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ABSTRACT

To protect the security of machine learning models against adversarial examples,
adversarial training becomes the most popular and powerful strategy against various
adversarial attacks by injecting adversarial examples into training data. However, it
is time-consuming and requires high computation complexity to generate suitable
adversarial examples for ensuring the robustness of models, which impedes the
spread and application of adversarial training. In this work, we reformulate adver-
sarial training as a combination of stationary distribution exploring, sampling, and
training. Each updating of parameters of DNN is based on several transitions from
the data samples as the initial states in a Hamiltonian system. Inspired by our new
paradigm, we design a new generative method for adversarial training by using
Contrastive Divergence (ATCD), which approaches the equilibrium distribution of
adversarial examples with only few iterations by building from small modifications
of the standard Contrastive Divergence (CD). Our adversarial training algorithm
achieves much higher robustness than any other state-of-the-art adversarial training
acceleration method on the ImageNet, CIFAR-10, and MNIST datasets and reaches
a balance between performance and efficiency.

1 INTRODUCTION

Although deep neural networks have become increasingly popular and successful in many machine
learning tasks (e.g., image recognition He et al. (2016b), speech recognition Hinton et al. (2012);
van den Oord et al. (2016) and natural language processing Hochreiter & Schmidhuber (1997);
Vaswani et al. (2017)), the discovery of adversarial examples Szegedy et al. (2014); Goodfellow et al.
(2015) has attracted great attention to strengthening the robustness of deep neural network (DNN)
under such subtle but malicious perturbations. These crafted samples pose potential security threats
in various safety-critical tasks such as autonomous vehicles Evtimov et al. (2017) or face recognition
Sharif et al. (2016); Dong et al. (2019), which are required to be highly stable and reliable.

Unfortunately, it is considered to be unresolved since no final conclusion has yet been reached on
the root of the adversarial examples. Many defense methods Papernot et al. (2016); Na et al. (2018);
Buckman et al. (2018) motivated by different interpretability of adversarial examples Goodfellow
et al. (2015); Fawzi et al. (2018); Ma et al. (2018) were broken within a short time, indicating that
there is still no thorough solution to settle this matter once and away. Nonetheless, adversarial training
Szegedy et al. (2014); Goodfellow et al. (2015) has shown its ability to make classifiers more robust
against sorts of attacks than any other defenses in Madry et al. (2018); Athalye et al. (2018). It offers
an intuitive approach to handle the problem, which first obtains suitable adversarial examples by
solving the inner maximization problem and then update the parameters of ML model from these
examples by outer minimization. More and more advanced defenses Kannan et al. (2018); Lin et al.
(2019); Xie et al. (2019); Zhang et al. (2019c) are developed based on adversarial training.

However, a major issue of the current adversarial training methods is their significantly higher
computational cost than regular training. It often needs multiple days and hundreds of GPUs for
ImageNet-like datasets to achieve better convergence Xie et al. (2019), which makes it nearly
intractable and impractical for large models on tons of data. Even for small-sized datasets like
CIFAR10, adversarial training takes much longer time than regular training.

To address this issue, we formulate the problem of generating adversarial examples in a Hamiltonian
Monte Carlo framework (HMC) Neal et al. (2011), which can be considered as exploring the

1



Under review as a conference paper at ICLR 2021

stationary distribution of adversarial examples for current parameters. The high computational cost
of adversarial training can be easily attributed to the long trajectory of HMC producing. Therefore,
we propose a new adversarial training algorithm called ATCD for strengthening the robustness of
target models, enlightened by the Contrastive Divergence (CD) Hinton (2002). We minimize the
difference of Kullback-Leibler divergence between two adjacent sampling steps to avoid running
long Monte-Carlo Markov Chains (MCMC). Instead of running the chain to achieve equilibrium,
we can simply run the chain for fewer or even only one full step and then update the parameters to
reduce the tendency of the chain to wander away from the initial distribution on the first step. Our
approach is advantageous over existing ones in three folds:

• We offer a new perspective on adversarial examples generation in a HMC framework.
From the view of HMC, we bridge the relationship between several adversarial examples
generating methods and MCMC sampling, which effectively draw multiple fair samples
from the underlying distribution of adversarial examples.

• By analyzing the trajectory shift of different lengths of MCMC simulating, we speed up the
adversarial training by proposing a contrastive adversarial training (ATCD) method, which
accelerates the process of achieving distribution equilibrium.

• We thoroughly compare the effectiveness of our algorithm in various settings and different
architectures on ImageNet, CIFAR10 and MNIST. Models trained by our proposed algorithm
achieve robust accuracies markedly exceeding the ones trained by regular adversarial training
and the state-of-the-art speedup methods when defending against several attacks.

2 BACKGROUND AND RELATED WORK

Adversarial Defense. To deal with the threat of adversarial examples, different strategies have been
studied to find countermeasures to protect ML models. These approaches can be roughly categorized
into two main types: (a) detection only and (b) complete defense. The former approaches Bhagoji
et al. (2018); Ma et al. (2018); Lee et al. (2018); Tao et al. (2018); Zhang et al. (2018) is to reject the
potential malignant samples before feeding them to the ML models. The latter defenses obfuscate the
gradient information of the classifiers to confuse the attack mechanisms including gradient masking
Papernot & McDaniel (2017); Athalye et al. (2018) or randomized models Liu et al. (2018); Xie et al.
(2018a); Lecuyer et al. (2019); Liu et al. (2019). There are also some add-ons modules Xie et al.
(2019); Svoboda et al. (2019); Akhtar et al. (2018); Liao et al. (2018) being appended to the targeted
network or adversarial interpolation schemes Zhang & Xu (2020); Lee et al. (2020) to protect deep
networks against the adversarial attacks.

Fast Adversarial Training. Besides all the above methods, adversarial training Goodfellow et al.
(2015); Kurakin et al. (2017); Kannan et al. (2018); Madry et al. (2018); Tramèr et al. (2018); Liu
& Hsieh (2019); Wang et al. (2020; 2019) is the most effective way to ensure better robustness,
which has been widely verified in many works and competitions. However, limited works focus
on boosting robust accuracy with reasonable training speed. Free Shafahi et al. (2019) recycle the
gradient information computed to reduce the overhead cost of adversarial training. YOPO Zhang et al.
(2019b) recast the adversarial training as a discrete time differential game and derive a Pontryagin’s
Maximum Principle (PMP) for it. Fast-FGSM Wong et al. (2020) combines FGSM with random
initialization to accelerate the whole process.

Markov Chain Monte Carlo Methods. Markov chain Monte Carlo (MCMC) Neal (1993) provides
a powerful framework for exploring the complex solution space and achieves a nearly global optimal
solution independent of the initial state. But the slow convergence rate of MCMC hinders its wide use
in time critical fields. By utilizing the gradient information in the target solution space, Hamiltonian
(or Hybrid) Monte Carlo method (HMC) Duane et al. (1987); Neal et al. (2011) achieves tremendous
speed-up in comparison to previous MCMC algorithms. Multiple variants of HMC Pasarica &
Gelman (2010); Salimans et al. (2015); Hoffman & Gelman (2014) were yet to be developed for
adaptively tuning step size or iterations of leapfrog integrator. The fusion of MCMC and machine
learning Tu & Zhu (2002); Chen et al. (2014); Song et al. (2017); Xie et al. (2018b) also shows great
potential of MCMC.

Contrastive Divergence. Contrastive Divergence (CD) has achieved notable success in training
energy-based models including Restricted Boltzmann Machines (RBMs) as an efficient training

2



Under review as a conference paper at ICLR 2021

method. The standard approach to estimating the derivative of the log-likelihood function is using
the Markov chain Monte Carlo Gilks et al. (1995), which can be expressed as the difference of
two expectations. It runs k MCMC transition steps at each iteration T and iteratively generates a
sequence of parameter estimates {θT }T≥0 given an i.i.d. data sample {Xi}Ni=1 ∼ pθ̄, where pθ̄ is the
distribution of target samples for the true parameter θ̄. To reduce the computational complexity, the
traditional Contrastive Divergence algorithm computes approximate RBM log-likelihood gradient
setting k = 1. Various works are devoted to addressing the problem of the vanilla CD afterwards, such
as uncontrolled biases and divergence Carreira-Perpinan & Hinton (2005); Yuille (2005); MacKay
(2001); Fischer & Igel (2011; 2014). Persistent CD (PCD) and its relevant works Tieleman (2008);
Tieleman & Hinton (2009); Desjardins et al. (2010) show a steady decrease of the log-likelihood
in many numerical analysis while some works Schulz et al. (2010); Fischer & Igel (2010) also
give examples in which PCD failed to converge. Although none of these works provide a solid
convergence guarantee since the major problems of CD family stem from the fact that the stochastic
approximation to the true gradient is a biased estimator, our work do not need the exact values of
the derivatives. Actually, we just borrow the idea from the vanilla CD to accelerate the process of
distribution equilibrium over the visible variables instead of discovering the unknown distribution
Pang et al. (2018); Alayrac et al. (2019).

3 PRELIMINARIES

Considering a target DNN model f̂ ∈ F , where F is the solution function space for classification
task. We assume softmax is employed for the output layer of the model f(·) and let f(x) denote the
softmax output of a given input x ∈ Rd, i.e., f(x) : Rd → RC , where C is the number of categories.
We also assume that there exists an oracle mapping function f∗ ∈ F : x 7→ y∗, which pinpoints the
belonging of the input x to all the categories by accurate confidence scores y∗ ∈ RC . The common
training is to minimize the cross-entropy (CE) loss Jce, which is defined as:

f = arg min
f∈F

E(x,y)∼D [Jce (f(x), y)] , (1)

where y is the manual one-hot annotation of the input x since y∗ is invisible. The goal of Eq. (1) is
to update the parameters of f for better approaching f∗, which leads to f(x) ≈ y ≈ y∗ = f∗(x).
Suppose the target DNN model correctly classifies most of the input after hundreds of iterations,
it will still be badly misclassified by adversarial examples (i.e., arg maxc∈{1,··· ,C} f(x̃)c 6= y[c]).
In adversarial training, these constructed adversarial examples are used to updates the model using
minibatch SGD. The objective of this minmax game can be formulated as a robust optimization
following Madry et al. (2018):

f ′ = arg min
f∈F

E
(x,y)∼D

[
max
x̃∈N (x)

Jce (f (x̃) , y)

]
, (2)

where the inner maximization problem attempts to generate the most easily misclassified samples
while the outer minimization problem is to search a mapping function f ′ which is the closest one to
the oracle f∗.

4 HAMILTONIAN MONTE CARLO FOR ADVERSARIAL LEARNING

4.1 AN OVERVIEW OF MCMC AND HAMILTONIAN MONTE CARLO

The crux of this work relies on offering a fundamentally different view of adversarial example
generation, which simulates the inner maximization in Eq. (2) as proposing dynamics by HMC. We
now give the overall description of Metropolis-Hasting based MCMC algorithm. Suppose p is our
target distribution over a space D, MCMC methods construct a Markov Chain that has the desired
distribution p as its stationary distribution. At the first step, MCMC chooses an arbitrary point x0 as
the initial state. Then it repeatedly performs the dynamic process consisting of the following steps:
(1) Generate a candidate sample x̃ as a “proposed” value for state xt+1 from the candidate-generating
density Q(xt|x̃). (2) Compute the acceptance probability ξ = min(1, p(x̃)Q(xt|x̃)

p(xt)Q(x̃|xt)
), which is used

to decide whether to accept or reject the candidate. (3) Accept the candidate sample as the next
state with probability ξ by setting xt+1 = x̃. Otherwise reject the proposal and remain xt+1 = xt.
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Although MCMC makes it possible to sample from any desired distributions, its random-walk nature
makes the Markov chain converge slowly to the stationary distribution p(x).

In contrast, HMC employs physics-driven dynamics to explore the target distribution, which is much
more efficient than the alternative MCMC methods. Before introducing HMC, we start out from an
analogy of Hamiltonian systems in Neal et al. (2011) as follows. Suppose a hockey puck sliding over
a surface of varying height and both the puck and the surface are frictionless. The state of the puck is
determined by potential energy U(θ) and kinetic energy K(v), where θ and v are the position and the
momentum of the puck. The evolution equation is given by the Hamilton’s equations:{

∂θ
∂t = ∂H

∂v = ∇vK(v)
∂v
∂t = ∂H

∂θ = −∇θU(θ).
(3)

Due to the reversibility of Hamiltonian dynamics, the total energy of the system remains constant:

H(θ, v) = U(θ) +K(v). (4)

As for HMC, it contains three major parts: (1) Hamiltonian system construction; (2) Leapfrog
integration; (3) Metropolis-Hastings correction. Firstly, the Hamiltonian is an energy function for
the joint density of the variables of interest θ and auxiliary momentum variable v, so HMC defines a
joint distribution via the concept of a canonical distribution:

p(θ, v) ∝ exp

(
−H(θ, v)

τ

)
, (5)

where τ = 1 for the common setting. Then, HMC discretizes the system and approximately
simulates Eq. (3) over time via the leapfrog integrator. Finally, because of inaccuracies caused by
the discretization, HMC performs Metropolis-Hastings Metropolis et al. (1953) correction without
reducing the acceptance rate.

According to Eq. (4) and (5), the joint distribution can be divided into two parts:

p(θ, v) ∝ exp

(
−U(θ)

τ

)
exp

(
−K(v)

τ

)
. (6)

Since K(v) is an auxiliary term and always setting K(v) = vT I−1v/2 with identity matrix I for
standard HMC, our aim is that the potential energy U(θ) can be defined as U(θ) = − log p(θ) to
explore the target density p more efficiently than using a proposal probability distribution. If we can
calculate∇θU(θ) = −∂ log(p(θ))

∂θ , then we can simulate Hamiltonian dynamics that can be used in an
MCMC technique.

4.2 SIMULATING ADVERSARIAL EXAMPLES GENERATING BY HMC

Assume that the adversarial examples for x with label y are distributed over the solution space Ω.
Given any input pair (x, y), for a specified model f(·) ∈ F with fixed parameters, the adversary aims
to find such examples x̃ that can mislead the model:

Ω = arg max
N(x)⊂N (x)

∫
J (x̃, y) p (x̃|x, y) dx̃, (7)

where N (x) is the neighboring regions of x and defined as x′ ∈ N (x) :=
{
‖x′ − x‖1,2,or∞ ≤ ε

}
.

From the perspective of Bayesian statistics, we can make inference about adversarial examples over a
solution space Ω from the posterior distribution of x̃ given the natural inputs x and labels y.

x̃ ∼ p(x̃|x, y) ∝ p(y|x̃)p(x̃|x), x̃ ∈ Ω. (8)

In Hamiltonian system, it becomes to generate samples from the joint distribution p(θ, v). Let θ = x̃,
according to Eq. (8) and (6), we can express the posterior distribution as a canonical distribution
(with τ = 1) using a potential energy function defined as:

U =
1

N

N∑
i=1

− log p(y(i)|x̃(i))− log p(x̃|x)

= J (x̃, y)− log p(x̃|x).

(9)
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Figure 1: Measurement of TS (as defined in Definition 5) in different layers of ResNet34 on CIFAR10.
For a layer, we measure the L2-difference and cosine similarity of the gradients running different
lengths of trajectory.

Since J (x̃, y) is the usual classification likelihood measure, the question remains how to define
p(x̃|x). A sensible choice is a uniform distribution over the Lp ball around x, which means we can
directly use a DNN classifier to construct a Hamiltonian system for adversarial examples generation
as the base step of HMC.

Recall that the development of adversarial attacks is mainly based on the improvement of the vanilla
fast gradient sign method, which derives I-FGSM, PGD and MI-FGSM. For clarity, we omit some
details about the correction due to the constraint of adversarial examples. The core policy of the
family of fast gradient sign methods is:

x̃t = x̃t−1 + ε · sign(gt), (10)

where gt is the gradient of J at the t-th iteration, i.e.,∇xJ(x̃t−1, y). It is clear that the above methods
are the specialization of HMC by setting:

θt = x̃t, vt = gt,

H(θ, v) =J(θ) + |v|. (11)

More specifically, I-FGSM can be considered as the degeneration of HMC, which explicitly updates
the position item θ but implicitly changes the momentum item v at every iteration. One of the
derivation of I-FGSM, MI-FGSM, has explicitly updated both θ and v by introducing gt = µgt−1 +

1
||∇J(x̃t−1,y)||1∇J(x̃t−1, y) after Eq. (10) at each step with the decay factor µ = 1. The other

derivative PGD runs Eq. (10) on a set of initial points x̃0 ∈
{
x̃

(1)
0 , x̃

(2)
0 , · · · , x̃(S)

0

}
adding different

noises, which can be treated as a parallel HMC but the results are mutually independent.

5 ADVERSARIAL TRAINING USING CONTRASTIVE DIVERGENCE

As mentioned in Section 4, the inner maximization problem can be reformulated as the process of
HMC. It is obvious that the high computational cost of adversarial training can be easily attributed
to the long trajectory of MCMC searching for the stationary distribution of adversarial examples.
Nevertheless, does training a robust model really need such a long trajectory?

To answer this question, we consider studying the gradient of the loss since the training procedure
(obtaining ∇vK(v) and ∇θU(θ) and updating parameters of DNN) is a first-order method. To
quantify the extent to which the parameters in a layer would change in reaction to the length of the
trajectory, we measure the difference between the gradients of each layer running different lengths of
trajectory. This leads to the following definition.

Definition 5.1. Let W (K)
1 , ...,W

(K)
n be the parameters of each of the n layers and

(
x̃(k); y

)
,(

x̃(k′); y
)

be the batch of input-label pairs used to adversarially train the network. We define
trajectory shift (TS) of activation i along different lengths of trajectoriry k and k′ to be the difference
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∥∥∥gk,i − g′k′,i∥∥∥
dist

, where

gk,i = ∇
W

(k)
i
J
(
W

(k)
1 , . . . ,W

(k)
n ; x̃(k), y

)
g′k′,i = ∇

W
(k′)
i

J
(
W

(k′)
1 , . . . ,W

(k′)
n ; x̃(k′), y

)
.

(12)

The difference between gk,i and g′k,i thus reflects the change in the optimization landscape of
parameters Wi caused by the changes to its input, which captures the shift of different lengths
of trajectory that could have an influence on adversarial training. Equipped with this definition,
we measure TS on ResNet34 trained with adversarial examples simulating by different lengths of
trajectory (k = 2, k′ = 10) throughout the training. Results are shown in Fig. 1. Although the
situation in the bottom layer (e.g. layer5) is rather different than that in the top layer (e.g. layer20),
both the direction and the magnitude of the gradients are quite close when simulating different lengths
of trajectory. These evidences suggest that running a full trajectory for many steps is too inefficient
since the model changes very slightly between parameter updates.

Thus, we might take advantage of that by initializing a HMC at the state in which it ended for the
previous model. This initialization is often fairly close to the model distribution, even though the
model has changed a bit in the parameter update. Besides, the high acceptance rate of HMC indicates
that it is not necessary to run a long trajectory from the initial point. Therefore, we can simply run
the chain for small (or even one) full step and then update the parameters to reduce the tendency
of the chain to wander away from the initial distribution on the first step instead of running the full
trajectory to equilibrium. We take small number K of transitions from the data sample {xi}ni = 1 as
the initial values of the MCMC chains and then use these K-step MCMC samples to approximate the
gradient for updating the parameters of the model. Algorithm1 summarizes the full algorithm.

Moreover, we also present a new training objective function Jcd, which minimizes the difference of
KL divergence between two adjacent sampling steps to substitute the common KL loss:

Jcd = ρ(Q0
∥∥Q∞)− λ(Q1

∥∥Q∞), (13)
where || denotes a Kullback-Leibler divergence and ρ and λ are the balanced factors. Q0 and Q1

are the output vector of DNN given input images x+ v0 and x+ vK . The intuitive motivation for
using this Jcd is that we would like every state in HMC exploring to leave the initial distribution Q0

and Q0||Q∞ would never exceed Q1||Q∞ until Q1 achieves the equilibrium distribution. We set
λ = 2, ρ = 1 and analyze how this objective function influences the partial derivative of the output
probability vector with respect to the input. Due to the fact that the equilibrium distribution Q∞ is
considered as a fixed distribution and the chain rule, we only need to focus on the derivative of the
softmax output vector with respect to its input vector in the last layer as follows:

∇Ulast = 2
∑
c

yc
∂ log fω(x̃K)c

∂x̃′
−
∑
c

yc
∂ log fω̃ (x̃)c

∂x̃′

= 2fω(x̃K)c
∑
c

yc − fω̃ (x̃)c

∑
c

yc − y

= fω(xK)− (y −∆f),

(14)

where ∆f = fω(xK)−fω̃ (x̃). Based on this abbreviation, we can easily get the relationship between
Eq. (14) and ∂Jce

∂x̃′ = fω(xK) − y. For each adversarial example generation, Eq. (14) makes an
amendment of y which is determined by the difference of current and the last K-step HMC samples
output probability. Since fω and fω(x) are more closer to f∗ and y∗ than fω̃ and fω̃(x), each update
of x̃ would be better corrected.

6 EXPERIMENTAL RESULTS

In this section, we focus on the ImageNet Deng et al. (2009), CIFAR10 Krizhevsky & Hinton (2009)
and MNIST LeCun (1998) datasets with extensive experiments to validate the effectiveness of the
proposed methods. For most part of experiments, we compare three standard adversarial training
baselinesMadry et al. (2018); Zhang et al. (2019d); Rice et al. (2020) and three advanced acceleration
methodsShafahi et al. (2019); Zhang et al. (2019b); Wong et al. (2020) with our ATCD. More details
about experiment setup can refer to Appendix A.1. Extensive ablation studies on CIFAR10 can also
be found in Appendix A.3.
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Algorithm 1 Adversarial Training using Contrastive Divergence (ATCD)
Input: A DNN classifier fω(·) with initial learnable parameters ω0; training data x with visible label y;
number of epochs N ; length of trajectory K; repeat time T ; magnitude of perturbation ε; learning rate κ; step
size α.
/*Stage-0: Construct Hamiltonian system*/
U(θ, ω, ω̃, y, k) = −Jcd

(
fω(θ

k−1), fω̃(θ
K), y

)
, K(v) = |v|

Initialize ω = ω̃ = ω0, θK = θ0.
for epoch= 1 · · ·N/(TK) do

θ0 ← x+ v0, v0 ∼ Uniform(−ε, ε).
for t = 1 to T do

/*Stage-1: Generate adversarial examples by K-step contrastive divergence*/
for k = 1 to K do

θk ← θk−1 + ε · ∇K(vt−1)
vt ← vt−1 − α∇U(θ, ω, ω̃, y, k)
vt ← clip(vt,−ε, ε)

end for(
θK , vt

)
=

(
θk, vt

)
, M-H step decides whether it should be accepted or rejected.

/*Stage-2: Update parameters of DNN by generated adversarial examples*/
gω ← E(θ,y)

[
∇ωJce(fω(θK), y)

]
ω̃ ← ω
ω ← ω − κgω

end for
end for

6.1 IMAGENET

For ImageNet, we fix the total loop times T ∗K = 4 same as Free-4 Shafahi et al. (2019) for fair
comparison. We report average over the final 3 evaluation. Comparison between free adversarial
training and ours are shown in Table 1. Although the 2-PGD trained ResNet-50 model still maintains
its leading role in the best robust accuracy, it takes three times longer than our ATCD method.
Actually, when compared with its high computational cost of ImageNet training, this performance
gain can be considered inefficient or even impractical for resource limited entities. Besides, ATCD is
an anytime algorithm expected to find better and better solutions the longer it keeps running. We also
compare ResNet-50 model trained by our ATCD method with the Free-4 trained, model trained by
ATCD produces much more robust models than Free-4 against different attacks in almost the same
order of time. Though Fast-FGSM achieves a sterling acceleration, both its clean accuracy and robust
accuracy are not satisfactory enough.

Methods Clean Data PGD-10 PGD-20 PGD-50 MI-FGSM-20 Speed (mins)
Natural train 75.34% 0.14% 0.06% 0.03% 0.03% 1437
PGD Madry et al. (2018) 63.95% 36.89% 36.44% 36.17% 35.29% 8928
Free-4 Shafahi et al. (2019) 60.26% 31.12% 30.29% 30.07% 29.43% 2745
Fast-FGSM Wong et al. (2020) with apex 55.68% 30.23% 29.07% 28.91.% 27.88% 718
ATCD-2-1 with/without apex 59.23% 35.91% 35.72% 35.76% 34.67% 1229 / 2992

Table 1: Validation accuracy and robustness of ResNet50 on ImageNet. We report average over the
final 3 runs. The maximum perturbation of all the attackers is ε = 4/255. The best results are in
red while the second best results are in blue. Our ATCD achieves a trade-off between efficiency and
accuracy.

6.2 CIFAR10

For CIFAR10, we fix the total loop times T ∗ K = 8 same as Free-8 Shafahi et al. (2019) for
fair comparison and show the training time of all methods. We calculate the deviation value of
final 5 evaluation and report average over 5 runs with different restarts. Results on Wide ResNet34
Zagoruyko & Komodakis (2016) are summarized in Table 2.

From the table, we can see that the naturally trained model (without any adversarial examples) is
vulnerable to all the attacks, while the baseline adversarial training methods (PGD, TRADES, Robust-
Overfitting) produce robust models that are effective to defend PGD attacks and goodish to other
type of attacks. Three advanced acceleration methods (Free, YOPO/TRADES+YOPO, Fast-FGSM)
and ours can be at least 4∼5 times faster than previous adversarial training methods. Although
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Methods Clean Data PGD-20 MI-FGSM-20 CW AA RayS Speed (mins)

Natural train 94.58% 0.00% 0.00% 0.00% 0.00% 0.00% 212

PGD-10 Madry et al. (2018) 87.11%±0.37% 48.4%±0.22% 44.37%±0.11% 45.91%±0.14% 43.88%±0.15% 49.91%±0.37% 2602
TRADES-10 Zhang et al. (2019d) 85.63%±0.44% 53.21%±0.57% 52.22%±0.27% 52.08%±0.39% 52.67%±0.27% 56.91%±0.23% 2695
Robust-Overfitting Rice et al. (2020) 85.21%±0.66% 57.46%±0.71% 54.38%±0.52% 54.81%±0.51% 53.14%±0.31% 58.13%±0.37% 4500

Free-8 Shafahi et al. (2019) 84.29%±1.44% 47.8%±1.32% 47.01%±0.19% 46.71%±0.22% 42.53%±0.37% 51.37%±0.38% 646
YOPO-5-3 Zhang et al. (2019a) 84.72%±1.23% 46.4%±1.49% 47.24%±0.25% 47.5%±0.37% 44.44%±0.29% 50.81%±1.55% 457
TRADES+YOPO-3-4 Zhang et al. (2019a) 87.55%±∞% 48.86%±∞% 48.13%±∞% 49.53%±∞% 49.53%±∞% 51.19%±∞% 1231
Fast-FGSM Wong et al. (2020) with apex 83.21%±0.66% 46.46%±0.71% 45.38%±0.52% 45.81%±0.51% 43.01%±0.17% 48.78%±0.51% 23
ATCD-4-1 with/without apex 86.09%±0.27% 54.2%±0.44% 52.73%±0.21% 52.62%±0.15% 50.2%±0.11% 57.11%±0.24% 167 / 672

Table 2: Validation accuracy and robustness of Wide ResNet34 on CIFAR10. The maximum
perturbation of all the attackers is ε = 8/255. We report average over 5 runs with different restarts.
The ”∞” error bars mean the method sometimes cannot converge during the training process. The
best results are in red while the second best results are in blue.

Fast-FGSM achieves the best speed improvement (using the apex library), our ATCD is the only
method that even greatly boost the robust accuracy in a reasonable training speed. Similar success
also appear in different architectures (see in Appendix A.3.1). We also perform the evaluation among
different methods on both clean accuracy (i.e. accuracy on natural images) and robust accuracy (i.e.
accuracy on adversarial examples) after every training epoch and show the remarkable reliability
about our ATCD in Fig. 2. We further emphasize that although YOPO may be computationally
cheaper when compared to conventional approaches and other methods, it is clear that the curve
of YOPO vibrates greatly and frequently, which implies the training scheme of YOPO should be
carefully designed to achieve stable results. This is also reflected in Table 2 when compared with the
error bars of YOPO (TRADES+YOPO) and ours.
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Figure 2: Comparison with different advanced fast adversarial training methods. We use PGD-20
as the attacker and report their clean accuracy and robust accuracy. Solid lines represent the robust
accuracy and dashed lines represent the clean accuracy.

6.3 MNIST

We also investigate our ATCD method on MNIST. PGD-40 still has comparable clean accuracy and
robust accuracy among all the methods, but its computational cost is significantly higher than other
training methods. Our method still achieves a good trade-off between efficiency and robust accuracy.

Clean Data PGD-40 CW Speed (secs)
Natural train 99.98% 0.00% 0.00% 196
PGD-40 Madry et al. (2018) 99.50% 97.17% 93.27% 1877
Free-10 Shafahi et al. (2019) 98.29% 95.33% 92.66% 415
YOFO-5-10 Zhang et al. (2019a) 99.98% 94.79% 92.58% 312
ATCD-2-1 99.36% 97.48% 94.77% 441

Table 3: Validation accuracy and robustness of a small CNN on MNIST. The maximum perturbation
of all the attackers is ε = 0.3. The best results are in red while the second best results are in blue.

7 CONCLUSION

In this paper, we reformulate the generation of adversarial examples as a MCMC process and present
a new adversarial learning method called ATCD, which approaches equilibrium distribution of
adversarial examples with only few iterations by building from small modifications of the standard
Contrastive Divergence. Extensive results with comparisons on various datasets show that ATCD
achieves a trade-off between efficiency and accuracy in adversarial training.
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A APPENDIX

A.1 EXPERIMENT SETUP

All the experiments are taken on a single NVIDIA GeForce GTX Xp GPU. Results of Free training
Shafahi et al. (2019), TRADES-10 Zhang et al. (2019d), YOPO Zhang et al. (2019b), Fast-FGSM
Wong et al. (2020) and Robust-Overfitting Rice et al. (2020) are reproduced on our local machines
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but completely follow their official codes12345. Note that in our experiments, we do not use any
label-smoothing or other tricks to boost the robustness accuracy since we would like to fairly compare
PGD, Free and YOPO with our ATCD method. These extra tricks and adversarial interpolation
schemes can be added to improve results for both approaches but not the focus of our paper.

ImageNet setup. The ILSVRC 2012 classification dataset contains ˜1.28M training images and
50k validation images labeled with 1,000 classes. Following the common practice, we perform
horizontal flip, scale, and aspect ratio augmentation for training images and apply a single center
crop of 224× 224 pixels during evaluation. We choose the standard Resnet50 as the target model.
For all methods, we use a batch size of 256, and SGD optimizer with momentum 0.9 and a weight
decay of 1e-4. The initial learning rate is 0.1 and the learning rate is decayed by 10 every 30/TK
epochs. We also set step size ε = 4/255 and magnitude of perturbation ε = 4/255 based on L∞
norm. We compare to the best performing configuration of Free adversarial training which uses 4
minibatch replays over 96 epochs of training. That means we only run N/TK = 24 passes over the
whole dataset for both Free training and ATCD.

CIFAR10 setup. The CIFAR10 dataset is a widely used dataset consisting of 60,000 colour images
of 10 categories. Each category has 6,000 images. We choose the standard Wide ResNet-34 and
Preact-ResNet18 following previous works Madry et al. (2018); Zhang et al. (2019a). We use a
similar scheme that was used in YOPO Zhang et al. (2019b): we train models for 40 epochs and
the initial learning rate is set to 0.2, reduced by 10 times at epoch 30 and 36. For PGD adversarial
training, we set the total epoch number N = 105 and 10 steps of PGD with step size ε = 2/255 and
magnitude of perturbation ε = 8/255 as a common practice. The initial learning rate is set to 5e-2,
reduced by 10 times at epoch 79, 90 and 100. We use a batch size of 256, a weight decay of 5e-4 and
a momentum of 0.9 for both algorithm. For evaluating, we test our model’s robustness under CW
Carlini & Wagner (2017), MI-FGSM Dong et al. (2018), AutoAttck (AA)cro (2020), RaySChen &
Gu (2020) and 20 steps of PGD with step size ε = 2/255 and magnitude of perturbation ε = 8/255
based on L∞ norm.

MNIST setup. MNIST is a database for handwritten digit classification. It consists of 60,000 training
images and 10,000 test images, which are all 28× 28 greyscale images, representing the digits 0-9.
We choose a simple ConvNet with four convolutional layers followed by three fully connected layers,
which is same as Zhang et al. (2019a). For PGD adversarial training, we train the models for 55
epochs. The initial learning rate is set to 0.1, reduced by 10 times at epoch 45. We use a batch size of
256, a weight decay of 5e-4 and a momentum of 0.9. For evaluating, we perform a PGD-40 and CW
attack against our model and set the size of perturbation as ε = 0.3 based on L∞ norm as a common
practice Madry et al. (2018); Zhang et al. (2019a;c).

A.2 DETAILS ABOUT TRAJECTORY SHIFT

Trajectory Shift (TS) is our proposed metric to measure the difference of running various lengths
of trajectory. To reflect the change in the optimization landscape of parameters of a network during
the course of training, we essentially take different lengths in MCMC simulating and measure the
gradient obtained by each backward.

Specifically, suppose we would like to investigate the TS of the i-th layer and the lengths of different
trajectories are K and K ′, what we need to do is to generate adversarial inputs according to the K
and K ′-step trajectory of MCMC simulating. When the trajectory simulation is finished, we perform
gradient backward based on the potential energy function and adversarial examples at current state,
and then gather all the gradients in the mini-batch. Finally, all gradients will be added and averaged
throughout the dataset when both trajectory simulating and parameters updating are completed. So the
trajectory shift is the difference of these two averaged results. The whole process can be summarized

1Code from https://github.com/ashafahi/free adv train.
2Code from https://github.com/a1600012888/YOPO-You-Only-Propagate-Once.
3Code from https://github.com/yaodongyu/TRADES
4Code from https://github.com/locuslab/fast adversarial
5Code from https://github.com/locuslab/robust overfitting
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as the following formualtion:
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where B is the size of mini-batch. Note that in order to eliminate some unnecessary effects, we use
the same random seed and share initialization parameters for two sets of trajectory with different
lengths, and the input samples of each mini-batch are exactly the same.

A.3 ABLATION STUDIES

A.3.1 DIFFERENT ARCHITECTURES

Besides the success on Wide ResNet34 Zagoruyko & Komodakis (2016), we also achieves similar
acceleration against PGD-10 in Preact-ResNet18 He et al. (2016a), as shown in Table 4. ATCD
can achieve more aggressive robust accuracy boost with only a slight drop in clean accuracy when
compared with Free and YOPO. The word “natural train” in the table means the models are trained
by using only natural (clean) images as the tradition classification task always does.

Methods Clean Data PGD-20 MI-FGSM-20 CW Speed (mins)
Natural train 93.78% 0.00% 0.00% 0.00% 47
PGD-10 Madry et al. (2018) 84.96%±0.12% 41.58%±0.11% 39.47%±0.27% 58.88%±0.33% 132
TRADES-10 Zhang et al. (2019d) 85.05%±0.48% 43.57%±0.62% 42.33%±0.28% 57.21%±0.35% 607
Robust-Overfitting Rice et al. (2020) 85.15%±1.03% 46.73%±0.89% 45.38%±0.52% 60.81%±0.51% 1033
Free-8 Shafahi et al. (2019) 82.44%±0.37% 42.07%±0.44% 41.88%±0.53% 57.02%±0.22% 110
YOPO-5-3 Zhang et al. (2019a) 82.65%±0.75% 42.56%±0.83% 41.85%±0.44% 56.93%±0.71% 66
TRADES+YOPO-3-4 Zhang et al. (2019a) 84.73%±∞% 43.56%±∞% 42.13%±∞% 56.93%±∞% 231
Fast-FGSM Wong et al. (2020) with apex 80.91%±0.77% 45.74%±0.63% 43.27%±0.51% 56.57%±0.28% 8
ATCD-2-1 with/without apex 81.54%±0.31% 49.37%±0.27% 48.56%±0.09% 61.28%±0.29% 28 / 114

Table 4: Validation accuracy and robustness of Preact-ResNet18 on CIFAR10. The maximum
perturbation of all the attackers is ε = 8/255. We report average over 5 runs with different restarts.
The best results are in red while the second best results are in blue.

A.3.2 INFLUENCE OF UPDATING FREQUENCY AND TRAJECTORY LENGTH

We study the effect of updating iteration T and the length of trajectory K on the accuracy rate for
our ATCD. We fix T ∗K = 8 and apply several configurations. Results are shown in Table 5 and
Figure. 3. It can be observed that (1) The best accuracy rate of ATCD on both clean images and
PGD adversarial examples appears at T = 4,K = 2. This may result from the balance it achieves
between updating frequency and the length of trajectory when T ∗K is limited. (2) We would like to
point out Free training is a special case of ATCD, except that ATCD has a new objective function for
approaching equilibrium distribution and can freely control the updating frequency and the length of
MCMC trajectory. We compare our ATCD under several configurations with Free-8 (at the last row,
and that’s the reason why we fix T ∗K = 8). Note that our ATCD method surpass Free-8 in all cases,
which shows that it is necessary to seperate parameters updating and adversarial examples generating
instead of treating the service as one like Free model and Jcd is helpful for the robustness.

A.3.3 INFLUENCE OF M-H RESAMPLING

The proposed method has a new adversarial example generation objective and the M-H resampling.
In order to find out what actually causes the performance improvement, we ablate the behavior of the
generation objective and the M-H resampling. This ablation is in Table 6. We investigate the above
two components for training Wide ResNet34 on CIFAR10. When adding the CD generation objective
in the procedure of training, the accuracy increases greatly — e.g., increasing from 47.8% to 53.11%
under 20-iteration PGD attacks. On the other hand, adding the M-H resampling strategy makes slight
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(T,K) Clean Data PGD-20
(1,8) 84.68%±0.57% 48.8%±0.72%
(2,4) 85.09%±0.27% 51.44%±0.48%
(4,2) 86.39%±0.27% 54.2%±0.44%
(8,1) 84.88%±0.25% 49.29%±0.43%
(8,1) w/o Jcd 84.29%±1.44% 47.8%±1.32%

Table 5: Validation accuracy and robustness of Wide ResNet34 on CIFAR10. We report average over
5 runs. The best result under different attack methods is in bold.
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Figure 3: The accuracy rates of Wide ResNet34 trained by ATCD with different configurations (T,K)
on CIFAR10.

improvement on the robust accuracy, and it has a considerable increase on the clean accuracy. These
results suggest that both of them bring benefit for the clean and the robust accuracy. As samples in
our proposed method stay in (and return large numbers of samples from) high-density regions of
the candidate distribution while only occasionally visiting low-density regions by the acceptance
probability, which can can decipt the underlying distribution of adversarial examples. It appears
essential to properly combine the CD loss with the M-H resampling in the training procedure.

Method Clean Data PGD-20
Baseline 84.29% 47.8%
+ CD loss 85.05% 53.11%
+ MH resampling 86.39% 54.2%

Table 6: Effectiveness verification of the CD loss and the M-H resampling on CIFAR10. We use
Wide ResNet34 as the target model and the baseline method is Free-8

A.3.4 DIFFERENT NUMBERS OF ATTACK ITERATIONS

To analyze the influence of the number of attack iterations on different adversarially trained models,
we range the number of iterations of PGD attacker from 10 to 200. Figure 4 shows the robust accuracy
of different adversarially trained models. We fix ε = 8/255 and ε = 2/255, and change the iteration
number ranging in {10, 20, 50, 100, 200}. From the plots, we see that no matter how larger the attack
iteration is, the checkpoint which achieves the high robust accuracy under one certain configuration
still has higher accuracy than other models in different iteration configurations.

A.3.5 DIFFERENT VALUES OF EPSILON

Figure 5 shows the robust accuracy of models using various state-of-the-art adversarial
training methods. We performed thorough experiments over epsilon parameters ε =
{8/255, 16/255, 32/255, 64/255, 128/255}, and found that the robust accuracy drop dramatically
when ε ≥ 32/255 especially all of the adversarial training acceleration methods. In spite of this,
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Figure 4: The accuracy rates of Wide ResNet34 trained by different adversarial training methods with
different epsilon on CIFAR10. We use PGD with ε = 8/255 and ε = 2/255 to performe thorough
experiments over the number of attack iterations ε = {10, 20, 50, 100, 200}.

our ATCD method still aces any other acceleration method, even outperforming the standard PGD
training.
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Figure 5: The accuracy rates of Wide ResNet34 trained by different adversarial train-
ing methods with different epsilon on CIFAR10. We use PGD with 100 iterations and
well-tuned steps as attacker to perform thorough experiments over epsilon parameters ε =
{8/255, 16/255, 32/255, 64/255, 128/255}.

A.3.6 SENSITIVE ANALYSIS OF λ AND ρ

In the ATCD algorithm, the main parameters include the balance factors λ and ρ. Figure 6 plots the
results of the parameter sensitivity analysis. We broadly investigate different ratios of λ/ρ ranging
from 1/32 to 32. It can be found that when the parameters are changed, the algorithm performs
stably. Models can achieve rather better accuracy when the ratio of λ/ρ approaches 1 and the best
performance appears when λ/ρ = 4. It is worth mentioning that our proposed objective function will
degenerate into the original generation objective widely used in adversarial examples generation stage
when ρ� λ. Therefore, our ATCD will be practically equal to Free with resampling when λ/ρ = 32,
which outperforms Free itself and shows the benefits brought from the Metropolis-Hastings correction.
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Figure 6: The accuracy rates of Wide ResNet34 trained by our method with different ratios of λ/ρ
ranging from 1/32 to 32 on CIFAR10. We use several attackers including PGD-20, MI-FGSM-20,
CW and AA to validate the stability of parameters.

A.4 COMPLEXITY ANALYSIS

A typical adversarial training method contains three major steps: forward propagation, backprop-
agation, and adversarial examples generation. Suppose that a deep neural network contains L
layers (including input and output layer). dl denotes the number of nodes of in each layer, where
l ∈ {1, · · · , L}. Assume the dataset has Z training examples and the number of training epochs is N .
Here we ignore the run-time of batch normalization for simplification.

Forward propagation. We see that for each layer a matrix multiplication, and an activation function
is computed. It is easy to know that naive matrix multiplication has a asymptotic run-time of
O
(
d3
)
, and the activation operator g is an elementwise function, we know that it has a run-time of

O (d). So the total forward run-time therefore becomes Oforward = NZ ∗ (Omul + Oactivation) =

NZ ∗ (
∑L
l=2

(
d(l)d(l−1)d(l−2)

)
+
(
d(1)d(0)1

)
+
∑L
l=1

(
d(l)
)
) = NZL(d3 + d).

Backpropagation. The run-time complexity of backpropagation can be computed in a similar
manner. Suppose z(l)

i is the raw output signal of the i-th neuron in layer l before the activation
function has been applied. We introduce a new variable δ(l)

i which is the error-sum of neuron i in layer
l. So the total backpropagation run-time can be calculated as Obackward = NZ ∗ (Omiddle layers +

Olast layer +Oupdate) = NZ[(L−1)∗O
((
ω(l+1)T δ(l+1)

)
� g′

(
z(l)
))

+O
(
∇(L)
f � g′

(
z(L)

))
+∑L

l=1

(
d(l)
)
] = NZL(L−1

L d3 + 1
Ld

2 + d).

Adversarial Training. Recall that adversarial training is used adversarial examples to train DNN
models to improve the robustness. So the major difference between adversarial training and normal
training is that adversarial training contains the process of adversarial examples generation. Here we
show several methods of adversarial examples generation to compare their time complexity.

• FGSM: Since FGSM finds the adversarial perturbation in the direction of the loss gradient
only once, FGSM includes two full forward propagation, one backpropagation without
weight updating, and one backpropagation with weight updating. So the total run-time of
FGSM is: OFGSM = 2NZL[(d3 + d) + L−1

L d3 + 1
Ld

2 + 1
2d].

• PGD: PGD can be considered as an iterative version of FGSM repeating r times updating
procedure of adversarial examples generation with several random restarts. That means PGD
includes one full forward propagation, one backpropagation with weight updating, r times
forward propagation and backpropagation without weight updating. Thus, the total run-time
of PGD can be computed by: OPGD = NZL(r + 1)[(d3 + d) + L−1

L d3 + 1
Ld

2 + 1
r+1d].
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• YOPO: The major time cost of PGD results from conducting T sweeps of forward and
backward propagation. YOPO restricts most of the forward and back propagation within the
first layer of DNN during adversary updates, which effectively reduces the total number of
full forward and backward propagation. The total number of full forward propagation is
only m apart from n times forward propagation at the first layer. The backward process is
divided into m times backpropagation except the first layer and n times backpropagation
at the first layer. Therefore, the total run-time of YOPO can be formulated as: OYOPO =
NZ(m+ 1)[L(d3 + d) + (L− 1)(L−1

L d3 + 1
Ld

2 + d) + n(d3 + d+ d2)].

• ATCD: Our ATCD method relies on the replay of current samples and the searching
trajectory of HMC. So the total run-time of ATCD can be easily expressed by: OATCD =
N ′ZLK(T + 1)[(d3 + d) + L−1

L d3 + 1
Ld

2 + 1
K(T+1)d]. Because of N ′ = N

TK , our ATCD

is r+1
K(T+1) times faster than PGD but K(T+1)

2 slower than FGSM.

A.5 LONG OR SHORT-RUN TRAJECTORY?

Both long and short-run trajectory of HMC simulating have been able to fit with contrastive adversarial
training. In our experiments we use K = 2 to achieve the trade-off between performance and
efficiency. But we have found that if condition allows (without computation or time being limited)
and just pursue the best performance, long-run HMC with Metropolis-Hastings correction are
preferable in terms of equilibrium distribution.

As shown in Figure 7, we fix the number of parameters updating as T = 4 and sweep over the length
of trajectory K from 1 to 8 (almost in line with PGD adversarial training). In all configurations,
ATCD has much higher robust accuracy than Free. This shows evidence that ATCD is a more effective
adversarial training method to improve the robustness of models compared to Free. We also find that
by using contrastive divergence, we could reduce the lengths of MCMC trajectory per iteration when
compared to PGD-10 and still allow for relatively high robustness. This gives a 3x speedup over
our fastest short-run ATCD (K = 1). Further, robust accuracies against different adversarial attacks
share the similar trend and ATCD using longest trajectory has the best result. So if time allows,
we recommend using a long-run trajectory of HMC with Metropolis-Hastings correction to better
approach equilibrium distribution. But even so, the clean accuracy of adversarially trained model still
decreases with the growth of the length of simulating trajectory. Besides, some generated adversarial
examples will be recalled by Metropolis-Hastings correction when the length of trajectory becomes
longer, which would increase the additional time cost. Overall, the short-run trajectory is slightly
less robust than the long-run trajectory, but in total, the short-run trajectory increases in speed and
maintains the suitable clean accuracy to be a worthwhile trade-off.

Another interesting observation we found while using long-run trajectory of HMC is that the model
would use the length of the trajectory to perform like “clustering”. We discovered that when generating
adversarial examples (the inner loop in Algorithm 2) on CIFAR10, these samples are always identified
as one specific category (e.g. trunk) at very beginning of trajectory. When the length of trajectory
grows, they could almost always be identified as another category (e.g. deer). However, if we use
short-run trajectory, this phenomenon will not happen. This behavior is likely some compromise
of ATCD since contrastive adversarial training with short-run trajectory accelerates the process
of equilibrium distribution by discarding the solution space exploring and Metropolis-Hastings
correction.

A.6 WHAT IS THE ADVANTAGE OF HMC FRAMEWORK FOR ADVERSARIAL LEARNING?

In this section we describe the advantage of reformulating adversarial examples generation from the
perspective of HMC. In addition to transforming the process of adversarial training into the trajectory
of MCMC simulating, thereby introducing more well studied solutions of high computational cost of
MCMC, HMC also brings the following advantages:

First, we reinterpret the adversarial examples generation as the solution space searching through the
conservation transformation of two kinds of energy. If we further consider a standard discriminative
classifier of p(y|x) as an energy based model for the joint distribution p(x, y), we can apply our
framework in both discriminative and generative modeling. That means we enable this framework
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Figure 7: The accuracy rates of Wide ResNet34 trained by ATCD with different lengths of trajectory
on CIFAR10. Basically, we could find that the robust accuracy of model increases with the length of
the trajectory.

not only to improve the robustness of modern classifier, but also to generate samples as generative
models.

Second, when simulating adversarial examples generation in HMC framework, different types of
adversarial attacks can be considered as special cases of HMC. Actually, there will be a more powerful
searching algorithm if a new potential or kinetic (or both) energy is designed Bhagoji et al. (2017);
Carlini & Wagner (2017); Zheng et al. (2019); Rony et al. (2019), e.g. mapping the clipped gradient
descent into tanh space or adding KL-divergence term.

Third, the unique advantage brought by HMC itself is that it can better explore the distribution of
adversarial examples, which is different from heuristic algorithm (e.g. PGD with random restarts).
That means we can design a more powerful adversarial attack from the view of HMC. To further
verify this point, we apply a generating method for adversarial examples based on HMC to attack the
real-world celebrity recognition APIs in Clarifai6. These celebrity recognition APIs allow users to
upload any face images and recognize the identity of them with confidence score. The users have no
knowledge about the dataset and types of models used behind these online systems. We choose 10
pairs of images from the LFW dataset and learn perturbations from local facenet model to launch
targeted attack, whose goal is to mislead the API to recognize the adversarial images as our selected
identity. We randomly pick up 10 celebrities as victims from Google and 10 existing celebrities
as targets from LFW, ensuring that all colors and genders are taken into account. Then we apply
the same strategy as Geekpwn CAAD 2018 method that pulls victims towards their corresponding
targets by the inner product of their feature vectors and generates noise to them. Finally, we examine
their categories and confidence scores by uploading these adversarial examples to the online systems
API. We fix ε = 16 and total iteration number N = 100. It is worth mentioning that we generate
a sequence of adversarial examples to show how well HMC-based method explores the space of
adversarial examples. Results are shown in Fig. 8, 9 and 10.

Figure 8 presents three celebrity pairs where both Geekpwn CAAD 2018 method and our HMC-based
method successfully fool the face recognition system to recognize them as the target celebrities.
But the confidence score of each pair generated by Geekpwn CAAD 2018 method is lower than
any one in our generated sequence. Figure 9 presents three pairs where the generated adversarial
examples by our HMC-based method all successfully fool the system as the target celebrities while
Geekpwn CAAD 2018 method fails. Figure 10 shows a case that any one in the generated sequence
by HMC-based method can fool the system with very high confidence while the adversarial examples

6https://clarifai.com/models/celebrity-image-recognition-model-e466caa0619f444ab97497640cefc4dc
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generated by Geekpwn CAAD 2018 method being “caught” – which is recognized by the online
systems and inferred to the true category.

We also list two failure cases in Figure 11. Note that the former one is slightly harder because the
source and target are different races, but HMC-based method still generates few success samples.
When looking at the big picture, these failure might be caused by our HMC-based method (or
all the white-box adversarial attack methods) which are dependent of the targeted classifier. The
decision boundary of different models may be slightly different from the global perspective, but the
targeted attack forces the attacker to focus on the local decision boundary, which greatly magnifies
this difference. It is worth noting that the phenomenon when using a long-run trajectory with
Metropolis-Hastings correction which we mentioned in Appendix A.5 occurs again.

Original Target

Pairs

Our generated sequence

Score: 95.4

Score: 86.1

Score: 95.3 Score: 94.7Score: 98.2

Geekpwn CAAD 2018

Score: 94.4

Original Target

Pairs

Our generated sequence

Score: 65.8 Score: 69.4 Score: 78.1Score: 93.0

Geekpwn CAAD 2018

Score: 82.7

Score: 30.9

Original Target

Pairs

Our generated sequence

Score: 27.9 Score: 30.4 Score: 44.6Score: 52.0

Geekpwn CAAD 2018

Score: 38.4

Score: 22.6

Figure 8: Success cases for both HMC-based method and Geekpwn CAAD 2018 method. The
confidence score of adversarial examples generated by Geekpwn CAAD 2018 for each pair is lower
than any one in our generated sequence.
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Figure 9: Three cases where our method succeeds but Geekpwn CAAD 2018 method fails
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Figure 10: A case shows that an adversarial example generated by Geekpwn CAAD 2018 method is
classified correctly by the online systems but any one in our generated sequence still fool the systems
with high confidence score.
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Figure 11: Typical failure cases of our method. In the task of attacking Don Cheadle as Peter O’Toole
(the first row), HMC-based method only has a partial success due to their different colors. HMC-based
method also fails in attacking Bill Gates as Jason Kidd (the second row). We believe that Bill Gates
is an easy case for mutiple classifiers since there exist numerous related pictures about him and the
recognition system will give priority to the correctness of him.
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