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Abstract

Transformer-based Large Language Models
(LLMs) suffer from high computational costs,
especially as the runtime scales quadratically
with sequence length. However, architectures
advance so quickly that techniques proposed
to streamline earlier iterations are not guaran-
teed to benefit more modern models. Build-
ing upon the Funnel Transformer proposed by
Dai and Le (2020), which progressively com-
presses intermediate representations, we inves-
tigate the impact of funneling in contemporary
Gemma Transformer architectures. We sys-
tematically evaluate various funnel configura-
tions and recovery methods, comparing: (1)
standard pretraining to funnel-aware pretrain-
ing strategies, (2) the impact of several funnel-
aware fine-tuning configurations, and (3) dif-
ferent methods of sequence recovery. Our
results demonstrate that funneling creates in-
formation bottlenecks that propagate through
deeper network layers, particularly in larger
models (e.g., Gemma 7B), leading to at times
unmanageable performance lost. However,
carefully selecting the funneling layer and em-
ploying effective recovery strategies can sub-
stantially mitigate performance losses, achiev-
ing up to a 44% reduction in latency. Our
findings highlight key trade-offs between com-
putational efficiency and model accuracy, pro-
viding practical guidance for deploying funnel-
based approaches in large-scale natural lan-
guage applications.

1 Introduction

In recent years, Transformer architectures have rev-
olutionized natural language processing (NLP) by
enabling models to capture complex dependencies
within sequences. However, this capability comes
at a significant computational cost, particularly
when processing lengthy sequences, as the self-
attention mechanism scales quadratically with se-
quence length. This scaling issue poses challenges

for deploying large language models (LLMs) at
production scales in real-world applications.

Building on the foundational work by Dai et al.
(2020), who proposed the Funnel Transformer to
progressively reduce sequence length by pooling
intermediate representations, we extend their ap-
proach to modern transformer architectures. Dai
et al. (2020) demonstrated their concept using the
BERT architecture, which had groundbreaking im-
pact for it’s time. Although BERT has largely
become antiquated compared to current state-of-
the-art transformer-based models, it remains imple-
mented in industry (Gardazi et al., 2025), and so
researching the upcycling of modern LLMs into
encoder optimizations may have large impact.

In this work, we extend the Funnel Transformer
concept to contemporary architectures by specifi-
cally testing modern Gemma models (Team et al.,
2024). Unlike BERT, the Gemma family large
dense models that may be used as encoders or de-
coders, and it is far from given that they should
respond similarly to the impact of funneling. While
the open source family of Google foundation mod-
els transitioned to decoder-only architectures, we
demonstrate that it is possible to distill them
into task-specific encoders. We make a further
leap in both by distilling them into funnel trans-
formers, which we show to perform even better in
cost and task performance.

We further distinguish our study through a de-
tailed experimental design that systematically eval-
uates key aspects of funneling. Specifically, we
perform rigorous ablations to determine:

1. At which layer to pool intermediate repre-
sentations (while targeting a maximum ac-
ceptable performance degradation of approxi-
mately 5%)

2. Which heuristic operation to use when recov-
ering the full sequence length.



3. We investigate three training scenarios: pre-
training transformers with funneling inte-
grated, fine-tuning pretrained transformers ex-
clusively with funneling, and performing in-
ference with funnel transformers without prior
funnel-aware pretraining or fine-tuning.

Through these comprehensive evaluations, we
aim to quantify the performance trade-offs intro-
duced by funneling and clearly delineate the cir-
cumstances under which funneling yields signifi-
cant computational benefits while maintaining ac-
ceptable performance degradation. Our findings
provide guidance on effectively leveraging funnel-
ing to balance efficiency gains with minimal per-
formance sacrifices in practical, large-scale LLM
deployments.

2 Background Literature

The high computational costs of Transformer-based
large language models (LLMs) motivate research
into more efficient architectures (Tay et al., 2022;
Jin et al., 2024). This research aims to reduce costs
like FLOPs, memory, and energy while maintain-
ing model accuracy. Innovations include sparse
Mixture-of-Experts (MoE) models (Shazeer et al.,
2017; Fedus et al., 2022; Du et al., 2022; Lu et al.,
2024; Zuo et al., 2022) and new model structures.
Despite the focus on decoder-only models, en-
coder architectures offer an effective approach to
efficiency in certain contexts. Encoder-only Trans-
formers, like BERT (Devlin et al., 2019), pro-
cess inputs bidirectionally, outputting sequence or
pooled representations. They can be more efficient
than decoders for specific industrial tasks requir-
ing accuracy, low cost, and scalability. For exam-
ple, new encoders like ModernBERT improve on
quality and cost (Warner et al., 2024). Interest is
also growing in upcycling decoder models into en-
coders, like Dec2Enc, which adapts models such
as Qwen 2.5 and Gemma-2 (Huang et al., 2025).
The Funnel-Transformer (Dai et al., 2020) is an
example of an efficient encoder. It uses a down-
sampling encoder to gradually compress token se-
quences into shorter hidden representations. The
rationale is that not all tokens are needed for high-
level understanding, especially for tasks like classi-
fication. Funneling reduces hidden states in deeper
layers, cutting self-attention and feed-forward net-
work (FFN) costs. If needed, a lightweight decoder
can up-sample the representation for token-level
outputs, similar to an auto-encoder. However, fun-

neling approaches have largely been ignored after
its initial introduction in 2020.

Funnel models are well-suited for hybrid archi-
tectures using retrieval or external knowledge, as
seen in systems like FunnelRAG (Zhao et al., 2025),
RaSeRec (Zhao et al., 2024), and Condenser (Gao
and Callan, 2021). For instance, a retriever can
fetch documents, which a funnel Transformer com-
presses into a vector for a decoder to generate an
answer. This two-stage system is typically faster
and more memory-efficient than large end-to-end
models.

A recurring theme in the field of LLM efficiency
is sparsity: not all parts of a model or input need
uniform processing. Architectures like funnel mod-
els, quantization (Lang et al., 2024), and prun-
ing (Cheng et al., 2024) manage computational re-
sources by focusing on essential information, lead-
ing to more scalable and accessible LLMs.

3 Model Design

In our experiments, we perform all training on
Gemma 2b and 7b models' We used the Gemma 1
checkpoint to simplify the implementation of the
pooling mechanism by not considering the alternat-
ing sliding window attention layers in Gemma 2
and 3. This is not a fundamental limitation of pool-
ing, but adds another dimension to tuning which
we did not consider at the time of this writing.

We conduct a limited grid search and produce a
hyperparameter configuration that we keep con-
stant across model architectures, listed in the
Appendix. Please find the hyperparameters for
Gemma 2B at Table 2 and the hyperparameters
for Gemma 7B at Table 3.

We perform all of our experiments on a TPU-
based computational setup. Our computational
budget was on the order of O(1000) TPU hours.

4 Experimental Setup

4.1 Benchmarks studied

In this work, we primarily report results on
the General Language Understanding Evalua-
tion (GLUE) benchmark and the CoNLL-2003
Named Entity Recognition (NER). GLUE is a
collection of nine natural language understanding

'The Gemma license from Google fosters broad use and
innovation for its open language models, permitting commer-
cial applications, redistribution, and modifications, alongside
a focus on responsible Al development (Team et al., 2024).
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Figure 1: A representation of a funnel architecture with seven encoder layers. Funneling operations reduce blocks
from 8 to 4 between L2 and L3, and from 4 to 2 between L4 and LS. Skip connections and up-sampling to an
optional decoder are shown. (Layers are 1-indexed for this caption.)

tasks designed to evaluate and analyze the perfor-
mance of models across diverse linguistic phenom-
ena. Introduced by (GLU), GLUE includes tasks
such as single-sentence classification, similarity
and paraphrase detection, and natural language in-
ference, providing a comprehensive platform for
assessing general language understanding capabili-
ties. We include GLUE as a sentence level classifi-
cation task .

The CoNLL-2003 Named Entity Recognition
(NER) (Sang and Meulder, 2003) benchmark is a
widely utilized dataset for evaluating NER systems
in English. It consists of text annotated with four
entity types: persons, locations, organizations, and
miscellaneous entities. Models are assessed using
the F1 score, which balances precision and recall.
We present the average scores between the English
and German NER. We include NER as a foken-level
classification task.

In addition, we report results on an internal,
carefully curated benchmark called WebAnswers
Classification. In order to maintain confidentiality

*1t is important to note that our reported GLUE scores are
averaged over 8 to 9 runs with different random seeds, which
displayed almost no variation between seeds — the perfor-
mance was quite stable and repeatable. While additional plots
zooming in to show the variance across different seeds could
further illustrate these effects, the averaged scores already
provide a reliable measure of performance consistency.

and anonymity, we opt not to describe the bench-
mark in this reviewing phase. The metric that we
report from this benchmark is the ROC AUC of
the classification task. WebAnswers, like GLUE,
is sentence-level classification.

4.2 Testing the effect of pretraining on
Funnel transformer Setup

We compare whether pretraining the transformer in
a funnel-aware setup positively impacts the scores.
In all cases, we pretrain the Gemma models for
100k steps on the standard Gemma pretraining cor-
pus (Team et al., 2024); in the funnel-aware pre-
training setup, we perform a max-pool two-token
funnel once at layer 2 and then continue with the
reduced dimension through the rest of the trans-
former. Once pretrained, we test the results of ap-
plying a max-pool two-token funnel to every even
layer in a 16 layer Gemma model: that is, layers 2,
4,6, 8, ..., 16. Please note that when the max-pool
funnel is applied to the second layer, it matches the
funnel-aware pretraining configuration exactly. We
report results on sentence level tasks only, and thus
we do not recover the sequence length in any of
these experiments.



4.3 Fine-tuning a funnel-aware setup

We fine-tune the funnel-aware Gemma 2b and 7b
models on all GLUE benchmarks and present an
average. We fine-tune for 2000, 4000, and 6000
steps and perform a two-token max-pool funnel at
every even layer of a 16-layer 2B Gemma model,
and similarly at every even layer of the 28-layer
7B Gemma model. Here, we profile latency on
the Gemma 2B models by measuring wall-clock
completion across the benchmark. Similarly to
the pretraining experiments, we report results on
sentence level classification tasks only, and also
hold constant the lack of sequence length recovery.

4.4 Optimizing the type of recovery
operation

We ablate among different types of operations to
recover the full sequence length at the last layer of
the Gemma 2B model. In all variants, we tile the in-
termediate activations of the last funnel layer to re-
cover the full dimension (that is, if the layer is half
the original dimension due to funneling, we repeat
each activation twice to create a layer of the orig-
inal dimension; e.g. (1,3,4) — (1,1,3,3,4,4).
We test the following variants:

1. Sum with first layer (baseline): similar to
the operation used in (Dai et al., 2020), we
add the tiled funnel activation to the output
activations of the transformer’s first layer.

2. Sum with last layer: we add the tiled funnel
activation to the output activations of the final
full layer before funneling was performed.

3. Sum with all the previous layers’ max: we
add the tiled funnel activation to the maximum
index-wise activation of all prior layers.

4. Sum with all the previous layers’ avg: we
add the tiled funnel activation to the average
of the activations of all prior layers.

5. Average with last layer: we average the tiled
funnel activation with the activation of the
final pre-funnelled layer.

6. Max(Last, Now): we take the index-wise
maximum of the last pre-funnelled layer and
the tiled funnel activation.

We compute performance across even steps of a
two-token max-pool funnel that is applied through-
out the 16 layers of the architecture. We present

scores on the NER benchmark, as it is a token level
task and thus relevant to recover the full sequence
length.

5 Results

5.1 Effect of pretraining

Figure 2 displays two performance metrics as a
function of the funnel recovery layer. The left
panel shows the average GLUE score, while the
right panel shows ROC AUC on the WebAnswers
dataset. In each plot, the x-axis includes a 0 point
that represents the “No Funnel” case. For the
GLUE benchmark, the normal pretraining curve
has a value of 88.81 at x=0, whereas the funnel-
aware pretraining curve starts at 87.17. Similarly,
in the WebAnswers plot the “No Funnel” base-
line is 73.40 for normal pretraining and 72.85 for
funnel-aware pretraining. For both metrics, perfor-
mance is tracked over increasing funnel recovery
layers (2,4, ..., 16).

5.2 Finetuning a funnel-aware setup

Please see Figure 3 for a depiction of the effects
of fine-tuning funnel aware architectures across
Gemma 2b and 7b models. More fine-tuning seems
to help models perform better.

Figure 3 presents a set of four subplots compar-
ing the performance of Gemma 2B and Gemma
7B models on two tasks: the GLUE benchmark
(top row) and the WebAnswers ROC AUC (bottom
row). In each subplot, the x-axis denotes the funnel
recovery layer, with an x=0 point corresponding to
the “No Funnel” case. Two performance curves are
shown in each panel: one for models trained with-
out funnel-aware pretraining (normal pretraining)
and one with funnel-aware pretraining.

In the GLUE subplots (top row), the normal pre-
training curve starts at an 88.81 score for Gemma
2B and 87.17 for Gemma 7B at x=0, while the
funnel-aware pretraining curves start at 87.17 and
lower, respectively. For the WebAnswers subplots
(bottom row), the “No Funnel” baseline is 73.40
for normal pretraining and 72.85 for funnel-aware
pretraining, with performance measured as WebAn-
swers ROC AUC. Benchmark metrics is plotted for
increasing funnel recovery layers (2, 4, 6, ..., 16
for Gemma 2B and 2, 4, ..., 26 for Gemma 7B).

While the baseline of Gemma 7b is higher than
the baseline of Gemma 2b, the performance of
Gemma 7b seems to suffer more overall than the
performance of Gemma 2b.
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Figure 2: Performance on (a) BoolQ benchmark, (b) GLUE benchmark (Average GLUE Score) and (c) WebAn-
swers ROC AUC as a function of the funnel recovery layer. The x=0 point corresponds to the model without
funneling. Solid lines represent models trained with normal pretraining (“Without Funnel Aware Pretraining”’) and
funnel-aware pretraining (‘“With Funnel Aware Pretraining”).

Table 1: Performance metrics for different funnel configurations. The left-most column, "Funnel Layer", corre-
sponds with the x-axis of our charts and indicates at which layer the two-token max-pool funnel is applied.

Funnel stsb cola qqp qnli sst2 rte mrpc mnli mnli GLUE
Layer (Spearman) (Acc.) (Acc.) (Acc.) (Acc) (Acc.) (Acc) (m-Acc.) (mm-Acc.) Avg.

normal pretraining

2 59.79 66.73 83.89 7856 8498 5343 70.83 68.65 69.03 70.65
4 67.82 6721 84.00 80.62 86.70 55.60 66.42 73.08 74.89 72.93
6 77.47 67.11 85.11 8294 8567 5596 72.30 75.13 75.77 75.27
8 84.51 65.77 86.79 84.02 88.07 55.60 72.79 76.72 77.78 76.89
10 87.02 69.61 8690 86.34 88.88 56.68 78.19 78.95 79.19 79.08
12 86.95 75.55 86.84 8640 89.56 59.57 78.43 78.66 78.89 80.09
14 87.64 76.99 86.54 86.75 89.33 59.57 81.37 79.74 80.19 80.90
16 87.83 76.70 86.53 8792 89.56 59.57 82.35 80.66 81.01 81.35
funnel aware pretraining
2 88.00 76.80 88.17 8828 90.25 59.57 85.78 80.22 80.98 82.01
4 86.91 74.59 8759 8750 90.37 5993 79.17 79.60 80.12 80.64
6 87.11 7526 8737 8731 90.37 60.65 84.56 80.18 80.78 81.51
8 87.67 76.51 87.29 8839 90.83 5848 86.52 79.77 80.75 81.80
10 88.78 75.65 87775 87.81 89.79 6137 85.54 80.44 81.11 82.03
12 88.40 76.03 87.35 88.12 90.94 6137 8529 80.55 81.50 82.17
14 88.55 76.03 87.73 87.86 90.83 67.51 84.80 80.70 81.28 82.81
16 88.35 78.04 8799 8845 90.83 6643 87.01 80.55 81.15 83.20

As shown in our latency results, i.e. Figure is applied deeper in the network.
4 plot, introducing the funneling layer at earlier
stages provides substantial latency savings, with a
peak of over 40% when funneling is applied at or
near layer 0. However, as the funneling layer in- 5.3  Optimizing the type of recovery
creases (moving further into the model), the latency operation
gains steadily diminish. By layer 16, the latency
savings drop to around 5%. This trend suggests
that while early funneling can significantly speed  Please see Figure 5 for a depiction of the effects
up inference, its benefits taper off if the funneling  of different recovery operations on a Gemma 2b
model.
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6 Discussion
6.1 Impact of Pretraining on Accuracy and
Quality Drop

Our results indicate that the model’s accuracy fol-
lows a V-curve, where performance initially drops

as the funnel configuration diverges from the origi-
nal pretraining configuration. One plausible expla-
nation is that pretraining helps to blunt this drop
in quality. Specifically, the pretraining procedure
incorporates a second layer that is funnel-aware,
which appears to counterbalance the information
loss introduced by the funnel configuration at that
particular layer.

Interestingly, when no funneling is applied (x=0),
models trained with normal pretraining outperform
those with funnel-aware pretraining, causing the
corresponding performance curves to cross over.
This suggests that in the absence of any funnel-
induced modifications, the additional complexity
introduced by funnel-aware pretraining does not
confer a benefit and may even be detrimental.

The shapes of the performance curves in both
the GLUE and WebAnswers plots exhibit the char-
acteristic V-pattern, with an initial decline in perfor-
mance followed by a recovery as the funnel config-
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Figure 5: The effect of different recovery operations on NER performance.

uration is further adjusted. This recovery might be
indicative of the funnel mechanism’s potential to
mitigate overfitting in the full models. In fact, the
observed improvement in performance at higher
funnel recovery layers could be a consequence of
reduced overfitting, a phenomenon that has been
reported in the literature in contexts such as model
quantization (Biderman et al., 2024), where modi-
fying the model architecture can sometimes lead to
an increase in performance.

6.2 Information Bottlenecks

Peppered throughout our results are the effect of in-
formation bottlenecks: that is, the extend to which
information is restricted and its impact on perfor-
mance.

First, larger models are impacted more by
funneling. That is, funneling exhibits a notably
more pronounced negative effect on the larger and
more complex Gemma 7B model compared to
Gemma 2B. Due to its increased width (number of
neurons per layer) and deeper architecture (10 addi-
tional layers), the same funnel operation causes
greater information restriction when applied to
Gemma 7B. As an example, funneling at the same
recovery layer — for instance, layer 6 — aggre-
gates significantly more activations in Gemma 7B
due to its wider layers, and the compressed infor-
mation propagates across more layers (28 versus 18
in Gemma 2B). Consequently, this results in a more
substantial performance degradation in Gemma 7B

under the same stated funneling operations 3. This
observation indicates that while funneling can offer
notable computational speedups by reducing the di-
mensionality and number of processed activations,
careful calibration is required. In particular, the
benefits of speedup must be weighed against the
degree of performance loss, which can be substan-
tially greater for larger and more complex models.

Additionally, we observed a clear trend that per-
formance consistently degrades as funneling is
introduced at earlier layers. This phenomenon
arises because restricting information early in the
network negatively affects the quality of learned
representations throughout all subsequent layers.
Thus, the timing of the funnel operation signif-
icantly influences performance outcomes, under-
scoring the necessity of strategically selecting later
funnel recovery layers if maintaining task accuracy
is a priority.

Moreover, among the recovery strategies eval-
uated, averaging the unfunneled layer’s output
with the last layer emerged as the most stable
and effective approach. This averaging opera-
tion effectively provides better information pass-
through, as it combines the detailed, uncompressed
activations from earlier layers with the highly ab-
stract representations in later layers. Compared
to other methods such as direct concatenation or

3We attribute the superior performance of Gemma 2B to
extensive hyperparameter tuning, which wasn’t possible for
the Gemma 7B model due to limited compute. We however
argue that the results are still valid within each model, as both
models are compared apples to apples.



max-pooling, averaging ensures a more balanced
preservation of both fine-grained details and ab-
stract patterns, which likely explains its superior
stability and performance.

7 Limitations

Our study has some limitations worth noting.
First, our experiments exclusively use the dense
Gemma model family, limiting the generalizabil-
ity of our conclusions to other model types (e.g,,
other model families or mixture-of-experts archi-
tectures). Additionally, we do not explore more
aggressive funneling configurations, such as 4-
step funneling or multiple funneling layers in one
architecture. Finally, we restrict our study to a
single pooling operation, leaving alternative pool-
ing mechanisms unexamined.

8 Conclusion

Large Language Models (LLMs) present signifi-
cant computational demands, necessitating ongo-
ing optimization efforts. This study revisit the Fun-
nel Transformer architecture, investigating its appli-
cation to the contemporary Gemma model family.
Experimentation with varied funnel configurations,
under both standard and funnel-aware pretraining,
on benchmarks like BoolQ, GLUE and WebAn-
swers, reveals that aggressive funneling creates
information bottlenecks, which can degrade per-
formance, particularly in larger models. However,
strategic funnel placement and output averaging of
compressed and uncompressed layers effectively
mitigates these losses. Averaging proves more ro-
bust than other recovery methods, likely by balanc-
ing detailed and abstract feature integration. Our
results underscore the trade-off between compu-
tational efficiency and performance in funneling.
Future work should explore enhanced funnel-aware
pretraining, alternative pooling strategies, and com-
parisons with other model compression techniques
to further optimize LLM efficiency.

8.1 Future Work

To address the identified limitations and deepen
our understanding of funneling, several avenues of
future research are promising. Expanding the inves-
tigation to include diverse model families beyond
Gemma could enhance the generalizability of our
conclusions. Examining architectures that employ
mixture-of-experts could also offer unique perspec-
tives on managing information bottlenecks in com-

plex models. Further exploration into the effects
of multiple funnel-aware pretraining layers would
provide valuable insights into optimizing funnel
configurations. Additionally, exploring alternative
pooling operations could identify strategies that
mitigate information loss more effectively. Lastly,
directly comparing funneling with other established
pruning or information bottleneck methods would
clarify its relative strengths and weaknesses, guid-
ing more effective deployment in various applica-
tions.

8.2 Ethical Considerations

The focus on efficiency should not overshadow
broader ethical concerns inherent in LLM develop-
ment, such as bias amplification, misuse potential,
and the environmental impact of training large mod-
els, even if inference is optimized. To that end, we
argue that more compact and efficient models are
a step forward for inference-level environmental
concerns and reduce the chance of unintentional
detail recitation. We have taken care not to use
personally identifiable information in any of our
training corpora.
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Table 2: Hyperparameters for Gemma 2B Model Training

Hyperparameter Value
Gemma Model GEMMA_2B
Use Pooler true

Pooling Type ATTENTION_POOLING
Number of Attention Pooling Heads 4

Number of Transformer Pooling Layers 1

Projection Dimension None

Max Steps 2000

Max Learning Rate 0.00003
Minimum Learning Rate Fraction 0.1

Warmup Steps 100

Funnel Pooling Config (1,1,1,1,1,1,2)
Sequence Length 512

Training Batch Size 128

Eval Batch Size 256

Number of Microbatches 0

Weight Decay Rate None

Soft Labels False

Scoring BF16 Mode True

Overtrain Multiplier

1

Table 3: Hyperparameters for Gemma 7B Model Training

Hyperparameter Value

Gemma Model GEMMA_7B

Use Pooler true

Pooling Type ATTENTION_POOLING
Number of Attention Pooling Heads 4

Number of Transformer Pooling Layers 1

Projection Dimension None

Max Steps 4000

Max Learning Rate 0.00001

Minimum Learning Rate Fraction 0.1

Warmup Steps 100

Funnel Pooling Config 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2)
Sequence Length 512

Training Batch Size 128

Eval Batch Size 256

Number of Microbatches 0

Weight Decay Rate None

Soft Labels False

Scoring BF16 Mode True

Overtrain Multiplier

1
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