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Abstract

Docking is a crucial component in drug discovery aimed at predicting the binding
conformation and affinity between small molecules and target proteins. ML-based
docking has recently emerged as a prominent approach, outpacing traditional
methods like DOCK and AutoDock Vina in handling the growing scale and com-
plexity of molecular libraries. However, the availability of comprehensive and
user-friendly datasets for training and benchmarking ML-based docking algorithms
remains limited. Moreover, existing datasets rely on proteins with experimentally
determined structures and known ligand binding pockets, making them unusable
for the growing number of proteins with only predicted structures. We introduce
Smiles2Dock, an open large-scale dataset for molecular docking that addresses this
gap. We created a framework combining P2Rank for binding pocket prediction
and AutoDock Vina for docking, enabling us to dock 1.7 million ligands from the
ChEMBL database against 11 genetically validated proteins from AlphaFold, re-
sulting in over 17 million protein-ligand binding scores. Since AlphaFold-predicted
structures do not include known ligand binding sites, our use of P2Rank allows
docking to be performed without any experimental structure information, a first
at this scale. The dataset encompasses a diverse set of biologically relevant com-
pounds and enables researchers to benchmark all major approaches for ML-based
docking such as Graph, Transformer, and CNN-based methods. We also introduce
a novel Transformer-based architecture for docking score prediction and set it as
an initial benchmark for our dataset.

Introduction

Molecular docking is a computational technique used to predict how a small molecule binds to a
protein target [30]. By estimating the ligand’s position and orientation within the binding site, docking
helps assess how well a compound might interact with and modulate the protein’s function [31]].
Traditional molecular docking methods use scoring functions designed to estimate how strong the
interaction is between a protein and a ligand based on their 3D arrangement. These scoring functions
are based on physical and chemical principles that estimate binding strength from a predicted 3D
pose of the ligand in the protein. On the other hand, docking score predictors are Machine Learning
(ML) models that learn to predict docking scores directly from molecular graphs or sequences.

Traditional docking

Docking is widely used in drug discovery to screen large libraries of compounds and prioritize those
most likely to bind effectively, reducing the need for costly synthesis and experimental testing [[14}38].
Docking algorithms output binding scores and poses, which estimate binding affinity and suggest
how a ligand fits into the protein’s active site. These predictions guide the selection of promising
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compounds for further development. Effective docking results forecast where and how well a ligand
binds and provide insights into the nature of the binding affinity and specificity.[30].

As the scale of molecular libraries expands dramatically in drug discovery, the need for faster
and more efficient docking tools has become key. Traditional scoring functions such as DOCK,
which relies on geometric matching algorithms to fit ligands into protein binding sites; AutoDock
Vina, which uses gradient-based optimization to predict binding poses; and Glide, which performs
systematic searches across ligand conformations, orientations, and positions, have proven too slow
to handle modern large-scale libraries [0, 143} [11]. In response, researchers are turning to machine
learning (ML) docking score predictors - models trained to replicate docking scores generated by
programs like AutoDock Vina. When deployed on GPUs, these models can predict binding outcomes
significantly faster than traditional methods, achieving speedups of 10 to 100 times [7].

ML-based docking

Machine learning-based docking algorithms can be broadly divided into two categories: (1) docking
score predictors, which directly estimate the binding affinity or docking score between a protein
and a ligand, and (2) end-to-end docking methods, which predict the score as well as binding poses
and affinities from structural or sequence-based inputs. Each branch leverages different model
architectures to address the complexity of molecular interactions. Several ML approaches have
been tried. The most prominent one is Graph Neural Networks (GNNs), which directly model the
molecular structure of proteins and ligands as graphs where atoms are nodes and bonds are edges
(20} 441 17].

An extension of Graph Neural Networks (GNN5s) is Graph Convolutional Networks (GCNs), which
apply convolutional operations to graph-structured data, allowing the model to capture the topological
features of molecules and their potential interactions with proteins [41] and predict their docking
score. Similarly, Transformer-based architectures, originally designed for natural language processing,
have been adapted for molecular data by treating atoms or fragments as sequence elements. These
models, which can be pretrained on large corpora of SMILES strings, effectively capture long-range
dependencies within molecules and across molecular complexes, ultimately representing proteins and
ligands as embedding matrices or vectors [[16, [15]4].

Computer vision-based approaches, such as 3D Convolutional Neural Networks (3D CNNs), extend
the concept of convolution into three dimensions, making them well-suited for modeling the spatial
structure of molecules and the 3D configuration of protein-ligand interactions [46, [19] and are
typically used for predicting binding scores rather than binding poses. However, GNINA integrates
deep learning with traditional docking pipelines to predict both poses and affinities, making it an
example of an end-to-end docking model [29].

Finally, reinforcement learning has been explored as an end-to-end solution, particularly through the
asynchronous advantage actor-critic (A3C) framework. These methods treat docking as a sequential
decision-making process, with actor models guiding search strategies and critic models evaluating
them, allowing direct prediction of binding poses and improving docking performance [3} [1].

Datasets for molecular docking

The downside of ML-based methods is the amount of data required for training. To solve this, several
groups have attempted to build open-source docking datasets by using docking software predictions
as inputs for ML models [5 [12} 27, 142]]. However, available large-scale docking datasets have several
limitations, notably scale, ease of use and lack of generalizability. Some focused on a specific set of
proteins linked to a certain disease (e.g. SARS-COV?2 proteome), greatly reducing generalization
capabilities for ML models trained on those. Others used a number of ligands not in the scale of
modern compound libraries, which often have millions of data points, and did not use well-known
extensively tested chemical libraries.

Lack of experimental protein structures

Reliable docking requires accurate 3D structures of proteins, especially their binding sites. These are
typically obtained through experimental techniques like X-ray crystallography or cryo-EM, which
are slow, expensive, and often infeasible, particularly for membrane proteins or unstable targets. As a
result, only about 17% of the human proteome has experimentally resolved structures [32]]. Existing
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ML docking datasets like DOCKSTRING and DUD-E rely on these experimentally determined
proteins and annotated binding sites, making them unusable for the majority of proteins with only
predicted structures. Smiles2Dock is the first large-scale dataset to enable docking on proteins without
any experimental structural data. We use AlphaFold-predicted 3D structures, which cover nearly the
entire human proteome, and apply P2Rank to predict binding pockets directly from the structure.
This lets us perform docking using AutoDock Vina on 11 genetically validated AlphaFold targets and
1.7 million ChEMBL ligands, resulting in over 17 million docking scores. All binding site predictions
are released for reuse. Ligands are represented using SMILES strings, supporting Transformer-based,
graph-based, and 3D computer vision models. The full dataset is hosted on Hugging Face, and can be
loaded with just two lines of Python code [25] 23].

Results

Correlation and variability of docking scores

We computed the Pearson correlation coefficient between docking scores (Figure[T). A subset of
proteins including slc30a8, dpp9, and ifihl formed a highly correlated cluster (r > 0.8), suggesting
shared ligand binding preferences and possibly similar pocket chemotypes. Proteins such as adcy5 and
cfhr5 exhibited weak correlations (r < 0.3) with most others, reflecting distinct binding environments
or limited cross-reactivity with the ligand set. Boxplot analysis (Figure [2) revealed most proteins
showed compact interquartile ranges and moderate outlier counts, consistent with well-behaved
docking score distributions. Proteins such as c¢fhr5 demonstrated particularly tight distributions,
whereas dpp9 and nrip3 showed larger score spreads and several high-affinity outliers (scores < —12
kcal/mol).
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Figure 1: Correlations of docking scores per
protein.

Figure 2: Boxplots of docking scores per pro-
tein.

Distribution of docking scores

Our initial hypothesis after looking at Figure [3| was that scores for each protein were normally
distributed. We performed Shapiro-Wilk tests to test for normality of scores distribution for each
protein but all p-values were below the 0.05 significance threshold. [33]]. We discovered, by computing
a Q-Q plot (Figure ), that the distribution was heavily right-skewed, which was also confirmed by
computing the skewness of the distribution of scores for each protein, with values ranging from 5
to 20 (heavily right skewed) [28]. Finally, we tested for right-skewed distributions by performing a
Kolmogorov-Smirnov test for goodness of fit using Log-Normal and Weibull distributions but again
found p-values for all proteins below the significance threshold required [2].

Metrics for evaluating models

To evaluate model performance in docking score prediction, we use ranking-based metrics that focus
on the relative ordering of compounds rather than their absolute scores. This aligns with the practical
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Figure 3: Scores distribution for protein
Sic6al9. Figure 4: QQ plot for protein Slc6al9.

goal in drug discovery: prioritizing a small number of compounds for experimental validation, where
identifying the top candidates is more important than accurately modeling the full score distribution.
Spearman correlation is well-suited here, as it quantifies the agreement between predicted and true
rankings across the dataset [45]]. The Spearman rank correlation coefficient (p) is a non-parametric
measure of statistical dependence that captures how well the relationship between two variables
follows a monotonic trend. Given predicted and true docking score vectors y and y, we denote their
ranks by:
rank(g;) = R;, rank(y;) = S;.

Then the Spearman correlation is given by:

Z?:1(Ri — Si)2
n(nz—-1)
The top-k overlap measures how well the model identifies the most promising compounds. This

metric ranges from 0 to 1. A value of 1 indicates perfect agreement between the predicted and true
top-k ligands, while 0 indicates no overlap. Define T}, the set of indices corresponding to the top-k

ligands based on the true scores, and T}, the set of indices corresponding to the top-k ligands based
on the predicted scores. Then the top-k overlap is defined as:

Ty N Ty
k

p=1-

Top-k overlap =

Hybrid model results

Table|l|presents Spearman correlation and top-k overlap metrics for various model configurations,
varying protein model (PM), ligand model (LM), hidden layer (HL) sizes, and dropout rates. The
best overall performance is achieved by the model with PM=128, LM=256, HL=64, and dropout 0.1,
showing the highest Spearman correlation of 0.76 at the top 50% and maintaining good correlation
(0.24) even at the top 1%. This suggests a good balance between model capacity and regularization.
Larger models with higher dropout (e.g., PM=256, LM=512) show lower Spearman correlations and
top-k overlaps, which may indicate over-regularization or difficulty training such large architectures
on the dataset. Smaller models (e.g., PM=64, LM=64) perform moderately well but generally fall
short of the best configuration. As expected, top-k overlap decreases with stricter cutoffs (from top
50% to top 1%), reflecting the increasing challenge of identifying the very best candidates. Overall,
moderate-sized models with moderate dropout provide the most consistent and accurate ranking
performance.

Limitations

P2Rank as a probabilistic framework for binding site prediction: P2Rank uses an ML-based
algorithm to predict the binding sites of each protein along with an associated probability. We used
an arbitrary threshold to define what counted as a "valid" binding site. In the case where we had
multiple binding sites above our 50% threshold, we only used the one with the highest probability.
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PMsize LMsize HLsize Dropout  Top 50% Top25%  Top 10 % Top 1 %

128 256 64 0.1 0.76/045 0.64/033 0.51/0.16 0.24/0.02
256 512 128 0.2 0.63/005 0.34/0.18 0.18/0.16 0.10/0.05

64 64 128 02 0.73/038 0.55/034 041/0.20 0.21/0.06
128 256 128 02 044/-022 0.15/0.06 0.04/0.16 0.05/0.07
128 128 256 0.1 0.62/003 032/0.16 0.16/0.16 0.10/0.05
256 512 64 02 0.67/0.15 043/020 0.28/0.15 0.16/0.04
256 256 256 02 0.64/008 037/0.18 0.21/0.16 0.13/0.06

64 128 64 02 056/-0.07 025/0.11 0.10/0.15 0.07/0.04

Table 1: Spearman correlation (left) and top-k overlap (right) for different percentiles of top scores
(PM = Protein model, LM = Ligand model, HL. = Hidden layer).

Conformational space exploration: We used an exhaustiveness parameter of 8 and tried 5 different
poses, the default values for Vina which are known in other studies for balancing accuracy and
computational resource use. Increasing those further would not have been feasible but it could be
beneficial for future studies to do a more thorough search. We also limited ourselves to one binding
site per protein, both for computational resources and also to standardize the prediction task for ML
researchers. However, it could be interesting to look at algorithms that can work on multiple binding
sites at the same time.

Methods

Alphafold: AlphaFold is an ML model developed by DeepMind designed to predict protein structures
and solve the protein structure prediction problem, which involves determining a protein’s three-
dimensional shape from its amino acid sequence [21]. Its predictions have been extensively validated,
with a reported root-mean-square deviation (RMSD) of around 1.5 Angstréms for many proteins,
comparable to experimental methods like X-ray crystallography and cryo-electron microscopy, while
being significantly cheaper and faster.

ChEMBL: ChEMBL is a bioactivity database maintained by the European Bioinformatics Institute,
containing detailed information on the biological activity of 2.3M small molecules [[13]. It is widely
used for drug discovery and development, offering data on compound properties, target interactions,
and pharmacological profiles.

P2Rank: P2Rank is an ML model for predicting ligand-binding sites on proteins by analyzing surface
patches based on features like hydrophobicity, electrostatic potential, and geometric arrangement of
atoms [24]. Each protein surface is segmented into patches, with the random forest model assessing
the likelihood of each patch being a binding site based on the extracted features. An example of the
binding pocket predicted by P2Rank for protein adcy5 can be seen on figure 6]

AutoDock Vina: AutoDock Vina is a popular molecular docking package widely used in compu-
tational chemistry for predicting the interactions between a protein and a ligand. It uses a scoring
function to estimate the strength and stability of a ligand when docked into a protein’s binding site.

Dataset preparation

In our study, we developed a dataset of molecular docking scores using a comprehensive framework
to ensure precise predictions of protein-ligand interactions, which can be seen in Figure 3]

Ligand preparation

For ligands, we downloaded the ChEMBL database and used the 2.3M SMILES strings available.
Out of this set, around 20% could not be processed by AutodockVina because of errors, either
when converting SMILES strings to .sdf files using RDKit or due to atom types incompatible with
Autodock. This left us with a set of approximately 1.7M ligands to dock. Then the ligands were
deprotonated at ph 7.4 with OpenBabel. Finally, a 3D conformation was generated using RDKit and
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Figure 5: Diagram of the methodology followed for this project.

the ETKG algorithm, which we further refined using the classical force field MMFF94. Finally, we
outputted a PDBQT file for each ligand, which is the file format required by AutoDock Vina.

Protein preparation

For proteins, we started with a set of 30 proteins from the AlphaFold database based on their
identification as therapeutic targets in previous genetic association studies [39] [8]]. These are
proteins where natural human mutations (identified through GWAS) have been linked to protection
from or risk of disease. This selection strategy is based on work by Plenge et al. [34]], which showed
that using human genetics can improve the chances of translating a target into a successful therapy.For
each protein, we looked at their average pLDDT scores and confidence levels from AlphaFold models
and only selected proteins which had an average pLDDt score of High. Finally, we used P2Rank to
predict each protein’s binding sites and only kept proteins for which we had at least one site with a
probability above 50%.

Protein structures were preprocessed using a custom pipeline built on PDBFixer and RDKit. Structures
were loaded from AlphaFold .pdb files. Nonstandard amino acid residues were identified and replaced
with their standard equivalents to ensure consistency. All heterogens, including ligands, cofactors,
and metal ions, were removed from the structure. Water molecules were also removed to reduce noise
in the structural representation whilst missing hydrogen atoms were added at physiological pH (7.4).
Finally, the cleaned and protonated structure was written to disk in PDB format and parsed into an
RDKit molecule object for further processing [9].

Docking protocol

For each protein, we selected the binding site found by P2Rank with the highest probability. Then,
using its coordinates, we built a cubic bounding region of 5 A around the pocket using DeepChem.
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Each box extends 5 A in every direction from the center, resulting in a cube with 10 A side length.
The padding is automatically scaled based on the ligand’s dimensions to ensure the box is large

enough to fully contain it, while still preserving the 5 A margin around the ligand.

Figure 6: Binding pocket (in red) found by P2Rank on adcyS5.

Lastly, we used AutoDock Vina through its Python extension to perform the docking, specifying
5 poses per ligand and an exhaustiveness level of 8 [10]. We only kept the best score for each
protein-ligand combination out of the 5 poses (i.e. the lowest score). The computations were executed
on a High-Performance Computing (HPC) cluster, taking approximately 45 days to complete and
600,000 CPU hours. We split the dataset into three folds by assigning all scores for certain proteins
to separate subsets: 7 proteins for training, 1 for validation and 3 for testing. This setup provides
a more realistic and challenging evaluation scenario, as models must generalize to unseen proteins
rather than memorize patterns specific to a single target. It also avoids the overfitting risk of standard
random splits, where the same protein might appear in both training and test sets.

Transformer architecture

To inform ML researchers and benchmark our dataset, we built a novel Transformer method to predict
docking scores. We followed an embedding-based approach and used two foundation models to
encode the protein and the ligand and perform the docking (Figure[7).

51207

Dropout

512—256

Y

1280 5 256+
LSTM Linear

1280—256 256—256

Figure 7: Architecture of the hybrid LSTM-FFN protein-ligand model.
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The first model is ESM2, developed by Facebook AI Research (FAIR), which was pretrained on 250
million protein sequences comprising 86 billion amino acids [26]. Its learned representations capture
both local biochemical properties and long-range structural patterns, including secondary and tertiary
structures.

The second model is MolFormer, developed by IBM Research, which combines masked language
modeling with a linear attention Transformer and rotary positional embeddings [36]]. It was pretrained
on 1.1 billion canonical SMILES strings from ZINC and PubChem. Canonicalization was performed
using RDKit to ensure consistency in representation. The model learns compact embeddings of
molecular structures and was fine-tuned on a range of downstream tasks.

We used both models to encode our set of 1.7 million molecules from ChEMBL and 16 proteins
from AlphaFold. The ESM2 model generates an embedding matrix E € R"*1280 where n is
the length of the protein sequence. Given the variability in protein sequence lengths, we pad all
embeddings to match the length of the longest protein, which is 1990, resulting in a final matrix
Epaded € R1990%1280 The MolFormer model produces a fixed-size vector V. € R"®® for each
molecule. Formally, for a protein sequence P; of length n; and a molecule M, their embeddings are
represented as:

€1,1 €12 €1,1280 mi
E(PZ) _ 62.,1 62.,2 - 62’1.280 C RIXI280 g V(M) _ ”.L? c RT68
€n;,1 €En;2 eni,.1280 m‘768
Final hybrid model

The docking model, implemented using PyTorch [33]], is designed to predict the interaction between
ligands and proteins through a specialized architecture combining separate sub-models for ligands
and proteins. The ligand sub-model is a feedforward neural network, starting with an input dimension
of 768, matching the size of the MolFormer embedding. It includes two linear layers with a ReLU
activation and a dropout layer for regularization. The protein sub-model uses an LSTM (Long
Short-Term Memory) network to process sequential data, taking inputs with a dimension of 1280 to
match the size of the input embeddings from ESM2[18]]. The output of the LSTM is further processed
through a linear layer to produce features that align in size with the ligand sub-model.

The model’s forward pass processes the ligand and protein embeddings through their respective
sub-models then concatenates these features into a combined vector. This vector is passed through a
regression layer that outputs the docking score prediction. The training phase involves calculating
the RMSE between predicted and actual scores and optimizing this loss using the Adam optimizer
[22]] with a learning rate of 1 x 10~%. We trained our models on an HPC cluster using a multi-GPU
setup with 8 Nvidia Tesla V100 (256 GB of VRAM in total). Each model was trained for 2 epochs
on the train set and used the validation set to print out the RMSE while training to look for signs of
overfitting.

Conclusion

We introduce Smiles2Dock, an open large-scale comprehensive dataset for training and benchmarking
ML-based protein-ligand docking algorithms from AlphaFold predicted structures. It uses well-
known chemical data sources such as AlphaFold and ChEMBL, a diverse set of biologically relevant
compounds on the same scale as modern molecular screening databases and is suitable for most major
approaches explore such as CNN, graph and embedding based methods. Moreover, existing datasets
rely on proteins with experimentally determined structures and known ligand binding pockets, making
them unusable for the growing number of proteins with only predicted structures. It is easy to use
for ML researchers and can be downloaded using two lines of code and a single library using the
Datasets library from HuggingFace. We also introduce a novel Transformer-based architecture that
uses ESM2 and Molformer to embed molecules and proteins in latent spaces and predict docking
scores.
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