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Abstract

To address the challenges of out-of-control gen-001
eration in generative models for machine read-002
ing comprehension (MRC), we introduce the003
Question-Attended Span Extraction (QASE)004
module. Integrated during the fine-tuning005
of pre-trained generative language models006
(PLMs), QASE enables these PLMs to match007
SOTA extractive methods and outperform lead-008
ing LLMs like GPT-4 in MRC tasks, without009
significant increases in computational costs. 1010

1 Introduction011

Machine Reading Comprehension (MRC) is a crit-012

ical NLP challenge. Mainstream approaches to013

MRC extract a relevant piece of text from the con-014

text in response to a question (Wang et al., 2018;015

Yan et al., 2019; Chen et al., 2020), but in real-016

world application, the correct answers often span017

multiple passages or are implicit (Li et al., 2021).018

Exploring generative models, in addition to extrac-019

tive methods, is essential.020

Generative models, however, underperform in021

MRC due to out-of-control generation (Li et al.,022

2021). This leads to two main challenges: (1) ill-023

formed generated answers, containing incomplete024

or redundant phrases, and (2) factual inconsistency025

in the generated answers deviating from the cor-026

rect response. In this paper, we address these by027

introducing a lightweight Question-Attended Span028

Extraction (QASE) module. We fine-tune multi-029

ple open-source generative pre-trained language030

models (PLMs) on various MRC datasets to assess031

the module’s efficacy in guiding answer generation.032

Our contributions include: (1) Developing QASE033

to improve fine-tuned generative PLMs’ quality034

and factual consistency on MRC tasks, matching035

SOTA extractive methods and surpassing GPT-036

4; (2) QASE boosts performance without signif-037

1Our code is available at this anonymous repo link.

icantly increasing computational costs, benefiting 038

researchers with limited resources. 039

2 Related Work 040

Most current studies on MRC involve predict- 041

ing the start and end positions of the answer spans 042

from a given context (Ohsugi et al., 2019; Lan et al., 043

2019; Bachina et al., 2021; Chen et al., 2022) us- 044

ing encoder-only PLM models such as BERT and 045

XLM-Roberta. To handle the multi-span setting, 046

some studies frame the problem as a sequence tag- 047

ging task (Segal et al., 2020), and others explore 048

ways to combine models with different tasks (Hu 049

et al., 2019; Lee et al., 2023; Zhang et al., 2023). 050

While these extractive-based methods mainly uti- 051

lize encoder-only models, there is also research fo- 052

cuses on using generative language models (Yang 053

et al., 2020; Li et al., 2021; Su et al., 2022). 054

Retrieval-augmented text generation (RAG) 055

augments the input of PLMs with in-domain (Gu 056

et al., 2018; Weston et al., 2018; Saha and Srihari, 057

2023) or external knowledge (Su et al., 2021; Xiao 058

et al., 2021) to control the quality and factual con- 059

sistency of generated content. It has become a new 060

text generation paradigm in many NLP tasks (Li 061

et al., 2022b), such as dialogue response generation 062

(Wu et al., 2021; Liu et al., 2023b) and machine 063

translation (He et al., 2021; Zhu et al., 2023). How- 064

ever, not much work focuses on selective MRC. 065

Our approach diverges from RAG as it directly fine- 066

tunes the weights of the PLMs rather than altering 067

the input to the PLMs with additional information. 068

3 Method 069

Question-Attended Span Extraction To guide text 070

generation, we use QASE, a question-attended span 071

extraction module, during fine-tuning the gener- 072

ative PLMs. QASE focuses model attention on 073

potential answer spans within the original context. 074

We cast span extraction as a sequence tagging prob- 075
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lem and employ the Inside-Outside (IO) tagging076

schema, where each sequence token is tagged as077

‘inside’ (I) if part of a relevant span, or ‘outside’ (O)078

if not. This schema works well for both single- and079

multi-span extraction settings, achieving compara-080

ble or even better performance than the well-known081

BIO tagging format (Huang et al., 2015), as shown082

by Segal et al. (2020).083

Figure 1: QASE-enhanced model architecture

The architecture of our model is shown in Figure084

1. An input context and question pair and an instruc-085

tion are first tokenized and fed into the PLM. The086

hidden states output from the PLM is then passed087

through projection layers to produce embeddings088

zi = ReLU(Wprojvi + bproj), where vi ∈ Rd is089

the PLM output hidden state of the ith token.090

To learn context tokens representations in re-091

lation to specific questions, we employ a multi-092

head attention mechanism (MHA). Each head in093

MHA focuses to different aspects of the context094

as it relates to the question, using question em-095

beddings as the query and context embeddings as096

key-value pairs. This mechanism aligns the con-097

text token representations with the specifics of the098

queried question. The projected embeddings zi099

are passed through MHA, and subsequently chan-100

neled through a linear layer and a softmax layer to101

compute pi = softmax(Wlin ·MHA(zi)+ blin),102

which denotes the probability of the ith token103

being inside the answer spans. We then com-104

pute the sequence tagging loss using the cross en-105

tropy loss LQASE = − 1
N

∑N
i=1

∑1
j=0 yijlog(pij),106

where j ∈ 0, 1 corresponds to class O and class I,107

and yij is a binary value indicating whether the ith108

token belongs to class j.109

Fine-Tuning and Inference We fine-tune the110

PLMs using multi-task learning, simultaneously 111

optimizing both the language modeling loss and 112

sequence tagging loss: L = LLML + βLQASE , 113

where β is a hyper-parameter that controls the 114

weight of the span extraction task. This approach 115

enhances the PLMs’ ability to generate answers 116

well-founded in the context and relevant answer 117

spans. During inference, only the generation com- 118

ponent of the fine-tuned model is employed. 119

4 Experiments 120

Datasets and Metrics We utilize these 3 MRC 121

datasets. (1) SQuAD (Rajpurkar et al., 2016): A 122

benchmark dataset consisting of 100K+ questions 123

with single-span answers. We use SQuAD v1.1. 124

Since the official evaluation on v1.1 has long been 125

ended, we report our results on the official v1.1 de- 126

velopment set. (2) MultiSpanQA (Li et al., 2022a): 127

This dataset consists of over 6.5k question-answer 128

pairs. Unlike most existing single-span answer 129

MRC datasets, MultiSpanQA focuses on multi- 130

span answers. (3) Quoref (Dasigi et al., 2019): A 131

benchmark dataset containing more than 24K ques- 132

tions, with most answers being single-span and 133

∼10% being multi-span. Following the conven- 134

tions of the datasets’ official leaderboards (listed 135

in A.1), we employ exact match (EM) and partial 136

match (Overlap) F1 scores as metrics on Multi- 137

SpanQA, and exact match percentage and macro- 138

averaged F1 score on SQuAD and Quoref. 139

Experimental Setup To evaluate the effective- 140

ness of QASE independent of any specific language 141

model, we experiment with multiple open-source 142

LLMs. These include both decoder-only LLMs, 143

such as Llama 2 (Touvron et al., 2023) and Alpaca 144

(Taori et al., 2023), and an encoder-decoder model, 145

Flan-T5 (Chung et al., 2022). For Llama 2 and Al- 146

paca, we fine-tune the pre-trained 7B version using 147

LoRA (Hu et al., 2021) and instruction-tuning (see 148

A.4 for instruction templates). For Flan-T5 family 149

models, we fine-tune the small, the base, and the 150

large versions. The trainable parameters for each 151

model is provided in Table 2. 152

We set the hyper-parameters β = 1 and the learn- 153

ing rate lr = 1e−4. For LoRA fine-tuning applied 154

to Llama 2 and Alpaca models, we specify a rank 155

r = 8, α = 32, and a dropout rate of 0.05. The 156

methodology for selecting these hyper-parameters 157

is detailed in A.2. We train all our models on single 158

GPUs, using a batch size of 2-4 depending on the 159

VRAM of the respective GPUs. We use four types 160
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Llama2 Alpaca Flan-T5-Small Flan-T5-Base Flan-T5-Large
SQuAD no QASE 36.68 | 47.06 27.88 | 43.95 77.33 | 85.51 82.09 | 89.56 83.16 | 90.71

(EM | F1) QASE 37.22 | 47.69 37.31 | 47.62 77.66 | 85.90 82.20 | 90.24 84.13 | 91.70
MultiSpanQA no QASE 50.93 | 68.14 52.73 | 69.10 59.13 | 76.49 64.66 | 81.41 67.41 | 83.09

(EM F1 | Overlap F1) QASE 51.75 | 70.39 52.20 | 70.01 59.08 | 77.10 64.87 | 81.50 66.92 | 84.22
Quoref no QASE 45.52 | 52.09 - 58.21 | 63.30 72.77 | 80.90 75.17 | 80.49

(EM | F1) QASE 54.28 | 60.44 - 60.70 | 66.88 75.17 | 81.18 76.19 | 82.13

Table 1: Performance of fine-tuned PLMs with or without QASE on each dataset.

Trainable Parameters
no QASE QASE ∆params

Llama2/Alpaca
with LoRA 4.2M 7.3M 3.1M

Flan-T5-Small 77.0M 78.2M 1.3M
Flan-T5-Base 247.6M 248.9M 1.4M

Flan-T5-Large 783.2M 784.7M 1.5M

Table 2: Trainable parameters of experimented models.

of GPUs: A40, A10, A5500, and A100. Models161

are trained for 3 epochs or until convergence.162

Experiment Results To evaluate the efficacy of163

the QASE, we examine the performance of vari-164

ous PLMs fine-tuned with and without QASE, as165

shown in Table 1. Generally, models fine-tuned166

with QASE outperform those fine-tuned without it.167

In particular, for SQuAD, QASE-enhanced model168

demonstrate an EM percentage increase of up to169

33.8% and an F1 score upsurge of up to 8.4% over170

vanilla fine-tuned models. For MultiSpanQA, there171

is an improvement of up to 1.6% in the EM F1 and172

up to 3.3% in the overlap F1. Likewise, on Quoref,173

there is an improvement of up to 19.2% in the EM174

percentage and up to 16.0% in the F1 score. These175

results show that, by employing QASE, generative-176

based PLMs can be fine-tuned to produce well-177

formed, context-grounded, and better-quality an-178

swers in MRC tasks compared to the vanilla fine-179

tuning approach. For reference, we also compare180

the fine-tuned PLMs to their corresponding PLMs181

in zero-shot settings, as presented in Appendix A.3.182

Computational Costs Table 2 shows that inte-183

grating QASE slightly raises the number of train-184

able parameters in PLMs, with the increase depen-185

dent on the models’ hidden sizes. Significantly, for186

the largest model, Flan-T5-Large, QASE adds just187

0.2% more parameters, indicating that QASE en-188

hances the capabilities of fine-tuned PLMs in MRC189

without major increase in computational resources.190

Model Comparisons Our top model, Flan-T5-191

LargeQASE , is further benchmarked against lead-192

ing models on each dataset’s official leaderboard,193

alongside zero-shot GPT-3.5-Turbo and GPT-4.194

GPT-3.5-Turbo stands as one of OpenAI’s most195

efficient models in terms of capability and cost, 196

while GPT-4 shows superior reasoning abilities 197

(Liu et al., 2023c). Studies indicate their supe- 198

riority over traditional fine-tuning methods in most 199

logical reasoning benchmarks (Liu et al., 2023a). 200

The prompts used to query the GPT variants are de- 201

tailed in Appendix A.4. On SQuAD, as showed in 202

Table 3, Flan-T5-LargeQASE surpasses human per- 203

formance, equaling the NLNet model. Additionally, 204

it surpasses GPT-4 by 113.8% on the exact match 205

score and 32.6% on F1. On MultiSpanQA, Table 4

EM F1 ↑
GPT-3.5-Turbo 36.944 65.637
GPT-4 39.347 69.158
Human Performance 82.304 91.221
BERT-Large (Devlin et al., 2019) 84.328 91.281
MSRA NLNet (ensemble) 85.954 91.677
Flan-T5-LargeQASE 84.125 91.701

Table 3: Flan-T5-LargeQASE and baselines on SQuAD.
206

shows that Flan-T5-LargeQASE outperforms LIQ- 207

UID (Lee et al., 2023), which currently ranks #1 208

on the leaderboard, with respect to the overlap F1 209

score. Moreover, it surpasses GPT-4 by 4.5% on the 210

exact match F1 and 1.5% on the overlap F1. On

EM F1 Overlap F1 ↑
GPT-3.5-Turbo 59.766 81.866
GPT-4 64.027 82.731
LIQUID (Lee et al., 2023) 73.130 83.360
Flan-T5-LargeQASE 66.918 84.221

Table 4: Performance of Flan-T5-LargeQASE and base-
lines on MultiSpanQA.

EM F1 ↑
GPT-3.5-Turbo 50.22 59.51
GPT-4 68.07 78.34
CorefRoberta-Large (Ye et al., 2020) 75.80 82.81
Flan-T5-LargeQASE 76.19 82.13

Table 5: Performance of Flan-T5-LargeQASE and base-
lines on Quoref.

211
Quoref, Table 5 shows that Flan-T5-LargeQASE 212

is comparable to CorefRoberta-Large (Ye et al., 213

2020), which ranks #9 on the leaderboard, with 214
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a 0.5% higher exact match. Furthermore, it out-215

performs GPT-4 by 11.9% on the exact match and216

4.8% on F1.217

All top-performing models on these datasets’218

leaderboards, equaling or exceeding Flan-T5-219

LargeQASE , are encoder-only extractive models.220

Therefore, these results demonstrate that QASE-221

enhanced generative PLMs can be fine-tuned to222

match or exceed the capabilities of SOTA extrac-223

tive models and outperform leading LLMs in MRC.224

Ablation Studies To demonstrate the superior-225

ity of the QASE architecture, we compared Flan-226

T5-LargeQASE with vanilla fine-tuned Flan-T5-227

LargeFT and Flan-T5-Largebaseline. The baseline228

span extraction module lacks the MHA component,229

making it a standard architecture for fine-tuning230

pre-trained encoders for downstream sequence tag-231

ging tasks. We also explored both question-first232

(qf ) and context-first prompting strategies, with fur-233

ther details and analysis provided in Appendix A.5,234

where the model architecture is also illustrated.235

Table 6 shows that the baseline-embedded model236

performs better with a question-first prompting237

strategy, as Flan-T5-Largebaselineqf surpasses Flan-238

T5-Largebaseline and Flan-T5-LargeFTqf
. Con-239

versely, the baseline span extraction module de-240

creases performance in context-first prompting,241

where Flan-T5-Largebaseline underperforms com-242

pared to Flan-T5-LargeFT . This suggests that243

adding an auxiliary span extraction module with-244

out careful design can negatively affect instruc-245

tion fine-tuning. Meanwhile, the QASE-enhanced246

model excels over both vanilla fine-tuned and247

baseline-embedded models in both prompting sce-248

narios, demonstrating its architectural superior-249

ity. Specifically, in context-first setting, Flan-250

T5-LargeQASE significantly outperforms Flan-T5-251

Largebaseline with a 4.3% higher F1.252

EM F1 ↑
Flan-T5-Largebaseline 79.877 87.918

Flan-T5-LargeFTqf 80.378 88.176
Flan-T5-Largebaselineqf 81.125 89.043
Flan-T5-LargeQASEqf 81.485 89.077

Flan-T5-LargeFT 83.159 90.712
Flan-T5-LargeQASE 84.125 91.701

Table 6: Performance of vanilla, baseline-, and QASE-
enhanced fine-tuned Flan-T5-Large on SQuAD.

Factual Consistency While token-based EM253

and F1 scores measure the structural quality of254

generated text, they do not reflect factual accuracy255

relative to the context. For this we used Q2 (Hon-256

ovich et al., 2021), an automatic metric for assess- 257

ing factual consistency in generated text, which 258

uses question generation and answering methods 259

over token-based matching. We compared fine- 260

tuned Flan-T5-Large with and without QASE in 261

both single-span (SQuAD) and multi-span (Mul- 262

tiSpanQA) answer settings. Table 7 shows that 263

QASE-enhanced models consistently outperform 264

the vanilla fine-tuned model. On SQuAD, Q2 NLI 265

score is improved by 1.0%, and on MultiSpanQA, 266

it is improved by 16.0%. Beyond the Q2 statistical 267

analysis, our detailed case studies in Appendix A.6 268

highlight Flan-T5-LargeQASE’s improved perfor- 269

mance. These examples show the model’s better 270

alignment with relevant context, its enhanced un- 271

derstanding of complex sentences, its skill in syn- 272

thesizing answers from dispersed information, and 273

its superior use of pre-existing real-world knowl- 274

edge in generating answers. 275

Flan-T5-Large Q2 F1 Q2 NLI

SQuAD no QASE 42.927 44.983
QASE 43.624 45.419

MultiSpanQA no QASE 32.889 31.433
QASE 34.732 36.452

Table 7: Q2 scores of fine-tuned Flan-T5-Large with or
without QASE on each dataset.

5 Conclusion and Future Work 276

In this study, we address out-of-control text gener- 277

ation of generative PLMs in MRC using QASE, a 278

lightweight question-attended span extraction mod- 279

ule, during the fine-tuning of PLMs. Our experi- 280

ments show that QASE-enhanced PLMs generate 281

better-quality responses with improved formality 282

and factual consistency, matching SOTA extrac- 283

tive models and outperforming GPT-4 by a signif- 284

icant margin on all three MRC datasets. Impor- 285

tantly, QASE improves performance without a sig- 286

nificant increase in computational costs, benefiting 287

researchers with limited resources. 288

In the future, we plan to test our model on gen- 289

erative MRC datasets (Nguyen et al., 2016) to fur- 290

ther assess its efficacy in more complex scenarios. 291

Another key focus will be evaluating the model’s 292

general ability in answer generation, particularly 293

from the perspective of human perception. This 294

will involve incorporating human annotators in ad- 295

dition to automatic metrics. For a long-term goal, 296

we are looking to expand our work to explore solu- 297

tions for addressing input- and context-conflicting 298

hallucinations in LLMs. 299
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Limitations300

Due to our limited computational resources, we301

have been able to perform our experiments on mod-302

els no larger than Flan-T5-Large. This same con-303

straint led us to only fine-tuning of Llama 2 and304

Alpaca with LoRA. We note that models based on305

Llama 2 and Alpaca generally underperform those306

based on Flan-T5. Apart from the inherent distinc-307

tions between decoder-only and encoder-decoder308

models, and their suitability for different tasks (as309

seen from the models’ zero-shot performance), a310

possible factor could be the number of trainable311

parameters during fine-tuning. Specifically, fine-312

tuning Llama 2 and Alpaca with LoRA results in313

only 4.2M trainable parameters, while even the314

smallest Flan-T5 model provides 77.0M trainable315

parameters, as shown in Table 2. We acknowl-316

edge that many researchers face similar computa-317

tional resource limitations. Therefore, our research318

should be very useful, proposing this lightweight319

module capable of enhancing smaller PLMs to out-320

perform leading LLMs on MRC tasks like these,321

achieving a balance of effectiveness and affordabil-322

ity.323

One foreseeable limitation of our work is the de-324

pendency of the fine-tuning process on answer span325

annotations, since QASE works as an auxiliary su-326

pervised span extraction module. This reliance on327

annotated data could potentially limit the model’s328

broader applicability. A prospective exciting fu-329

ture direction to address this limitation is to de-330

velop a semi- or unsupervised module that focuses331

on selecting relevant spans or rationales within a332

given context. By integrating this module with333

our current model, we could significantly improve334

its generalization capabilities, thereby making it335

more adaptable and effective across a wider range336

of scenarios.337

One popular method to enhance the formality of338

answers generated by LLMs is through prompt en-339

gineering, paired with few-shot or in-context learn-340

ing techniques. While these strategies offer great341

advantages, our ultimate goal is to create a system342

with broad domain generalization, one that mini-343

mizes the need for extensive, calibrated prompt en-344

gineering and sample selections for task adaptation.345

Although developing a robust prompt engineering346

framework or paradigm is an appealing direction,347

our current focus diverges from this path. As a348

long-term goal, we aim for a solution that handles349

diverse tasks with minimal task-specific tuning.350
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A Detailed Experiment Setup and Results583

A.1 Dataset Leaderboard584

Below are the official leaderboards all the datasets585

we refer to:586

SQuAD https://rajpurkar.github.io/
SQuAD-explorer/

MultiSpanQA https://multi-span.github.io/
Quoref https://leaderboard.allenai.org/

quoref/submissions/public

Table 8: Dataset official leaderboards.

A.2 Hyper-Parameter Selection587

In this section, we outline the process for selecting588

the hyper-parameter β and detail our approach to589

LoRA fine-tuning.590

For selecting β, we use a grid search method,591

exploring values from 0.5 to 2 in increments of592

0.1, on 30% of the MultiSpanQA training dataset.593

This process leads to the determination that β = 1594

empirically yield the best performance, hence it is595

selected for use in our experiments.596

To select the learning rate lr, we conduct a grid597

search, testing values from {1e − 5, 5e − 5, 1e −598

4, 5e − 4, 1e − 3} on 30% of the MultiSpanQA599

training dataset. Empirically, the value 1e − 4600

demonstrates the best performance and is there-601

fore chosen for our experiments. This selection602

is in agreement with the default lr value used in603

Meta’s official Llama 2 fine-tuning recipe2.604

In the case of LoRA fine-tuning, we follow the605

established methodology as outlined by Hu et al.606

(2021). This involves applying LoRA to Llama607

2 and the pre-trained Alpaca models by freezing608

their pre-trained weights and integrating trainable609

rank decomposition matrices at every layer of their610

Transformer structures, aimed at reducing the num-611

ber of trainable parameters to enhance computa-612

tional efficiency. We implement this using the613

PEFT package3. The fine-tuning hyper-parameters614

for LoRA are set according to the default settings615

specified in Meta’s official Llama 2 fine-tuning616

recipe4, which include a rank r = 8, α = 32, and617

a dropout rate of 0.05.618

2Link to the fine-tuning configuration of Meta’s official
Llama 2 recipe.

3Link to the Hugging Face PEFT implementation.
4Link to the LoRA hyper-parameter configuration of

Meta’s official Llama 2 recipe.

A.3 Full Experiment Results 619

In addition to the highlighted results presented in 620

Section 4, we also compare the fine-tuned PLMs to 621

their corresponding base PLMs in zero-shot set- 622

tings. The results, presented in Table 9, show 623

that fine-tuning with QASE improves performance 624

across all datasets. Specifically, on the SQuAD 625

dataset, models using QASE perform up to 5.6 626

times better in exact match and 3.0 times better in 627

F1 score compared to the original models. On the 628

MultiSpanQA dataset, the exact match improves 629

by up to 124.4 times, and F1 score by up to 3.4 630

times. Similarly, on the Quoref dataset, the exact 631

match improves by up to 38.4 times, and F1 score 632

by up to 11.2 times with QASE. 633

A.4 Instruction Templates and Model 634

Prompts 635

Table 10 provides the instruction and prompt tem- 636

plates used for fine-tuning the PLMs and for zero- 637

shot querying of PLMs and GPT variants across 638

both single- and multi-span answer datasets. 639

A.5 Ablation Studies Details 640

Figure 2 depicts the architecture of the model we 641

use for the ablation studies, with a baseline span 642

extraction module. The baseline span extraction 643

module omits the MHA component, typifying a 644

standard architecture for fine-tuning pre-trained 645

encoders for downstream sequence tagging tasks. 646

The baseline-embedded Flan-T5-Large models are 647

fine-tuned with the same configurations as Flan-T5- 648

LargeQASE including learning rate, weight decay, 649

batch size, epoch number, and GPU type. 650

We experiment with 2 prompting strategies for 651

ablation studies: 652

• Context-first prompting: The default 653

prompting strategy we utilize for fine-tuning 654

PLMs, both with and without QASE. In this 655

setting, the prompt is ordered as "<instruction 656

tokens> <context tokens> <question tokens>". 657

• Question-first prompting (qf ): Following 658

BERT’s standard fine-tuning procedures. In 659

this setting, the prompt is ordered as "<instruc- 660

tion tokens> <question tokens> <SEP> <con- 661

text tokens>". <SEP> is a special separator 662

token. 663
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MultiSpanQA SQuAD Quoref
EM F1 Overlap F1 EM F1 EM F1

Llama2 7.354 34.031 13.443 28.931 5.02 28.91
Llama2FT 50.934 68.140 36.679 47.055 45.52 52.09
Llama2QASE 51.748 70.389 37.219 47.686 54.28 60.44
Alpaca 15.201 42.759 18.259 33.871 - -
AlpacaFT 52.730 69.099 27.881 43.950 - -
AlpacaQASE 52.196 70.008 37.313 47.622 - -
Flan-T5-Small 0.475 22.539 13.878 28.710 1.58 5.96
Flan-T5-SmallFT 59.128 76.494 77.332 85.513 58.21 63.30
Flan-T5-SmallQASE 59.080 77.103 77.663 85.901 60.70 66.88
Flan-T5-Base 4.113 37.694 37.596 51.747 27.08 34.38
Flan-T5-BaseFT 64.659 81.408 82.090 89.558 72.77 80.90
Flan-T5-BaseQASE 64.874 81.498 82.204 90.240 75.17 81.18
Flan-T5-Large 13.907 51.501 16.149 37.691 15.96 24.10
Flan-T5-LargeFT 67.408 83.094 83.159 90.712 75.17 80.49
Flan-T5-LargeQASE 66.918 84.221 84.125 91.701 76.19 82.13

Table 9: Performance of zero-shot PLMs and fined-tuned PLMs with and without QASE.

Fine-tuning PLMs Instruction: Using the provided context, answer the question with exact phrases and
avoid explanations.
- - -
Context: {context}
- - -
Question: {question}
- - -
Answer:

Zero-shot prompting PLMs and
GPT variants on single-span answer
dataset, SQuAD

Instruction: Using the provided context, answer the question with exact phrases and
avoid explanations.
- - -
Context: {context}
- - -
Question: {question}
- - -
Answer:

Zero-shot prompting PLMs and
GPT variants on multi-span answer
datasets, MultiSpanQA and Quoref

Instruction: Using the provided context, answer the question with exact phrases and
avoid explanations. Format the response as follows: ["answer1", "answer2", ...].
- - -
Context: {context}
- - -
Question: {question}
- - -
Answer:

Table 10: Templates for fine-tuning instructions and zero-shot query prompts
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Figure 2: Baseline-embedded model architecture

A.6 Factual Consistency Case Studies664

In Section 4, we demonstrate that the Flan-T5-665

Large model, when fine-tuned with QASE, pro-666

duces answers with greater factual accuracy in re-667

lation to the context compared to its counterpart668

fine-tuned without QASE. Specifically, we observe669

a 1.0% improvement in the Q2 score on the SQuAD670

dataset and a significant 16.0% increase on Multi-671

SpanQA. This section includes examples to further672

illustrate QASE’s effectiveness.673

Table 11 showcases that Flan-T5-LargeQASE674

more accurately identifies the key focus of the675

question and locates the pertinent factual infor-676

mation within the context, with the aid of the677

QASE module. For instance, in Sample 1, Flan-678

T5-LargeQASE correctly interprets the question as679

seeking the age difference between Newton and680

Manning, rather than the age of either individ-681

ual, and accordingly provides the accurate answer.682

In contrast, Flan-T5-LargeFT mistakenly provides683

Newton’s age as the answer. Similarly, in Sam-684

ple 2, Flan-T5-LargeQASE accurately discerns that685

the question pertains to Thoreau’s claim regard-686

ing the majority, generating in the correct answer,687

whereas Flan-T5-LargeFT misguidedly responds688

with Thoreau’s political philosophy.689

Flan-T5-LargeQASE also shows a notable im-690

provement in comprehending complex, lengthy sen-691

tences and synthesizing answers from information692

that is sparsely distributed across multiple spans693

requiring logical processing. This capability is par-694

ticularly valuable when the answer to a question695

Sample 1
Context: This was the first Super Bowl to feature a
quarterback on both teams who was the #1 pick in their
draft classes. Manning was the #1 selection of the 1998
NFL draft, while Newton was picked first in 2011. The
matchup also pits the top two picks of the 2011 draft
against each other: Newton for Carolina and Von Miller
for Denver. Manning and Newton also set the record for
the largest age difference between opposing Super Bowl
quarterbacks at 13 years and 48 days (Manning was 39,
Newton was 26).
Question: What was the age difference between Newton
and Manning in Super Bowl 50?
Gold Answer: 13 years and 48 days
Flan-T5-LargeQASE

Generation 13 years and 48 days

Flan-T5-LargeFT

Generation 26

Sample 2
Context: However, this definition is disputed by
Thoreau’s political philosophy, which contrasts the con-
science with the collective. The individual is the ultimate
arbiter of right and wrong. Beyond this, since only indi-
viduals act, only they can commit injustices. When the
government knocks on the door, it is an individual in the
guise of a postman or tax collector whose hand meets the
wood. Before Thoreau’s imprisonment, when a perplexed
tax collector openly pondered how to deal with his refusal
to pay, Thoreau had advised, "Resign." If a man chose
to be an agent of injustice, then Thoreau insisted on con-
fronting him with the reality that he was making a choice.
But if the government is "the voice of the people," as
often claimed, shouldn’t that voice be heeded? Thoreau
acknowledges that the government may represent the will
of the majority but it might also merely reflect the desires
of elite politicians. Even a good government is "liable to
be abused and perverted before the people can act through
it." Furthermore, even if a government did express the
voice of the people, this fact would not obligate the obe-
dience of individuals who dissent. The majority may be
powerful but it is not necessarily right. What, then, is the
appropriate relationship between the individual and the
government?
Question: What did Thoreau claim about the majority?
Gold Answer: not necessarily right
Flan-T5-LargeQASE

Generation it is not necessarily right

Flan-T5-LargeFT

Generation conscience vs. the collective

Table 11: Comparisons of model attention alignment
with question key aspects and relevant factual context
between Flan-T5-LargeQASE and Flan-T5-LargeFT .
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does not directly stem from a single phrase. Ta-696

ble 12 provides examples of such instances. In697

Sample 3, the model needs to recognize that ESPN698

Deportes is the exclusive broadcaster in Spanish699

and that CBS, although mentioned, does not of-700

fer Spanish-language broadcasting. Combining701

these facts leads to the correct answer, that ESPN702

Deportes is the network that broadcast the game703

in Spanish. Flan-T5-LargeQASE accurately gener-704

ates this answer, whereas Flan-T5-LargeFT incor-705

rectly answers with "CBS", likely due to confusion706

caused by the complex sentence structures and dis-707

persed information. Similarly, in Sample 4, Flan-708

T5-LargeQASE correctly identifies the question as709

seeking the name of the force related to a potential710

field between two locations. It successfully locates711

the relevant long sentence, deconstructs, and com-712

prehends it to produce the correct answer, in con-713

trast to Flan-T5-LargeFT , which incorrectly selects714

the first phrase mentioning "force". In Sample 5,715

the question asks for the class most commonly not716

ascribed to the graph isomorphism problem. The717

model needs to deduce from the context that "it is718

widely believed that the polynomial hierarchy does719

not collapse to any finite level", implying "graph720

isomorphism is not NP-complete". Once again,721

Flan-T5-LargeQASE arrives at the correct conclu-722

sion, while Flan-T5-LargeFT does not.723

While our primary evaluation focuses on the724

model’s proficiency in deriving answers from pro-725

vided contexts, we also note that QASE enhances726

the model’s capacity to leverage real-world knowl-727

edge acquired during its pre-training phase. This728

improvement is attributed to QASE’s ability to bet-729

ter align the model’s focus on parts of the context730

that are relevant to the questions asked. Table 13731

presents an example of this phenomenon. In Sam-732

ple 6, when asked about the California venue con-733

sidered for the Super Bowl, Flan-T5-LargeQASE734

correctly associates the San Francisco Bay Area735

with California, thus producing the accurate an-736

swer. On the other hand, Flan-T5-LargeFT erro-737

neously identifies a stadium in Miami as the answer.738

This example illustrates how QASE not only im-739

proves context-based answer generation but also740

the model’s application of pre-existing real-world741

knowledge to the questions posed.742

Sample 3
Context: On December 28, 2015, ESPN Deportes an-
nounced that they had reached an agreement with CBS
and the NFL to be the exclusive Spanish-language broad-
caster of the game, marking the third dedicated Spanish-
language broadcast of the Super Bowl. Unlike NBC and
Fox, CBS does not have a Spanish-language outlet of its
own that could broadcast the game (though per league
policy, a separate Spanish play-by-play call was carried
on CBS’s second audio program channel for over-the-air
viewers). The game was called by ESPN Deportes’ Mon-
day Night Football commentary crew of Alvaro Martin
and Raul Allegre, and sideline reporter John Sutcliffe.
ESPN Deportes broadcast pre-game and post-game cov-
erage, while Martin, Allegre, and Sutcliffe contributed
English-language reports for ESPN’s SportsCenter and
Mike & Mike.
Question: Which network broadcast the game in Span-
ish?
Gold Answer: ESPN Deportes
Flan-T5-LargeQASE

Generation ESPN Deportes

Flan-T5-LargeFT

Generation CBS

Sample 4
Context: A conservative force that acts on a closed sys-
tem has an associated mechanical work that allows energy
to convert only between kinetic or potential forms. This
means that for a closed system, the net mechanical en-
ergy is conserved whenever a conservative force acts on
the system. The force, therefore, is related directly to
the difference in potential energy between two different
locations in space, and can be considered to be an artifact
of the potential field in the same way that the direction
and amount of a flow of water can be considered to be an
artifact of the contour map of the elevation of an area.
Question: What is the force called regarding a potential
field between two locations?
Gold Answer: an artifact
Flan-T5-LargeQASE

Generation an artifact

Flan-T5-LargeFT

Generation conservative force

Sample 5
Context: The graph isomorphism problem is the compu-
tational problem of determining whether two finite graphs
are isomorphic. An important unsolved problem in com-
plexity theory is whether the graph isomorphism problem
is in P, NP-complete, or NP-intermediate. The answer is
not known, but it is believed that the problem is at least
not NP-complete. If graph isomorphism is NP-complete,
the polynomial time hierarchy collapses to its second
level. Since it is widely believed that the polynomial
hierarchy does not collapse to any finite level, it is be-
lieved that graph isomorphism is not NP-complete. The
best algorithm for this problem, due to Laszlo Babai and
Eugene Luks has run time 2O(

√
nlog(n)) for graphs

with n vertices.
Question: What class is most commonly not ascribed
to the graph isomorphism problem in spite of definitive
determination?
Gold Answer: NP-complete
Flan-T5-LargeQASE

Generation NP-complete

Flan-T5-LargeFT

Generation NP-intermediate

Table 12: Comparison of Flan-T5-LargeQASE and Flan-
T5-LargeFT in understanding complex sentence struc-
tures.
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Sample 6
Context: The league eventually narrowed the bids to
three sites: New Orleans’ Mercedes-Benz Superdome,
Miami’s Sun Life Stadium, and the San Francisco Bay
Area’s Levi’s Stadium.
Question: Which California venue was one of three con-
sidered for Super Bowl 50?
Gold Answer: San Francisco Bay Area’s Levi’s Stadium
Flan-T5-LargeQASE

Generation San Francisco Bay Area’s
Levi’s Stadium

Flan-T5-LargeFT

Generation Sun Life Stadium

Table 13: Comparison of Flan-T5-LargeQASE and Flan-
T5-LargeFT in utilizing real-world knowledge.

B Extended Discussion on Model743

Performance744

In this section, we engage in a detailed discus-745

sion on the performance of the Flan-T5 family of746

models and Llama 2 in MRC tasks. Our aim is747

to gain insights into the reasons behind the mod-748

est zero-shot performance of these large PLMs on749

MRC tasks, despite their adeptness at handling750

other complex NLP tasks such as dialogue gener-751

ation and summarization. Although a comprehen-752

sive analysis falls outside the scope of our current753

study, exploring these performance nuances can754

provide valuable perspectives on how to potentially755

enhance the effectiveness of these PLMs on similar756

tasks.757

B.1 Discussion on Flan-T5 Zero-Shot758

Performance759

We observe that the zero-shot performance of Flan-760

T5 models across all datasets, including SQuAD,761

remains low as shown in Table 9, despite being762

instruct-tuned on the SQuAD dataset during the763

pre-training phase. This underperformance might764

stem from the fact that Flan-T5 models, although765

trained on the <SQuAD, Extractive QA> task, are766

also trained on a broad spectrum of 1,836 tasks,767

predominantly focusing on free-form generation,768

QA, and reasoning tasks (Chung et al., 2022). Con-769

sequently, these models are not finely optimized770

for extractive QA tasks like MRC, especially un-771

der metrics like exact match and F1, particularly772

for the smaller to larger variants under study. The773

larger XL and XXL variants may exhibit better774

performance in these tasks. Furthermore, as dis-775

cussed in the previous sections, generative models,776

including Llama 2, Alpaca, and GPT variants, gen-777

erally show limited effectiveness in MRC tasks in778

zero-shot settings, underscored by their poorer per- 779

formance despite having significantly larger model 780

parameters compared to the Flan-T5 variants we 781

experiment with. 782

To ensure that our zero-shot experiment’s 783

prompts do not adversely affect Flan-T5’s perfor- 784

mance, we compare our prompt template, detailed 785

in Table 10, with those Google released for Flan- 786

T5’s instruct-tuning on the SQuAD v1 dataset5. 787

Our template, similar to Google’s, differs mainly 788

by including "with exact phrases and avoid explana- 789

tions." This difference could potentially affect per- 790

formance, yet our subsequent experiments demon- 791

strate otherwise. 792

We conduct a series of experiments to assess 793

the zero-shot performance of Flan-T5-Large on 794

SQuAD, using Google released templates for Flan- 795

T5 instruct-tuning. We select three templates of 796

varying complexities, as listed in Table 14. Our 797

results, detailed in Table 14, reveal that our tem- 798

plate achieves the highest F1 score. This indicates 799

the lower performance of zero-shot Flan-T5 on 800

SQuAD and similar MRC datasets is expected, 801

even with the original instruct-tuning templates. 802

It supports our hypothesis that, although Flan-T5 803

is instruct-tuned on SQuAD, its primary strengths 804

are in broader generative question answering and 805

reasoning, rather than specific extractive QA tasks 806

such as MRC, particularly when evaluated by exact 807

match and F1 metrics. 808

SQuAD Performance
Prompt Template EM F1
Article: {context}
Question: {question}
Answer:

7.001 21.717

Answer a question
about this article.
Article: {context}
Question: {question}
Answer:

15.875 33.375

Here is a question
about this article:
Article: {context}
What is the answer
to this question:
Question: {question}
Answer:

16.764 35.304

Our Template
See Table 10 16.149 37.691

Table 14: Flan-T5-Large zero-shot performance on
SQuAD with different prompt templates.

5Link to Flan-T5 instruct-tuning prompt templates.

12

https://github.com/google-research/FLAN/blob/main/flan/templates.py


B.2 Discussion on Llama 2 Performance809

We observe that models based on Llama 2 and Al-810

paca generally underperform compared to those811

based on Flan-T5, in both zero-shot and fine-tuned812

scenarios, with or without QASE. This section813

delves into a detailed discussion of the potential814

reasons behind this trend.815

Firstly, the discrepancy in performance may816

stem from the inherent structural differences be-817

tween decoder-only models (Llama 2 and Alpaca)818

and encoder-decoder models (Flan-T5). Encoder-819

decoder models are better equipped for tasks that820

require extensive input processing, such as MRC,821

making them more apt for these tasks than decoder-822

only models, which are typically more suited to823

open-ended QA scenarios. This fundamental dis-824

tinction partially accounts for Flan-T5’s superior825

performance in context-based question answering826

across both zero-shot and fine-tuned settings.827

Additionally, the difference in the number of828

trainable parameters during fine-tuning might con-829

tribute to the observed performance gap. Table830

2 indicates that fine-tuning Llama 2 and Alpaca831

with LoRA leads to a significantly lower count of832

trainable parameters (4.2M) compared to even the833

smallest Flan-T5 model (77.0M). This disparity in834

trainable parameters is a crucial factor in explain-835

ing why fine-tuned Flan-T5 models, irrespective of836

the use of QASE, outperform Llama 2 and Alpaca837

models.838

While we address these factors, conducting a839

comprehensive comparison and analysis of differ-840

ent generative model architectures in MRC tasks841

exceeds the scope of our current study. Nonethe-842

less, we acknowledge that additional factors, such843

as the specific instruct-fine-tuning of Flan-T5 mod-844

els on MRC datasets like SQuAD, might also play845

a role in their enhanced performance over Llama 2846

and Alpaca.847
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