheng Li, Wei Jin, Bahare Fatemi, Anton
Tsitsulin, Bryan Perozzi, Hui Liu, et al. Text-space graph foundation models: Comprehensive
benchmarks and new insights. Advances in Neural Information Processing Systems, 37:7464–7492,
2024b.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized PageRank
graph neural network. In Proceedings of the International Conference on Learning Representations
(ICLR), 2021a.

10

https://sites.google.com/view/nodepfn

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Eli Chien, Jie Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank graph
neural network. In Proceedings of the 9th International Conference on Learning Representations
(ICLR), 2021b.

Hejie Cui, Zijie Lu, Pan Li, and Carl Yang. On positional and structural node features for graph neural
networks on non-attributed graphs. In Proceedings of the 31st ACM International Conference on
Information & Knowledge Management, pp. 3898–3902, 2022.

DeepL SE. Deepl translate: The world’s most accu- rate translator, 2025. URL https://www.
deepl.com/translator. Last accessed 25 Sep 2026.

Samuel Dooley, Gurnoor Singh Khurana, Chirag Mohapatra, Siddartha V Naidu, and Colin White.
Forecastpfn: Synthetically-trained zero-shot forecasting. Advances in Neural Information Process-
ing Systems, 36:2403–2426, 2023.

Paul Erdős and Alfréd Rényi. On random graphs i. Publ. math. debrecen, 6(290-297):18, 1959.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning, 2017.

Google LLC. Google translate, 2025. URL https://translate.google.com/. Last ac-
cessed 25 Sep 2026.

Aditya Grover and Jure Leskovec. Node2vec: Scalable feature learning for networks. In KDD, pp.
855–864, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems, 2017.

William L. Hamilton. Graph representation learning. Synthesis Lectures on Artificial Intelligence
and Machine Learning, 14(3):1–159, 2020.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, YongDong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In SIGIR, 2020.

Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels: First
steps. Social networks, 5(2):109–137, 1983.

Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. TabPFN: A transformer
that solves small tabular classification problems in a second. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=cp5PvcI6w8_.

Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin Hoo,
Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data with a tabular
foundation model. Nature, 637(8045):319–326, 2025.

Shi Bin Hoo, Samuel Müller, David Salinas, and Frank Hutter. The tabular foundation model tabpfn
outperforms specialized time series forecasting models based on simple features. In NeurIPS
Workshop on Time Series in the Age of Large Models, 2024.

Shi Bin Hoo, Samuel Müller, David Salinas, and Frank Hutter. From tables to time: How tabpfn-v2
outperforms specialized time series forecasting models. arXiv preprint arXiv:2501.02945, 2025.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph
neural networks meet personalized pagerank. In Proceedings of the International Conference on
Learning Representations (ICLR), 2019.

Lecheng Kong, Jiarui Feng, Hao Liu, Chengsong Huang, Jiaxin Huang, Yixin Chen, and Muhan
Zhang. Gofa: A generative one-for-all model for joint graph language modeling. arXiv preprint
arXiv:2407.09709, 2024.

11

https://www.deepl.com/translator
https://www.deepl.com/translator
https://translate.google.com/
https://openreview.net/forum?id=cp5PvcI6w8_
https://openreview.net/forum?id=cp5PvcI6w8_

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xunkai Li, Zhengyu Wu, Jiayi Wu, Hanwen Cui, Jishuo Jia, Rong-Hua Li, and Guoren Wang. Graph
learning in the era of llms: A survey from the perspective of data, models, and tasks. arXiv preprint
arXiv:2412.12456, 2024a.

Yaxin Li, Wei Jin, Han Xu, and Jiliang Tang. Deeprobust: a platform for adversarial attacks and
defenses. In AAAI, pp. 16078–16080, 2021.

Yuhan Li, Peisong Wang, Zhixun Li, Jeffrey Xu Yu, and Jia Li. Zerog: Investigating cross-dataset
zero-shot transferability in graphs. In Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 1725–1735, 2024b.

Yuhan Li, Peisong Wang, Xiao Zhu, Aochuan Chen, Haiyun Jiang, Deng Cai, Victor W Chan, and
Jia Li. Glbench: A comprehensive benchmark for graph with large language models. Advances in
Neural Information Processing Systems, 37:42349–42368, 2024c.

Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan
Zhang. One for all: Towards training one graph model for all classification tasks. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=4IT2pgc9v6.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
Chang, and Doina Precup. Revisiting heterophily for graph neural networks. Advances in neural
information processing systems, 35:1362–1375, 2022.

Sitao Luan, Chenqing Hua, Minkai Xu, Qincheng Lu, Jiaqi Zhu, Xiao-Wen Chang, Jie Fu, Jure
Leskovec, and Doina Precup. When do graph neural networks help with node classification?
investigating the homophily principle on node distinguishability. Advances in Neural Information
Processing Systems, 36:28748–28760, 2023.

Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in social
networks. Annual review of sociology, 27(1):415–444, 2001.

Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter.
Transformers can do bayesian inference. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=KSugKcbNf9.

Thomas Nagler. Statistical foundations of prior-data fitted networks. In International Conference on
Machine Learning, pp. 25660–25676. PMLR, 2023.

Judea Pearl. Causality. Cambridge university press, 2009.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference: foundations
and learning algorithms. The MIT press, 2017.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
A critical look at the evaluation of GNNs under heterophily: Are we really making progress?
In The Eleventh International Conference on Learning Representations, 2023a. URL https:
//openreview.net/forum?id=tJbbQfw-5wv.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova. A
critical look at the evaluation of gnns under heterophily: Are we really making progress? arXiv
preprint arXiv:2302.11640, 2023b.

Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, and Jie Tang. Deepinf: Social
influence prediction with deep learning. In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 2110–2119, 2018.

Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. struc2vec: Learning node
representations from structural identity. In Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining, pp. 385–394, 2017.

12

https://openreview.net/forum?id=4IT2pgc9v6
https://openreview.net/forum?id=4IT2pgc9v6
https://openreview.net/forum?id=KSugKcbNf9
https://openreview.net/forum?id=tJbbQfw-5wv
https://openreview.net/forum?id=tJbbQfw-5wv

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal
of Complex Networks, 9(2):cnab014, 2021.

Ryoma Sato. Training-free Graph Neural Networks and the Power of Labels as Features, August
2024. URL http://arxiv.org/abs/2404.19288. arXiv:2404.19288 [cs].

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin, and Chao Huang.
Graphgpt: Graph instruction tuning for large language models. In Proceedings of the 47th
International ACM SIGIR Conference on Research and Development in Information Retrieval, pp.
491–500, 2024.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale
information network embedding. In TheWebConf (former WWW), pp. 1067–1077, 2015.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. In Proceedings of the International Conference on Learning
Representations (ICLR), 2018.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Q Weinberger.
Simplifying graph convolutional networks. In Proceedings of the 36th International Conference
on Machine Learning (ICML), pp. 6861–6871, 2019.

Yicong Wu, Guangyue Lu, Yuan Zuo, Huarong Zhang, and Junjie Wu. Graph-r1: Incentivizing the
zero-shot graph learning capability in llms via explicit reasoning. arXiv preprint arXiv:2508.17387,
2025.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
Conference on Machine Learning (ICML), pp. 5453–5462, 2018.

Ruosong Ye, Caiqi Zhang, Runhui Wang, Shuyuan Xu, and Yongfeng Zhang. Language is all a graph
needs. arXiv preprint arXiv:2308.07134, 2023.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In KDD, 2018.

Jianan Zhao, Le Zhuo, Yikang Shen, Meng Qu, Kai Liu, Michael Bronstein, Zhaocheng Zhu, and
Jian Tang. Graphtext: Graph reasoning in text space. arXiv preprint arXiv:2310.01089, 2023.

Jianan Zhao, Zhaocheng Zhu, Mikhail Galkin, Hesham Mostafa, Michael M. Bronstein, and Jian
Tang. Fully-inductive node classification on arbitrary graphs. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=1Qpt43cqhg.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.
AI open, 1:57–81, 2020.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. Advances in neural
information processing systems, 33:7793–7804, 2020a.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. In Advances in
Neural Information Processing Systems, 2020b.

Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label propaga-
tion. In Technical Report CMU-CALD-02-107, Carnegie Mellon University, 2002.

13

http://arxiv.org/abs/2404.19288
https://openreview.net/forum?id=1Qpt43cqhg
https://openreview.net/forum?id=1Qpt43cqhg

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Supplementary Materials for “Learning Posterior Predictive
Distributions for Node Classification from Synthetic Graph
Priors”

A DETAILS OF DATASETS

The Synthetic Cora Network The synthetic Cora dataset is provided by (Zhu et al., 2020b). Zhu
et al. (2020b) generate graphs for a target homophily level using a modified preferential attachment
process. We sample nodes, edges, and features from Cora to create a synthetic graph with a desired
homophily and feature/label distribution. In Table 4, we summarize the properties of the synthetic
Cora networks we used.

Table 4: The detailed information of the synthetic Cora. All levels of homophily have the same
number of features (1,433), nodes (1,480), edges (5,936), and classes (5).

Homophily Avg. Degree Max. Degree Min. Degree

0.0 3.98 84.33 1.67
0.1 3.98 71.33 2.00
0.2 3.98 73.33 1.67
0.3 3.98 70.00 2.00
0.4 3.98 77.67 2.00
0.5 3.98 76.33 2.00
0.6 3.98 76.00 1.67
0.7 3.98 67.67 2.00
0.8 3.98 58.00 1.67
0.9 3.98 58.00 1.67
1.0 3.98 51.00 2.00

Real-world Graph Datasets. We list the dataset statistics we used in Tables 5 and 6. We use 23
benchmark datasets for node classification. Following prior work, these include both 13 homophily
graphs (Kipf & Welling, 2017; Rozemberczki et al., 2021) (e.g., Cora, Citeseer, Pubmed, WikiCS)
and 10 heterophilous graphs (Pei et al., 2020; Platonov et al., 2023b) (e.g., Cornell, Texas, Squirrel,
Actor). For Chameleon and Squirrel, we use filtered datasets from Platonov et al. (2023a). We also
report the clustering coefficients of each graph dataset. Reviewer M3ir

Table 5: Homophily dataset statistics for node classification 13 benchmarks.

Dataset #Nodes #Edges #Features #Classes #Labels Coeff. Train/Val/Test (%)

AirBrazil 131 1,074 N/A 4 80 0.6364 61.1/19.1/19.8
AirEU 1,190 5,995 N/A 4 80 0.5393 20.1/39.8/40.1
AirUS 10,008 13,599 N/A 4 80 0.5011 6.7/46.6/46.6
Cora 2,708 10,556 1,433 7 140 0.2407 5.2/18.5/36.9
Citeseer 3,327 9,104 3,703 6 120 0.1435 3.6/15.0/30.1
Pubmed 19,717 88,648 500 3 60 0.0602 0.3/2.5/5.1
WikiCS 11,701 431,206 300 10 580 0.4660 5.0/15.1/49.9
Amazon-Photo 7,650 238,162 745 8 160 0.4101 2.1/49.0/49.0
Amazon-Comp 13,752 491,722 767 10 200 0.3513 1.5/49.3/49.3
DBLP 17,716 105,734 1,639 4 80 0.1344 0.5/49.8/49.8
Coauthor-CS 18,333 163,788 6,805 15 300 0.3425 1.6/49.2/49.2
Coauthor-Physics 34,493 495,924 8,415 5 100 0.3776 0.3/49.9/49.9
Deezer 28,281 185,504 128 2 40 0.1412 0.1/49.9/49.9

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 6: Heterophily dataset statistics for 10 benchmarks.

Dataset #Nodes #Edges #Features #Classes #Labels Coeff. Train/Val/Test (%)

Cornell 183 554 1703 5 87 0.1671 47.5/32.2/20.2
Texas 183 558 1703 5 87 0.1979 47.5/31.7/20.2
Wisconsin 251 900 1703 5 120 0.2077 47.8/31.9/20.3
Chameleon 890 8854 2325 5 445 0.5769 50.0/25.0/25.0
Actor 7600 30,019 932 5 3648 0.0802 48.0/32.0/20.0
Minesweeper 10,000 78,804 7 2 5000 0.4355 50.0/25.0/25.0
Tolokers 11,758 1,038,000 10 2 5879 0.5329 50.0/25.0/25.0
Amazon-Ratings 24,492 186,100 300 5 12,246 0.5816 50.0/25.0/25.0
Questions 48,921 307,080 301 2 24,460 0.0307 50.0/25.0/25.0
Squirrel 2223 46,998 2089 5 1053 0.4631 50.0/25.0/25.0

B DETAILED EXPERIMENTAL SETTINGS

B.1 HARDWARE AND SOFTWARE SPECIFICATIONS

Our implementation is developed on top of the TABPFN-V12 framework. All experiments were
performed using the following software and hardware environments: UBUNTU 21.04 LTS, PYTHON
3.10.16, PYTORCH 1.12.1, PYTORCH GEOMETRIC 2.3.1, TORCH-SCATTER 2.1.2, TORCH-SPARSE
0.6.18, NUMPY 1.26.4, NETWORKX 3.3, SCIKIT-LEARN 1.4.0, CUDA 12.3, NVIDIA Driver
550.54.14, i9 CPU, NVIDIA RTX 6000.

B.2 TRAINING SETUP

The model configuration of NodePFN is summarized in Table 7. In total, the model contains
approximately 29.1M trainable parameters. We trained NodePFN for a total of 30 epochs, each epoch
comprising up to 1,024 steps (245,760 steps in total) with a batch size of 8 (see more hyperparameters
in Table 8. The total training required approximately 6 GPU hours on a single NVIDIA RTX A6000.

Table 7: Model configuration of NodePFN.

Hyperparameter Value

Embedding dimension 512
Number of layers 12
Number of attention heads 4
Dropout rate 0.0

Table 8: Training hyperparameters for NodePFN.

Hyperparameter Value

Epochs 30
Steps per epoch 1024
Batch size 8
Embedding size 512
Learning rate {1.5× 10−5, 5× 10−4, 1× 10−4}
Optimizer AdamW

B.3 DETAILS OF NODEPFN PRIOR

Structural Causal Models (SCM) We adopt the optimal sampling distributions from TabPFN (Holl-
mann et al., 2023) for our SCM prior to ensure robust feature-label relationships. Following TabPFN’s
framework3, each SCM is generated by:

2github.com/PriorLabs/TabPFN/tree/tabpfn_v1/
3https://github.com/PriorLabs/TabPFN/tree/tabpfn_v1

15

github.com/PriorLabs/TabPFN/tree/tabpfn_v1/
https://github.com/PriorLabs/TabPFN/tree/tabpfn_v1

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• Sampling MLP layers ℓscm ∼ p(ℓscm) and hidden size hscm ∼ p(hscm) from discretized
noisy log-normal distributions

• Creating a layered graph structure and randomly dropping edges to form a DAG

• Selecting feature nodes and one label node from the causal graph

• Using activation functions sampled from Tanh, LeakyReLU, ELU, Identity

• Applying noisy log-normal noise distributions with beta-distributed dropout rates

This generates complex non-linear feature-label dependencies while maintaining the causal structure
that has proven effective for tabular data modeling.

Contextual SBM. Our contextual SBM generates community-structured graphs with controllable
homophily levels:

• Sample homophily rate h ∼ U(0.1, 0.9) and intra-community probability pin ∼
U(0.01, 0.1)

• Compute inter-community probability as pout = pin × (1− h)

• Assign nodes to communities based on their labels from the SCM

• Generate edge probabilities using power distributions: probsi,j = Power(5)×pout fori ̸=
j for inter-community edges, with diagonal values pout +power(2, size)× (pin − pout) for
intra-community connections

• Create a symmetric probability matrix and generate edges via the stochastic block model

This approach ensures that network topology and node labels are inherently related through the
homophily parameter.

ER Network. ER networks provide unstructured baseline graphs complementing the community-
based patterns:

• Sample edge probability per ∼ U(0.01, 0.05)
• Generate edges independently with probability Eij ∼ Bernoulli(per)

• Creates graphs with binomial degree distributions and no inherent community structure

The combination of cSBMs (50% of training graphs) and ER networks (50% of training graphs)
ensures comprehensive coverage of graph structures from community-based patterns to random
connectivity.

B.4 FLEXIBLE ENCODER FOR VARIABLE NODE FEATURE DIMENSIONS
Reviewer ogba

Our NodePFN model is designed to handle graphs with varying node feature dimensionalities up to a
pre-defined maximum capacity. This is achieved through a flexible input encoder that standardizes
the feature vectors before they are processed by the main architecture.

When a graph is provided where the node features have a dimension d that is less than the maximum
supported dimension of the model, dmax, each node’s feature vector is first extended to dmax

dimensions by appending zero-padding. Then, to ensure that the zero-padding process does not
systematically alter the input’s scale or introduce bias, we apply a normalization factor to the padded
vector. This mechanism ensures that feature vectors from different graph datasets are processed on a
consistent scale, enabling our single pre-trained model to generalize effectively across a wide range
of graph-structured data.

B.5 FEATURE AND LABEL EMBEDDINGS IN IMPLEMENTATION
Reviewer f51f

We employ learnable linear transformations WX ∈ Rd×dfeat and WY ∈ Rd×C to project features
and labels to the embedding dimension d, where dfeat is the feature dimension and C is the number

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

of classes. Following TabPFN-v1’s implementation, we use element-wise addition rather than
concatenation to combine features and labels:

H
(0)
train = XtrainW

⊤
X +YtrainW

⊤
Y , H

(0)
test = XtestW

⊤
X ,

where Xtrain and Ytrain are the feature and label matrices for training nodes. This additive approach4

maintains constant dimensionality and enables the model to learn complementary representations in
different subspaces of the embedding vector. During inference, real-world labels are first converted
to canonical integers before applying WY .

B.6 INFERENCE IMPLEMENTATION DETAILS

We describe the data preprocessing methods used in the inference stage below.

Graph Structure Preprocessing. We convert the adjacency matrix of a given graph into a normal-
ized adjacency matrix.

Feature Preprocessing. Adopting the ensemble approach from Hollmann et al. (2023), we employ
a method that alters the order and scaling of features within the input context. This integrates a form
of ensemble technique, using a fixed number of 32 multiple inputs, with the subsequent prediction
results being aggregated. When real-world graphs have features exceeding the capacity of our
NodePFN, we apply truncated SVD for dimensionality reduction. We also optionally apply feature
smoothing using sum aggregation by edge connectivity for enhanced feature quality.

B.7 EXPERIMENTAL SETTINGS FOR NODE CLASSIFICATION

Evaluation Protocol. For homophily datasets, we follow the semi-supervised setting of Kipf &
Welling (2017) for Cora, Citeseer, and Pubmed (20 nodes per class for training, 500 validation, 1000
test), while for WikiCS, we follow the splits in Rozemberczki et al. (2021), and the remaining datasets
follow the GraphAny (Zhao et al., 2025) protocol (20 nodes per class for training, the rest split evenly
into validation and test). For heterophily datasets, we use the predefined split masks provided in
Pei et al. (2020) and Platonov et al. (2023b). For Chameleon and Squirrel, we use filtered datasets
from Platonov et al. (2023a).

Search Space of Hyperparameters. We report our search space of hyperparameters used in our
experiments in Table 9. Note that we use the default hyperparameter of 32 ensembles.

Table 9: Homophily dataset hyperparameters for node classification.

Hyperparam. Range

Components {10,15,20,25,30}
Smoothing Steps {0, 1, 2, 3, 4}

Optimal Hyperparameters. We report our optimal hyperparameters used in our experiments in
Tables 10 and 11. We do not use truncated SVD on Tolokers and Minesweeper.

4https://github.com/PriorLabs/TabPFN/issues/93

17

https://github.com/PriorLabs/TabPFN/issues/93

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 10: Homophily dataset hyperparameters for node classification.

Dataset # Components # Smoothing Steps

AirBrazil 25 3
AirEU 25 1
AirUS 25 3
Cora 15 4
Citeseer 15 2
Pubmed 15 2
WikiCS 15 2
Amazon-Photo 15 3
Amazon-Comp 15 3
DBLP 25 2
Coauthor-CS 25 2
Coauthor-Physics 15 0
Deezer 25 2

Table 11: Heterophily dataset hyperparameters for node classification.

Dataset # Components # Smoothing steps

Cornell 15 0
Texas 20 0
Wisconsin 25 0
Chameleon 25 0
Actor 35 0
Minesweeper - 1
Tolokers - 2
Amazon-Ratings 25 3
Questions 25 3
Squirrel 15 1

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C PRIOR DATA SCALE ANALYSIS

50000 100000 150000 200000 250000
Number of Prior Graphs

50

55

60

65

70

75

80

85

Te
st

 A
cc

ur
ac

y

Cora Texas

Figure 7: Impact of Prior Data Scale on
NodePFN Performance

We analyze the impact of the number of synthetic prior
graphs on NodePFN performance and address the question
of data efficiency in PFN training. This analysis aims to
understand the trade-off between computational cost and
performance gains when scaling prior data.

In our pretraining, each training iteration generates new
synthetic graphs based on our random network prior,
which creates diverse structural patterns. Fig. 7 reveals sev-
eral key insights: (1) Particularly evident in the heterophily
Texas dataset, its performance increases substantially with
more prior data. The accuracy improves from approxi-
mately 53% to 76%. (2) For Cora, NodePFN shows more
modest gains, and this suggests that patterns with higher
homophily rates are effectively learned via cSBMs. (3)
The performance improvement peaks at approximately
250,000 prior graphs.

While generating synthetic prior data incurs an initial computational cost, this expense is amortized
across all future inference tasks. Unlike traditional GNNs, which require retraining for each new
graph, NodePFN enables immediate inference on arbitrary real-world graphs via one-time training
on synthetic priors. Given the universal applicability of the resulting model, the computational
investment in comprehensive prior generation proves worth it.

D COMPARISON WITH TABPFN AND NODEPFN

In Appendix D and Table 13, we report all results from Fig. 6 in Section 4.5. We used the TabPFN-v1
framework for comparison with TabPFN, and to ensure a fair comparison, we employed a pre-
trained model using the same number of prior data points as ours. For TabPFN, we use the default
hyperparameter of 32 ensembles, and we also enable feature subsampling for feature preprocessing.

Table 12: Comparison between TabPFN and
NodePFN on homophily datasets (accuracy %).

Dataset TabPFN NodePFN

AirBrazil 52.31 75.38
AirEU 53.62 57.00
AirUS 53.55 61.66
Cora 53.10 82.06
Citeseer 32.94 67.30
Pubmed 65.04 78.00
WikiCS 62.25 75.98
Amazon-Photo 74.77 90.53
Amazon-Comp 50.66 81.42
DBLP 60.69 74.71
Co-author CS 48.32 91.55
Co-author Physics 63.41 93.43
Deezer 49.83 53.45

Average 55.62 77.39

Table 13: Comparison between TabPFN and
NodePFN on heterophily datasets (accuracy %).

Dataset TabPFN NodePFN

Cornell 55.68 71.89
Texas 62.70 76.22
Wisconsin 72.94 79.22
Chameleon 37.54 50.13
Actor 25.84 32.99
Minesweeper 79.86 80.66
Tolokers 78.18 78.61
Amazon-Ratings 21.64 44.68
Questions 90.09 97.02
Squirrel 31.84 43.40

Average 53.47 65.14

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

E THEORETICAL DISCUSSION

The original PFN framework (Müller et al., 2022) establishes that Transformers can approximate
posterior predictive distributions (PPDs) by minimizing the Prior-Data negative log-likelihood.

Reviewer f51fSpecifically, Müller et al. (2022, Insight 1) shows that this loss equals the expected cross-entropy
between the true PPD and its approximation, while Müller et al. (2022, Corollary 1.2) guarantees
convergence to the exact posterior under the infinite-capacity assumption, provided the architecture
respects the exchangeability of the conditioning dataset D. In practice, this requires the architecture
to be permutation equivariant with respect to the ordering of training examples.
Remark E.1 (Preservation of PFN Guarantees in NodePFN). The dual-branch architecture of
NodePFN maintains permutation equivariance because: the attention branch uses self-attention
and cross-attention operations that are inherently permutation equivariant, the MPNN branch uses
aggregation functions that are permutation equivariant, and their additive fusion (Eq. (9)) preserves
this property. Therefore, NodePFN satisfies the exchangeability requirement of Müller et al. (2022,
Corollary 1.2) and converges to the posterior.

This theoretical guarantee ensures that while the MPNN branch enriches the model with structural
information, the fundamental Bayesian convergence properties of PFN remain intact.

F COMPARISON WITH HETEROPHILY-SPECIFIC GNNS

To further validate NodePFN’s effectiveness on heterophily graphs, we compare against GNNs
specifically designed for heterophily: H2GCN (Zhu et al., 2020b), GPRGNN (Chien et al., 2021a),
and FAGCN (Bo et al., 2021). Reviewer WYNZ, M3irAs shown in Table 14, NodePFN achieves the best performance on 7
out of 9 datasets despite using no real-world training data, while these specialized methods require
dataset-specific training with carefully designed aggregation schemes for heterophily.

Notably, NodePFN shows improvements on Chameleon and Squirrel. The competitive performance
on Texas and Actor within 1% of best methods further confirms that learning from diverse synthetic
graphs with controlled homophily provides generalization on the heterophily spectrum without
requiring architectural modifications or dataset-specific tuning.

Table 14: Comparison of NodePFN with H2GCN, GPRGNN, FAGCN (accuracy %).

Dataset Chameleon Squirrel Cornell Texas Actor Wisconsin A.Ratings Co.CS Co.Physics

H2GCN 41.07±2.65 35.10±1.15 65.77±6.80 76.58±1.56 35.86±1.03 75.82±1.13 40.87±0.11 88.45±0.97 92.86±0.36

GPRGNN 39.69±1.15 38.95±1.99 40.54±2.01 65.77±1.56 33.94±0.95 75.21±4.08 42.23±0.25 91.49±0.39 92.76±0.20

FAGCN 37.24±3.54 36.78±3.11 60.38±1.82 68.44±1.78 34.87±1.25 72.02±5.24 44.12±0.31 91.07±1.28 92.34±0.40

NodePFN 50.13±3.30 43.40±1.03 71.89±2.76 76.22±7.53 32.99±1.09 79.22±6.97 44.68±0.48 91.55±0.32 93.43±0.13

G COMPARISON WITH LLM-BASED GRAPH METHODS ON GLBENCH

Following the experimental setting of recent LLM-based graph methods, we conduct the supervised
node classification experiments on all the datasets in GLBench (Li et al., 2024c) 5. Reviewer WYNZ

NodePFN achieves competitive or superior performance compared to LLM-based graph foundation
models without requiring text descriptions or language model dependencies. While LLM-based
methods leverage pre-trained language knowledge, NodePFN leverages pre-trained patterns from
massive synthetic prior data.

H COMPARISON WITH TABPFN USING SMOOTHED FEATURES

Tables 16 and 17 present comprehensive comparisons between TabPFN-v1 (Hollmann et al., 2023)
with smoothed features and NodePFN across homophily and heterophily datasets. Reviewer f51fThe smoothed

5https://github.com/NineAbyss/GLBench

20

https://github.com/NineAbyss/GLBench

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 15: Accuracy under the supervised setting of GLBench (Li et al., 2024c). Best and second-best
are highlighted.

Dataset Cora Citeseer Pubmed WikiCS

InstructGLM (Ye et al., 2023) 69.10 51.87 71.26 45.73
GraphText (Zhao et al., 2023) 76.21 59.43 75.11 67.35
LLaGA (Chen et al., 2024a) 74.42 55.73 68.82 73.88
OFA (Liu et al., 2024) 75.24 73.04 75.61 77.34

NodePFN 76.38 63.08 68.18 76.29

features baseline applies non-parametric feature aggregation before feeding node representations
into TabPFN-v1’s official checkpoint6, effectively incorporating local neighborhood information
without explicit graph structure modeling. On homophily datasets (Table 16), NodePFN demonstrates
consistent improvements. The advantages become even more pronounced on heterophily datasets
(Table 17), where NodePFN substantially outperforms the smoothed feature baseline on Cornell ,
Texas, and Wisconsin. These results validate that NodePFN’s explicit modeling of graph topology
through its dual-branch architecture provides meaningful improvements over simple feature smooth-
ing approaches. Note that TabPFN-v1’s limitation to 10 classes prevents evaluation on datasets like
Co-author CS, whereas NodePFN supports up to 20 classes.

Table 16: Comparison between TabPFN with
smoothed features and NodePFN on homophily
datasets (accuracy %).

Dataset TabPFN-v1
(smoothed features) NodePFN

AirBrazil 67.69 75.38
AirEU 55.62 57.00
AirUS 59.60 61.66
Cora 74.06 82.06
Citeseer 51.16 67.30
Pubmed 75.96 78.00
WikiCS 74.90 75.98
Amazon-Photo 83.69 90.53
Amazon-Comp 75.61 81.42
DBLP 69.20 74.71
Co-author CS N/A 91.55
Co-author Physics 87.93 93.43
Deezer 48.17 53.45

Table 17: Comparison between TabPFN-v1 with
smoothed features and NodePFN on heterophily
datasets (accuracy %).

Dataset TabPFN-v1
(smoothed features) NodePFN

Cornell 42.16 71.89
Texas 56.22 76.22
Wisconsin 51.37 79.22
Chameleon 41.42 50.13
Actor 25.29 32.99
Minesweeper 80.07 80.66
Tolokers 78.05 78.61
Amazon-Ratings 44.24 44.68
Questions 97.02 97.02
Squirrel 40.42 43.40

I EXTENSIVE ABLATIONS ON SYNTHETIC PRIOR DESIGN
Reviewer ogba, M3ir,
WYNZ

Graph generation models and homophily distribution. Table 18 shows ablation results on
different graph generation models and homophily distributions. We compare our approach against
various alternatives including using only ER graphs, only cSBM graphs with restricted or full
homophily ranges, and only Barabási-Albert (BA) networks (Barabási & Albert, 1999). As shown
in Table 18, the results reveal several key insights. First, restricting training to specific homophily
ranges leads to performance degradation. This shows the necessity of covering the full homophily
spectrum to generalize across diverse real-world graphs. Second, training exclusively on Barabási-
Albert networks — which explicitly model power-law degree distributions — shows inconsistent
performance. This suggests that power-law topology alone provides insufficient structural diversity

6https://github.com/PriorLabs/TabPFN/tree/tabpfn_v1

21

https://github.com/PriorLabs/TabPFN/tree/tabpfn_v1

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

for universal graph learning. Third, using only ER or only cSBM graphs underperforms the combined
approach, validating that both graph types contribute complementary inductive biases.

Table 18: Ablation study on graph generation models and homophily distributions.

Ablation Cora Wisconsin Tolokers

Only ER 80.62 80.39 77.18
Only cSBM (0.1-0.3) 79.89 79.98 77.65
Only cSBM (0.7-0.9) 80.42 78.20 77.23
Only cSBM (full range) 81.26 78.82 77.30
Only BA (Barabási-Albert) 74.18 80.57 74.63

NodePFN (ER+cSBM) 82.06 81.18 78.61

ER/cSBM ratio analysis. Table 19 examines how the mixture ratio between ER and cSBM graphs
affects performance. We varied the proportion of ER graphs from 0% (cSBM only) to 100% (ER
only). The balanced 50/50 ratio consistently achieves optimal or near-optimal performance across
all homophily regimes. Notably, heterophilic Wisconsin benefits from higher ER ratios (80-50%
range), likely because ER’s unbiased topology provides crucial structural diversity for heterophilic
learning, while homophilic Cora shows more robustness to varying ratios. These results show that
ER’s unbiased topology and cSBM’s community structure provide complementary inductive biases
essential for universal graph learning.

Table 19: Ablation study on ER/cSBM mixture ratio.

ER Ratio Cora Wisconsin Tolokers

100% (Only ER) 80.62 80.39 77.18
80% 80.90 81.30 77.20
50% (NodePFN) 82.06 81.18 78.61
20% 82.01 78.75 78.10
0% (Only cSBM) 81.26 78.82 77.30

J ARCHITECTURAL ABLATIONS

We provide comprehensive ablation studies on NodePFN’s dual-branch architecture to demonstrate
the necessity and contribution of each component. Table 20 shows results for different architectural
variants compared to the full NodePFN model. Reviewer WYNZ

Removing the MPNN branch causes substantial degradation on both homophilic Cora and heterophilic
Wisconsin, demonstrating that the MPNN provides essential structural inductive biases that pure
attention cannot capture. NodePFN-Seq underperforms the parallel design. Reducing model capacity
to 6 layers (NodePFN-L6) causes failure on Cora, demonstrating that sufficient depth is important
for learning diverse patterns from many synthetic priors. These ablations validate that the MPNN
provides structural biases, and their parallel combination enables optimal integration, and deep
architecture is required.

Table 20: Ablation study on architectural design choices.

Ablation Cora Wisconsin Tolokers

NodePFN-L6 53.10 72.94 78.00
NodePFN-Seq 80.64 78.82 77.88

NodePFN w/o MPNN 75.50 70.10 78.09

NodePFN (Full) 82.06 81.18 78.61

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

K STATISTICS OF SYNTHETIC PRIOR DATASETS
Reviewer ogba,M3ir

We provide detailed statistics of the synthetic graphs used for pre-training NodePFN. Our training set
consists of approximately 250,000 graphs generated over 30 epochs, with each graph sampled from a
mixture of ER networks and cSBM with varying homophily ratios. All synthetic graphs are fixed at
1,024 nodes to balance computational efficiency with sufficient structural complexity for learning
meaningful patterns. The number of classes per graph varies from 1 to 20, and edge counts vary
based on the underlying generation model and density parameters. On average, each graph contains
12,706.4 edges, and 8.79 classes.

Fig. 8 shows the distributions of edges and classes across all synthetic graphs. The edge distribution
(Fig. 8(a)) exhibits a normal distribution centered around 10,000-15,000 edges, with a long tail
extending to sparser graphs. This diversity reflects the combination of sparse ER networks, which
generate fewer edges on average, and dense cSBM communities, which create higher edge densities
within communities. The class distribution (Fig. 8(b)) shows coverage across the full range of 1-20
classes, with slightly higher frequency for graphs with fewer classes.

(a) Edge count distribution (b) Class count distribution

Figure 8: Distribution of synthetic prior datasets used for pre-training.

L COMPUTATIONAL COMPLEXITY

We provide formal complexity analysis for NodePFN. Reviewer ogbaFor a graph with N nodes, |E| edges, d-
dimensional features, and L MPNN layers, the MPNN branch requires O(LEd) operations for
message passing and aggregation, identical to standard GCN complexity. The Transformer branch
computes attention over all nodes, requiring O(N2d) operations for attention computation and
O(Nd2) for feed-forward layers. The total per-graph complexity is therefore O(LEd+N2d).

Table 21 shows comprehensive runtime comparison between GCN and NodePFN across all 23 bench-
mark datasets. While NodePFN achieves superior average accuracy and ranking, it also demonstrates
remarkable computational efficiency in terms of total deployment cost. Reviewer WYNZ, M3irGCN requires cumulative
training time of 188 seconds plus 12.35 seconds for inference across all datasets. Importantly, this
represents a single training run per dataset with fixed hyperparameters — in practice, achieving
competitive performance typically requires multiple hyperparameter tuning attempts, potentially
multiplying this cost by 5 to 10 times or more. In contrast, NodePFN requires only 47.78 seconds
total representing a 4 times speedup in total time-to-deployment. The one-time pre-training cost (6
GPU hours) is amortized across unlimited datasets, eliminating repetitive per-dataset optimization
and making it increasingly efficient as more graphs are processed.

Table 21: Runtime efficiency comparison

23 Benchmark Datasets GCN NodePFN

Avg. Accuracy 66.63 71.27
Avg. Ranking 5.86 1.70

Total Train Runtime (s) 188 47.78Total Predict Runtime (s) 12.35

23

	Introduction
	Preliminaries
	Posterior Predictive Distribution in Supervised Learning
	Prior-Data Fitted Networks
	GNNs for Node Classification and Their Limitations
	Random Graph Models

	NodePFN: Prior-Fitted Networks for Node Classification
	Learning from Synthetic Graph Priors
	Synthetic Graph Priors
	Model Architecture
	How to Train
	How to Inference

	Experiments
	(RQ1.) Controlled Synthetic Graphs
	(RQ2.) Experiments on Real-world Graph Benchmarks
	(RQ3.) Comparison with Training-free Methods
	(RQ4.) Structural Node Classification
	(RQ.5) Ablation Studies

	Related Work
	Discussion
	Concluding Remarks
	 Supplementary Materials for ``Learning Posterior Predictive Distributions for Node Classification from Synthetic Graph Priors''
	Details of Datasets
	Detailed Experimental Settings
	Hardware and Software Specifications
	Training Setup
	Details of NodePFN Prior
	Flexible Encoder for Variable Node Feature Dimensions
	Feature and Label Embeddings in Implementation
	Inference Implementation Details
	Experimental Settings for Node Classification

	Prior Data Scale Analysis
	Comparison with TabPFN and NodePFN
	Theoretical Discussion
	Comparison with Heterophily-Specific GNNs
	Comparison with LLM-based Graph Methods on GLBench
	Comparison with TabPFN Using Smoothed Features
	Extensive Ablations on Synthetic Prior Design
	Architectural Ablations
	Statistics of Synthetic Prior Datasets
	Computational Complexity

