
Goal-Conditioned Predictive Coding for Offline
Reinforcement Learning

Zilai Zeng
Brown University

Ce Zhang
Brown University

Shijie Wang
Brown University

Chen Sun
Brown University

Abstract

Recent work has demonstrated the effectiveness of formulating decision making as
supervised learning on offline-collected trajectories. Powerful sequence models,
such as GPT or BERT, are often employed to encode the trajectories. However, the
benefits of performing sequence modeling on trajectory data remain unclear. In
this work, we investigate whether sequence modeling has the ability to condense
trajectories into useful representations that enhance policy learning. We adopt a
two-stage framework that first leverages sequence models to encode trajectory-level
representations, and then learns a goal-conditioned policy employing the encoded
representations as its input. This formulation allows us to consider many existing
supervised offline RL methods as specific instances of our framework. Within
this framework, we introduce Goal-Conditioned Predictive Coding (GCPC), a
sequence modeling objective that yields powerful trajectory representations and
leads to performant policies. Through extensive empirical evaluations on AntMaze,
FrankaKitchen and Locomotion environments, we observe that sequence modeling
can have a significant impact on challenging decision making tasks. Furthermore,
we demonstrate that GCPC learns a goal-conditioned latent representation encoding
the future trajectory, which enables competitive performance on all three bench-
marks. Our code is available at https://brown-palm.github.io/GCPC/.

1 Introduction

Goal-conditioned imitation learning [13, 14, 19] has recently emerged as a promising approach to
solve offline reinforcement learning problems. Instead of relying on value-based methods, they
directly learn a policy that maps states and goals (e.g. expected returns, or target states) to the actions.
This is achieved by supervised learning on offline collected trajectories (i.e. sequences of state, action,
and reward triplets). The emergence of RL as supervised learning on trajectory data coincides with
the recent success of the Transformer architecture [41, 19] and its applications to sequence modeling,
such as GPT [8] for natural language and VPT [3] for videos. Indeed, several recent works have
demonstrated the effectiveness of sequence modeling for offline RL [10, 25, 30, 40, 44, 9, 38], which
have shown competitive performance in various challenging tasks [15, 5].

Despite the enthusiasm and progress, the necessity of sequence modeling for offline reinforcement
learning has been questioned by recent work [14]: With a simple but properly tuned neural architecture
(e.g. a multilayer perceptron), the trained agents can achieve competitive performance on several
challenging tasks while taking only the current state and the overall goal as model inputs. In some
tasks, these agents even significantly outperform their counterparts based on sequence modeling.
These observations naturally motivate the question: Is explicit sequence modeling of trajectory data
necessary for offline RL? And if so, how should it be performed and utilized?

To properly study the impact of sequence modeling for decision making, we propose to decouple
trajectory representation learning and policy learning. We adopt a two-stage framework, where
sequence modeling can be applied to learn the trajectory representation, the policy, or both. The

Goal-Conditioned Reinforcement Learning Workshop at Neural Information Processing Systems, 2023.

https://brown-palm.github.io/GCPC/

connection between the two stages can be established by leveraging encoded trajectory representations
for policy learning, or by transferring the model architecture and weights (i.e. the policy can be
initialized with the same pre-trained model used for trajectory representation learning). These stages
can be trained separately, or jointly and end-to-end. This design not only facilitates analyzing the
impacts of sequence modeling, but is also general such that prior methods can be considered as
specific instances, including those that perform joint policy learning and trajectory representation
learning [10, 30, 44], and those that learn a policy directly without sequence modeling [14].

Concretely, we aim at investigating the following questions: (1) Are offline trajectories helpful due to
sequence modeling, or simply by providing more data for supervised policy learning? (2) What would
be the most effective trajectory representation learning objectives to support policy learning? Should
the sequence models learn to encode history experiences [10], future dynamics [25], or both [18]?
(3) As the same sequence modeling framework may be employed for both trajectory representation
learning and policy learning [30, 9, 44], should they share the same training objectives or not?

2 Approach Overview

We revisit the role of sequence modeling in offline reinforcement learning, from the perspectives of
trajectory representation learning and policy learning. We follow prior work that leverages sequence
modeling for offline reinforcement learning, and adopt the Reinforcement learning via Supervised
learning (RvS) (e.g. [14]) setting. RvS aims to solve the offline RL problem as conditional, filtered, or
weighted imitation learning. Section 2.1 introduces a two-stage framework that decouples trajectory
representation learning and policy learning, which serves as the basis for our investigation. In
Section 2.2, we propose a specific instantiation of the two-stage framework, in which we leverage
a self-supervised learning objective – Goal-Conditioned Predictive Coding (GCPC), to acquire
performant trajectory representations for policy learning.

2.1 Decoupled Trajectory Representation and Policy Learning

Sequence modeling can be used for decision making from two perspectives, namely trajectory
representation learning and policy learning. The former aims to acquire useful representations from
raw trajectory inputs, often in the form of a condensed latent representation, or the pretrained network
weights themselves. The latter aims to map the observations and the goal into actions that accomplish
the task. To explicitly express the trajectory representation function, we rewrite the goal-conditioned
policy function as follows:

ât = πθ(f(τobs), g) (1)

where f(·) is an arbitrary function, such as a neural network, that computes representation from τobs.
f(·) can also be an identity mapping such that πθ(·) directly operates on τobs.

We hypothesize that it is beneficial for fϕ to condense the trajectories into a compact representation
using sequence modeling techniques. We also hypothesize that it is desirable to decouple the
trajectory representation learning from policy learning. The decoupling not only offers flexibility on
the choice of representation learning objectives, but also allows us to study the impact of sequence
modeling for trajectory representation learning and policy learning independently. We thus adopt a
two-stage framework with a TrajNet fϕ(·) and a PolicyNet πθ(·). TrajNet aims to learn trajectory
representations with self-supervised sequence modeling objectives, such as masked autoencoding [22]
or next token prediction [36]. PolicyNet aims to obtain a performant policy via supervised learning.

We now describe an overall flow of the two networks, which we will show is general to represent
recently proposed methods. In the first stage, we approach trajectory representation learning as
masked autoencoding. TrajNet receives a trajectory τ and an optional goal g, and is trained to
reconstruct τ from a masked view of the same. Optionally, TrajNet also generates a condensed
trajectory representation B, which can be utilized by PolicyNet for subsequent policy learning:

τ̂ , B = fϕ(Masked(τ), g) (2)

During the second stage, TrajNet is applied on the unmasked observed trajectory – fϕ(τobs, g), to
obtain Bobs. PolicyNet then predicts the action a given τobs (or the current observed state st), the goal
g, and trajectory representation Bobs:

a = πθ(τobs, Bobs, g) (3)

2

Our framework provides a unified view to compare different design choices (e.g. input information,
architecture, training objectives, etc.) for representation learning and policy learning, respectively.
Many existing methods can be seen as special cases of our framework. For example, prior works [30,
44] instantiate TrajNet with a bi-directional Transformer pre-trained via masked prediction, and
re-use it as the PolicyNet in a zero-shot manner. To implement DT [10], f(·) is set as an identity
mapping function of the input trajectory and π(·) is trained to autoregressively generate actions.
These methods learn trajectory representations and the policy jointly, with training objectives inspired
by MAE [22] and GPT [36]. At last, our framework recovers RvS-G/R [14] by having the output of
f(·) in Eq. 1 as the last observed state st from τobs.

Bidirectional Transformer Encoder

Bidirectional Transformer Decoder

Slot tokensHistory States Future Statest

: State or Goal

: Masked State

: Learnable tokens

Stage 1

Trajectory Representation Learning

Goal

TrajNet

MAE-ALL

MAE-RC

MAE-F

MAE-H

AE-H

Masking Patterns

t

Bottleneck

Figure 1: Stage 1 – Trajectory Representation Learning. For notation consistency between the
two stages, we separate the input into observed (history) states and future states. Left: TrajNet. We
input randomly masked history state, goal and slot tokens to the transformer encoder. The decoder
takes in encoded slot tokens (the bottleneck) and a sequence of masked tokens, and reconstruct the
whole trajectory. With this training objective, we encourage the bottleneck to perform predictive
coding, which is conditioned on the goal and history states. Right: All Masking Patterns. TrajNet
can be trained with different masking patterns with their corresponding reconstruction objectives.
The illustration of TrajNet on the left uses “MAE-RC”, which is adopted by GCPC.

2.2 Goal-Conditioned Predictive Coding

We introduce a specific design of the two-stage framework, Goal-Conditioned Predictive Coding
(GCPC), which is inspired by our hypotheses introduced in Section 2.1. To facilitate the transfer of
trajectory representations between the two stages, we compress the trajectory into latent representa-
tions using sequence modeling, which we refer to as the bottleneck. With this design, we train the
bottleneck to perform goal-conditioned future prediction, so that the latent representations encode
future behaviors toward the desired goal, which are subsequently used to guide policy learning.

In the first stage (as shown in Figure 1), we use a bi-directional Transformer as TrajNet. The inputs
include T state tokens, one goal token, and a few learnable slot tokens. The action tokens are ignored.
We first embed the goal token and all state tokens with separate linear encoders, then apply sinusoidal
positional encoding before all inputs are sent into the Transformer Encoder.

While the full trajectories can be used for trajectory representation learning with TrajNet, only
observed states are available during policy learning. For notation consistency, we denote the k
observed states as “history”, and the p states that follow the observed states as “future”. The total
number of input states for stage 1 is T = k+p, and for stage 2 is k. Both k and p are hyperparameters
that represent history window length and future window length, respectively.

To perform goal-conditioned predictive coding, the entire future trajectory is masked. The tokens
in the observed history are randomly masked (Figure 1 “MAE-RC”). The bottleneck is taken as the
encoded slot tokens, which condenses the masked input trajectory into a compact representation. The
decoder takes the bottleneck and T masked tokens as the input, and aims to reconstruct both the history
and the future states. Our intuition is that this will encourage the bottleneck to learn representations
encoding the future trajectory and provide useful signals for decision making. The training objective
of the TrajNet is to minimize MSE loss between the reconstructed and the ground-truth trajectory.

Figure 2 illustrates the interface between the TrajNet and the PolicyNet. PolicyNet is implemented as
a simple MLP network. The trained TrajNet has its weights frozen, and only the TrajNet encoder is

3

Bidirectional Transformer Encoder

Bidirectional Transformer Decoder

Slot tokensHistory States
t

: State, Action, Goal

: Masked State

: Learnable tokens

Stage 1

Trajectory Representation Learning

Stage 2

Policy Learning

Goal

Pre-trained TrajNet

MLP

Bottleneck S

A

Goal

PolicyNet

t

t

Figure 2: Stage 2 – Policy Learning. We implement policy learning with a simple MLP as PolicyNet.
We input unmasked history states and retrieve the bottleneck from pre-trained encoder. Then the
bottleneck is taken as the input to the policy network. We view the bottleneck generated by pre-trained
encoder as goal-conditioned latent representations for the future trajectory.

used to compute the trajectory representation Bobs from k unmasked history states. PolicyNet takes
the current state st, goal g, and bottleneck Bobs as input, and outputs an action. The training objective
of PolicyNet is to minimize MSE loss between the predicted and ground-truth actions.

Discussion. Decoupling trajectory representation learning and policy learning allows us to explore
different model’s inputs and sequence modeling objectives. For example, recent work [2, 35] observed
that the action sequences could potentially be detrimental to the learned policy in some tasks. In
GCPC, we employ state-only trajectories as input and ignore the actions. Different objectives (e.g.
masking patterns in the masked autoencoding objective) also have an impact on what is encoded in
the bottleneck. Here we introduce five sequence modeling objectives for trajectory representation
learning (as shown in Table 1) and study their impacts on policy learning. When using “AE-H” or
“MAE-H”, the bottleneck is only motivated to summarize the history states. When using “MAE-F” or
“MAE-RC”, the bottleneck is asked to perform predictive coding, and thus encode the future state
sequences to achieve the provided goal. By default, we adopt the “MAE-RC” objective in GCPC.

Table 1: Objectives for Trajectory Representation Learning

Input Reconstruct

History Future History Future

AE-H Unmasked – ✓
MAE-H Randomly Masked – ✓
MAE-F Unmasked Fully Masked ✓ ✓
MAE-RC Randomly Masked Fully Masked ✓ ✓
MAE-ALL Randomly Masked Randomly Masked ✓ ✓

Main Results and Conclusions. We design and conduct experiments on the AntMaze, FrankaK-
itchen, and Locomotion environments to answer these questions. We observe that sequence modeling,
if properly designed, can effectively aid decision-making when its resulting trajectory representation
is used as an input for policy learning. We find that there is a discrepancy between the optimal self-
supervised objective for trajectory representation learning, and that for policy learning. Furthermore,
we observe that goal-conditioned predictive coding (GCPC) is the most effective trajectory repre-
sentation learning objective. It enables competitive performance across all benchmarks, particularly
for long-horizon tasks. We attribute the strong empirical performance of GCPC to the acquisition of
goal-conditioned latent representations about the future, which provide crucial guidance for decision
making. To summarize, our main takeaways include: (1) We decouple sequence modeling for
decision making into a two-stage framework, namely trajectory representation learning and policy
learning. It allows us to rigorously understand the impact of individual design choices by providing
a unified view that incorporates many recent RL via supervised learning methods. (2) Through
our principled empirical exploration to understand if and when sequence modeling benefits policy
learning, we discover that goal-conditioned predictive coding (GCPC) serves as the most effective
sequence modeling objective to support policy learning. Our overall framework achieves competitive
performance on AntMaze, FrankaKitchen and Gym Locomotion benchmarks.

4

References
[1] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Belle-

mare. Deep reinforcement learning at the edge of the statistical precipice. In Advances in neural
information processing systems, 2021.

[2] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B. Tenenbaum, Tommi S. Jaakkola, and Pulkit
Agrawal. Is conditional generative modeling all you need for decision making? In International
Conference on Learning Representations, 2023.

[3] Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. In Advances in Neural Information Processing Systems, 2022.

[4] Hangbo Bao, Li Dong, and Furu Wei. Beit: Bert pre-training of image transformers. In
International Conference on Learning Representations, 2022.

[5] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 2013.

[6] Prajjwal Bhargava, Rohan Chitnis, Alborz Geramifard, Shagun Sodhani, and Amy Zhang.
Sequence modeling is a robust contender for offline reinforcement learning. arXiv preprint
arXiv:2305.14550, 2023.

[7] David Brandfonbrener, Alberto Bietti, Jacob Buckman, Romain Laroche, and Joan Bruna.
When does return-conditioned supervised learning work for offline reinforcement learning? In
Advances in Neural Information Processing Systems, 2022.

[8] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In Advances in neural information processing systems, 2020.

[9] Micah Carroll, Orr Paradise, Jessy Lin, Raluca Georgescu, Mingfei Sun, David Bignell,
Stephanie Milani, Katja Hofmann, Matthew Hausknecht, Anca Dragan, and Sam Devlin.
Uni[MASK]: Unified inference in sequential decision problems. In Advances in Neural Infor-
mation Processing Systems, 2022.

[10] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. arXiv preprint arXiv:2106.01345, 2021.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[12] Yiming Ding, Ignasi Clavera, and Pieter Abbeel. Mutual information maximization for robust
plannable representations. arXiv preprint arXiv:2005.08114, 2020.

[13] Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp. Goal-conditioned imitation
learning. In Advances in neural information processing systems, volume 32, 2019.

[14] Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. Rvs: What is
essential for offline RL via supervised learning? In International Conference on Learning
Representations, 2022.

[15] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for
deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[16] Yuwei Fu, Di Wu, and Benoit Boulet. A closer look at offline RL agents. In Advances in Neural
Information Processing Systems, 2022.

[17] Scott Fujimoto and Shixiang Gu. A minimalist approach to offline reinforcement learning. In
Advances in Neural Information Processing Systems, 2021.

5

[18] Hiroki Furuta, Yutaka Matsuo, and Shixiang Shane Gu. Generalized decision transformer for of-
fline hindsight information matching. In International Conference on Learning Representations,
2022.

[19] Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu, Coline Manon Devin, Benjamin
Eysenbach, and Sergey Levine. Learning to reach goals via iterated supervised learning. In
International Conference on Learning Representations, 2021.

[20] Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models. arXiv preprint arXiv:2010.02193, 2020.

[21] Nicklas Hansen, Yixin Lin, Hao Su, Xiaolong Wang, Vikash Kumar, and Aravind Rajeswaran.
Modem: Accelerating visual model-based reinforcement learning with demonstrations. arXiv
preprint arXiv:2212.05698, 2022.

[22] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022.

[23] Joey Hejna, Jensen Gao, and Dorsa Sadigh. Distance weighted supervised learning for offline
interaction data. In Proceedings of the 40th International Conference on Machine Learning,
2023.

[24] Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In Proceedings of the 39th International Conference on Machine
Learning, 2022.

[25] Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big
sequence modeling problem. In Advances in Neural Information Processing Systems, 2021.

[26] Zhengyao jiang, Tianjun Zhang, Michael Janner, Yueying Li, Tim Rocktäschel, Edward Grefen-
stette, and Yuandong Tian. Efficient planning in a compact latent action space. In International
Conference on Learning Representations, 2023.

[27] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. arXiv preprint arXiv:2110.06169, 2021.

[28] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for
offline reinforcement learning. In Advances in Neural Information Processing Systems, 2020.

[29] Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised represen-
tations for reinforcement learning. In International Conference on Machine Learning, pages
5639–5650. PMLR, 2020.

[30] Fangchen Liu, Hao Liu, Aditya Grover, and Pieter Abbeel. Masked autoencoding for scalable
and generalizable decision making. In Advances in Neural Information Processing Systems,
2022.

[31] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings
of the IEEE/CVF international conference on computer vision, 2021.

[32] Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A
universal visual representation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.

[33] Tung D Nguyen, Rui Shu, Tuan Pham, Hung Bui, and Stefano Ermon. Temporal predictive
coding for model-based planning in latent space. In International Conference on Machine
Learning, pages 8130–8139. PMLR, 2021.

[34] Simone Parisi, Aravind Rajeswaran, Senthil Purushwalkam, and Abhinav Gupta. The unsur-
prising effectiveness of pre-trained vision models for control. In International Conference on
Machine Learning, pages 17359–17371. PMLR, 2022.

6

[35] Alexander Pashevich, Cordelia Schmid, and Chen Sun. Episodic Transformer for Vision-and-
Language Navigation. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021.

[36] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

[37] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gómez Colmenarejo, Alexander Novikov,
Gabriel Barth-maron, Mai Giménez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, Tom
Eccles, Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess, Yutian Chen, Raia Hadsell,
Oriol Vinyals, Mahyar Bordbar, and Nando de Freitas. A generalist agent. Transactions on
Machine Learning Research, 2022. Featured Certification.

[38] Machel Reid, Yutaro Yamada, and Shixiang Shane Gu. Can wikipedia help offline reinforcement
learning? arXiv preprint arXiv:2201.12122, 2022.

[39] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In Proceedings of the fourteenth international
conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings,
2011.

[40] Younggyo Seo, Danijar Hafner, Hao Liu, Fangchen Liu, Stephen James, Kimin Lee, and Pieter
Abbeel. Masked world models for visual control. In Conference on Robot Learning, pages
1332–1344. PMLR, 2023.

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, volume 30, 2017.

[42] Kerong Wang, Hanye Zhao, Xufang Luo, Kan Ren, Weinan Zhang, and Dongsheng Li. Boot-
strapped transformer for offline reinforcement learning. In Advances in Neural Information
Processing Systems, 2022.

[43] Jialong Wu, Haixu Wu, Zihan Qiu, Jianmin Wang, and Mingsheng Long. Supported policy
optimization for offline reinforcement learning. In Advances in Neural Information Processing
Systems, 2022.

[44] Philipp Wu, Arjun Majumdar, Kevin Stone, Yixin Lin, Igor Mordatch, Pieter Abbeel, and
Aravind Rajeswaran. Masked trajectory models for prediction, representation, and control. In
International Conference on Machine Learning, 2023.

[45] Tete Xiao, Ilija Radosavovic, Trevor Darrell, and Jitendra Malik. Masked visual pre-training for
motor control. arXiv preprint arXiv:2203.06173, 2022.

[46] Mengjiao Yang and Ofir Nachum. Representation matters: offline pretraining for sequential
decision making. In International Conference on Machine Learning. PMLR, 2021.

[47] Rui Yang, Yiming Lu, Wenzhe Li, Hao Sun, Meng Fang, Yali Du, Xiu Li, Lei Han, and Chongjie
Zhang. Rethinking goal-conditioned supervised learning and its connection to offline RL. In
International Conference on Learning Representations, 2022.

7

A Experiments

In this section, we aim to answer the following questions with empirical experiments: (1) Does
sequence modeling benefit reinforcement learning via supervised learning on trajectory data, and
how? (2) Is it beneficial to decouple trajectory representation learning and policy learning with
bottlenecks? (3) What are the most effective trajectory representation learning objectives?

A.1 Experimental Setup

Figure A1: D4RL environments used in evaluation. From left to right: AntMaze, FrankaKitchen,
Walker 2D, Hopper, and Halfcheetah.
To answer the questions above, we conduct extensive experiments on three domains from D4RL
offline benchmark suite [15]: AntMaze, FrankaKitchen and Gym Locomotion. AntMaze is a class of
long-horizon navigation tasks, featuring partial observability, sparse reward and datasets that consist
primarily of suboptimal trajectories. In this domain, an 8-DoF Ant robot needs to “stitch” parts of
subtrajectories and navigates to a particular goal location in partially observed mazes. In addition
to three mazes from the original D4RL, we also include a larger maze (AntMaze-Ultra) proposed
by [26]. Both large and ultra setup in AntMaze poses significant challenges due to the complex maze
layout and long navigation horizon. FrankaKitchen is a long-horizon manipulation task, in which a
9-DoF Franka robot arm is required to perform 4 subtasks in a simulated kitchen environment (e.g.
open the microwave, turn on the light). In Gym Locomotion, we evaluate our approach on three
continuous control tasks: Walker 2D, Hopper and Halfcheetah. Following [14], we refer to the “goal”
of AntMaze and Kitchen as the target state configuration, and that of Gym as the average return-to-go.

Experimental details. For all benchmarks, we use a two-layer transformer encoder and a one-
layer transformer decoder as the TrajNet, and a two-layer MLP as the PolicyNet (see detailed
hyperparamters in D.3). During policy learning, we use the pre-trained TrajNet that achieves
the lowest validation reconstruction loss to generate the bottleneck. For each evaluation run, we
follow [27] to take the success rate over 100 evaluation trajectories for AntMaze tasks. For Kitchen
and Gym Locomotion, we average returns over 50 and 10 evaluation trajectories, respectively. To
determine the performance with a given random seed, we take the best evaluation result among
the last five checkpoints (see discussion in D.2). For performance aggregation, we report the mean
performance and standard deviation averaged over five seeds for each experiment.

A.2 Impact of Trajectory Representation Pretraining Objectives

0 20 40 60 80
Epochs

0

20

40

60

80

100

N
or

m
al

iz
ed

 S
co

re

AE-H
MAE-H

MAE-F
MAE-RC

MAE-ALL

Figure A2: Policy learning curves
with different pretraining objectives
on Kitchen-Partial.

In the two-stage framework, the pre-trained TrajNet generates
trajectory representations in the form of the bottleneck, which
is taken as an input to PolicyNet. To study the impact of trajec-
tory representation learning objectives on the resulting policy
performance, we implement five different sequence modeling
objectives (as in Table 1) by varying masking patterns in the
first stage pretraining. Table A1 compares the performance
of policies with different settings and pretraining objectives1.
We note that MAE-F is the only effective masking pattern to
perform zero-shot inference. After decoupling representation
learning and policy learning, the MLP policy consistently out-
performs the zero-shot transformer policy. This suggests good
objectives for two stages could be different – by decoupling
we can get the best of both worlds. Also, we observe that
removing action sequences from trajectory representation pre-
training yields performance gains in this task, whereas previous single-stage Transformer policy (e.g.

1For pre-training on AntMaze, when actions (i.e. the torque applied on joints) are considered, the full state
space is reconstructed; when state-only trajectories are used, we reconstruct only the locations of the agent.

8

[10]) usually requires action inputs to function, which further demonstrates the flexibility of our
decoupled framework. With properly designed objectives, sequence modeling can generate powerful
trajectory representations that facilitate the acquisition of performant policies. In both Table A1
and Figure A2, we observe that both MAE-F and MAE-RC outperform the other objectives in both
AntMaze-Large and Kitchen-Partial, confirming the importance of the predictive coding objective for
trajectory representation learning.

Table A1: Comparison of trajectory representation pretraining objectives. We evaluate five
different objectives under three settings on large AntMaze environment: (1) Zero-shot: When actions
are considered as part of the masked tokens, the pretrained TrajNet can be directly utilized as the
policy; (2) Two-stage (w/o actions): Two-stage framework employs an MLP as PolicyNet, with
state-only trajectories as the input to TrajNet. (3) Two-stage (w/ actions): Two-stage framework
employs an MLP as PolicyNet, with state-action trajectories as the input to TrajNet.

Large-Play AE-H MAE-H MAE-F MAE-RC MAE-ALL

Zero-shot - 0 21.2 ± 17.1 0 0
Two-stage (w/ actions) 12.6 ± 4.7 6.4 ± 3.8 57.2 ± 5.5 62.0 ± 10.7 11.6 ± 6.3

Two-stage (w/o actions) 30.2 ± 6.6 36.6 ± 12.6 76.2 ± 4.0 78.2 ± 3.2 32.0 ± 13.2

A.3 The Role of Goal Conditioning in Trajectory Representation Pretraining

0 20 40 60

0.4

0.6

0.8

1.0

1.2

Va
lid

at
io

n
M

SE

Large-Diverse

0 20 40 60

0.0050

0.0075

0.0100

0.0125

0.0150

Kitchen-Mixed

0 20 40 60

0.50

0.55

0.60

0.65

Hopper-Medium-Replay w/ GC
w/o GC

Figure A3: Reconstruction loss on the validation set during the trajectory representation learning
stage, when MAE-F objective is used. “GC” refers to goal conditioning in TrajNet.
We also investigate whether goal conditioning (i.e. the goal input) in TrajNet is necessary or beneficial
for learning trajectory representations. In Table A2, we observe that the objectives without performing
future prediction is insensitive to the goal conditioning. For example, the results of AE-H and MAE-
H pretraining objectives align with the intuition that merely summarizing the history should not
require the goal information. However, goal conditioning is crucial for predictive coding objectives
(e.g. MAE-F and MAE-RC). Removing the goal from TrajNet might result in aimless prediction
and misleading future representations, which thus harm the policy. Figure A3 shows the curves of
validation loss during pretraining with MAE-F objective. We observe that goal conditioning reduces
the prediction error and helps the bottleneck properly encode the expected long-term future, which
would benefit the subsequent policy learning. One hypothesis is that specifying the goal enables
the bottleneck to perform goal-conditioned implicit planning. The planned future may provide the
correct waypoints for the agent to reach the distant goal. Figure A4 illustrates a qualitative result of
the latent future in AntMaze, which depicts the future states decoded from the bottleneck using the
pre-trained Transformer decoder. It demonstrates that the latent future with goal conditioning helps
point out the correct direction towards the target location.

A.4 Latent Future versus Explicit Future as Policy Conditioning Variables

Prior work [25, 24] has demonstrated that planning into the future is helpful for solving long-horizon
tasks. These work performs planning on the explicit future by sampling desirable future states (or
transitions), while GCPC leverages goal-conditioned latent representations that encode the future state
sequence. In this experiment, we examine how the implicit encoding of future information affects
policy performance when it serves as a conditioning variable of PolicyNet. Specifically, we obtain the
bottleneck from a TrajNet, which is pre-trained with p-length future window. The bottleneck encodes

9

Table A2: Ablation study of goal conditioning on AntMaze-Large. Removing the goal conditioning
from TrajNet would seriously affect predictive coding objectives and harm the resulting policy
performance, suggesting that the properly encoded future representation provides crucial guidance
for performing long-horizon tasks. “GC” refers to goal conditioning in TrajNet.

Large-Play AE-H MAE-H MAE-F MAE-RC MAE-ALL

w/o GC 32.8 ± 4.3 33.2 ± 11.9 10.0 ± 2.2 16.0 ± 5.3 36.2 ± 10.4

w/ GC 30.2 ± 6.6 36.6 ± 12.6 76.2 ± 4.0 78.2 ± 3.2 32.0 ± 13.2

Goal Location

Agent Location

Latent Future for Timestep t (w/ Goal)

Timestep t

Evaluation

Latent Future for Timestep t (w/o Goal)

Figure A4: Latent future visualization on AntMaze-Large. A qualitative result comparing the
latent future with and without goal conditioning. Given the goal information, the bottleneck can
encode the latent future moving in the desired direction.

latent representations of p future states. Correspondingly, we acquire the same number of explicit
future states using the pre-trained transformer decoder (see Appendix D.4). Either the bottleneck or
explicit future states are taken as auxiliary inputs to the PolicyNet. In Table A3, we evaluate the policy
with p = 70 in large AntMaze and p = 30 in Kitchen. The results illustrate that the bottleneck is a
powerful future information carrier that effectively improves the policy performance. Different from
previous approaches that estimate explicit future states with step-by-step dynamics models [25], using
latent future representations can mitigate compounding rollout errors. Compared to diffusion-based
planning methods [2], which require iterative refinement to obtain a future sequence, latent future
avoids the time-consuming denoising step and reduces the decision latency.

Table A3: Comparison between latent and explicit future. Compared to explicit future states, the
latent future encoded by the bottleneck is more effective for policy learning. p is future window size.

Large-Play Large-Diverse Kitchen-Mixed Kitchen-Partial

p = 70 p = 30

Explicit Future 67.9 ± 9.3 70.0 ± 4.6 72.4 ± 4.5 73.9 ± 9.3

Latent Future 78.2 ± 3.2 80.6 ± 3.9 75.6 ± 0.8 90.2 ± 6.6

A.5 Effectiveness of GCPC

Finally, we show the effectiveness of GCPC by evaluating it on three different domains: AntMaze,
Kitchen and Gym Locomotion.

Baselines and prior methods. We compare our approach to both supervised learning methods
and value-based RL methods. For the former, we consider: (1) Behavioral Cloning (BC), (2) RvS-
R/G [14], a conditional imitation learning method that is conditioned on either a target state or an
expected return. (3) Decision Transformer (DT) [10], a return-conditioned model-free method that
learns a transformer-based policy, (3) Trajectory Transformer (TT) [25], a model-based method
that performs beam search on a transformer-based trajectory model for planning, and (4) Decision

10

Table A4: Average normalized scores of GCPC against other baselines on AntMaze. TAP’s perfor-
mances are taken from the original paper [26]. For other baselines, we obtain their performance by
re-running author-provided or our replicated implementations with our evaluation protocol. Follow-
ing [27], we bold all scores within 5 percent of the maximum per task (≥ 0.95 · max).

Dataset BC CQL IQL DT TAP WGCSL GCIQL DWSL RvS-G GCPC

Umaze 63.4 ± 9.4 88.2 ± 2.3 92.8 ± 3.4 55.6 ± 6.3 - 90.8 ± 2.8 91.6 ± 4.0 71.2 ± 4.2 70.4 ± 4.0 71.2 ± 1.3

Umaze-Diverse 63.4 ± 4.4 47.4 ± 2.0 71.2 ± 7.0 53.4 ± 8.6 - 55.6 ± 15.7 88.8 ± 2.2 74.6 ± 2.8 66.2 ± 5.6 71.2 ± 6.6

Medium-Play 0.6 ± 0.5 72.8 ± 5.7 75.8 ± 1.3 0 78.0 63.2 ± 13.7 82.6 ± 5.4 77.6 ± 3.0 71.8 ± 4.7 70.8 ± 3.4

Medium-Diverse 0.4 ± 0.5 70.8 ± 10.3 76.6 ± 4.2 0 85.0 46.0 ± 12.6 76.2 ± 6.3 74.8 ± 9.3 72.0 ± 3.7 72.2 ± 3.4

Large-Play 0 36.4 ± 10.3 50.0 ± 9.7 0 74.0 0.6 ± 1.3 40.0 ± 16.2 15.2 ± 7.7 35.6 ± 7.6 78.2 ± 3.2
Large-Diverse 0 36.0 ± 8.3 52.6 ± 5.9 0 82.0 2.4 ± 4.3 29.8 ± 6.8 19.0 ± 2.8 25.2 ± 4.8 80.6 ± 3.9
Ultra-Play 0 18.0 ± 13.3 21.2 ± 7.5 0 22.0 0.2 ± 0.4 20.6 ± 7.6 25.2 ± 3.0 25.6 ± 6.7 56.6 ± 9.5
Ultra-Diverse 0 9.6 ± 14.6 17.8 ± 4.0 0 26.0 0 28.4 ± 11.8 25.0 ± 8.6 26.4 ± 7.7 54.6 ± 10.3

Average 16.0 47.4 57.3 13.6 - 32.4 57.3 47.8 49.2 69.4

Diffuser (DD) [2], a diffusion-based planning method that synthesizes future states with a diffusion
model and acts by computing the inverse dynamics. For the latter, we select methods based on
dynamic programming, including (5) CQL [28] and (6) IQL [27]. Additionally, we include three
goal (state)-conditioned baselines for AntMaze and Kitchen: (7) Goal-conditioned IQL (GCIQL), (8)
WGCSL [47] and (9) DWSL [23]. AntMaze-Ultra is a customized environment proposed by [26],
therefore we include TAP’s performance on the v0 version of AntMaze for completeness. When
feasible, we re-run the baselines with our evaluation protocol for fair comparison [1].

Our empirical results on AntMaze and Kitchen are presented in Table A4 and Table A5. We find our
methods outperform all previous methods on the average performance. In particular, on the most
challenging large and ultra AntMaze environments, our method achieves significant improvements
over the RvS-G baseline, demonstrating the efficacy of learning good future representations using
sequence modeling in long-horizon tasks. Table A6 shows the results on Gym Locomotion tasks.
Our approach obtains competitive performance as prior methods. We also notice that compared to
Decision Transformer, RvS-R can already achieve strong average performance. This suggests that for
some tasks sequence modeling may not be a necessary component for policy improvement. With a
large fraction of near-optimal trajectories in the dataset, a simple MLP policy may provide enough
capacity to handle most of the locomotion tasks.

Table A5: Average normalized scores of GCPC against other baselines on Kitchen. CQL and
DD’s results are taken from [2]. For other baselines, we obtain their performance by re-running
author-provided or our replicated implementations with our evaluation protocol. Following [27], we
bold all scores within 5 percent of the maximum per task (≥ 0.95 · max).

Dataset BC CQL IQL DT DD WGCSL GCIQL DWSL RvS-G GCPC

Mixed 48.9 ± 0.7 52.4 53.2 ± 1.6 50.7 ± 7.1 65.0 77.8 ± 3.6 74.6 ± 1.9 74.6 ± 0.6 69.4 ± 4.2 75.6 ± 0.8
Partial 41.3 ± 3.7 50.1 59.7 ± 8.3 48.6 ± 9.5 57.0 75.2 ± 6.4 74.7 ± 4.1 74.0 ± 5.8 71.7 ± 7.9 90.2 ± 6.6

Average 45.1 51.3 56.5 49.7 61.0 76.5 74.7 74.3 70.6 82.9

Table A6: Average normalized scores of our approach against other baselines on Gym Locomotion.
TT and DD’s results are taken from [2]. For other baselines, we obtain their performance by re-running
author-provided or our replicated implementations with our evaluation protocol. Following [27], we
bold all scores within 5 percent of the maximum per task (≥ 0.95 · max).

Dataset Environment BC CQL IQL DT TT DD RvS-R GCPC

Medium-Expert HalfCheetah 61.9 ± 5.8 87.7 ± 7.0 92.4 ± 0.4 88.8 ± 2.6 95 90.6 93.4 ± 0.3 94.0 ± 0.9
Medium-Expert Hopper 55.1 ± 2.8 110.5 ± 2.9 104.2 ± 8.7 108.4 ± 2.0 110 111.8 111.3 ± 0.2 111.7 ± 0.4
Medium-Expert Walker2d 100.4 ± 13.4 110.4 ± 0.6 110.2 ± 0.7 108.6 ± 0.3 101.9 108.8 109.6 ± 0.4 109.0 ± 0.2

Medium HalfCheetah 43.0 ± 0.4 47.1 ± 0.3 47.7 ± 0.2 42.9 ± 0.2 46.9 49.1 44.2 ± 0.2 44.5 ± 0.5

Medium Hopper 55.8 ± 2.8 70.1 ± 1.6 69.2 ± 3.2 67.8 ± 4.2 61.1 79.3 65.1 ± 5.2 68.0 ± 4.4

Medium Walker2d 74.1 ± 3.2 83.5 ± 0.5 84.5 ± 1.5 76.5 ± 1.6 79 82.5 78.4 ± 2.6 78.0 ± 2.4

Medium-Replay HalfCheetah 37.2 ± 1.3 45.4 ± 0.3 44.9 ± 0.3 37.8 ± 0.9 41.9 39.3 40.2 ± 0.2 40.7 ± 1.5

Medium-Replay Hopper 33.7 ± 8.5 96.2 ± 1.9 93.9 ± 9.1 78.0 ± 11.6 91.5 100 88.5 ± 12.9 94.2 ± 3.5

Medium-Replay Walker2d 19.2 ± 7.3 79.8 ± 1.6 78.6 ± 5.7 72.5 ± 3.3 82.6 75 71.0 ± 5.1 77.6 ± 9.8

Average 53.4 81.2 80.6 75.7 78.9 81.8 78.0 79.7

11

B Limitations and Future work
GCPC models the future by performing maximum likelihood estimation on offline collected trajecto-
ries, which may predict overly optimistic future behaviors and lead to suboptimal actions in stochastic
environments. Future work includes discovering policies that are robust to the environment stochas-
ticity by considering multiple possible futures generated by GCPC. Another limitation of our work
is that GCPC may not be sufficient to maintain high accuracy for long-term future prediction when
high-dimensional states are involved, which may potentially be tackled by leveraging foundation
models to acquire representations for high-dimensional inputs.

C Related Work
What is essential for Offline RL? Offline reinforcement learning aims to obtain effective policies by
leveraging previously collected datasets. Prior work usually adopts dynamic programming [28, 27, 17]
or supervised behavioral cloning (BC) methods [39, 3]. Recent approaches [10, 25] demonstrate the
effectiveness of solving decision making tasks with sequence modeling, whereas RvS [14] establishes
a strong MLP baseline for conditional behavioral cloning. To further understand what are the essential
components for policy learning, researchers have investigated the assumptions required to guarantee
the optimality of return-conditioned supervised learning [7], and examined offline RL agents from
three fundamental aspects: representations, value functions, and policies [16]. Another concurrent
work [6] compares the preferred conditions (e.g. data, task, and environments) to perform Q-learning
and imitation learning. In our work, we seek to understand how sequence modeling may benefit
offline RL and study the impacts of different sequence modeling objectives.

Transformer for sequential decision-making. Sequential decision making has been the subject
of extensive research over the years. The tremendous success of the Transformer model for natural
language processing [11, 36] and computer vision [22, 31] has inspired numerous works that seek
to apply such architectures for decision making, and similarly motivates our work. Prior work has
shown how to model sequential decision making as autoregressive sequence generation problem to
produce a desired trajectory [10], while others have explored the applications of Transformer for
model-based RL [25, 42] and multi-task learning [37, 9]. Our work aims to utilize Transformer-based
models to learn good trajectory representations that can benefit policy learning.

Masked Autoencoding. Recent work in NLP and CV has demonstrated masked autoencoding
(MAE) as an effective task for self-supervised representation learning [11, 8, 4, 22]. Inspired by
this, Uni[MASK] [9], MaskDP [30], and MTM [44] propose to train unified masked autoencoders
on trajectory data by randomly masking the states and actions to be reconstructed. These models
can be directly used to solve a range of decision making tasks (e.g. return-conditioned BC, forward
dynamics, inverse dynamics, etc.) by varying the masking patterns at inference time, without relying
on task-specific fine-tuning. In contrast, we decouple trajectory representation learning and policy
learning into two stages. Unlike approaches which perform value-based offline RL (e.g. TD3,
Actor-Critic) after pretraining [30, 44], our policy learning stage adopts imitation learning setup
where the policy can be learned without maximizing cumulative reward.

Self-supervised Learning for RL. Self-supervised learning has emerged as a powerful approach for
learning useful representations in various domains, including reinforcement learning (RL). In RL,
self-supervised learning techniques aim to leverage unlabeled or partially observed data to pre-train
agents or learn representations that facilitate downstream RL tasks. Prior work mainly focuses on
using self-supervised learning to get state representations [46, 34, 32, 45, 10, 30, 9, 44, 29] or world
models [20, 21, 40, 25, 12, 33]. In [46], the authors evaluate a broad set of state representation
learning objectives on offline datasets and demonstrate the effectiveness of contrastive self-prediction.
In this work, we investigate representation learning objectives in trajectory-space with the sequence
modeling tool, which enables us to explore the impact of different modalities (e.g. states, actions,
goals, etc.) on trajectory representation learning.

D Experimental Details

D.1 Additional Baseline Details

We provide additional information on the baseline methods and their performance we present in
the main paper. We compare our proposed method with (1) supervised learning methods, including

12

Behavioral Cloning (BC), RvS, Decision Transformer (DT), Trajectory Transformer (TT), and
Decision Diffuser (DD). We also compare with (2) value-based methods, including Conservative
Q-Learning (CQL) and Implicit Q-Learning (IQL). DT uses a transformer encoder to model offline-
RL as an autoregressive sequence generation problem in a model-free way, which predicts future
actions based on previous states, actions, and returns-to-go. Similarly, The model-based TT also
adopts transformer structure for sequence prediction but uses beam search for planning during
execution. Inspired by conditional generative model, DD adopts a diffusion model to sample future
state sequence based on returns or constraints and extract actions between the states by using a
inverse dynamics model with relyng on value estimation. Similar to our PolicyNet, RvS-G and
RvS-R take the current state and the goal (return or state) as input, and train a two-layer MLP to
predict the actions via supervised learning. For value-based methods, in order to solve the problem
of overestimating values induced by distributional shift, CQL adds value regularization terms to the
standard Bellman error objective to learn a lower bound of the true Q-function. IQL approximates the
policy improvement step implicitly instead of updating the Q-function with target actions sampled
from the behavior policy. For the additional goal (state)-conditioned baselines, GCIQL is a goal-
conditioned version of IQL. WGCSL enhances GCSL with an advanced compound weight, which
optimizes the lower-bound of the goal-conditioned RL objective. DWSL first models the distance
between states and the goal, and extracts the policy by imitating the actions that reduce the minimum
distance metric.

Baseline Performance Source. For AntMaze, we use v2 version for D4RL environments and v0
version for the additional AntMaze-Ultra environments. For Gym Locomotion and Kitchen, we use
v2 and v0 version of the datasets from the D4RL benchmark, respectively. For all baselines except TT,
DD and TAP, we obtain their performance by re-running author-provided (CQL, IQL, DT, WGCSL,
GCIQL, DWSL) or our replicated (BC, RvS-G/R) implementations with our evaluation protocol. For
CQL’s performance on Kitchen, we are unable to reproduce the previously reported performance
with the default hyperparameters, so we take the corresponding results from [2]. For additional
goal (state)-conditioned baselines (i.e. WGCSL, GCIQL and DWSL), we take the implementations
provided by DWSL authors2, and use the same goal specification (see details in D.6) for AntMaze and
Kitchen as ours. For TT, DD and TAP’s performance, we take the results from the original papers.

D.2 Evaluation Protocol

Many prior work [43, 17] reports their performance by taking the final checkpoint’s evaluation results
and averaging them over multiple seeds. However, in some cases we observe that this evaluation
protocol can lead to large oscillations in the policy performance when gradient steps (or training
epochs) are slightly perturbed or the random seeds are changed (as in Figure A5). As different
methods may use various number of training steps, seeds and evaluation trajectories, it hampers
drawing robust conclusions by comparing these results. To faithfully capture the performance trend,
which is crucial for ablation analysis, for each seed we take the best evaluation result among the
last five checkpoints as its performance, where each evaluation result is the average return over N
evaluation trajectories (e.g. N = 10, 50, 100) achieved by a given checkpoint, and then we calculate
the mean performance and standard deviation over five seeds. Empirically we find this evaluation
protocol yields results that are less sensitive to the above factors and usually have smaller error
bounds, facilitating the comparisons in ablation studies. Meanwhile, we observe that in some cases
this evaluation protocol might lead to results that are higher than those reported in previous papers,
especially when the policy has more drastic performance fluctuations during training. We re-run most
baselines using the same evaluation protocol for fair comparisons.

To investigate the impact of different aggregation metrics, we follow [1] to compare performance
aggregation using mean, median, IQM and optimality gap on the AntMaze tasks. In Figure A6, we
observe that GCPC consistently outperforms compared baselines across all metrics.

Apart from model-free policies, it also remains unclear whether or how the results of planning-based
methods [2, 25] would be affected by the choice of evaluation protocol. We leave adopting more
reliable and robust evaluation approaches for comprehensive analysis to the future work.

2https://github.com/jhejna/dwsl/

13

70k

0

20

40

60

80

N
or

m
al

iz
ed

 S
co

re

Antmaze-Large

GCPC

80k

0

20

40

Antmaze-Large

DWSL
GCIQL

1M
0

25

50

75

100

125
Hopper-Medium-Expert

CQL

Figure A5: Training curves of different methods with various default gradient steps

0 20 40 60
GCPC
RvS-G
DWSL
GCIQL

CQL
BC

Median

20 40 60

IQM

15 30 45 60

Mean

10 20 30

Optimality Gap

Normalized Score

Figure A6: Different aggregation metrics with 95% confidence intervals on AntMaze tasks.

D.3 Hyperparameter

We list hyperparameters for BC and RvS-G/R replication in Table A7 and GCPC implementation
in Table A8. For RvS-G/R and PolicyNet in GCPC, we use a two-layer feedforward MLP as the
policy network, taking the current state and goal (state or return-to-go) as input, the only difference is
that PolicyNet takes the bottleneck as an additional input. All experiments are performed on a single
Nvidia RTX A5000.

Table A7: Replicated BC and RvS-G/R Hyperparameter

Hyperparameters Value

Hidden Layers 2
Embedding Dim 1024
Nonlinearity ReLU
Epochs 80 AntMaze, Kitchen

100 Gym Locomotion
Batch Size 1024 AntMaze, Gym Locomotion

256 Kitchen
Dropout 0
Optimizer Adam
Learning Rate 1e-3

D.4 Explicit future

Existing methods, like TT and DD, utilize future information by sampling future states (or transitions)
and planning on the explicit future. TT learns a world model that autoregressively generates states,
actions, rewards and return-to-go estimates, then uses beam search to select future trajectories
with highest cumulative rewards. DD leverages the diffusion process with classifier-free guidance to
generate future states that satisfy reward maximization or other constraints, and uses inverse dynamics
to extract actions between future states.

14

Table A8: GCPC Hyperparameter

Hyperparameters Values

Optimizer Adam

TrajNet Encoder Layers 2
(Bidirectional Transformer) Decoder Layers 1

Attention Heads 4
Embedding Dim 256
Nonlinearity GELU
Slot Tokens 4
(History Window k, Future Window p) (10, 70) AntMaze

(5, 30) Kitchen
(5, 20) Locomotion

Epochs 60 AntMaze, Locomotion
20 Kitchen

Batch Size 1024
Dropout 0.1
Learning Rate 1e-4

PolicyNet Hidden Layers 2
(Multi-Layer Perceptron) Embedding Dim 1024

Nonlinearity ReLU
Epochs 80 AntMaze, Kitchen

100 Gym Locomotion
Batch Size 1024 AntMaze, Gym Locomotion

256 Kitchen
Dropout 0
Learning Rate 1e-3 AntMaze, Gym Locomotion

1e-4 Kitchen

In GCPC, we compress the goal-conditioned future into latent representations and use them to
support policy learning. In Section 4.4, we study the effect of explicitly leveraging the decoded
future states. We adapt our framework as follows: During the policy learning and evaluation, we
first freeze transformer encoder and decoder trained in the first stage. Instead of directly passing the
encoded bottlenecks to the PolicyNet, we leverage the pre-trained transformer decoder to decode the
bottleneck into goal-conditioned futures. The new PolicyNet is modified to take the observed states,
the goal, and the concatenation of the decoded future states. The bottleneck is discarded and not used
by the modified PolicyNet.

D.5 Future window length

We further investigate the effect of future window length on policy performance, which decides how
far the bottleneck can look into the future during the first stage pretraining. In Table A9, we show that
predicting further future would generally bring bigger improvements in AntMaze-Large, emphasizing
that planning into long-term future can largely benefit policy performance. We also observe that the
improvements brought by enlarging future window are specific to both datasets and the range of
future window length. The improvements become marginal once the future window expands beyond
a certain size.

Table A9: Future window length. In AntMaze-Large, the farther into the future can the bottleneck
see during trajectory representation pre-training, the more helpful they are for policy learning.

Future window length p 20 40 70

Large-Diverse 62.4 ± 5.6 78.2 ± 4.8 80.6 ± 3.9

Large-Play 49.6 ± 6.7 76.6 ± 5.0 78.2 ± 3.2

Average 56.0 77.4 79.4

15

D.6 Goal Sampling and Specification

To perform goal-conditioned imitation learning, we follow [14] to sample an outcome from the
future trajectory τt:H as the goal. When the goal is in the form of a target state (e.g. in AntMaze
and Kitchen tasks), we randomly sample a reachable future state from {si}Hi=t+1 and keeps the
task-related subspace as g. Specifically, for AntMaze we take the ant’s (x, y) location as the goal,
which are the first two dimensions of the state space; for Kitchen’s goal, we keep the dimensions
that indicate the position of the target object in all 7 subtasks and zero out other dimensions (e.g.
dimensions that indicate the robot proprioceptive state) in the 30-dimensional state space3. When the
goal is represented as the expected return-to-go (e.g. in Gym Locomotion tasks), we use the average
return achieved over some number of timesteps into the future as g (i.e. g = 1

H−t+1

∑H
i=t ri, where

we follow [14] to set H to the constant maximum episode length).

E Pseudocode of GCPC

Algorithm 1 Goal-conditioned Predictive Coding (GCPC) for RvS
1: Input: Dataset of trajectories D = {τ}, History window length k, Future window length p,

Masking ratio r, Bi-directional transformer encoder henc, Bi-directional transformer decoder hdec,
Learnable slot tokens Q, Policy network π

2: while First Stage do
3: Sample a trajectory and a timestep: τ = {(si, ai)}Hi=1 ∼ D, t ∼ [k,H]
4: Sample a goal g, obtain observed states and full states: sh = st−k+1:t, sw = st−k+1:t+p

5: Randomly mask observed states with masking ratio r: smh = Masked(sh, r)
6: Encode masked observed states, goal and learnable slot tokens: B = henc(Q, smh , g)
7: Reconstruct observed and future states with the bottleneck B: ŝw = hdec(B)
8: Compute loss: L = MSE(ŝw, sw)
9: Update parameters in henc and hdec

10: end while
11: Freeze parameters in henc
12: while Second Stage do
13: Sample a trajectory and a timestep: τ = {(si, ai)}Hi=1 ∼ D, t ∼ [k,H]
14: Sample a goal g, obtain observed states: sh = st−k+1:t

15: Encode observed states, goal and learnable slot tokens: Bobs = henc(Q, sh, g)
16: Train the policy network π with the bottleneck Bobs: ât = π(Bobs, st, g)
17: Compute loss: L = MSE(ât, at)
18: Update parameters in π
19: end while
20: return Policy network π

F Pre-training mask ratio

In the first stage of GCPC, we randomly mask history states with a masking ratio r. We compare
using fixed masking ratios (20%, 40%, 80%) and dynamic masking ratio “D” uniformly sampled
from 0%, 20%, 40%, 60% and 80%. Figure A7 shows the influence of different masking ratios on
AntMaze and FrankaKitchen. We found that low masking ratios (e.g. 20%) would usually perform
worse except on the Kitchen-Mixed dataset, and a high masking ratio (80%) turns out to be more
effective, which is similar to the observation in MAE [22]. However, the optimal masking ratio is not
consistent across environments. In order to achieve the best overall performance, we adopt dynamic
masking ratio “D” in our implementation.

3In the Kitchen experiments, we found it important to zero-out redundant dimensions, such as robot
proprioceptive dimensions, when specifying the task goal for goal (state)-conditioned methods. We use this
specification for all goal (state)-conditioned methods.

16

0.2 0.4 0.8 D
Mask Ratio

50

55

60

65

70

75

80

85

90

N
or

m
al

iz
ed

 S
co

re

Large-Diverse
Large-Play

0.2 0.4 0.8 D
Mask Ratio

70

75

80

85

90

95

100

N
or

m
al

iz
ed

 S
co

re

Kitchen-Mixed
Kitchen-Partial

Figure A7: Mask ratio ablation on AntMaze and FrankaKitchen. “D” refers to dynamic mask ratio
randomly drawn from 0%, 20%, 40%, 60% and 80%

G Additional Experiments on FrankaKitchen

In Table A10, we present how different pretraining objectives affect policy performance on the
FrankaKitchen benchmark. MAE-F and MAE-RC are the only valid objectives in zero-shot setting.
In two-stage setting, we observe that action inputs would generally cause larger variance and harm
the performance of two predictive coding objectives. Similar to our observations on AntMaze,
predictive coding objectives can consistently generate powerful trajectory representations, which
yield performance gains on Kitchen tasks.

Table A10: Objective Ablation on Kitchen-Partial. We report mean and standard error over 5
seeds.

Kitchen-Partial AE-H MAE-H MAE-F MAE-RC MAE-ALL

Zero-shot – 0 4.4 ± 9.8 4.4 ± 6.5 0
Two-stage (w/ actions) 76.9 ± 23.9 73.6 ± 16.6 86.4 ± 12.5 80.4 ± 18.0 66.8 ± 14.5

Two-stage (w/o actions) 66.4 ± 5.9 72.7 ± 7.0 92.5 ± 4.9 90.2 ± 6.6 68.0 ± 4.9

H Visualizing the Latent Future

In this section, we visualize the latent future by decoding the bottlenecks back into the state space
using the pre-trained decoder. We visualize the currently observed state and the decoded future states
inside the maze environment. Figure A8 includes two examples extracted from successful evaluation
rollouts. The blue part on the left shows the actual position of the agent at a certain timestep st during
the evaluation and the green part on the right is the latent future predicted based on history states
s≤t and the goal g. We find in the latent future, the agent gradually move towards the goal, which
demonstrates that bottlenecks can encode meaningful future trajectories that provide the correct
waypoints as subgoals and bring the agent from the current location to the final goal.

Figure A9 illustrates how latent future vary depending on different goal conditions for the same
current state. By specifying different goals, the latent future would change correspondingly and point
out the right direction for the agent. These visualizations suggest that the bottlenecks have the ability
to provide the correct intermediate waypoints based on history states and the goal, which is crucial
for long-horizon goal-reaching tasks. In the second example of Figure A9, multiple paths connect the
agent and the goal, but bottlenecks encode the shortest one for the agent, which also demonstrates the
bottleneck’s ability to stitch sub-optimal trajectories and compose the optimal path.

In Section 4.3, we found that removing the goal from TrajNet input would seriously harm the perfor-
mance on large AntMaze. In Figure A10, we visualize the latent future without goal conditioning.
In both examples, bottlenecks encode latent futures that either move in the opposite direction to the
goal or enter a dead end and cause tasks to fail. It again demonstrates that the quality of the encoded

17

Goal 2 Location

Agent Location

Goal 1 Location

Timestep t1

Evaluation
Latent Future for Timestep t1 (w/ Goal 1)

Timestep t2

Evaluation
Latent Future for Timestep t2 (w/ Goal 2)

Figure A8: Two latent future examples from successful rollouts. Latent future shows the right path to
the goal.

Timestep t

Evaluation

Goal 4 Location

Agent Location

Latent Future for Timestep t (w/ Goal 3)

Goal 3 Location

Latent Future for Timestep t (w/ Goal 4)

Figure A9: Latent future conditioned on different goals in large AntMaze.

18

future would significantly affect how policy performs, and providing goal information can prevent
misleading future.

Goal 4 Location

Agent Location

Goal 3 Location

Timestep t3

Evaluation
Latent Future for Timestep t3 (w/o Goal 3)

Timestep t4

Evaluation
Latent Future for Timestep t4 (w/o Goal 4)

Figure A10: Failure cases after removing goal from TrajNet input. Latent future without goal
conditioning would mislead the agent.

I Slot tokens ablation

Table A11 shows how changing the number of slot tokens would affect policy performance on large
AntMaze. We observed that using different numbers of slot tokens would not have big impacts on the
performance. In our implementation, we uniformly use 4 slot tokens for both trajectory representation
learning and policy learning.

Table A11: The number of slot tokens. We report mean and standard error over 3 seeds.

Slot Tokens 1 2 4

Large-Diverse 80.6 ± 3.5 77.2 ± 4.9 80.6 ± 3.9

Large-Play 81.2 ± 4.4 78.8 ± 4.7 78.2 ± 3.2

Acknowledgments and Disclosure of Funding

We appreciate all anonymous reviewers for their constructive feedback. We would like to thank
Calvin Luo and Haotian Fu for their discussions and insights, and Tian Yun for the help on this
project. This work is in part supported by Adobe, Honda Research Institute, Meta AI, Samsung
Advanced Institute of Technology, and a Richard B. Salomon Faculty Research Award for C.S.

19

	Introduction
	Approach Overview
	Decoupled Trajectory Representation and Policy Learning
	Goal-Conditioned Predictive Coding

	Experiments
	Experimental Setup
	Impact of Trajectory Representation Pretraining Objectives
	The Role of Goal Conditioning in Trajectory Representation Pretraining
	Latent Future versus Explicit Future as Policy Conditioning Variables
	Effectiveness of GCPC

	Limitations and Future work
	Related Work
	Experimental Details
	Additional Baseline Details
	Evaluation Protocol
	Hyperparameter
	Explicit future
	Future window length
	Goal Sampling and Specification

	Pseudocode of GCPC
	Pre-training mask ratio
	Additional Experiments on FrankaKitchen
	Visualizing the Latent Future
	Slot tokens ablation

