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Abstract

Docking is a crucial component in drug discovery aimed at predicting the binding1

conformation and affinity between small molecules and target proteins. ML-based2

docking has recently emerged as a prominent approach, outpacing traditional3

methods like DOCK and AutoDock Vina in handling the growing scale and com-4

plexity of molecular libraries. However, the availability of comprehensive and5

user-friendly datasets for training and benchmarking ML-based docking algorithms6

remains limited. Moreover, existing datasets rely on proteins with experimentally7

determined structures and known ligand binding pockets, making them unusable8

for the growing number of proteins with only predicted structures. We introduce9

Smiles2Dock, an open large-scale dataset for molecular docking that addresses this10

gap. We created a framework combining P2Rank for binding pocket prediction11

and AutoDock Vina for docking, enabling us to dock 1.7 million ligands from the12

ChEMBL database against 11 genetically validated proteins from AlphaFold, re-13

sulting in over 17 million protein-ligand binding scores. Since AlphaFold-predicted14

structures do not include known ligand binding sites, our use of P2Rank allows15

docking to be performed without any experimental structure information, a first16

at this scale. The dataset encompasses a diverse set of biologically relevant com-17

pounds and enables researchers to benchmark all major approaches for ML-based18

docking such as Graph, Transformer, and CNN-based methods. We also introduce19

a novel Transformer-based architecture for docking score prediction and set it as20

an initial benchmark for our dataset.21

Introduction22

Molecular docking is a computational technique used to predict how a small molecule binds to a23

protein target [30]. By estimating the ligand’s position and orientation within the binding site, docking24

helps assess how well a compound might interact with and modulate the protein’s function [31].25

Traditional molecular docking methods use scoring functions designed to estimate how strong the26

interaction is between a protein and a ligand based on their 3D arrangement. These scoring functions27

are based on physical and chemical principles that estimate binding strength from a predicted 3D28

pose of the ligand in the protein. On the other hand, docking score predictors are Machine Learning29

(ML) models that learn to predict docking scores directly from molecular graphs or sequences.30

Traditional docking31

Docking is widely used in drug discovery to screen large libraries of compounds and prioritize those32

most likely to bind effectively, reducing the need for costly synthesis and experimental testing [14, 38].33

Docking algorithms output binding scores and poses, which estimate binding affinity and suggest34

how a ligand fits into the protein’s active site. These predictions guide the selection of promising35
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compounds for further development. Effective docking results forecast where and how well a ligand36

binds and provide insights into the nature of the binding affinity and specificity.[30].37

As the scale of molecular libraries expands dramatically in drug discovery, the need for faster38

and more efficient docking tools has become key. Traditional scoring functions such as DOCK,39

which relies on geometric matching algorithms to fit ligands into protein binding sites; AutoDock40

Vina, which uses gradient-based optimization to predict binding poses; and Glide, which performs41

systematic searches across ligand conformations, orientations, and positions, have proven too slow42

to handle modern large-scale libraries [6, 43, 11]. In response, researchers are turning to machine43

learning (ML) docking score predictors - models trained to replicate docking scores generated by44

programs like AutoDock Vina. When deployed on GPUs, these models can predict binding outcomes45

significantly faster than traditional methods, achieving speedups of 10 to 100 times [7].46

ML-based docking47

Machine learning-based docking algorithms can be broadly divided into two categories: (1) docking48

score predictors, which directly estimate the binding affinity or docking score between a protein49

and a ligand, and (2) end-to-end docking methods, which predict the score as well as binding poses50

and affinities from structural or sequence-based inputs. Each branch leverages different model51

architectures to address the complexity of molecular interactions. Several ML approaches have52

been tried. The most prominent one is Graph Neural Networks (GNNs), which directly model the53

molecular structure of proteins and ligands as graphs where atoms are nodes and bonds are edges54

[20, 44, 17].55

An extension of Graph Neural Networks (GNNs) is Graph Convolutional Networks (GCNs), which56

apply convolutional operations to graph-structured data, allowing the model to capture the topological57

features of molecules and their potential interactions with proteins [41] and predict their docking58

score. Similarly, Transformer-based architectures, originally designed for natural language processing,59

have been adapted for molecular data by treating atoms or fragments as sequence elements. These60

models, which can be pretrained on large corpora of SMILES strings, effectively capture long-range61

dependencies within molecules and across molecular complexes, ultimately representing proteins and62

ligands as embedding matrices or vectors [16, 15, 4].63

Computer vision-based approaches, such as 3D Convolutional Neural Networks (3D CNNs), extend64

the concept of convolution into three dimensions, making them well-suited for modeling the spatial65

structure of molecules and the 3D configuration of protein-ligand interactions [46, 19] and are66

typically used for predicting binding scores rather than binding poses. However, GNINA integrates67

deep learning with traditional docking pipelines to predict both poses and affinities, making it an68

example of an end-to-end docking model [29].69

Finally, reinforcement learning has been explored as an end-to-end solution, particularly through the70

asynchronous advantage actor-critic (A3C) framework. These methods treat docking as a sequential71

decision-making process, with actor models guiding search strategies and critic models evaluating72

them, allowing direct prediction of binding poses and improving docking performance [3, 1].73

Datasets for molecular docking74

The downside of ML-based methods is the amount of data required for training. To solve this, several75

groups have attempted to build open-source docking datasets by using docking software predictions76

as inputs for ML models [5, 12, 27, 42]. However, available large-scale docking datasets have several77

limitations, notably scale, ease of use and lack of generalizability. Some focused on a specific set of78

proteins linked to a certain disease (e.g. SARS-COV2 proteome), greatly reducing generalization79

capabilities for ML models trained on those. Others used a number of ligands not in the scale of80

modern compound libraries, which often have millions of data points, and did not use well-known81

extensively tested chemical libraries.82

Lack of experimental protein structures83

Reliable docking requires accurate 3D structures of proteins, especially their binding sites. These are84

typically obtained through experimental techniques like X-ray crystallography or cryo-EM, which85

are slow, expensive, and often infeasible, particularly for membrane proteins or unstable targets. As a86

result, only about 17% of the human proteome has experimentally resolved structures [32]. Existing87
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ML docking datasets like DOCKSTRING and DUD-E rely on these experimentally determined88

proteins and annotated binding sites, making them unusable for the majority of proteins with only89

predicted structures. Smiles2Dock is the first large-scale dataset to enable docking on proteins without90

any experimental structural data. We use AlphaFold-predicted 3D structures, which cover nearly the91

entire human proteome, and apply P2Rank to predict binding pockets directly from the structure.92

This lets us perform docking using AutoDock Vina on 11 genetically validated AlphaFold targets and93

1.7 million ChEMBL ligands, resulting in over 17 million docking scores. All binding site predictions94

are released for reuse. Ligands are represented using SMILES strings, supporting Transformer-based,95

graph-based, and 3D computer vision models. The full dataset is hosted on Hugging Face, and can be96

loaded with just two lines of Python code [25, 23].97

Results98

Correlation and variability of docking scores99

We computed the Pearson correlation coefficient between docking scores (Figure 1). A subset of100

proteins including slc30a8, dpp9, and ifih1 formed a highly correlated cluster (r > 0.8), suggesting101

shared ligand binding preferences and possibly similar pocket chemotypes. Proteins such as adcy5 and102

cfhr5 exhibited weak correlations (r < 0.3) with most others, reflecting distinct binding environments103

or limited cross-reactivity with the ligand set. Boxplot analysis (Figure 2) revealed most proteins104

showed compact interquartile ranges and moderate outlier counts, consistent with well-behaved105

docking score distributions. Proteins such as cfhr5 demonstrated particularly tight distributions,106

whereas dpp9 and nrlp3 showed larger score spreads and several high-affinity outliers (scores < −12107

kcal/mol).108

Figure 1: Correlations of docking scores per
protein.

Figure 2: Boxplots of docking scores per pro-
tein.

Distribution of docking scores109

Our initial hypothesis after looking at Figure 3 was that scores for each protein were normally110

distributed. We performed Shapiro-Wilk tests to test for normality of scores distribution for each111

protein but all p-values were below the 0.05 significance threshold. [35]. We discovered, by computing112

a Q-Q plot (Figure 4), that the distribution was heavily right-skewed, which was also confirmed by113

computing the skewness of the distribution of scores for each protein, with values ranging from 5114

to 20 (heavily right skewed) [28]. Finally, we tested for right-skewed distributions by performing a115

Kolmogorov-Smirnov test for goodness of fit using Log-Normal and Weibull distributions but again116

found p-values for all proteins below the significance threshold required [2].117

Metrics for evaluating models118

To evaluate model performance in docking score prediction, we use ranking-based metrics that focus119

on the relative ordering of compounds rather than their absolute scores. This aligns with the practical120
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Figure 3: Scores distribution for protein
Slc6a19. Figure 4: QQ plot for protein Slc6a19.

goal in drug discovery: prioritizing a small number of compounds for experimental validation, where121

identifying the top candidates is more important than accurately modeling the full score distribution.122

Spearman correlation is well-suited here, as it quantifies the agreement between predicted and true123

rankings across the dataset [45]. The Spearman rank correlation coefficient (ρ) is a non-parametric124

measure of statistical dependence that captures how well the relationship between two variables125

follows a monotonic trend. Given predicted and true docking score vectors ŷ and y, we denote their126

ranks by:127

rank(ŷi) = Ri, rank(yi) = Si.

Then the Spearman correlation is given by:128

ρ = 1−
∑n

i=1(Ri − Si)
2

n(n2 − 1)
.

The top-k overlap measures how well the model identifies the most promising compounds. This129

metric ranges from 0 to 1. A value of 1 indicates perfect agreement between the predicted and true130

top-k ligands, while 0 indicates no overlap. Define Tk, the set of indices corresponding to the top-k131

ligands based on the true scores, and T̂k, the set of indices corresponding to the top-k ligands based132

on the predicted scores. Then the top-k overlap is defined as:133

Top-k overlap =
|Tk ∩ T̂k|

k

Hybrid model results134

Table 1 presents Spearman correlation and top-k overlap metrics for various model configurations,135

varying protein model (PM), ligand model (LM), hidden layer (HL) sizes, and dropout rates. The136

best overall performance is achieved by the model with PM=128, LM=256, HL=64, and dropout 0.1,137

showing the highest Spearman correlation of 0.76 at the top 50% and maintaining good correlation138

(0.24) even at the top 1%. This suggests a good balance between model capacity and regularization.139

Larger models with higher dropout (e.g., PM=256, LM=512) show lower Spearman correlations and140

top-k overlaps, which may indicate over-regularization or difficulty training such large architectures141

on the dataset. Smaller models (e.g., PM=64, LM=64) perform moderately well but generally fall142

short of the best configuration. As expected, top-k overlap decreases with stricter cutoffs (from top143

50% to top 1%), reflecting the increasing challenge of identifying the very best candidates. Overall,144

moderate-sized models with moderate dropout provide the most consistent and accurate ranking145

performance.146

Limitations147

P2Rank as a probabilistic framework for binding site prediction: P2Rank uses an ML-based148

algorithm to predict the binding sites of each protein along with an associated probability. We used149

an arbitrary threshold to define what counted as a "valid" binding site. In the case where we had150

multiple binding sites above our 50% threshold, we only used the one with the highest probability.151
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PM size LM size HL size Dropout Top 50% Top 25 % Top 10 % Top 1 %

128 256 64 0.1 0.76 / 0.45 0.64 / 0.33 0.51 / 0.16 0.24 / 0.02
256 512 128 0.2 0.63 / 0.05 0.34 / 0.18 0.18 / 0.16 0.10 / 0.05

64 64 128 0.2 0.73 / 0.38 0.55 / 0.34 0.41 / 0.20 0.21 / 0.06
128 256 128 0.2 0.44 / -0.22 0.15 / 0.06 0.04 / 0.16 0.05 / 0.07
128 128 256 0.1 0.62 / 0.03 0.32 / 0.16 0.16 / 0.16 0.10 / 0.05
256 512 64 0.2 0.67 / 0.15 0.43 / 0.20 0.28 / 0.15 0.16 / 0.04
256 256 256 0.2 0.64 / 0.08 0.37 / 0.18 0.21 / 0.16 0.13 / 0.06

64 128 64 0.2 0.56 / -0.07 0.25 / 0.11 0.10 / 0.15 0.07 / 0.04

Table 1: Spearman correlation (left) and top-k overlap (right) for different percentiles of top scores
(PM = Protein model, LM = Ligand model, HL = Hidden layer).

Conformational space exploration: We used an exhaustiveness parameter of 8 and tried 5 different152

poses, the default values for Vina which are known in other studies for balancing accuracy and153

computational resource use. Increasing those further would not have been feasible but it could be154

beneficial for future studies to do a more thorough search. We also limited ourselves to one binding155

site per protein, both for computational resources and also to standardize the prediction task for ML156

researchers. However, it could be interesting to look at algorithms that can work on multiple binding157

sites at the same time.158

Methods159

Alphafold: AlphaFold is an ML model developed by DeepMind designed to predict protein structures160

and solve the protein structure prediction problem, which involves determining a protein’s three-161

dimensional shape from its amino acid sequence [21]. Its predictions have been extensively validated,162

with a reported root-mean-square deviation (RMSD) of around 1.5 Ångströms for many proteins,163

comparable to experimental methods like X-ray crystallography and cryo-electron microscopy, while164

being significantly cheaper and faster.165

ChEMBL: ChEMBL is a bioactivity database maintained by the European Bioinformatics Institute,166

containing detailed information on the biological activity of 2.3M small molecules [13]. It is widely167

used for drug discovery and development, offering data on compound properties, target interactions,168

and pharmacological profiles.169

P2Rank: P2Rank is an ML model for predicting ligand-binding sites on proteins by analyzing surface170

patches based on features like hydrophobicity, electrostatic potential, and geometric arrangement of171

atoms [24]. Each protein surface is segmented into patches, with the random forest model assessing172

the likelihood of each patch being a binding site based on the extracted features. An example of the173

binding pocket predicted by P2Rank for protein adcy5 can be seen on figure 6.174

AutoDock Vina: AutoDock Vina is a popular molecular docking package widely used in compu-175

tational chemistry for predicting the interactions between a protein and a ligand. It uses a scoring176

function to estimate the strength and stability of a ligand when docked into a protein’s binding site.177

Dataset preparation178

In our study, we developed a dataset of molecular docking scores using a comprehensive framework179

to ensure precise predictions of protein-ligand interactions, which can be seen in Figure 5.180

Ligand preparation181

For ligands, we downloaded the ChEMBL database and used the 2.3M SMILES strings available.182

Out of this set, around 20% could not be processed by AutodockVina because of errors, either183

when converting SMILES strings to .sdf files using RDKit or due to atom types incompatible with184

Autodock. This left us with a set of approximately 1.7M ligands to dock. Then the ligands were185

deprotonated at ph 7.4 with OpenBabel. Finally, a 3D conformation was generated using RDKit and186
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Figure 5: Diagram of the methodology followed for this project.

the ETKG algorithm, which we further refined using the classical force field MMFF94. Finally, we187

outputted a PDBQT file for each ligand, which is the file format required by AutoDock Vina.188

Protein preparation189

For proteins, we started with a set of 30 proteins from the AlphaFold database based on their190

identification as therapeutic targets in previous genetic association studies [39, 37, 40, 8]. These are191

proteins where natural human mutations (identified through GWAS) have been linked to protection192

from or risk of disease. This selection strategy is based on work by Plenge et al. [34], which showed193

that using human genetics can improve the chances of translating a target into a successful therapy.For194

each protein, we looked at their average pLDDT scores and confidence levels from AlphaFold models195

and only selected proteins which had an average pLDDt score of High. Finally, we used P2Rank to196

predict each protein’s binding sites and only kept proteins for which we had at least one site with a197

probability above 50%.198

Protein structures were preprocessed using a custom pipeline built on PDBFixer and RDKit. Structures199

were loaded from AlphaFold .pdb files. Nonstandard amino acid residues were identified and replaced200

with their standard equivalents to ensure consistency. All heterogens, including ligands, cofactors,201

and metal ions, were removed from the structure. Water molecules were also removed to reduce noise202

in the structural representation whilst missing hydrogen atoms were added at physiological pH (7.4).203

Finally, the cleaned and protonated structure was written to disk in PDB format and parsed into an204

RDKit molecule object for further processing [9].205

Docking protocol206

For each protein, we selected the binding site found by P2Rank with the highest probability. Then,207

using its coordinates, we built a cubic bounding region of 5 Å around the pocket using DeepChem.208
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Each box extends 5 Å in every direction from the center, resulting in a cube with 10 Å side length.209

The padding is automatically scaled based on the ligand’s dimensions to ensure the box is large210

enough to fully contain it, while still preserving the 5 Å margin around the ligand.211

Figure 6: Binding pocket (in red) found by P2Rank on adcy5.

Lastly, we used AutoDock Vina through its Python extension to perform the docking, specifying212

5 poses per ligand and an exhaustiveness level of 8 [10]. We only kept the best score for each213

protein-ligand combination out of the 5 poses (i.e. the lowest score). The computations were executed214

on a High-Performance Computing (HPC) cluster, taking approximately 45 days to complete and215

600,000 CPU hours. We split the dataset into three folds by assigning all scores for certain proteins216

to separate subsets: 7 proteins for training, 1 for validation and 3 for testing. This setup provides217

a more realistic and challenging evaluation scenario, as models must generalize to unseen proteins218

rather than memorize patterns specific to a single target. It also avoids the overfitting risk of standard219

random splits, where the same protein might appear in both training and test sets.220

Transformer architecture221

To inform ML researchers and benchmark our dataset, we built a novel Transformer method to predict222

docking scores. We followed an embedding-based approach and used two foundation models to223

encode the protein and the ligand and perform the docking (Figure 7).224

Figure 7: Architecture of the hybrid LSTM-FFN protein-ligand model.
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The first model is ESM2, developed by Facebook AI Research (FAIR), which was pretrained on 250225

million protein sequences comprising 86 billion amino acids [26]. Its learned representations capture226

both local biochemical properties and long-range structural patterns, including secondary and tertiary227

structures.228

The second model is MolFormer, developed by IBM Research, which combines masked language229

modeling with a linear attention Transformer and rotary positional embeddings [36]. It was pretrained230

on 1.1 billion canonical SMILES strings from ZINC and PubChem. Canonicalization was performed231

using RDKit to ensure consistency in representation. The model learns compact embeddings of232

molecular structures and was fine-tuned on a range of downstream tasks.233

We used both models to encode our set of 1.7 million molecules from ChEMBL and 16 proteins234

from AlphaFold. The ESM2 model generates an embedding matrix E ∈ Rn×1280, where n is235

the length of the protein sequence. Given the variability in protein sequence lengths, we pad all236

embeddings to match the length of the longest protein, which is 1990, resulting in a final matrix237

Epadded ∈ R1990×1280. The MolFormer model produces a fixed-size vector V ∈ R768 for each238

molecule. Formally, for a protein sequence Pi of length ni and a molecule M , their embeddings are239

represented as:240

E(Pi) =


e1,1 e1,2 · · · e1,1280
e2,1 e2,2 · · · e2,1280

...
...

. . .
...

eni,1 eni,2 · · · eni,1280

 ∈ Rni×1280 and V(M) =


m1

m2

...
m768

 ∈ R768

Final hybrid model241

The docking model, implemented using PyTorch [33], is designed to predict the interaction between242

ligands and proteins through a specialized architecture combining separate sub-models for ligands243

and proteins. The ligand sub-model is a feedforward neural network, starting with an input dimension244

of 768, matching the size of the MolFormer embedding. It includes two linear layers with a ReLU245

activation and a dropout layer for regularization. The protein sub-model uses an LSTM (Long246

Short-Term Memory) network to process sequential data, taking inputs with a dimension of 1280 to247

match the size of the input embeddings from ESM2[18]. The output of the LSTM is further processed248

through a linear layer to produce features that align in size with the ligand sub-model.249

The model’s forward pass processes the ligand and protein embeddings through their respective250

sub-models then concatenates these features into a combined vector. This vector is passed through a251

regression layer that outputs the docking score prediction. The training phase involves calculating252

the RMSE between predicted and actual scores and optimizing this loss using the Adam optimizer253

[22] with a learning rate of 1× 10−4. We trained our models on an HPC cluster using a multi-GPU254

setup with 8 Nvidia Tesla V100 (256 GB of VRAM in total). Each model was trained for 2 epochs255

on the train set and used the validation set to print out the RMSE while training to look for signs of256

overfitting.257

Conclusion258

We introduce Smiles2Dock, an open large-scale comprehensive dataset for training and benchmarking259

ML-based protein-ligand docking algorithms from AlphaFold predicted structures. It uses well-260

known chemical data sources such as AlphaFold and ChEMBL, a diverse set of biologically relevant261

compounds on the same scale as modern molecular screening databases and is suitable for most major262

approaches explore such as CNN, graph and embedding based methods. Moreover, existing datasets263

rely on proteins with experimentally determined structures and known ligand binding pockets, making264

them unusable for the growing number of proteins with only predicted structures. It is easy to use265

for ML researchers and can be downloaded using two lines of code and a single library using the266

Datasets library from HuggingFace. We also introduce a novel Transformer-based architecture that267

uses ESM2 and Molformer to embed molecules and proteins in latent spaces and predict docking268

scores.269
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