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Abstract

Diffusion models have achieved promising results for Structure-Based Drug Design (SBDD).
Nevertheless, high-quality protein subpockets and ligand data are relatively scarce, which
hinders the models’ generation capabilities. Recently, Direct Preference Optimization (DPO)
has emerged as a pivotal tool for aligning generative models with human preferences. In this
paper, we propose DecompDpo, a structure-based optimization method aligns diffusion
models with pharmaceutical needs using multi-granularity preference pairs. DecompDpo
introduces decomposition into the optimization objectives and obtains preference pairs at
the molecule or decomposed substructure level based on each objective’s decomposability.
Additionally, DecompDpo introduces a physics-informed energy term to ensure reasonable
molecular conformations in the optimization results. Notably, DecompDpo can be effectively
used for two main purposes: (1) fine-tuning pretrained diffusion models for molecule genera-
tion across various protein families, and (2) molecular optimization given a specific protein
subpocket after generation. Extensive experiments on the CrossDocked2020 benchmark
shows that DecompDpo significantly improves model performance, achieving up to 98.5%
Med. High Affinity and a 43.9% success rate for molecule generation, and 100% Med. High
Affinity and a 52.1% success rate for targeted molecule optimization.

1 Introduction

Structure-based drug design (SBDD) (Anderson, 2003) is a strategic approach in medicinal chemistry and
pharmaceutical research that utilizes 3D structures of biomolecules to guide the design and optimization of
new therapeutic agents. The goal of SBDD is to design molecules that bind to specific protein targets. Recent
studies viewed this task as a data-driven conditional generative problem, introducing powerful generative
models with geometric deep learning (Powers et al., 2023). For example, Peng et al. (2022); Zhang & Liu
(2023) proposed generating atoms or fragments sequentially by an SE(3)-equivariant auto-regressive model,
while Luo et al. (2021); Peng et al. (2022); Guan et al. (2023a) introduced diffusion models (Ho et al., 2020)
to model distributions over ligand atom types and positions.

A significant bottleneck for the development of generative models in SBDD is the scarcity of high-quality
protein-ligand complex data (Vamathevan et al., 2019). While large-scale datasets have spurred rapid
advances in fields such as natural language processing, the collection of protein-ligand binding data is notably
more challenging and limited due to the complex and resource-intensive experimental procedures. Notably,
the CrossDocked2020 dataset (Francoeur et al., 2020), a widely-used dataset for SBDD, augments existing
data by docking ligands into similar protein pockets in the Protein Data Bank. Although this increases
dataset size, it may unavoidably introduce some low-quality data. As highlighted by Zhou et al. (2024a), the
ligands in the CrossDocked2020 dataset have moderate binding affinities, which do not meet the stringent
demands of drug design. Moreover, the number of unique ligands remains the same before and after this data
augmentation, limiting generative models from learning diverse and high-quality molecules.

To address the aforementioned challenge, Xie et al. (2021); Fu et al. (2022) provided a straightforward method
for searching molecules with desired properties in the extensive chemical space. However, pure searching or
optimization methods lack generative capabilities and fall short in the diversity of the designed molecules.
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Zhou et al. (2024a) integrated a conditional diffusion models with optimization by iteratively selecting better
molecular substructures as generation conditions. This method achieves better properties while maintaining
a certain level of diversity. Nonetheless, the performance of this method is still limited due to fixed model
parameters during the optimization process.

To break the bottleneck, we introduce DecompDpo, a multi-objective optimization framework that aligns
diffusion models with practical pharmaceutical requirements using generated data. Inspired by the decompo-
sition nature of ligand molecules, DecompDpo introduces decomposition into the optimization objective to
provide more flexibility in preference selection and alignment. Based on each objective’s decomposability,
DecompDpo directly aligns model with full-molecule level preferences using GlobalDPO or LocalDPO
with decomposed-substructure level preferences. Recognizing the importance of physically realistic molecule
conformations in drug discovery, DecompDpo integrates physics-informed energy terms to penalize molecules
with poor conformations. Additionally, a linear beta schedule is proposed for improving optimization efficiency.
We demonstrate the effectiveness of DecompDpo in two scenarios: structure-based molecule generation and
molecule optimization, showing that DecompDpo significantly outperforms existing baselines. We highlight
our contributions as follows:

• We propose DecompDpo, which introduces decomposition into the optimization objectives for more
effective and flexible alignment of diffusion-based generative models with real-world pharmaceutical
requirements using multi-granularity preferences.

• Our approach is applicable to both structure-based molecule generation and optimization. Notably,
DecompDpo achieves 98.5% Med. High Affinity and a 43.9% success rate for molecule generation, and
100% Med. High Affinity and a 52.1% success rate for molecule optimization on CrossDocked2020 dataset.

• To the best of our knowledge, we are one of the first works to introduce preference alignment to structure-
based drug design. Our approach aligns the generative models for SBDD with the practical requirements
of drug discovery.

Recently, an independent concurrent work by Gu et al. (2024) also employs preference alignment for fine-tuning
diffusion models in SBDD. Specifically, they regularized the DPO objective to mitigate overfitting on winning
data. However, they primarily focused on binding affinity optimization and do not check the sanity and
conformational soundness of generated molecules, which are essential in practical drug design. Compared
to Gu et al. (2024), we construct preference pairs at both the full-molecule and decomposed-substructure
levels for enhanced optimization performance and flexibility, and integrate physics-informed energy terms to
penalize unreasonable molecular conformations. Beyond binding affinity optimization, the effectiveness of
DecompDpo is demonstrated under a broader multi-objective setting to generate molecules better aligned
with pharmaceutical needs, with further evidence of its strong performance through iterative fine-tuning for
molecule optimization.

2 Related Work

Structure-based Drug Design Structure-based drug design (SBDD) aims to design ligand molecules
that can bind to specific protein targets. Recent efforts have been made to enhance the efficiency of modeling
molecule distributions. Ragoza et al. (2022) employed variational autoencoder to generate 3D molecules in
atomic density grids. Autoregressive approaches (Luo et al., 2021; Peng et al., 2022; Liu et al., 2022) generate
3D molecules atom by atom, while Zhang et al. (2022) extends to predict molecular fragments in an auto-
regressive way. Recently, Guan et al. (2023a); Schneuing et al. (2022); Lin et al. (2022) introduced diffusion
models to SBDD. Building upon these developments, some recent studies have sought to further enhance
SBDD methods by incorporating biochemical prior knowledge. DecompDiff (Guan et al., 2023b) decomposed
ligands into substructures and generated molecules with decomposed priors and validity guidance in diffusion.
DrugGPS (Zhang & Liu, 2023) incorporated subpocket similarities to augment molecule generation. IPDiff
(Huang et al., 2023) addressed the inconsistency between forward and reverse diffusion by leveraging a
pre-trained protein-ligand interaction prior. Despite these advancements, effectively generating molecules that
meet real-world drug development criteria remains challenging due to the fundamental mismatch between
distribution learning and reward-guided generation. In this work, we aim to bridge this inconsistency by
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aligning diffusion model distributions directly with real-world pharmaceutical objectives, enhancing the
molecule generation efficiency.

Structure-based Molecule Optimization In addition to simply generative modeling of existing protein-
ligand pairs, some researchers leveraged optimization algorithms to design molecules with desired properties.
AutoGrow 4 (Spiegel & Durrant, 2020), RGA (Fu et al., 2022), and DecompOpt (Zhou et al., 2024a) take a
specific protein target as input and perform optimization using oracle functions to evaluate the fitness of
generated molecules. Specifically, RGA (Fu et al., 2022) used neural networks to guide the genetic algorithm
with reinforcement learning. DecompOpt (Zhou et al., 2024a) employed a controllable diffusion model
conditioned on protein subpockets and substructures for iterative optimization. In addition, Reidenbach
(2024); Shen et al. (2023) performed optimization in lower dimensions, such as latent vectors or 2D graphs.

Beyond optimizing towards a single protein target, methods such as PILOT (Cremer et al., 2024) reweighted
diffusion trajectories toward particular objectives using importance sampling, KGDiff (Qian et al., 2024)
guided diffusion trajectories with gradients from an additional expert network, and TAGMol (Dorna et al.,
2024) guided continuous coordinates in both training and sampling process. In addition to structure-based
approaches, several methods have been proposed to optimize molecules in 2D spaces such as SMILES strings or
molecular graphs without incorporating the 3D protein structure. Reinvent (Olivecrona et al., 2017) uses re-
inforcement learning to fine-tune SMILES generators with property-specific reward signals. GraphGA (Jensen,
2019) employs a genetic algorithm over molecular graphs guided by reward functions. MARS (Xie et al.,
2021) adopts Monte Carlo tree search for fragment-based graph optimization. GEAM (Lee et al., 2023b)
learns a task-specific fragment vocabulary for reward-guided molecular assembly, while Saturn (Guo &
Schwaller, 2024) combines Mamba models with memory-based experience replay for efficient optimization.
These methods have shown effectiveness in property-driven optimization tasks but operate without explicit
3D protein information, limiting their utility for structure-based drug design where spatial complementarity
and interaction geometry are essential. In this work, we aim to directly align the diffusion model with higher
reward, making it suitable for both target-specific and general-purpose molecule optimization.

Learning from Human/AI Feedback Likelihood-based training alone can fail to meet user-defined
preferences for generative models. Reinforcement learning from human or AI feedback (Ziegler et al., 2019;
Stiennon et al., 2020; Ouyang et al., 2022; Lee et al., 2023a; Bai et al., 2022) addressed this by first learning
a reward model from data annotated by human or AI, then fine-tuning the generative model through
policy-gradient methods (Christiano et al., 2017; Schulman et al., 2017). Similar techniques have also been
introduced to diffusion models for text-to-image generation (Black et al., 2023; Fan et al., 2024; Zhang et al.,
2024). Recently, Direct Preference Optimization (DPO) (Rafailov et al., 2024) further simplified the process by
directly optimizing on preference pairs without an explicit reward model. Wallace et al. (2023) re-formulated
DPO and derived Diffusion-DPO for aligning text-to-image diffusion models. While these methods primarily
focus on natural language or image generation, Zhou et al. (2024b) proposed to fine-tune diffusion models
for antibody design by DPO targeting low Rosetta energy. In our work, we introduce preference alignment
to improve the desired properties of generated molecules and propose specialized methods to improve the
performance of DPO in the scenario of SBDD.

3 Method

In this section, we introduce DecompDpo, which aligns diffusion models with pharmaceutical needs using
physically constrained multi-granularity preferences (Figure 1). We first define the SBDD task and introduce
the decomposed diffusion model in Section 3.1. We then incorporate decomposition into the optimization
objectives for multi-objective preference alignment in Section 3.2. Recognizing the importance of maintaining
physically realistic molecular conformations during optimization, we introduce physics-informed energy terms
for penalizing rewards in Section 3.3. Finally, we propose a linear beta schedule to improve the optimization
efficiency for diffusion models (Section 3.4).
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Figure 1: Overview of DecompDpo. (a) Sample molecules and select molecule pairs for each target protein
using a pre-trained diffusion model; (b) Construct physically constrained preference for each optimization
objective based on its decomposability; (c) Compute the DecompDpo loss and align the diffusion model
with the multi-objective preference.

3.1 Preliminaries

In the context of SBDD, generative models aim to generate ligands M = {(xM
i , vM

i , bM
ij )}i,j∈{1,··· ,NM} that

bind to a specific protein binding site, represented as P = {(xP
i , vP

i )}i∈{1,··· ,NP }. Here, NP and NM are the
number of atoms in the protein and ligand, respectively; x ∈ R3, v ∈ RK

a , bij ∈ RK
b represents the 3D atom

coordinates, the atom types, and the bonds between atoms, where Ka and Kb represent the number of atom
and bond types.

Following the decomposed diffusion model introduced by Guan et al. (2023b), each ligand is decomposed into
fragments K, comprising several arms A connected by at most one scaffold S (|A| ≥ 1, |S| ≤ 1, K = |K| =
|A|+ |S|). Based on the decomposed substructures, informative data-dependent priors OP = {µ1:K , Σ1:K , H}
are estimated from atom positions by maximum likelihood estimation, where µk ∈ R3 represents the prior
center, Σk ∈ R3×3 represents the prior covariance matrix, and H = {η ∈ {0, 1}NM ×K |

∑K
k=1 ηik = 1}

represents the prior-atom mapping for M. This data-dependent prior enhances the training efficiency of the
diffusion model, where M is gradually diffused with a fixed schedule {λt}t=1,··· ,T . We denote αt = 1 − λt

and ᾱt =
∏t

s=1 αt. The i-th atom position is shifted to its corresponding prior center: x̃i
t = xi

t − (Hi)⊤µ.
The noisy data distribution at time t derived from the distribution at time t − 1 is computed as follows:

q(x̃t|x̃t−1, P) =
NM∏
i=1

N (x̃i
t; x̃i

t−1, λt(Hi)⊤Σ),

q(vt|vt−1, P) =
NM∏
i=1

C(vi
t|(1 − λt)vi

t−1 + λt/Ka),

q(bt|bt−1, P) =
NM×NM∏

i=1
C(bi

t|(1 − λt)bi
t−1 + λt/Kb).

(1)

The perturbed structure is then fed into the prediction model. The reconstruction loss at the time t can be
derived from the KL divergence as follows:

L(x) = Et

[
||x0 − x̂0||2

]
, L(v) = Et

[
Ka∑
k=1

c(vt, v0)k log c(vt, v0)k

c(vt, v̂0)k

]
, L(b) = Et

[
Kb∑

k=1
c(bt, b0)k log c(bt, b0)k

c(bt, b̂0)k

]
, (2)
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where (x0, v0, b0), (xt, vt, bt), (x̂0, v̂0, b̂0), represent true atoms positions, types, and bonds types at time 0,
time t, and predicted atoms positions, types, and bonds types at time t ∼ U [0, T ]; c denotes mixed categorical
distribution with weight ᾱt and 1 − ᾱt. The overall loss is L = L(x) + γvL(v) + γbL(b), with γv, γb as weights of
reconstruction loss of atom and bond type. We provide more details for the model architecture in Appendix
B. To better illustrate decomposition, we show a decomposed molecule with the arms highlighted in Figure 2.

3.2 Direct Preference Optimization in Decomposed Space

Decomposable Optimization Objectives In real pharmaceutical applications, drug candidates should
possess multiple desirable properties, yet such molecules are rare among all known drug-like molecules, making
distribution learning less efficient in generating desired molecules. Although previous methods like DecompOpt
(Zhou et al., 2024a) fully exploit the power of conditional diffusion models through iterative generation, the
model’s performance is limited by static parameters learned from offline data. Direct preference optimization
offers a simple yet efficient way to align models with pairwise preference data. Inspired by the success of
ligand decomposition in improving generative power (Guan et al., 2023b; Zhou et al., 2024a), we introduce
decomposition into optimization objectives in DecompDpo for greater flexibility in preference selection and
alignment.

Molecule Vina Min=-6.08

Vina Min=-1.38

Vina Min=-1.85

Vina Min=-2.86

Figure 2: Illustration of decomposable objectives. De-
compose a molecule into two arms (purple and pink)
and a scaffold (yellow), where the sum of the substruc-
tures’ Vina Minimize Scores equals to the molecule’s
(left). The Pearson correlation between molecule’s and
sum of substructure’s Vina Minimize Scores in the
training dataset (right).

An optimization objective is considered decompos-
able if the overall score of a molecule is propor-
tional to the sum of substructure-level scores, which
implies that a substructure with higher score will
lead the molecule to have higher overall score. For
example, Vina Minimize Score is largely based on
pairwise atomic interactions, with each substructure
contributing its own interactions with the protein
target and negligible inter-substructure interactions,
making it decomposable. As shown in Figure 2, we
validated the proportional relationship of Vina Min-
imize Score in our dataset. However, objectives like
QED and SA are non-decomposable, as their calcu-
lations involve non-linear operations. We provide
more statistical evidence in Appendix C.

GlobalDPO To align the model with practi-
cal pharmaceutical preferences, following RLHF
(Ouyang et al., 2022), the pre-trained model is fine-tuned by maximizing certain reward functions with the
Kullback–Leibler (KL) divergence regularization:

max
pθ

E P∼D,
M∼pθ(M|P)

[
r(M, P)

]
− βDKL

(
pθ(M | P) ∥ pref(M | P)

)
, (3)

where β > 0 is a hyperparameter controlling the deviation from the reference model pref. Recently,
DPO (Rafailov et al., 2024) derives the a pairwise training loss from equation 3, providing a simpler
way to fine-tune the model with pairwise preference data:

LDPO = − E(P,M+,M−)∼D

[
logσ

(
βlog pθ(M+ | P)

pref(M+ | P) − βlog pθ(M− | P)
pref(M− | P)

)]
, (4)

where M+ and M− represent the preferred and less preferred molecules, respectively.

As pθ(M0 | P) is intractable for diffusion models, following Diffusion-DPO (Wallace et al., 2023), we define
the reward over the entire diffusion process r(M, P) = Epθ(M1:T |M0,P)[R(M1:T , P)], where M1:T denotes
the diffusion trajectories from the reverse process pθ. By utilizing the evidence lower bound, the DPO loss is
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converted to:

LDiffusion-DPO = −E (P,M+,M−)∼D
M+

1:T ∼pθ(M+
1:T |M+

0 ,P)
M−

1:T ∼pθ(M−
1:T |M−

0 ,P)

[
logσ

(
βEM+

1:T ,M−
0:T

[
log pθ(M+

0:T | P)
pref(M+

0:T | P)
− log pθ(M−

0:T | P)
pref(M−

1:T | P)

])]
.

(5)
Following Wallace et al. (2023), we further approximate the intractable reverse probability pθ with forward
probability q and use Jensen’s inequality to externalize the expectation:

LDiffusion-DPO = −E(P,M+,M−)∼D,t∼U(0,T ),

M+
t ∼q(M+

t |M+
0 ),

M−
t ∼q(M−

t |M−
0 )

[
logσ

(
β

[
log

pθ(M+
t−1 | M+

t , P)
pref(M+

t−1 | M+
t , P)

− log
pθ(M−

t−1 | M−
t , P)

pref(M−
t−1 | M−

t , P)

])]
. (6)

The Diffusion-DPO loss is applied to align models with non-decomposable objectives using molecule-level
preferences, which we will refer to as GlobalDPO hereafter for clarity.

LocalDPO According to the decomposition in drug space, a molecule’s probability factorizes over sub-
structures (Guan et al., 2023b). As a result, we reformulate the Diffusion-DPO loss as:

LDiffusion-DPO = −E (P,M+,M−)∼D,t∼U(0,T ),

M+
t ∼q(M+

t |M+
0 ),M−

t ∼q(M−
t |M−

0 )

[
logσ

(
β

K∑
i

[
log

pθ(M(i)+
t−1 | M(i)+

t , P)
pref(M(i)+

t−1 | M(i)+
t , P)

− log
pθ(M(i)−

t−1 | M(i)−
t , P)

pref(M(i)−
t−1 | M(i)−

t , P)

])]
, (7)

where M(i)+
t and M(i)−

t are the i-th decomposed substructure extracted from the winning and losing molecule,
separately. Here, the substructures of the preferred molecule are always considered the winning side, even
though it is not always the case that they have better properties.

For decomposable objectives, we introduce decomposition into preference alignment by directly constructing
preference pairs based on substructure-level properties, and define the LocalDPO loss as:

LLocalDPO = − E (P,M+,M−)∼D,t∼U(0,T ),

M+
t ∼q(M+

t |M+
0 ),M−

t ∼q(M−
t |M−

0 )

[
log σ

(
β

K∑
i

sign
(
r(M(i)+) − r(M(i)−)

)[
A(i)])],

where A(i) = log
pθ(M(i)+

t−1 | M(i)+
t , P)

pref(M(i)+
t−1 | M(i)+

t , P)
− log

pθ(M(i)−
t−1 | M(i)−

t , P)
pref(M(i)−

t−1 | M(i)−
t , P)

,

(8)

and r(M(i)) represents the reward of the decomposed substructure M(i). LocalDPO can then be reformulated
as GlobalDPO on reconstructed molecule pairs assembled from substructures with higher- or lower-ranking
properties. Please refer to Appendix A for the proof.

In multi-objective optimization, different objectives can interfere with each other, leading to suboptimal
results. By allowing fine-grained guidance at the substructure level, LocalDPO can alleviate conflicts in
multi-objective optimization by offering more flexible and diverse optimization pathways, ultimately enhancing
alignment performance with complex design goals.

DecompDpo Based on the ideas introduced above, we define a unified loss that applies LocalDPO to
decomposable objectives and GlobalDPO to non-decomposable objectives with a weighted sum:

LDecompDpo =
∑

i∈QDecomp

wiLLocalDPO(i) +
∑

j∈QNon-Decomp

wjLGlobalDPO(j), (9)

where QDecomp and QNon-Decomp represent the set of decomposable and non-decomposable properties, and
wi, wj are weighting coefficients. This dual-granularity alignment accommodates both types of objectives
and provides more precise control over the optimization process to meet the diverse requirements of molecule
design.
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Table 1: Summary of different properties of reference molecules and molecules generated by DecompDpo and
other generative models (Gen.) and general purpose optimization methods (Opt.). (↑) / (↓) denotes a larger
/ smaller number is better. Top 2 results are highlighted with bold text and underlined text, respectively.

Methods Vina Score (↓) Vina Min (↓) Vina Dock (↓) High Affinity (↑) QED (↑) SA (↑) Diversity (↑) Size Success
Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Rate (↑)

Reference -6.36 -6.46 -6.71 -6.49 -7.45 -7.26 - - 0.48 0.47 0.73 0.74 - - 22.8 25.0%

Gen.

LiGAN - - - - -6.33 -6.20 21.1% 11.1% 0.39 0.39 0.59 0.57 0.66 0.67 19.9 3.9%
GraphBP - - - - -4.80 -4.70 14.2% 6.7% 0.43 0.45 0.49 0.48 0.79 0.78 - 0.1%

AR -5.75 -5.64 -6.18 -5.88 -6.75 -6.62 37.9% 31.0% 0.51 0.50 0.63 0.63 0.70 0.70 17.7 7.1%
Pocket2Mol -5.14 -4.70 -6.42 -5.82 -7.15 -6.79 48.4% 51.0% 0.56 0.57 0.74 0.75 0.69 0.71 17.7 24.4%
TargetDiff -5.47 -6.30 -6.64 -6.83 -7.80 -7.91 58.1% 59.1% 0.48 0.48 0.58 0.58 0.72 0.71 24.2 10.5%

IPDiff -6.42 -7.01 -7.45 -7.48 -8.57 -8.51 69.5% 75.5% 0.52 0.53 0.60 0.59 0.74 0.73 24.1 17.7%
MolCRAFT -6.59 -7.04 -7.27 -7.26 -7.92 -8.01 59.0% 62.6% 0.50 0.51 0.69 0.68 0.72 0.73 26.8 22.7%
DecompDiff* -5.96 -7.05 -7.60 -7.88 -8.88 -8.88 72.3% 87.0% 0.45 0.43 0.60 0.60 0.60 0.60 29.4 28.0%

Opt. TAGMol -7.02 -7.77 -7.95 -8.07 -8.59 -8.69 69.8% 76.4% 0.55 0.56 0.56 0.56 0.69 0.70 24.7 11.1%
DecompDpo -6.13 -7.54 -8.30 -8.57 -9.60 -9.68 85.8% 98.5% 0.48 0.46 0.67 0.67 0.63 0.62 31.6 43.9%

3.3 Physically Constrained Optimization

An important aspect of preference alignment in drug design is ensuring the generated molecular conformations
remain physically plausible. Inspired by Wu et al. (2022), we define physics-informed energy terms that
penalize bonds and angles which deviate significantly from empirical values, formulated as:

Ebond =
∑

i,j∈B

(
max

(
0,
∣∣∣Lij − µl

vi,vj

∣∣∣− 3σl
vi,vj

))2
,

Eangle =
∑

i,j,k∈A

(
max

(
0,
∣∣∣Aijk − µa

vi,vj ,vk

∣∣∣− 3σa
vi,vj ,vk

))2
,

(10)

where B denotes the set of bonds in the molecule, and A denotes the set of angles formed by two adjacent
bonds in B. Here, Lij is the bond length between atoms i and j, and µl

vi,vj
, σl

vi,vj
are the expectation

and standard deviation of bond lengths for those atom types, which are calculated from the training data.
Similarly, for each angle (i, j, k) ∈ A, Aijk measures the radian of the angle, and µa

vi,vj ,vk
, σa

vi,vj ,vk
represent

the empirical angle statistics for the corresponding atom types. The overall energy term is defined as
rconstraint = Ebond + Eangle. To constrain the model from learning unrealistic molecular conformations, we
adjust the reward by penalizing it with this energy term: r∗(M, P) = r(M, P) − λrconstraint(M, P), where λ
is a weighting factor that balances the original reward against structural validity. Additional evaluation in
Appendix C demonstrates the effectiveness of this constraint in preserving reasonable molecular conformations
during optimization.

3.4 Linear Beta Schedule

As shown in Equation (3), the parameter β regulates how aggressively the model deviates from the reference
distribution pref in pursuit of higher rewards. During the diffusion process, earlier steps influence the
subsequent ones. Larger β in early diffusion steps can stabilize training and preserve adherence to the
distribution learned from offline data with stronger regularization. As we progress through the final steps,
where atom types and precise positions have a crucial impact on molecular properties, it becomes advantageous
to relax this regularization to allow more aggressive optimization towards target objectives. To achieve this
balance, we propose a linear beta schedule, βt = t

T βT , where βT is the maximum regularization weight at the
initial stage t = 0 and decreases linearly as t approaches T . This schedule effectively balances the influence of
the reference model and optimization objectives throughout the diffusion process.

4 Experiments

We implement DecompDpo in two important pharmaceutical scenarios: (1) fine-tuning the model for
molecule generation across diverse protein families, and (2) optimizing the model for a specific protein target.
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Table 2: Summary of different properties of reference molecules and molecules generated by DecompDpo
and other target-specific molecule optimization methods. (↑) / (↓) denotes a larger / smaller number is better.
Top 2 results are highlighted with bold text and underlined text, respectively.

Methods Vina Score (↓) Vina Min (↓) Vina Dock (↓) High Affinity (↑) QED (↑) SA (↑) Diversity (↑) Success
Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Rate (↑)

RGA - - - - -8.01 -8.17 64.4% 89.3% 0.57 0.57 0.71 0.73 0.41 0.41 46.2%
DecompOpt -5.87 -6.81 -7.35 -7.72 -8.98 -9.01 73.5% 93.3% 0.48 0.45 0.65 0.65 0.60 0.61 52.5%

DecompDpo -7.27 -7.93 -8.91 -8.88 -9.90 -10.08 88.5% 100.0% 0.48 0.47 0.60 0.62 0.61 0.62 52.1%

4.1 Experimental Setup

Dataset We followed prior work (Luo et al., 2021; Peng et al., 2022; Guan et al., 2023a;b), using the Cross-
Docked2020 dataset (Francoeur et al., 2020) to pre-train our reference model and evaluate the performance
of DecompDpo. According to the protocol established by Luo et al. (2021), we filtered complexes to retain
only those with high-quality docking poses (RMSD < 1Å) and diverse protein sequences (sequence identity
< 30%), resulting in a refined dataset comprising 100,000 high-quality training complexes and 100 novel
proteins for evaluation.

To fine-tune the model for general purpose molecule generation, we first generate 10 candidate molecules for
each training protein. Each molecule’s favorability is measured by a multi-objective score rmulti =

∑
xi∈X xi,

where X is the set of normalized optimization objectives. For each protein, we select the top and bottom
scoring molecules to form preference pairs, resulting in 63,092 valid pairs overall. To optimize the model for
targeted molecule optimization, we sample 500 molecules for each test protein and construct preference pairs
by similarly selecting the top and bottom 100 molecules according to their scores rmulti.

Baselines To assess the capability of DecompDpo in general purpose molecule generation, we compare
it with several representative generative models. LiGAN (Ragoza et al., 2022) employs a CNN-based
variational autoencoder to encode receptor and ligand into a latent space, then generates ligands’ atomic
densities. Atom-based autoregressive models such as AR (Luo et al., 2021), Pocket2Mol (Peng et al.,
2022), and GraphBP (Liu et al., 2022) update atom embeddings using a graph neural network (GNN).
TargetDiff (Guan et al., 2023a) and DecompDiff (Guan et al., 2023b) are GNN-based diffusion models, with
the latter incorporating decomposed priors. IPDiff (Huang et al., 2023) integrates protein-ligand interaction
priors into both forward and reverse diffusion process. MolCRAFT (Qu et al., 2024) introduces bayesian flow
network to SBDD. We also compare with several general-purpose optimization methods. TAGMol (Dorna
et al., 2024) optimizes continuous coordinates throughout training and sampling, while AliDiff (Gu et al.,
2024) applies preference alignment, and KGDiff (Qian et al., 2024) uses an expert-network-based gradient
guidance. Since AliDiff and KGDiff primarily focus on binding-affinity optimization, we compare with them
under this setting.

To benchmark DecompDpo’s capability in targeted optimization, we compare it with two strong baselines:
RGA (Fu et al., 2022), a reinforced genetic algorithm that optimize molecules with a policy network through
evolutionary processes, and DecompOpt (Zhou et al., 2024a), which employs a conditional diffusion model
to iteratively replace substructures for improved properties.

Evaluation Following previous studies (Guan et al., 2023a; Luo et al., 2021; Ragoza et al., 2022), we
evaluate molecules from two aspects: target binding affinity and molecular properties, and molecular
conformation. We use AutoDock Vina to assess target binding affinity. Vina Score quantifies the
direct binding affinity between a molecule and the target protein, Vina Min measures the affinity after local
structural optimization via force fields, Vina Dock assesses the affinity after re-docking the ligand into the
target protein, and High Affinity measures the proportion of generated molecules with higher Vina Dock score
than that of reference ligands. For molecular properties, we calculate drug-likeness (QED) (Bickerton et al.,
2012), synthetic accessibility (SA) (Ertl & Schuffenhauer, 2009), and diversity. Following Jin et al. (2020);
Xie et al. (2021), the overall quality of generated molecules is evaluated by Success Rate (QED > 0.25, SA >
0.59, Vina Dock < -8.18). To evaluate molecular conformation, we compute Jensen-Shannon divergence

8



Under review as submission to TMLR

(JSD) between the distributions of the generated molecules with reference ligands. We also evaluate median
RMSD and energy difference of rigid fragments and the whole molecule before and after optimizing molecular
conformations with Merck Molecular Force Field (MMFF) (Halgren, 1996). We provide more evaluation of
the sanity of generated molecules in Appendix C.

Implementation Details The bond-first noise schedule proposed by Peng et al. (2023) effectively addresses
the inconsistency between atoms and bonds when using predicted bonds for molecule reconstruction. We
adapt this noise schedule for DecompDiff, resulting in an enhanced model as our reference model, termed as
DecompDiff*. We select QED, SA, and Vina Minimize Score as our optimization objectives. Please refer to
Appendix B for more implementation details.

4.2 Main Results

Reference DecompDiff* DecompDPO

QED:0.44 SA:0.66 Vina:-9.53 QED:0.38 SA:0.65 Vina:-9.05 QED:0.75 SA:0.8 Vina:-10.38

Reference DecompDiff* DecompDPO

QED:0.71 SA:0.81 Vina:-9.74 QED:0.48 SA:0.68 Vina:-8.98 QED:0.91 SA:0.72 Vina:-10.23

Figure 3: Visualization of reference binding ligands and
the molecule generated by DecompDiff* and Decom-
pDpo on protein 4D7O (top) and 1UMD (bottom).

Molecule Generation We first evaluate the ef-
fectiveness of DecompDpo in optimizing models to-
wards generating desirable molecules across various
proteins families. As shown in Table 1, DecompDpo
significantly improves all metrics over the reference
model, DecompDiff*, underscoring its effectiveness in
multi-objective optimization. Notably, DecompDpo
achieves the highest score for most binding affinity
related metrics, confirming its robust ability to gen-
erate molecules that bind well across diverse protein
families. Figure 3 shows examples of molecules gen-
erated by DecompDpo, illustrating that Decom-
pDpo is capable of preserving realistic molecular
conformations while achieving better scores. Addi-
tional visualization results are shown in Appendix C.

To demonstrate that DecompDpo preserves struc-
turally realistic conformations while improving performance, we measure the Jensen–Shannon divergence
(JSD) of all-atom pairwise distance distributions between generated molecules and reference ligands. As
shown in Table 3, DecompDpo closely matches DecompDiff*, achieving the lowest JSD among all models
evaluated. We further compute the median energy and RMSD differences pre and post-MMFF optimization
for both rigid fragments without rotatable bonds and whole molecules. The results indicate that DecompDpo
generally performs on par with DecompDiff* and notably achieves the lowest whole-molecule median energy
difference, underscoring DecompDpo ’s capability in balancing property optimization with physically realistic
structures. We provide additional distributions of these metrics, along with bond distance and bond angle
JSD statistics, in Appendix C.

Table 3: Summary of conformation related metrics of
molecules (Mol.) and corresponding rigid fragments
(RF.) generated by DecompDpo and other diffusion
models. The top 2 results are highlighted with bold
text and underlined text.

TargetDiff IPDiff DecompDiff* DecompDPO
JSD - All Atom 0.09 0.08 0.07 0.07

Energy Diff - RF. 1355.94 1459.45 39.39 38.38
Energy Diff - Mol. 6116.37 21431.71 8833.80 672.02

RMSD - RF. 0.13 0.14 0.13 0.11
RMSD - Mol. 1.02 1.04 1.10 1.08

Targeted Optimization To evaluate Decom-
pDpo ’s effectiveness in target-specific molecule op-
timization, we further optimize the fine-tuned model
for each target protein in the test set. As shown in
Table 2, DecompDpo outperforms all baselines in
affinity-related metrics and achieves a Success Rate
comparable to DecompOpt, illustrating its strong
ability to optimize ligands for specific protein targets.
In practice, DecompDpo can also be integrated into
DecompOpt, potentially unlocking even greater im-
provements by combining preference alignment with iterative optimization.
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Table 4: Summary of results of single-objective optimization for affinity-related metrics. (↑) / (↓) denotes a
larger / smaller number is better. The best result is highlighted with bold text.

Method Vina Score (↓) Vina Min (↓) Vina Dock (↓) High Affinity (↑) QED (↑) SA (↑) Diversity (↑) Size Success
Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Rate (↑)

KGDiff -8.04 -8.61 -8.78 -8.85 -9.43 -9.43 79.2% 87.0% 0.51 0.51 0.54 0.54 0.75 0.75 24.5 13.7%
AliDiff -7.07 -7.95 -8.09 -8.17 -8.90 -8.81 73.4% 81.4% 0.50 0.50 0.57 0.56 0.73 0.71 24.4 12.3%

DecompDpo -6.52 -8.04 -8.97 -9.15 -10.50 -10.29 91.8% 100.0% 0.46 0.43 0.67 0.67 0.70 0.70 31.7 46.8%

Table 5: Ablation study of decomposing DPO loss and linear beta schedule. (↑) / (↓) denotes a larger /
smaller number is better. The best result is highlighted with bold text.

Method Vina Score (↓) Vina Min (↓) Vina Dock (↓) High Affinity (↑) QED (↑) SA (↑) Diversity (↑) Success
Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Rate (↑)

w/ Constant Beta Weight -5.97 -7.14 -7.78 -8.04 -9.04 -9.09 74.9% 91.8% 0.46 0.44 0.62 0.62 0.61 0.61 32.1%
Molecule-level DPO -5.84 -7.10 -7.75 -8.03 -9.06 -9.10 76.2% 92.3% 0.49 0.47 0.63 0.64 0.62 0.62 35.5%

DecompDpo -6.13 -7.54 -8.30 -8.57 -9.60 -9.68 85.8% 98.5% 0.48 0.46 0.67 0.67 0.63 0.62 43.9%

4.3 Ablation Studies

Single-Objective Optimization To further demonstrate DecompDpo ’s effectiveness in binding-affinity
optimization, we use LocalDPO for Vina Minimize optimization. As shown in Table 4, DecompDpo
achieves the highest scores on most affinity-related metrics among general-purpose binding-affinity optimization
methods, with improvements of 9.4% in Vina Score, 18.0% in Vina Minimize, and 18.2% in Vina Dock
over the reference model. Notably, DecompDpo also achieves improvements in QED and SA, which we
attribute to the negative correlations (-0.12 and -0.11) between substructure-level Vina Minimize differences
and corresponding molecule-level QED and SA differences in our training preference pairs. Additionally,
DecompDpo achieves 78.9% Complete Rate, defined as the percentage of valid and connected molecules
among all generated molecules, indicating that its performance boost does not come at the cost of general
molecular properties.

Benefits of Decomposed Preference Our primary hypothesis is that decomposing the optimization
objectives improves training efficiency by offering more flexibility in preference selection, particularly in
multi-objective settings. We verify this claim by fine-tuning the reference model with only molecule-level
preference pairs for all optimization objectives, which we term as Molecule-level DPO. As shown in Table 5,
DecompDpo outperforms Molecule-level DPO across all metrics, validating that decomposed preference
could provide greater flexibility and diversity in preference selection for enhanced optimization effectiveness.

Benefits of Linear Beta Schedule We also examine the effectiveness of the linear beta schedule by
comparing it with a constant-β baseline for molecule generation. As shown in Table 5, the linear schedule
consistently enhances all reported metrics, illustrating its effectiveness in balancing adherence to the reference
distribution with high-reward optimization, leading to more efficient preference alignment for diffusion
models.

5 Conclusion

In this work, we introduced preference alignment to SBDD, developing DecompDpo to align pre-trained
diffusion models with multi-granularity preference, which provides more flexibility during the optimization
process. The physics-informed energy term penalizing the reward is beneficial for maintaining reasonable
molecular conformations during optimization. The linear beta schedule effectively improves optimization
efficiency by progressively reducing regularization during the diffusion process. DecompDpo shows promising
results in molecule generation and molecule optimization, highlighting its ability to meet practical needs of
the pharmaceutical industry.
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Broader Impact Statement

Our contributions to structure-based drug design have the potential to significantly accelerate the drug
discovery process, thereby transforming the pharmaceutical research landscape. Furthermore, the versatility
of our approach allows for its application in other domains of computer-aided design, including, but not
limited to, protein design, material design, and chip design. While the potential impacts are ample, we
underscore the importance of implementing our methods responsibly to prevent misuse and potential harm.
Hence, diligent oversight and ethical considerations remain paramount in ensuring the beneficial utilization of
our techniques.
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A Theoretical Analysis

According to DecompDiff (Guan et al., 2023b), the reverse diffusion probability of a molecule can be factorized
over its substructures as:

p(Mt−1 | Mt, M0) = p(xt−1 | xt, x0) · p(vt−1 | vt, v0) · p(bt−1 | bt, b0)

=
K∏

k=1

(
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i=1
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t−1 | xi

t, xi
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0)
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0 )
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(11)

Under the assumption of decomposable molecular probability, we can then reformulate LocalDPO loss as:

LLocalDPO = −Edata

[
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where Edata = E (P,M+,M−)∼D,t∼U(0,T ),

M+
t ∼q(M+

t |M+
0 ),M−

t ∼q(M−
t |M−

0 )

, M(i)+ and M(i)− denote the i-th substructures decomposed from

the original winning and losing molecules, M(i′)+ and M(i′)− refer to the i-th substructures with higher
and lower individual property, M′+ and M′− denote the molecules reconstructed from substructures with
higher and lower property scores across all decomposed substructures. We can then reinterpret LocalDPO
as GlobalDPO over recombined molecule pairs with higher and lower properties than original molecules,
enabling the model to learn optimization over more extreme cases.
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B Implementation Details

B.1 Featurization

Following DecompDiff (Guan et al., 2023b), we characterize each protein atom using a set of features: a
one-hot indicator of the element type (H, C, N, O, S, Se), a one-hot indicator of the amino acid type to which
the atom belongs, a one-dimensional indicator denoting whether the atom belongs to the backbone, and a
one-hot indicator specifying the arm/scaffold region. We define the part of proteins that lies within 10Å of
any atom of the ligand as pocket. Similarly, a protein atom is assigned to the arm region if it lies within a
10Å radius of any arm; otherwise, it is categorized under the scaffold region. The ligand atom is characterized
with a one-hot indicator of element type (C, N, O, F, P, S, Cl) and a one-hot arm/scaffold indicator. The
partition of arms and scaffold is predefined by a decomposition algorithm proposed by DecompDiff.

We use two types of message-passing graphs to model the protein-ligand complex: a k-nearest neighbors
(knn) graph for all atoms (we choose k = 32 in all experiments) and a fully-connected graph for ligand atoms
only. In the knn graph, edge features are obtained from the outer product of the distance embedding and the
edge type. The distance embedding is calculated using radial basis functions centered at 20 points between
0Å and 10Å. Edge types are represented by a 4-dimensional one-hot vector, categorizing edges as between
ligand atoms, protein atoms, ligand-protein atoms or protein-ligand atoms. For the fully-connected ligand
graph, edge features include a one-hot bond type indicator (non-bond, single, double, triple, aromatic) and a
feature indicating whether the bonded atoms belong to the same arm or scaffold.

B.2 Model Details

Our based model used in DecompDpo is the model proposed by Guan et al. (2023b), incorporating the
bond first noise schedule presented by Peng et al. (2023). Specifically, the noise schedule is defined as follows:

s = sT − s1

sigmoid(−w) − sigmoid(w)

b = s1 + sT + s

2
ᾱt = s · sigmoid(−w(2t/T − 1)) + b

For atom types, the parameters of noise schedule are set as s1 = 0.9999, sT = 0.0001, w = 3. For bond types,
a two-stage noise schedule is employed: in the initial stage (t ∈ [1, 600]), bonds are rapidly diffused with
parameters s1 = 0.9999, sT = 0.001, w = 3. In the subsequent stage (t ∈ [600, 1000]), the parameters are set
as s1 = 0.001, sT = 0.0001, w = 2. The schedules of atom and bond type are shown in Figure 4.

0 200 400 600 800 1000
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0.4
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bond
atom

Figure 4: Noise schedule of atom and bond types.
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B.3 Molecular Fragmentation

Following DecompDiff (Guan et al., 2023b), we fragment a molecule into arms and scaffold using RDKit and
Alphaspace2 (Katigbak et al., 2020) toolkit. Specifically, subpockets for the target protein is extracted using
Alphaspace2 and ligands are decomposed into fragments using BRICS. Then terminal fragments with only
one connection site are assigned to subpockets by a linear sum assignment. Arms centers are defined as the
centroids of terminal fragments and any remaining subpockets, and scaffold center is defined as the farthest
fragment from all arm centers. Finally, the nearest neighbor clustering is performed to tag fragments as arms
or the scaffold.

B.4 Training Details

Pre-training We use Adam (Kingma & Ba, 2014) for pre-training, with init_learning_rate=0.0004
and betas=(0.95,0.999). The learning rate is scheduled to decay exponentially with a factor of 0.6 with
minimize_learning_rate=1e-6. The learning rate is decayed if there is no improvement for the validation
loss in 10 consecutive evaluations. We set batch_size=8 and clip_gradient_norm=8. During training, a
small Gaussian noise with a standard deviation of 0.1 to protein atom positions is added as data augmentation.
To balance the magnitude of different losses, the reconstruction losses of atom and bond type are multiplied
with weights γv = 100 and γb = 100, separately. We perform evaluations for every 2000 training steps. The
model is pre-trained on a single NVIDIA A6000 GPU, and it could converge within 21 hours and 170k steps.

Fine-tuning and Optimizing For both fine-tuning and optimizing model with DecompDpo, we use
the Adam optimizer with init_learning_rate=1e-6 and betas=(0.95,0.999). We maintain a constant
learning rate throughout both processes. We set batch_size=4 and clip_gradient_norm=8. Consistent
with pre-training, Gaussian noise is added to protein atom positions, and we use a weighted reconstruction
loss. For fine-tuning model for molecule generation, we set βT = 0.001 and trained for 30,000 steps on one
NVIDIA A40 GPU. For molecular optimization, we set βT = 0.02 and trained for 20,000 steps on one NVIDIA
V100 GPU. We perform evaluation every 1,000 steps.

B.5 Experiment Details

The scoring function for selecting training molecules is defined as S = QED + SA + V ina_Min/(−12).
Vina Minimize Score is divided by -12 to ensure that it generally ranges between 0 and 1. For molecule
generation, we exclude molecules that cannot be decomposed or reconstructed, resulting in a total of 63,092
preference pairs available for fine-tuning. The weight of each objective in multi-objective optimization is set
to 1. In molecular optimization, to ensure that the model maintains a desirable completion rate, we include
an additional 50 molecules that failed in reconstruction in as the losing side of preference pairs. To tailor the
optimization to a specific protein, the weights of the optimization objectives are defined as wx = e−(x−xs),
where x is the mean property of the generated molecules and xs is the threshold of the property used in
Success Rate. For both molecule generation and molecular optimization, we employ the same Opt Prior used
in DecompDiff. Opt Prior is defined as a mixture of Ref Prior, which is determined by the reference ligand,
and Pocket Prior, which is defined by a prior generation algorithm using AlphaSpace2 (Katigbak et al., 2020),
depending on whether Ref Prior passes the Success threshold. The λ used for penalizing rewards with energy
terms proposed in Section 3.3 is set to 0.1.

In evaluating the performance of DecompDpo, for each checkpoint, we generate 100 molecules for the
molecule generation task and 20 molecules for the molecular optimization task across each target protein
in the test set. For both molecule generation and optimization, we select the checkpoint with the highest
weighted Success Rate, which is defined as the product of the Success Rate and the Complete Rate.

C Additional Results

C.1 Full Evaluation Results
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Table 6: Jensen-Shannon Divergence of the bond distance distribution between the generated molecules
and the reference molecule by bond type, with a lower value indicating better. “-”, “=”, and “:” represent
single, double, and aromatic bonds, respectively. The top 2 results are highlighted with bold text and
underlined text.

Bond liGAN GraphBP AR Pocket2Mol TargetDiff DecompDiff IPDiff DecompDpo
C−C 0.601 0.368 0.609 0.496 0.369 0.359 0.451 0.535
C=C 0.665 0.530 0.620 0.561 0.505 0.537 0.530 0.546
C−N 0.634 0.456 0.474 0.416 0.363 0.344 0.411 0.404
C=N 0.749 0.693 0.635 0.629 0.550 0.584 0.567 0.598
C−O 0.656 0.467 0.492 0.454 0.421 0.376 0.489 0.411
C=O 0.661 0.471 0.558 0.516 0.461 0.374 0.431 0.319
C:C 0.497 0.407 0.451 0.416 0.263 0.251 0.221 0.281
C:N 0.638 0.689 0.552 0.487 0.235 0.269 0.255 0.265

Table 7: Jensen-Shannon Divergence of the bond angle distribution between the generated molecules and the
reference molecule by angle type, with a lower value indicating better. The top 2 results are highlighted with
bold text and underlined text.

Bond liGAN GraphBP AR Pocket2Mol TargetDiff DecompDiff IPDiff DecompDpo
CCC 0.598 0.424 0.340 0.323 0.328 0.314 0.402 0.488
CCO 0.637 0.354 0.442 0.401 0.385 0.324 0.451 0.428
CNC 0.604 0.469 0.419 0.237 0.367 0.297 0.407 0.360
OPO 0.512 0.684 0.367 0.274 0.303 0.217 0.388 0.185
NCC 0.621 0.372 0.392 0.351 0.354 0.294 0.399 0.375

CC=O 0.636 0.377 0.476 0.353 0.356 0.259 0.363 0.265
COC 0.606 0.482 0.459 0.317 0.389 0.339 0.463 0.427

Molecular Conformation To provide a more comprehensive evaluation of molecular conformations, we
compute the JSD of distances for different types of bonds and angles between molecules from generative
models and reference molecules. As shown in Table 6 and Table 7, DecompDpo generally achieves comparable
JSD values to those of DecompDiff, demonstrating that DecompDpo generally maintains desirable molecular
conformations during preference alignment.

In Figure 5, we compare the pairwise distance distributions between generated molecules and reference
ligands, along with their corresponding Jensen–Shannon divergence (JSD). DecompDpo and DecompDiff*
both achieve low JSD scores, indicating minimal deviation from the distribution of real molecules. We
further investigate the structural quality of generated molecules by examining both rigid fragments and
whole molecules before and after MMFF optimization. As shown in Figure 6, DecompDpo shows lower or
comparable median energy differences relative to DecompDiff*, and consistently lower RMSD differences across
various fragment sizes, validating its improvements in optimization objectives coincide with maintaining or
improving conformational quality. In Figure 7, the median RMSD and energy differences for whole molecules
further confirm DecompDpo preserves physically realistic geometries.
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Figure 5: Compare pairwise distance distributions between all atoms in generated molecules and reference
molecules from the test set. Jensen-Shannon divergence (JSD) between two distributions is reported.
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Figure 6: Median energy difference for rigid fragments (left) and generated molecules (right) before and after
optimizing with the Merck Molecular Force Field.
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Figure 7: Median RMSD for rigid fragments (left) and generated molecules (right) before and after optimizing
with the Merck Molecular Force Field.

Molecular Properties To provide a comprehensive evaluation, we have expanded our evaluation metrics
beyond those discussed in Section 4.1, which primarily focus on molecular properties and binding affinities.
To assess the model’s efficacy in designing novel and valid molecules, we calculate the following additional
metrics:
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• Complete Rate is the percentage of generated molecules that are connected and valid, which is defined by
RDKit.

• Novelty is defined as the ratio of generated molecules that are different from the reference ligand of the
corresponding pocket in the test set.

• Similarity is the Tanimoto Similarity between generated molecules and the corresponding reference ligand.

• Uniqueness is the proportion of unique molecules among generated molecules.

Table 8: Summary of the models’ ability in designing novel and valid molecules. (↑) / (↓) denotes a larger /
smaller number is better.

Methods Complete Rate (↑) Novelty (↑) Similarity (↓) Uniqueness (↑)

G
en

er
at

e

LiGAN 99.11% 100% 0.22 87.82%
AR 92.95% 100% 0.24 100%

Pocket2Mol 98.31% 100% 0.26 100%
TargetDiff 90.36% 100% 0.30 99.63%

DecompDiff* 72.82% 100% 0.27 99.58%
DecompDpo 74.05% 100% 0.26 99.57%

O
pt

im
iz

e RGA - 100% 0.37 96.82%
DecompOpt 71.55% 100% 0.36 100%

DecompDpo 65.05% 100% 0.26 99.63%

As reported in Table 8, in molecule generation, DecompDpo fine-tuned model achieves better Complete Rate
and Similarity compared to the base model. In molecular optimization, DecompDpo maintains a relatively
acceptable Complete Rate and the lowest similarity among all optimization methods.

Recent works (Qu et al., 2024; Schneuing et al.) have further emphasized the importance of ensuring the
physical realism beyond optimizing for molecular properties. To assess the performance of DecompDpo
in generating valid molecules, we use PoseBuster (Buttenschoen et al., 2024) and PoseCheck (Harris et al.,
2023) to compute several additional metrics:

• Strain Energy reflects the internal energy cost of the generated conformation relative to a relaxed state.
We report the 25%, 50%, and 75% quartiles to give a more global view of ligand stability.

• Clash is the average number of steric clashes between ligand atoms and protein residues, thus highlighting
potential conflicts in the binding pose.

• HB Donors and HB Acceptors quantify the number of hydrogen-bond interactions formed by the ligand,
while Hydrophobic and vdWs are the number of non-polar and van der Waals interactions, which often
correlate with effective binding.

• PB-Valid reports the percentage of generated molecules that pass PoseBuster’s built-in validation checks,
accounting for geometry and potential clashes.

As shown in Table 9, DecompDpo exhibits most favorable Strain Energy distributions among all the diffusion-
based generative models, indicating that its generated ligands tend to adopt more stable conformations.
Although the average number of steric clashes (Clash) remains somewhat high, DecompDpo slightly improves
upon DecompDiff, suggesting that the remaining anomalies can be mitigated in future work by refining
reference distributions. In addition, DecompDpo shows an increase in the PB valid rate, confirming that its
improvements in molecular design do not come at the cost of producing invalid structures. Overall, these
results reinforce that preference alignment in DecompDpo not only improves optimization objectives but
also helps maintain chemically and structurally reasonable molecular conformations.
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Table 9: Summary of different properties of reference molecules and molecules generated by DecompDpo and
other generative models. (↑) / (↓) denotes a larger / smaller number is better. Top 2 results are highlighted
with bold text and underlined text, respectively.

Strain Energy (↓) Clash (↓) HB Donors (↑) HB Acceptor (↑) Hydrophobic (↑) vdWs (↑) PB-Valid (↑)
25% 50% 75% Avg. Avg. Avg. Avg. Avg. (%)

Reference 34 107 196 5.51 0.87 1.42 5.06 6.61 95.0%
AR 259 595 2286 4.49 0.51 0.90 3.78 5.54 55.6%
Pocket2Mol 102 189 374 6.24 0.32 0.63 4.53 5.25 73.1%
TargetDiff 369 1243 13871 10.84 0.63 0.98 5.43 7.92 50.8%
DecompDiff 162 354 802 15.42 0.59 1.48 7.96 11.06 54.6%
DecompDPO 141 323 724 15.05 0.43 1.31 8.25 11.01 56.6%

We also draw boxplots to provide confidence intervals for the performance in molecule generation, which are
shown in Figure 8.
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Figure 8: Boxplots of QED, SA, Vina Score, Vina Minimize, and Vina Dock of molecules generated by
DecompDpo and other generative models.

To further illustrate the potency of the generated molecules, we draw a scatter plot of heavy atom numbers
versus Vina Dock score to demonstrate the effect of heavy atom numbers on the binding affinity of generated
molecules.
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Figure 9: Scatter Plots of heavy atom numbers versus Vina Dock scores for TargetDiff, IPDiff, DecompDiff,
and DecompDpo.

C.2 Benefits of Physics-informed Energy Terms

As shown in Table 10, DecompDPO achieves comparable optimization results with and without using
physics-informed energy terms. However, as suggested in Table 11, without using physics-informed energy
terms, the energy difference of both whole molecule and rigid fragments significantly increases, demonstrating
the necessity of physics-informed energy terms in maintaining reasonable conformations during optimization.
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Table 10: Summary of results of DecompDpo with and without using physics-informed energy terms. (↑) /
(↓) denotes a larger / smaller number is better. The better result is highlighted with bold text.

Method Vina Score (↓) Vina Min (↓) Vina Dock (↓) High Affinity (↑) QED (↑) SA (↑) Diversity (↑) Success
Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Rate (↑)

w/o phys -6.17 -7.37 -8.07 -8.32 -9.15 -9.36 80.7% 95.7% 0.47 0.44 0.65 0.65 0.61 0.62 38.9%
DecompDpo -6.13 -7.54 -8.30 -8.57 -9.60 -9.68 85.8% 98.5% 0.48 0.46 0.67 0.67 0.63 0.62 43.9%

Table 11: Evaluation of physical realism with and without physics-informed energy terms. Lower energy
differences and RMSD indicate better structural consistency.

Method JSD Dist (↓) Energy Diff - rigid frags (↓) Energy Diff - Mol (↓) RMSD - rigid frags (↓) RMSD - Mol (↓)

w/o phys 0.07 48.00 887.15 0.12 1.10
DecompDPO 0.07 38.38 672.02 0.11 1.08
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Figure 10: Histogram of bond lengths for the six most frequent atom pairs.
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Figure 11: Histogram of bond angles for the six most frequent atom triplets.
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To further substantiate the rationale for our physics-informed energy constraint, we visualize the training-set
distributions of the six most frequent bond-length substructures and bond-angle substructures in Figure 10
and Figure 11, which we adopt as empirical priors to penalize geometries that deviate from physically realistic
ranges during optimization.

C.3 Evidence for Decomposability of Properties

As illustrated in Section 3.2, QED and SA are non-decomposable due to the non-linear processes involved in
their calculations. We validate this non-decomposability on our training set. As shown in Figure 12, the
Pearson correlation coefficients between the properties of molecules and the sum of the properties of their
decomposed substructures are very low, not exceeding 0.1. These results indicate that substructures with
higher QED or SA do not necessarily lead the molecule to have better properties. Therefore, we choose
molecule-level preferences for QED and SA.

Figure 12: The Pearson correlation between molecule’s and sum of substructure’s SA (left) / QED (right)
Scores in the training dataset.

C.4 Trade-off in Multi-objective Optimization

Given the multiple objectives in DecompDpo, inherent trade-offs between different properties are unavoidable.
In molecular optimization, as illustrated in Figure 13, molecules generated by DecompDpo exhibit significantly
improved properties compared to those generated by DecompDiff. However, DecompDpo encounters a
notable trade-off between optimizing the Vina Minimize Score and SA.

C.5 Training Set Distribution

We further provided winning and losing molecules’ distribution of QED, SA, and Vina Minimize in the
training set, as shown in Figure 14.

C.6 Optimization Trend

To demonstrate that our method steadily moves toward the preferred distribution, we plot the success rate
over training steps. As shown in Figure 15, the curve exhibits a clear upward trend throughout the training
process.
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Figure 13: Pairplots of molecules’ properties before and after using DecompDpo for molecular optimization
on protein 4Z2G (left) and 2HCJ (right).
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Figure 15: Success rate over with training steps of DecompDpo on CrossDocked2020 test set.
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C.7 Examples of Generated Molecules

Examples of reference ligands and molecules generated by DecompDiff* and DecompDpo, which are shown
in Figure 16.

Reference DecompDiff* DecompDPO Reference DecompDiff* DecompDPO

QED:0.87 SA:0.84 Vina:-8.57 QED:0.71 SA:0.83 Vina:-10.54 QED:0.86 SA:0.7 Vina:-10.19 QED:0.92 SA:0.83 Vina:-9.72QED:0.49 SA:0.6 Vina:-9.10 QED:0.88 SA:0.86 Vina:-9.78

Figure 16: Additional Examples of reference binding ligands and the molecule with the highest property
among all generated molecules of DecompDiff* and DecompDpo on protein 1GG5 (left) and 3TYM
(right).
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