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Abstract

Numerical interpolation for scattered data aims to estimate values for target points1

based on those of some observed points. Traditional approaches produce estima-2

tions through constructing an interpolation function that combines multiple basis3

functions. These approaches require the basis functions to be pre-defined explicitly,4

thus greatly limiting their applications in practical scenarios. Recent advances5

exhibit an alternative strategy that learns interpolation functions directly from6

observed points using machine learning techniques, say deep neural networks. This7

strategy, although promising, cannot effectively exploit the correlations between8

observed points and target points as it treats these types of points separately. Here,9

we present a learning-based approach to numerical interpolation using encoder10

representations of Transformers (thus called NIERT). NIERT treats the value of11

each target point as a masked token, which enables processing target points and12

observed points in a unified fashion. By calculating the partial self-attention be-13

tween target points and observed points at each layer, NIERT gains advantages14

of exploiting the correlations among these points and, more importantly, avoiding15

the unexpected interference of target points on observed points. NIERT also uses16

the pre-training technique to further improve its accuracy. On three representative17

datasets, including two synthetic datasets and a real-world dataset, NIERT outper-18

forms the existing approaches, e.g., on the TFRD-ADlet dataset for temperature19

field reconstruction, NIERT achieves an MAE of 1.897×10−3, substantially better20

than the transformer-based approach (MAE: 27.074× 10−3). These results clearly21

demonstrate the accuracy of NIERT and its potential to apply in multiple practical22

fields.23

1 Introduction24

Numerical interpolation for scattered data plays important and fundamental roles in a wide range25

of practical scenarios, including solving partial differential equations (PDEs) [1], temperature field26

reconstruction [2], time series interpolation [3, 4]. In meshfree PDE solvers, the interpolation27

error often leads to deviations in subsequent calculations, which seriously affects the solution’s28

accuracy [5]. In the task of temperature field reconstruction for micro-scale electronics, interpolation29

methods are used to obtain the real-time working environment of electronic components from30

limited measurements, and imprecise interpolation will significantly increase the cost of predictive31

maintenance [2]. Thus, accurate approaches to numerical interpolation are highly desirable.32

A large number of approaches have been proposed for interpolation of scattered data, which can33

be divided into two categories, namely, traditional non-learning based methods and recent learning-34

based methods. The typical traditional interpolation schemes construct the target function by a linear35
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combination of basis functions [6]. These schemes require explicitly-defined basis functions to36

model the target function space, and various types of basis functions have been devised by algorithm37

designers to adapt to different scenarios. Nevertheless, such methods still suffer the from limitations38

of high requirement of sufficient observed points, and the limited complexity of the target function.39

Recent progress has exhibited an alternative strategy that uses neural networks to learn interpolation40

functions directly from the given observed points. For example, conditional neural processes (CNPs)41

[7] and their extensions [8–10] model the conditional distribution of regression functions given42

the observed points. In addition, Chen et al. [2] proposed to use vanilla Transformer [11] to solve43

interpolation task in temperature field reconstruction. All of these approaches use an “encoder-44

decoder” architecture, in which the encoder learns the representations of observed points while the45

decoder estimates values for target points. Intuitively, observed points and target points should be46

processed in a unified fashion because they are from the same domain. However, this architecture47

treats them separately and cannot effectively exploit the correlation between them.48

Inspired by the recent advances of language/image models, especially BERT [12] and BEIT [13], we49

designed an approach to numerical interpolation that can effectively exploit the correlations between50

observed points and target points. Our approach is a learning-based approach using the encoder51

representations of Transformers (thus called NIERT). The key elements of NIERT include: i) the52

use of the mask mechanism, which enables processing target points and observed points in a unified53

fashion, ii) a novel partial self-attention model, which calculates attentions between target points and54

observed points at each layer, thus gaining the advantages of exploiting the correlations between these55

two types of points and, more importantly, avoiding the unexpected interference of target points on56

observed points simultaneously, and iii) the use of the pre-training technique, which further improves57

the interpolation accuracy of NIERT.58

The main contributions of this study are summarized as follows.59

1. We propose an accurate approach to numerical interpolation for scattered data. On represen-60

tative datasets, including both synthetic and real-world datasets, our approach outperforms61

existing approaches. The experimental results demonstrate the potential of our approach62

in a wide range of application fields. The source code of NIERT will be released for open63

source use.64

2. We propose a novel partial self-attention mechanism to make Transformer incorporated with65

strong inductive bias for interpolation tasks; i.e., it can effectively exploit the correlation66

among two types of points but simultaneously avoid the interference of one type of points67

onto the others.68

3. We propose to use the pre-training technique to enhance interpolation approaches. When69

facing an interpolation task in a newly-appearing application field, we can benefit from the70

experience learned from low-cost synthesized interpolation tasks.71

2 Related works72

2.1 Traditional interpolation approaches for scattered data73

Traditional interpolation approaches for scattered data use explicit basis functions to construct74

interpolation function, e.g., Lagrange interpolation, Newton interpolation [6], B-spline interpolation75

[14], Shepard’s method [15], Kriging [16], and radial basis function interpolation (RBF) [17, 18].76

Among these approaches, the classical Lagrange interpolation, Newton interpolation and B-splines77

interpolation are usually used for univariate interpolation. Wang et al. [19] proposed a high order78

multivariate approximation scheme for scattered data sets, in which approximation error is represented79

with Taylor expansions at data points, and basis functions are determined through minimizing the80

squares of approximation error.81

2.2 Neural network-based interpolation approaches82

Equipped with deep neural networks, data-driven interpolation and reconstruction methods show great83

advantages and potential. For instance, convolutional neural networks (CNNs) have been applied84

in the interpolation tasks of single image super-resolution [20, 21], and recurrent neural networks85

(RNNs) and Transformers have been used for interpolation of sequences like time series data [4, 22].86
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Figure 1: Overview of NIERT training process. Here, xi represents the position of a point, and yi
represents its value. The predicted values of the point is denoted as ŷi. We prepare the training
interpolation tasks by first sampling functions from a function distribution F and then sampling
observed points O and target points T on each function. NIERT trains an interpolator over this data.
The partial self-attention mechanism facilitates exploiting the correlations between observed points
and target points and avoiding the unexpected interference of target points on observed points

Recently, Garnelo et al. [7] proposed to model the conditional distribution of regression functions87

given observed points. The proposed approach, conditional neural processes (CNPs), has shown88

increased estimation accuracy and generalizing ability. Kim et al. [8] designed an enhanced model,89

attentive neural processes (ANPs), with improved accuracy. Lee et al. [10] leveraged Bayesian90

last layer (BLL) [23] for faster training and better prediction. In addition, the bootstrap technique91

was also employed for further improvement [9]. To solve the interpolation task in 2D temperature92

field reconstruction, Chen et al. [2] proposed an Transformer-based approach, referred to as TFR-93

tranformer, which can also be applied to solve interpolation tasks for scattered data with higher94

dimensions. Note that although TFR-transformer and our NIERT are both based on transformer,95

they are fundamentally different: i) TFR-transformer adopts an encoder-decoder structure and treats96

observed points and target points respectively, while NIERT adopts only a Transformer encoder97

(equiped with partial self-attention) to encode and learn corelatetion of the scattered data in a unified98

fashion; ii) TFR-transformer is trained by minimizing the prediction error of target points, while99

NIERT’s training objective considers the prediction error of both observation points and target points.100

2.3 Masked language/image models and the pre-training technique101

The design of NIERT is also inspired by the recent advances in masked language/image models102

[12, 13, 24, 25] and pre-trained models for symbolic regression [26, 27]. The masked pre-trained103

models have been shown to be successful in learning representations of languages and images104

from large-scale data and improving the performance of downstream tasks. In addition, the mask105

mechanism makes the model able to reconstruct missing data from their context. Utilizing large-scale106

synthetic symbolic functions and sampled scattered data, Biggio et al. [26] and Valipour et al. [27]107

pre-trained Transformers to learn the map from scattered data to corresponding symbolic formulas.108

Different from these approaches, NIERT uses synthetic data to learn interpolating functions from109

scattered data numerically.110

3 Method111

3.1 Overview of NIERT112

In the study, we focus on the interpolation task that can be formally described as follows: We are113

given n observed points with known values O = {(xi, yi)}ni=1, and m target points with values to be114

determined, denoted as T = {xi}n+m
i=n+1. Here, xi ∈ X denotes position of a point, yi = f(xi) ∈ Y115

denotes the value of a point, and f : X → Y denotes a function mapping positions to values. The116

function f is from a function distribution F , which can be explicitly defined using a mathematical117

formula or implicitly represented using a set of scattered data in the form (xi, yi). The goal of118
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Algorithm 1 NIERT training process

Require: NIERT model Mθ with parameters θ, epoch number N , batch size B, domain X ,
function distribution F and error metric function Error(·, ·)
for k in {1..N} do

J ← 0
for b in {1..B} do

f, {xi}i ← sample a function and scatter points from F , X
{yi}i ← calculate f on {xi}i
O, T ← split and mask scatter points with values {(xi, yi)}i
{ŷi}i ←Mθ(O, T )
J ← J +

∑
i Error(ŷi, yi)

end for
Compute the gradient∇θJ and update θ

end for

interpolation task is to accurately estimate the values f(x) for each target point x ∈ T according to119

the observed points in O.120

Figure 1 depicts the schematic diagram of our NIERT approach. Briefly speaking, our approach121

employs a data-driven approach to numerical interpolation using encoder representations of Trans-122

formers. The main element of our approach is a neural interpolator that learns to estimate values for123

target points. The interpolator is featured by the characteristic that it treats the value of each target124

point as a masked token, thus enabling the unifying fashion to process both target points and observed125

points in the subsequent encoding and estimation procedures.126

To suit the interpolation task, we design a partial self-attention mechanism: on one side, we calculate127

the attention between target points and observed points at each layer, which gains NIERT the128

advantage to effectively exploit the correlations between these two types of points. On the other side,129

the attention is a partial one as we do not consider the effects of a target point on all other points.130

This way, the unexpected interference of target points onto the observed points, and the interference131

among target points, are completely avoided.132

The training process is depicted in Algorithm 1. Specifically, we prepare the training interpolation133

tasks by first sampling functions from a distribution F and then sampling observed points O and134

target points T on each function. When training NIERT, we set the loss function as the error between135

the estimated values and the corresponding ground-truth. It should be pointed out that errors acquired136

on both observed points and target points are accounted into loss function.137

3.2 Architecture of the NIERT interpolator138

The neural interpolator in NIERT adopts the Transformer encoder framework; however, to suit the139

interpolation task, significant modifications and extensions were made in embedding, Transformer140

and output layers, which are described in details below.141

Embedding with masked tokens: NIERT embeds both observed points and target points into the142

unified high-dimensional embedding space. As the position x of a data point and its value y are from143

different domains, we use two linear modules : Linearx embeds the positions while Lineary embeds144

the values.145

It should be noted that for target points, their values are absent when embedding as they are to be146

determined. In this case, we use a masked token as substitutes, which is embedded as a trainable147

parameter MASKy as performed in BERT [12]. This way, the interpolator processes both target148

points and observed points in a unifying fashion.149

We concatenate the embeddings of position and value of a data point as the point’s embedding,150

denoted as h0
i , i.e.,151

h0
i =

{
[Linearx(xi),Lineary(yi)] , if (xi, yi) ∈ O

[Linearx(xi),MASKy] , if xi ∈ T
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Transformer layer with partial self-attention mechanism: NIERT feeds the embeddings of the152

points into a stack of L Transformer layers, producing encodings of these points as results. Each153

Transformer layer contains two subsequent sub-layers, namely, a multi-head self-attention module,154

and a point-wise fully-connected network. These sub-layers are interlaced with residual connections155

and layer normalization between them.156

To avoid the unexpected interference of target points on observed points and target points themselves,157

NIERT replaces the original self-attention in Transformer layer with a partial self-attention, which158

calculates the feature of point i at the l + 1-st layer as follows:159

hl+1 = LayerNorm(ṽl +MLP(ṽl)),
160

ṽi
l = LayerNorm

(
vli +

∑
j

wijα
l
ijv

l
j

)
where vli and αl

ij represent the value embedding and ordinary attention weights at the l-th layer as161

calculated in Transformer [11]. In this formula, we introduce a new term wij that represents the162

partial self-attention pattern, i.e.,163

wij =

{
1, if (xj , yj) ∈ O

0, if xj ∈ T
.

By forcing the weight wij to be 0 for a target point i and any point j, we completely avoid the164

unexpected interference of target points on the other points.165

Estimating values for target points: For each target point i, we estimate its value ŷi through feeding166

its features at the final Transformer layer into a fully connected feed-forward network, i.e.,167

ŷi = MLPout(h
L
i ).

We calculate the error between the estimation and the corresponding ground-truth value, and compose168

the errors for all points into a loss function to be minimized.169

3.3 Enhancing NIERT using pre-training technique170

The interpolation functions from different applications usually differ greatly in their forms; however,171

the interpolation tasks might still share some common characteristics, say the correlation between172

observed points and target points. These common characteristics enable enhancing NIERT using173

the pre-training technique. Here, we pre-train NIERT using a synthetic dataset (see 4.1 for further174

details) and fine-tune it on other datasets in application fields.175

4 Experiments and results176

We evaluated NIERT and compared it with ten representative scattered data interpolation approaches177

on both synthetic and real-world datasets. We also examined the effects of the key elements of NIERT,178

including the partial self-attention, and the pre-training technique.179

4.1 Experiment setting180

The datasets, metrics and approaches for comparison are briefly described below. Further details of181

experiment settings are provided in Supplementary text.182

Datasets: Three representative datasets in various application fields, including two synthetic datasets183

NeSymReS and TFRD-ADlet, and real-world dataset PhysioNet, are used for evaluation.184

NeSymReS is a synthetic dataset for mathematical function interpolation, which is built using data185

generator proposed by Biggio et al. [26] and Lample and Charton [28]. We construct a function set186

with various dimensionality of data points, including 1D, 2D, 3D, and 4D. Scattered points in each187

instance are randomly sampled and divided into observed points and target points.188

TFRD-ADlet [2] is a synthetic dataset for 2D temperature field reconstruction where each instance189

represents a simulated 2D temperature field containing several heat source components and a specific190
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Dirichlet conditioned boundary. The goal of each task instance is to reconstruct the whole temperature191

field according to a limited number of observed points with measured temperature.192

PhysioNet Challenge 2012 dataset [29] is a real world dataset collected from intensive care unit193

(ICU) records for time-series data interpolation. Each point in an instance represents a measurement194

at a specific time, where each measurement contains up to 37 physiological indices. Following the195

study [22], we randomly divided the points into observed points and target points by setting the ratio196

of observed points at five levels, i.e., 50%, 60%, 70%, 80%, and 90%. Note that this dataset is a197

representative of hard interpolation tasks due to the sparsity and irregularity of the records.198

Pre-training dataset: In this study, NeSymReS dataset was used for pre-training NIERT to further199

improve its interpolation accuracy on TFRD-ADlet and PhysioNet dataset. For TFRD-ADlet dataset200

we directly use 2D TFRD-ADlet dataset for pre-training. As the PhysioNet dataset has a dimen-201

sionality of 37, we construct the pre-training instances by stacking random 37 functions from 1D202

TFRD-ADlet dataset and then sampling interpolation task instances.203

Metrics: When evaluating NIERT and other interpolation approaches, the prediction error of target204

points are calculated as interpolation accuracy. For the NeSymReS and PhysioNet dataset, we adopted205

mean squared error (MSE) as the error metric. For TFRD-ADlet dataset, we use three error metrics:206

mean absolute error (MAE), MAE in component area (CMAE) and MAE at boundary (BMAE)207

following Chen et al. [2]. Accordingly, we use L2-form loss function for NeSymReS and PhysioNet208

dataset and L1-form loss function for TFRD-ADlet dataset for training.209

Approaches for comparison: For NeSymReS dataset, we compared NIERT with six representative210

interpolation approaches, including RBF[30], MIR [19], CNP[7], ANP[8], BANP[9] and TFR-211

transformer [2]. For TFRD-ADlet we compared NIERT with CNP, ANP, BANP and TFR-transformer.212

For PhysioNet we compared NIERT with four approaches designed for time-series data interpolation,213

including RNN-VAE [31], L-ODE-RNN [32], L-ODE-ODE[33], and mTAND-Full[22].214

4.2 Interpolation accuracy on synthetic and real-world datasets215

For each instance of the test datasets, we applied the trained NIERT to estimate values for the target216

points. We calculate the errors between the estimation and the ground-truth as interpolation accuracy.217

Interpolation
approach

MSE (×10−5) on NeSymReS test set

1D 2D 3D 4D

RBF 215.439 347.060 443.094 327.775
MIR 67.281 274.601 448.933 342.997
CNP 67.176 248.668 392.348 314.311
ANP 34.558 140.005 206.699 164.751

BANP 14.913 84.187 143.518 140.288
TFR-transformer 15.556 58.569 99.986 90.579

NIERT 8.964 45.319 77.664 72.025

Table 1: Interpolation accuracy of NIERT and the
existing approaches on NeSymReS test dataset

Interpolation
approach

Evaluation criteria (×10−3)

MAE CMAE BMAE

CNP 96.674 109.419 56.939
ANP 54.684 62.511 26.524

BANP 28.671 29.450 19.984
TFR-transformer 27.074 29.772 18.835

NIERT 3.473 3.947 2.467
NIERT w/ pretraining 1.897 1.971 1.246

Table 2: Interpolation accuracy of NIERT and the
existing approaches over the TFRD-ADlet dataset

218

Interpolation
approach

Ratio of observed points

50% 60% 70% 80% 90%

RNN-VAE 13.418±0.008 12.594±0.004 11.887±0.005 11.133±0.007 11.470±0.006
L-ODE-RNN 8.132±0.020 8.140±0.018 8.171±0.030 8.143±0.025 8.402±0.022
L-ODE-ODE 6.721±0.109 6.816±0.045 6.798±0.143 6.850±0.066 7.142±0.066
mTAND-Full 4.139±0.029 4.018±0.048 4.157±0.053 4.410±0.149 4.798±0.036

NIERT 2.868±0.021 2.811±0.032 2.656±0.041 2.598±0.078 2.709±0.157
NIERT w/ pretraining 2.831±0.021 2.771±0.019 2.641±0.052 2.539±0.085 2.596±0.159

Table 3: The relationship between interpolation accuracy (measured using MSE, ×10−3) and the
ratio of observed points. Here, we use the PhysioNet dataset as representatives

Accuracy on the NeSymReS dataset: As shown in Table 1, on the 1D NeSymReS testset, RBF219

shows the largest interpolation error (MSE: 215.439). MIR, another approach using explicit basis220

functions, also shows a high interpolation error of 67.281. In contrast, BANP and TFR-transformer,221

which use neural networks to learn interpolation, show relatively lower errors (MSE: 14.913, 15.556).222

Compared with these approaches, our NIERT approach achieves the best interpolation accuracy223
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(MSE: 8.964). Table 1 also demonstrates the advantage of NIERT over the existing approach on the224

2D, 3D, and 4D instances.225
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Figure 2: The relationship between the interpola-
tion accuracy and the number of observed points.
Here we use the 2D instances in the NeSymReS
test dataset as representatives

Note that the number of observed points varies226

greatly in test instances, making the average227

interpolation error calculated over all test in-228

stances insufficient to measure interpolation per-229

formance. Therefore, we further divide test in-230

stances into subsets according to the number of231

observed points. As shown in Figure 2, as the232

number of observed points increases, the inter-233

polation error decreases as expected. In addition,234

the relative advantages of these approaches vary235

with the number of observed points, e.g., CNP is236

better than RBF and MIR initially but finally be-237

comes worse as the number of observed points238

increases. Among all approaches, NIERT stably239

shows the best performance over all test subsets,240

regardless of the number of observed points.241

Accuracy on the TFRD-ADlet dataset: As shown in Table 2, CNP, although employing the neural242

network technique, still performs poorly with MAE as high as of 96.674. In contrast, NIERT achieves243

the lowest interpolation error (MAE: 3.473), which is over one order of magnitude lower than CNP,244

ANP, BANP and TFR-transformer. Moreover, when enhanced with the pre-training technique, NIERT245

can further decrease its interpolation MAE to be 1.897. Besides MAE, other metrics, say CMAE and246

BMAE, also show the superior of NIERT over the existing approaches (Table 2 ).247

Accuracy on the PhysioNet dataset: Table 3 suggests that on the PhysioNet dataset, NIERT also248

outperforms the existing approaches, e.g., when controlling the ratio of observed points to be 50%,249

NIERT achieves an average MSE (×10−3) of 2.868, significantly lower than RNN-VAE (13.418),250

L-ODE-RNN (8.132), L-ODE-ODE (6.721) and mTAND-Full (4.139). Again, NIERT with the251

pre-training technique shows better performance. The advantages of NIERT hold across various252

settings of the ratio of the observed points.253

Taken together, these results clearly demonstrate the power of NIERT for numerical interpolation in254

multiple application fields, including interpolating the scattered data generated using mathematical255

functions, reconstructing temperature fields, and interpolating time-series data.256

4.3 Case studies of interpolation results257

To further understand the advantages of NIERT, we carried out case studies through visualizing258

the observed points, the reconstructed interpolation functions and the interpolation errors in this259

subsection. More visualized cases are put in the Supplementary material.260
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Figure 3: An example of 2D interpolation task extracted from NeSymReS test set. The up-left figure
shows the ground-truth function while the bottom-left figure shows the 22 observed points. The
interpolation functions reported by NIERT and the existing approaches are listed on the top panel
with their differences with the ground-truth are list below

Figure 3 show a 2D instance in the NeSymReS test set, respectively. As illustrated by these two261

figures, RBF performs poorly in the application scenario with sparse observed data. In addition, RBF262

and MIR, especially ANP, cannot accurately predict values for the target points that fall out of the263

range restricted by observed points. The CNP approach can only learn the rough trend stated by the264
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observed points, thus leading to significant errors. In contrast, BANP, TFR-transformer and NIERT265

can accurately estimate values for target points within considerably large range, and compared with266

BANP and TFR-transformer, NIERT can produce more accurate results.267

Figure4 shows an instance of temperature field reconstruction extracted from TFRD-ADlet. From268

this figure, we can observe that when using pre-training technique, NIERT further improves its269

interpolation accuracy in the whole area.270
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Figure 4: An example of temperature field reconstruction task extracted from TFRD-ADlet test set.
The up-left figure shows the ground-truth temperature field while the bottom-left figure shows the 32
observed points. The reconstructed results reported by NIERT and the existing approaches are listed
on the top panel with their differences with the ground-truth temperature field are list below

4.4 Contribution analysis of observed points for interpolation271

An idealized interpolation approach is expected to effectively exploit all observed points with272

appropriate consideration of relative positions among observed points and target points as well. To273

examine this issue, we visualized the attention weight of each observed point to all target points.274

These attention weights provide an intuitive description of the contribution by observed points.275

As shown in Figure 5, when using TFR-transformer, the contributions by observed points are276

considerably imbalanced: on one side, some observed points might affect their neighboring target277

points in a large region; on the other side, the other observed points have little contributions to278

interpolation. In contrast, when using NIERT, contributions by an observed point are much more279

local and thus targeted. More importantly, all observed points have contributions to interpolation.280

These results demonstrate that NIERT can exploit the correlation between observed points and target281

points more effectively.282
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Figure 5: Contributions by observed points for interpolation. The 2D instance is same to that used
in Figure 3. We randomly select 4 observed points and extract their attention weights from the
final attention layer of NIERT and TFR-transformer. These attention weights provide an intuitive
description of the contribution by observed points. The contributions by other 18 observed points are
shown in Supplementary material

4.5 Ablation study283

The effects of partial self-attention: For a specific interpolation task, the interpolation function is284

determined by the observed points only. Thus, an idealized encoding of observed points should not285

be affected by target points. To investigate the affects of target points, we evaluated NIERT on the286

test sets with various number of target points. Here, we compared two variants of NIERT, one with287

partial self-attention, and the other with vanilla self-attention. Both of these two variants were trained288

using the same training sets (the number of target points varies within [206, 246]).289
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As illustrated by Figure 6, the variant with vanilla self-attention shows poor performance for the tasks290

with few target points, say less than 64 target points. In contrast, the variant with partial self-attention291

always performs stably without significant changes of accuracy.292

The results clearly demonstrate that the partial self-attention mechanism allows NIERT to be free293

from the unexpected affects by the target points.294

The effects of pre-training technique: To investigate the effects of the pre-training technique, we295

show in Figure 7 the training process of two versions of NIERT, one without pre-training technique,296

and the other enhanced with pre-training. As depicted by the figure, even at the first epoch, the297

pre-trained NIERT shows a sufficiently high interpolation accuracy, which is comparable with the298

fully-trained BANP and TFR-transformer. Moreover, the performance of the pre-trained NIERT299

improves in roughly the same convergence speed to the original NIERT. At the final epoch, the300

pre-trained NIERT decreases the interpolation error to be nearly half of that of the original NIERT.301

These results clearly suggest that the experience learned by NIERT from the interpolation task in one302

application field has potential to be transferred to the interpolation tasks in other application fields.303
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Figure 6: The robustness of NIERT to the number
of target points. Here, two variants of NIERT are
trained on 1D NeSymReS dataset
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304

305

5 Discussion and conclusion306

We present in the study an accurate approach to numerical interpolation for scattered data. The307

specific features of our NIERT approach are highlighted by the full exploitation of the correlation308

between observed points and target points through unifying scattered data representation. At the same309

time, the use of partial self-attention mechanism can effectively avoid the interference of target points310

onto the observed points. The enhancement with pre-training technique is another special feature311

of NIERT. The advantages of NIERT in interpolation accuracy have been clearly demonstrated by312

experimental results on both synthetic and real-world datasets.313

The current version of NIERT has a computational complexity of O(n(m+ n)), thus cannot handle314

the interpolation tasks with extremely large amounts of observed points due to the limitations of GPU315

memory size. Compared with the lightweight traditional methods, our NIERT approach has a much316

larger model with expensive computation to learn complex function distribution, which limits its317

application in cost sensitive scenarios. How to reduce the memory requirement and computational318

cost is one of the future works. Additionally, it is interesting to combine NIERT and the traditional319

approaches based on basis functions to yield an approach with both high accuracy and interpretability.320

We expect NIERT, with extensions and modifications, to greatly facilitate numerical interpolations in321

a wide range of engineering and science fields.322
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