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Abstract001

Transformer-based Large Language Models002
(LLMs) suffer from high computational costs,003
especially as the runtime scales quadratically004
with sequence length. However, architectures005
advance so quickly that techniques proposed006
to streamline earlier iterations are not guaran-007
teed to benefit more modern models. Build-008
ing upon the Funnel Transformer proposed by009
Dai and Le (2020), which progressively com-010
presses intermediate representations, we inves-011
tigate the impact of funneling in contemporary012
Gemma Transformer architectures. We sys-013
tematically evaluate various funnel configura-014
tions and recovery methods, comparing: (1)015
standard pretraining to funnel-aware pretrain-016
ing strategies, (2) the impact of several funnel-017
aware fine-tuning configurations, and (3) dif-018
ferent methods of sequence recovery. Our019
results demonstrate that funneling creates in-020
formation bottlenecks that propagate through021
deeper network layers, particularly in larger022
models (e.g., Gemma 7B), leading to at times023
unmanageable performance lost. However,024
carefully selecting the funneling layer and em-025
ploying effective recovery strategies can sub-026
stantially mitigate performance losses, achiev-027
ing up to a 44% reduction in latency. Our028
findings highlight key trade-offs between com-029
putational efficiency and model accuracy, pro-030
viding practical guidance for deploying funnel-031
based approaches in large-scale natural lan-032
guage applications.033

1 Introduction034

In recent years, Transformer architectures have rev-035

olutionized natural language processing (NLP) by036

enabling models to capture complex dependencies037

within sequences. However, this capability comes038

at a significant computational cost, particularly039

when processing lengthy sequences, as the self-040

attention mechanism scales quadratically with se-041

quence length. This scaling issue poses challenges042

for deploying large language models (LLMs) at 043

production scales in real-world applications. 044

Building on the foundational work by Dai et al. 045

(2020), who proposed the Funnel Transformer to 046

progressively reduce sequence length by pooling 047

intermediate representations, we extend their ap- 048

proach to modern transformer architectures. Dai 049

et al. (2020) demonstrated their concept using the 050

BERT architecture, which had groundbreaking im- 051

pact for it’s time. Although BERT has largely 052

become antiquated compared to current state-of- 053

the-art transformer-based models, it remains imple- 054

mented in industry (Gardazi et al., 2025), and so 055

researching the upcycling of modern LLMs into 056

encoder optimizations may have large impact. 057

In this work, we extend the Funnel Transformer 058

concept to contemporary architectures by specifi- 059

cally testing modern Gemma models (Team et al., 060

2024). Unlike BERT, the Gemma family large 061

dense models that may be used as encoders or de- 062

coders, and it is far from given that they should 063

respond similarly to the impact of funneling. While 064

the open source family of Google foundation mod- 065

els transitioned to decoder-only architectures, we 066

demonstrate that it is possible to distill them 067

into task-specific encoders. We make a further 068

leap in both by distilling them into funnel trans- 069

formers, which we show to perform even better in 070

cost and task performance. 071

We further distinguish our study through a de- 072

tailed experimental design that systematically eval- 073

uates key aspects of funneling. Specifically, we 074

perform rigorous ablations to determine: 075

1. At which layer to pool intermediate repre- 076

sentations (while targeting a maximum ac- 077

ceptable performance degradation of approxi- 078

mately 5%) 079

2. Which heuristic operation to use when recov- 080

ering the full sequence length. 081
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3. We investigate three training scenarios: pre-082

training transformers with funneling inte-083

grated, fine-tuning pretrained transformers ex-084

clusively with funneling, and performing in-085

ference with funnel transformers without prior086

funnel-aware pretraining or fine-tuning.087

Through these comprehensive evaluations, we088

aim to quantify the performance trade-offs intro-089

duced by funneling and clearly delineate the cir-090

cumstances under which funneling yields signifi-091

cant computational benefits while maintaining ac-092

ceptable performance degradation. Our findings093

provide guidance on effectively leveraging funnel-094

ing to balance efficiency gains with minimal per-095

formance sacrifices in practical, large-scale LLM096

deployments.097

2 Background Literature098

The high computational costs of Transformer-based099

large language models (LLMs) motivate research100

into more efficient architectures (Tay et al., 2022;101

Jin et al., 2024). This research aims to reduce costs102

like FLOPs, memory, and energy while maintain-103

ing model accuracy. Innovations include sparse104

Mixture-of-Experts (MoE) models (Shazeer et al.,105

2017; Fedus et al., 2022; Du et al., 2022; Lu et al.,106

2024; Zuo et al., 2022) and new model structures.107

Despite the focus on decoder-only models, en-108

coder architectures offer an effective approach to109

efficiency in certain contexts. Encoder-only Trans-110

formers, like BERT (Devlin et al., 2019), pro-111

cess inputs bidirectionally, outputting sequence or112

pooled representations. They can be more efficient113

than decoders for specific industrial tasks requir-114

ing accuracy, low cost, and scalability. For exam-115

ple, new encoders like ModernBERT improve on116

quality and cost (Warner et al., 2024). Interest is117

also growing in upcycling decoder models into en-118

coders, like Dec2Enc, which adapts models such119

as Qwen 2.5 and Gemma-2 (Huang et al., 2025).120

The Funnel-Transformer (Dai et al., 2020) is an121

example of an efficient encoder. It uses a down-122

sampling encoder to gradually compress token se-123

quences into shorter hidden representations. The124

rationale is that not all tokens are needed for high-125

level understanding, especially for tasks like classi-126

fication. Funneling reduces hidden states in deeper127

layers, cutting self-attention and feed-forward net-128

work (FFN) costs. If needed, a lightweight decoder129

can up-sample the representation for token-level130

outputs, similar to an auto-encoder. However, fun-131

neling approaches have largely been ignored after 132

its initial introduction in 2020. 133

Funnel models are well-suited for hybrid archi- 134

tectures using retrieval or external knowledge, as 135

seen in systems like FunnelRAG (Zhao et al., 2025), 136

RaSeRec (Zhao et al., 2024), and Condenser (Gao 137

and Callan, 2021). For instance, a retriever can 138

fetch documents, which a funnel Transformer com- 139

presses into a vector for a decoder to generate an 140

answer. This two-stage system is typically faster 141

and more memory-efficient than large end-to-end 142

models. 143

A recurring theme in the field of LLM efficiency 144

is sparsity: not all parts of a model or input need 145

uniform processing. Architectures like funnel mod- 146

els, quantization (Lang et al., 2024), and prun- 147

ing (Cheng et al., 2024) manage computational re- 148

sources by focusing on essential information, lead- 149

ing to more scalable and accessible LLMs. 150

3 Model Design 151

In our experiments, we perform all training on 152

Gemma 2b and 7b models1 We used the Gemma 1 153

checkpoint to simplify the implementation of the 154

pooling mechanism by not considering the alternat- 155

ing sliding window attention layers in Gemma 2 156

and 3. This is not a fundamental limitation of pool- 157

ing, but adds another dimension to tuning which 158

we did not consider at the time of this writing. 159

We conduct a limited grid search and produce a 160

hyperparameter configuration that we keep con- 161

stant across model architectures, listed in the 162

Appendix. Please find the hyperparameters for 163

Gemma 2B at Table 2 and the hyperparameters 164

for Gemma 7B at Table 3. 165

We perform all of our experiments on a TPU- 166

based computational setup. Our computational 167

budget was on the order of O(1000) TPU hours. 168

4 Experimental Setup 169

4.1 Benchmarks studied 170

In this work, we primarily report results on 171

the General Language Understanding Evalua- 172

tion (GLUE) benchmark and the CoNLL-2003 173

Named Entity Recognition (NER). GLUE is a 174

collection of nine natural language understanding 175

1The Gemma license from Google fosters broad use and
innovation for its open language models, permitting commer-
cial applications, redistribution, and modifications, alongside
a focus on responsible AI development (Team et al., 2024).
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Figure 1: A representation of a funnel architecture with seven encoder layers. Funneling operations reduce blocks
from 8 to 4 between L2 and L3, and from 4 to 2 between L4 and L5. Skip connections and up-sampling to an
optional decoder are shown. (Layers are 1-indexed for this caption.)

tasks designed to evaluate and analyze the perfor-176

mance of models across diverse linguistic phenom-177

ena. Introduced by (GLU), GLUE includes tasks178

such as single-sentence classification, similarity179

and paraphrase detection, and natural language in-180

ference, providing a comprehensive platform for181

assessing general language understanding capabili-182

ties. We include GLUE as a sentence level classifi-183

cation task 2.184

The CoNLL-2003 Named Entity Recognition185

(NER) (Sang and Meulder, 2003) benchmark is a186

widely utilized dataset for evaluating NER systems187

in English. It consists of text annotated with four188

entity types: persons, locations, organizations, and189

miscellaneous entities. Models are assessed using190

the F1 score, which balances precision and recall.191

We present the average scores between the English192

and German NER. We include NER as a token-level193

classification task.194

In addition, we report results on an internal,195

carefully curated benchmark called WebAnswers196

Classification. In order to maintain confidentiality197

2It is important to note that our reported GLUE scores are
averaged over 8 to 9 runs with different random seeds, which
displayed almost no variation between seeds – the perfor-
mance was quite stable and repeatable. While additional plots
zooming in to show the variance across different seeds could
further illustrate these effects, the averaged scores already
provide a reliable measure of performance consistency.

and anonymity, we opt not to describe the bench- 198

mark in this reviewing phase. The metric that we 199

report from this benchmark is the ROC AUC of 200

the classification task. WebAnswers, like GLUE, 201

is sentence-level classification. 202

4.2 Testing the effect of pretraining on 203

Funnel transformer Setup 204

We compare whether pretraining the transformer in 205

a funnel-aware setup positively impacts the scores. 206

In all cases, we pretrain the Gemma models for 207

100k steps on the standard Gemma pretraining cor- 208

pus (Team et al., 2024); in the funnel-aware pre- 209

training setup, we perform a max-pool two-token 210

funnel once at layer 2 and then continue with the 211

reduced dimension through the rest of the trans- 212

former. Once pretrained, we test the results of ap- 213

plying a max-pool two-token funnel to every even 214

layer in a 16 layer Gemma model: that is, layers 2, 215

4, 6, 8, ..., 16. Please note that when the max-pool 216

funnel is applied to the second layer, it matches the 217

funnel-aware pretraining configuration exactly. We 218

report results on sentence level tasks only, and thus 219

we do not recover the sequence length in any of 220

these experiments. 221
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4.3 Fine-tuning a funnel-aware setup222

We fine-tune the funnel-aware Gemma 2b and 7b223

models on all GLUE benchmarks and present an224

average. We fine-tune for 2000, 4000, and 6000225

steps and perform a two-token max-pool funnel at226

every even layer of a 16-layer 2B Gemma model,227

and similarly at every even layer of the 28-layer228

7B Gemma model. Here, we profile latency on229

the Gemma 2B models by measuring wall-clock230

completion across the benchmark. Similarly to231

the pretraining experiments, we report results on232

sentence level classification tasks only, and also233

hold constant the lack of sequence length recovery.234

4.4 Optimizing the type of recovery235

operation236

We ablate among different types of operations to237

recover the full sequence length at the last layer of238

the Gemma 2B model. In all variants, we tile the in-239

termediate activations of the last funnel layer to re-240

cover the full dimension (that is, if the layer is half241

the original dimension due to funneling, we repeat242

each activation twice to create a layer of the orig-243

inal dimension; e.g. (1, 3, 4) → (1, 1, 3, 3, 4, 4).244

We test the following variants:245

1. Sum with first layer (baseline): similar to246

the operation used in (Dai et al., 2020), we247

add the tiled funnel activation to the output248

activations of the transformer’s first layer.249

2. Sum with last layer: we add the tiled funnel250

activation to the output activations of the final251

full layer before funneling was performed.252

3. Sum with all the previous layers’ max: we253

add the tiled funnel activation to the maximum254

index-wise activation of all prior layers.255

4. Sum with all the previous layers’ avg: we256

add the tiled funnel activation to the average257

of the activations of all prior layers.258

5. Average with last layer: we average the tiled259

funnel activation with the activation of the260

final pre-funnelled layer.261

6. Max(Last, Now): we take the index-wise262

maximum of the last pre-funnelled layer and263

the tiled funnel activation.264

We compute performance across even steps of a265

two-token max-pool funnel that is applied through-266

out the 16 layers of the architecture. We present267

scores on the NER benchmark, as it is a token level 268

task and thus relevant to recover the full sequence 269

length. 270

5 Results 271

5.1 Effect of pretraining 272

Figure 2 displays two performance metrics as a 273

function of the funnel recovery layer. The left 274

panel shows the average GLUE score, while the 275

right panel shows ROC AUC on the WebAnswers 276

dataset. In each plot, the x-axis includes a 0 point 277

that represents the “No Funnel” case. For the 278

GLUE benchmark, the normal pretraining curve 279

has a value of 88.81 at x=0, whereas the funnel- 280

aware pretraining curve starts at 87.17. Similarly, 281

in the WebAnswers plot the “No Funnel” base- 282

line is 73.40 for normal pretraining and 72.85 for 283

funnel-aware pretraining. For both metrics, perfor- 284

mance is tracked over increasing funnel recovery 285

layers (2, 4, . . . , 16). 286

5.2 Finetuning a funnel-aware setup 287

Please see Figure 3 for a depiction of the effects 288

of fine-tuning funnel aware architectures across 289

Gemma 2b and 7b models. More fine-tuning seems 290

to help models perform better. 291

Figure 3 presents a set of four subplots compar- 292

ing the performance of Gemma 2B and Gemma 293

7B models on two tasks: the GLUE benchmark 294

(top row) and the WebAnswers ROC AUC (bottom 295

row). In each subplot, the x-axis denotes the funnel 296

recovery layer, with an x=0 point corresponding to 297

the “No Funnel” case. Two performance curves are 298

shown in each panel: one for models trained with- 299

out funnel-aware pretraining (normal pretraining) 300

and one with funnel-aware pretraining. 301

In the GLUE subplots (top row), the normal pre- 302

training curve starts at an 88.81 score for Gemma 303

2B and 87.17 for Gemma 7B at x=0, while the 304

funnel-aware pretraining curves start at 87.17 and 305

lower, respectively. For the WebAnswers subplots 306

(bottom row), the “No Funnel” baseline is 73.40 307

for normal pretraining and 72.85 for funnel-aware 308

pretraining, with performance measured as WebAn- 309

swers ROC AUC. Benchmark metrics is plotted for 310

increasing funnel recovery layers (2, 4, 6, . . . , 16 311

for Gemma 2B and 2, 4, . . . , 26 for Gemma 7B). 312

While the baseline of Gemma 7b is higher than 313

the baseline of Gemma 2b, the performance of 314

Gemma 7b seems to suffer more overall than the 315

performance of Gemma 2b. 316
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Figure 2: Performance on (a) BoolQ benchmark, (b) GLUE benchmark (Average GLUE Score) and (c) WebAn-
swers ROC AUC as a function of the funnel recovery layer. The x=0 point corresponds to the model without
funneling. Solid lines represent models trained with normal pretraining (“Without Funnel Aware Pretraining”) and
funnel-aware pretraining (“With Funnel Aware Pretraining”).

Table 1: Performance metrics for different funnel configurations. The left-most column, "Funnel Layer", corre-
sponds with the x-axis of our charts and indicates at which layer the two-token max-pool funnel is applied.

Funnel
Layer

stsb
(Spearman)

cola
(Acc.)

qqp
(Acc.)

qnli
(Acc.)

sst2
(Acc.)

rte
(Acc.)

mrpc
(Acc.)

mnli
(m-Acc.)

mnli
(mm-Acc.)

GLUE
Avg.

normal pretraining

2 59.79 66.73 83.89 78.56 84.98 53.43 70.83 68.65 69.03 70.65
4 67.82 67.21 84.00 80.62 86.70 55.60 66.42 73.08 74.89 72.93
6 77.47 67.11 85.11 82.94 85.67 55.96 72.30 75.13 75.77 75.27
8 84.51 65.77 86.79 84.02 88.07 55.60 72.79 76.72 77.78 76.89
10 87.02 69.61 86.90 86.34 88.88 56.68 78.19 78.95 79.19 79.08
12 86.95 75.55 86.84 86.40 89.56 59.57 78.43 78.66 78.89 80.09
14 87.64 76.99 86.54 86.75 89.33 59.57 81.37 79.74 80.19 80.90
16 87.83 76.70 86.53 87.92 89.56 59.57 82.35 80.66 81.01 81.35

funnel aware pretraining

2 88.00 76.80 88.17 88.28 90.25 59.57 85.78 80.22 80.98 82.01
4 86.91 74.59 87.59 87.50 90.37 59.93 79.17 79.60 80.12 80.64
6 87.11 75.26 87.37 87.31 90.37 60.65 84.56 80.18 80.78 81.51
8 87.67 76.51 87.29 88.39 90.83 58.48 86.52 79.77 80.75 81.80
10 88.78 75.65 87.75 87.81 89.79 61.37 85.54 80.44 81.11 82.03
12 88.40 76.03 87.35 88.12 90.94 61.37 85.29 80.55 81.50 82.17
14 88.55 76.03 87.73 87.86 90.83 67.51 84.80 80.70 81.28 82.81
16 88.35 78.04 87.99 88.45 90.83 66.43 87.01 80.55 81.15 83.20

As shown in our latency results, i.e. Figure317

4 plot, introducing the funneling layer at earlier318

stages provides substantial latency savings, with a319

peak of over 40% when funneling is applied at or320

near layer 0. However, as the funneling layer in-321

creases (moving further into the model), the latency322

gains steadily diminish. By layer 16, the latency323

savings drop to around 5%. This trend suggests324

that while early funneling can significantly speed325

up inference, its benefits taper off if the funneling326

is applied deeper in the network. 327

5.3 Optimizing the type of recovery 328

operation 329

Please see Figure 5 for a depiction of the effects 330

of different recovery operations on a Gemma 2b 331

model. 332
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Figure 3: Performance of Gemma 2B (left) and Gemma 7B (right) on GLUE (top row) and WebAnswers ROC
AUC (bottom row) are plotted against successive layers at which 2-token funnel is applied within each architecture.
Solid lines correspond to models performance with different numbers of funnel-aware finetuning steps, whereas
dotted lines correspond to baselines in which no funneling is applied.

Figure 4: Comparison of latency versus performance
gains.

6 Discussion333

6.1 Impact of Pretraining on Accuracy and334

Quality Drop335

Our results indicate that the model’s accuracy fol-336

lows a V-curve, where performance initially drops337

as the funnel configuration diverges from the origi- 338

nal pretraining configuration. One plausible expla- 339

nation is that pretraining helps to blunt this drop 340

in quality. Specifically, the pretraining procedure 341

incorporates a second layer that is funnel-aware, 342

which appears to counterbalance the information 343

loss introduced by the funnel configuration at that 344

particular layer. 345

Interestingly, when no funneling is applied (x=0), 346

models trained with normal pretraining outperform 347

those with funnel-aware pretraining, causing the 348

corresponding performance curves to cross over. 349

This suggests that in the absence of any funnel- 350

induced modifications, the additional complexity 351

introduced by funnel-aware pretraining does not 352

confer a benefit and may even be detrimental. 353

The shapes of the performance curves in both 354

the GLUE and WebAnswers plots exhibit the char- 355

acteristic V-pattern, with an initial decline in perfor- 356

mance followed by a recovery as the funnel config- 357

6



Figure 5: The effect of different recovery operations on NER performance.

uration is further adjusted. This recovery might be358

indicative of the funnel mechanism’s potential to359

mitigate overfitting in the full models. In fact, the360

observed improvement in performance at higher361

funnel recovery layers could be a consequence of362

reduced overfitting, a phenomenon that has been363

reported in the literature in contexts such as model364

quantization (Biderman et al., 2024), where modi-365

fying the model architecture can sometimes lead to366

an increase in performance.367

6.2 Information Bottlenecks368

Peppered throughout our results are the effect of in-369

formation bottlenecks: that is, the extend to which370

information is restricted and its impact on perfor-371

mance.372

First, larger models are impacted more by373

funneling. That is, funneling exhibits a notably374

more pronounced negative effect on the larger and375

more complex Gemma 7B model compared to376

Gemma 2B. Due to its increased width (number of377

neurons per layer) and deeper architecture (10 addi-378

tional layers), the same funnel operation causes379

greater information restriction when applied to380

Gemma 7B. As an example, funneling at the same381

recovery layer — for instance, layer 6 — aggre-382

gates significantly more activations in Gemma 7B383

due to its wider layers, and the compressed infor-384

mation propagates across more layers (28 versus 18385

in Gemma 2B). Consequently, this results in a more386

substantial performance degradation in Gemma 7B387

under the same stated funneling operations 3. This 388

observation indicates that while funneling can offer 389

notable computational speedups by reducing the di- 390

mensionality and number of processed activations, 391

careful calibration is required. In particular, the 392

benefits of speedup must be weighed against the 393

degree of performance loss, which can be substan- 394

tially greater for larger and more complex models. 395

Additionally, we observed a clear trend that per- 396

formance consistently degrades as funneling is 397

introduced at earlier layers. This phenomenon 398

arises because restricting information early in the 399

network negatively affects the quality of learned 400

representations throughout all subsequent layers. 401

Thus, the timing of the funnel operation signif- 402

icantly influences performance outcomes, under- 403

scoring the necessity of strategically selecting later 404

funnel recovery layers if maintaining task accuracy 405

is a priority. 406

Moreover, among the recovery strategies eval- 407

uated, averaging the unfunneled layer’s output 408

with the last layer emerged as the most stable 409

and effective approach. This averaging opera- 410

tion effectively provides better information pass- 411

through, as it combines the detailed, uncompressed 412

activations from earlier layers with the highly ab- 413

stract representations in later layers. Compared 414

to other methods such as direct concatenation or 415

3We attribute the superior performance of Gemma 2B to
extensive hyperparameter tuning, which wasn’t possible for
the Gemma 7B model due to limited compute. We however
argue that the results are still valid within each model, as both
models are compared apples to apples.
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max-pooling, averaging ensures a more balanced416

preservation of both fine-grained details and ab-417

stract patterns, which likely explains its superior418

stability and performance.419

7 Limitations420

Our study has some limitations worth noting.421

First, our experiments exclusively use the dense422

Gemma model family, limiting the generalizabil-423

ity of our conclusions to other model types (e.g„424

other model families or mixture-of-experts archi-425

tectures). Additionally, we do not explore more426

aggressive funneling configurations, such as 4-427

step funneling or multiple funneling layers in one428

architecture. Finally, we restrict our study to a429

single pooling operation, leaving alternative pool-430

ing mechanisms unexamined.431

8 Conclusion432

Large Language Models (LLMs) present signifi-433

cant computational demands, necessitating ongo-434

ing optimization efforts. This study revisit the Fun-435

nel Transformer architecture, investigating its appli-436

cation to the contemporary Gemma model family.437

Experimentation with varied funnel configurations,438

under both standard and funnel-aware pretraining,439

on benchmarks like BoolQ, GLUE and WebAn-440

swers, reveals that aggressive funneling creates441

information bottlenecks, which can degrade per-442

formance, particularly in larger models. However,443

strategic funnel placement and output averaging of444

compressed and uncompressed layers effectively445

mitigates these losses. Averaging proves more ro-446

bust than other recovery methods, likely by balanc-447

ing detailed and abstract feature integration. Our448

results underscore the trade-off between compu-449

tational efficiency and performance in funneling.450

Future work should explore enhanced funnel-aware451

pretraining, alternative pooling strategies, and com-452

parisons with other model compression techniques453

to further optimize LLM efficiency.454

8.1 Future Work455

To address the identified limitations and deepen456

our understanding of funneling, several avenues of457

future research are promising. Expanding the inves-458

tigation to include diverse model families beyond459

Gemma could enhance the generalizability of our460

conclusions. Examining architectures that employ461

mixture-of-experts could also offer unique perspec-462

tives on managing information bottlenecks in com-463

plex models. Further exploration into the effects 464

of multiple funnel-aware pretraining layers would 465

provide valuable insights into optimizing funnel 466

configurations. Additionally, exploring alternative 467

pooling operations could identify strategies that 468

mitigate information loss more effectively. Lastly, 469

directly comparing funneling with other established 470

pruning or information bottleneck methods would 471

clarify its relative strengths and weaknesses, guid- 472

ing more effective deployment in various applica- 473

tions. 474

8.2 Ethical Considerations 475

The focus on efficiency should not overshadow 476

broader ethical concerns inherent in LLM develop- 477

ment, such as bias amplification, misuse potential, 478

and the environmental impact of training large mod- 479

els, even if inference is optimized. To that end, we 480

argue that more compact and efficient models are 481

a step forward for inference-level environmental 482

concerns and reduce the chance of unintentional 483

detail recitation. We have taken care not to use 484

personally identifiable information in any of our 485

training corpora. 486
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Table 2: Hyperparameters for Gemma 2B Model Training

Hyperparameter Value

Gemma Model GEMMA_2B
Use Pooler true
Pooling Type ATTENTION_POOLING
Number of Attention Pooling Heads 4
Number of Transformer Pooling Layers 1
Projection Dimension None
Max Steps 2000
Max Learning Rate 0.00003
Minimum Learning Rate Fraction 0.1
Warmup Steps 100
Funnel Pooling Config (1,1,1,1,1,1,2)
Sequence Length 512
Training Batch Size 128
Eval Batch Size 256
Number of Microbatches 0
Weight Decay Rate None
Soft Labels False
Scoring BF16 Mode True
Overtrain Multiplier 1

Table 3: Hyperparameters for Gemma 7B Model Training

Hyperparameter Value

Gemma Model GEMMA_7B
Use Pooler true
Pooling Type ATTENTION_POOLING
Number of Attention Pooling Heads 4
Number of Transformer Pooling Layers 1
Projection Dimension None
Max Steps 4000
Max Learning Rate 0.00001
Minimum Learning Rate Fraction 0.1
Warmup Steps 100
Funnel Pooling Config (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2)
Sequence Length 512
Training Batch Size 128
Eval Batch Size 256
Number of Microbatches 0
Weight Decay Rate None
Soft Labels False
Scoring BF16 Mode True
Overtrain Multiplier 1
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